Comparison of the Metabolic Demands of Dance Performance Using Three Mobility Devices for a Dancer with Spinal Cord Injury and an Able-Bodied Dancer

Document Type


Publication Date



Mobility devices for dancers with physical mobility impairments have previously been limited to traditional manual or power wheelchairs. The hands-free torso-controlled mobility chair is a unique powered mobility device which allows greater freedom and expression of movement of the trunk and upper extremities. This study compared differences in energy expenditure during a standardized dance activity using three mobility devices: the hands-free torso-controlled mobility chair, a manual sports wheelchair with hand-arm control, and an electric power chair with hand-joystick control. An experienced dancer with C7 incomplete spinal cord injury (SCI) and an experienced able-bodied dancer were recruited for testing. Three measurement trials were obtained for each chair per subject. Oxygen uptake (VO2) and heart rate (HR) were measured continuously during the dance activity. Immediately following the dance activity, subjects rated perceived exertion. Significant differences (p<0.05) and similar linear patterns in VO2 and HR responses were observed between chairs for both dancers. When the hands-free mobility chair was used, the dance activity required a moderate level of energy expenditure compared to the manual sports chair or electric power chair for both dancers. Higher ratings of perceived exertion were observed in the manual chair compared to the other chairs for the dancer with SCI, but were similar between chairs for the able-bodied dancer. These results suggest that for a dancer with high-level SCI, the hands-free torso-controlled mobility chair may offer improved freedom and expressive movement possibilities and is an energy-efficient mobility device.

Was this content written or created while at USF?


Citation / Publisher Attribution

Medical Problems of Performing Artists, v. 29, no. 3, p. 163-167