The application of renewable energy technologies to rail transit should be evaluated on a comprehensive energy pathway efficiency basis to ensure that the renewable energy technology is truly beneficial. One such method is the well-to-wheel analysis method, which combines the energy efficiencies of each component of the energy pathway into a single energy efficiency value. The focus of this paper is on well-to-wheel analysis of electric and hydrogen light rail. The inefficiencies of the hydrogen train’s power plant and hydrogen production process are apparent in the hydrogen train’s well-to-wheel efficiency value of 16.6–19.6%. The electric train, due to improved pathway efficiencies, uses substantially less feedstock energy with a well-to-wheel efficiency value of 25.3%. While this result is specific to Charlotte, North Carolina, the electric train efficiency is influenced by the main source of electricity production—it is 24.6% in Cleveland, Ohio (coal heavy) and 50.3% in Portland, Oregon (hydroelectric heavy).