Graduation Year

2015

Document Type

Dissertation

Degree

Ph.D.

Degree Name

Doctor of Philosophy (Ph.D.)

Department

Mechanical Engineering

Degree Granting Department

Mechanical Engineering

Major Professor

Delcie Durham, Ph.D.

Co-Major Professor

Sylvia Thomas, Ph.D.

Committee Member

Nathan Crane, Ph.D.

Committee Member

Sarath Witanachchi, Ph.D.

Committee Member

Jing Wang, Ph.D.

Keywords

Nanomanufacturing, Porosity, Beads, Fiber Diameter, Defects

Abstract

Polyvinylidene difluoride (PVDF) is a functional polymeric material that can be used for a wide variety of applications. There are many new future applications that were recently suggested for electrospun PVDF fibers. Electrospinning is a process capable of producing nano to micro sized PVDF fibers in a web. It is important to control the structure of the web during electrospinning because by controlling the structure of the web it is possible for the PVDF fiber web to have increased performance in comparison to other common forms of PVDF.

While past scientific literature focused on applications of PVDF fibers, little was known on how to control structure of PVDF fiber webs during production. Even though defects can alter the structure and performance of the web only a few studies reported defect occurrence and how to reduce the occurrence of defects in fiber webs. This research investigated the defect free production space of electrospun PVDF and provided streamlined guidelines for manufacturers to use for electrospinning PVDF webs.

Many studies looked at influencing fiber diameter and beading with one factor at a time experimentation; this work was foundational and was able to identify many important electrospinning parameters. But this methodology neglected the possibility of parameter interactions and often did not look at the effects of parameters on the occurrence of defects and the structure of those defects. Therefore a systematic understanding that included all of the important electrospinning parameters in relation to fiber and defect structure was needed to present a clear picture of the possibilities for controlling the structure of electrospun PVDF webs. This research explored ways to control the structure of PVDF fiber webs. The production space and control of web structure was explored by using a regression analysis to identify important parameters and interactions. Then the regression analysis was used to determine the effects of the important parameters that influenced the web structure.

This research showed that the web structure can be controlled using solution parameters and processing parameters and monitored by system parameters. In addition, this study showed that by controlling the web structure it was possible to influence the porosity and piezoelectric properties of PVDF fiber webs. In its entirety, this research presents a systematic approach to producing PVDF fibers for tailored web performance.

Share

COinS