Title

Relative Humidity Over the West Florida Continental Shelf

Document Type

Article

Publication Date

6-2005

Digital Object Identifier (DOI)

https://doi.org/10.1175/MWR2944.1

Abstract

Observed relative humidity variations on the coastal ocean of the West Florida Continental Shelf (WFS) are examined over the 5-yr period 1998-2003. Despite considerable daily variability within seasons, the monthly mean values are nearly constant at about 75%. Summertime specific humidity is twice that during winter, so high air temperatures are responsible for the low summer monthly mean relative humidities. Winter has the greatest relative humidity variability; values range from less than 50% to over 100% as extratropical fronts move over the WFS. Saturation (and fog) occurs as warm moist air passes over colder water. Two different sensors, mounted on multiple moorings, were used to make these observations. Monthly mean values from the Rotronics MP-100F are higher than the Hygrometrix 1020SHT. In addition to sensor differences, a contributing cause to this offset appears to be the locations chosen for sensor deployment. NCEP reanalysis climatology over the WFS and land-based coastal data both show an annual cycle in monthly mean relative humidity, with higher values in summer, suggesting that the reanalysis field is influenced by land. Air-sea fluxes over the WFS are sensitive to small spatial variability in the coastal ocean and atmosphere. The large grid spacing of the NCEP reanalysis does not capture this variability. The lack of coastal ocean data for assimilation biases the NCEP reanalysis fields toward land-based measurements. Increased spatial coverage via evolving Coastal Ocean Observing Systems should remedy this problem by providing required information for describing and understanding the complicated ocean-atmosphere interactions that occur on continental shelves.

Was this content written or created while at USF?

Yes

Citation / Publisher Attribution

Monthly Weather Review, v. 133, issue 6, p. 1671-1686

Share

COinS