Title

Mean dynamic topography of the ocean derived from satellite and drifting buoy

Document Type

Article

Publication Date

9-2009

Keywords

buoy observations, satellite observations, currents, ocean circulation

Digital Object Identifier (DOI)

https://doi.org/10.1175/2009JTECHO672.1

Abstract

Presented here are three mean dynamic topography maps derived with different methodologies. The first method combines sea level observed by the high-accuracy satellite radar altimetry with the geoid model of the Gravity Recovery and Climate Experiment (GRACE), which has recently measured the earth’s gravity with unprecedented spatial resolution and accuracy. The second one synthesizes near-surface velocities from a network of ocean drifters, hydrographic profiles, and ocean winds sorted according to the horizontal scales. In the third method, these global datasets are used in the context of the ocean surface momentum balance. The second and third methods are used to improve accuracy of the dynamic topography on fine space scales poorly resolved in the first method. When they are used to compute a multiyear time-mean global ocean surface circulation on a 0.5° horizontal resolution, both contain very similar, new small-scale midocean current patterns. In particular, extensions of western boundary currents appear narrow and strong despite temporal variability and exhibit persistent meanders and multiple branching. Also, the locations of the velocity concentrations in the Antarctic Circumpolar Current become well defined. Ageostrophic velocities reveal convergent zones in each subtropical basin. These maps present a new context in which to view the continued ocean monitoring with in situ instruments and satellites.

Comments

Additional authors: D. Chambers, V. Zlotnicki, and B. Galperin

Was this content written or created while at USF?

Yes

Citation / Publisher Attribution

Journal of Atmospheric and Oceanic Technology, v. 26, n. 9, p. 1910-1919, September 2009

Share

COinS