11-17-2016

Gene Expression Profiling and the Role of HSF1 in Ovarian Cancer in 3D Spheroid Models

Trillitye Paullin

University of South Florida, trillpaullin@gmail.com

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the Biology Commons, Molecular Biology Commons, and the Oncology Commons

Scholar Commons Citation
Paullin, Trillitye, "Gene Expression Profiling and the Role of HSF1 in Ovarian Cancer in 3D Spheroid Models" (2016). Graduate Theses and Dissertations.
http://scholarcommons.usf.edu/etd/6563

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.
Gene Expression Profiling and the Role of HSF1 in Ovarian Cancer in 3D Spheroid Models

by

Trillitye Paullin

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cell and Molecular Biology Department of Cell Biology, Microbiology, and Molecular Biology College of Arts and Sciences University of South Florida

Major Professor: Sandy Westerheide, Ph.D.
 Brant Burkhardt, Ph.D.
 Meera Nanjundan, Ph.D.
 Ken Wright, Ph.D.

Date of Approval:
November 18, 2016

Key words: HSF1, Spheroid model, Epithelial-Mesenchymal Transition

Copyright © 2016, Trillitye Paullin
DEDICATION

I dedicate this dissertation to my husband and friend, Peter, for his immeasurable support and love through this journey. His devotion to my career and our family is what made this endeavor possible. I would also like to dedicate this to my mother, Nancy Hollis, who is an ovarian cancer survivor and the strongest person I know. Her belief in me as a daughter and a woman has catalyzed my success in so many ways. Finally, this work is dedicated to the Pat Tillman Foundation and the Tillman Scholars. This organization kept me focused and determined while inspiring me to be more each day.
ACKNOWLEDGMENTS

My most sincere appreciation goes to my mentor Dr. Sandy Westerheide, who made this work possible through her guidance and support. I would also like to extend a special thanks to Dr. Brant Burkhardt, Dr. Meera Nanjundan, and Dr. Ken Wright for their advice and feedback throughout this process. Finally, I would like to thank Dr. Heidi Super for hiring and mentoring me as an undergraduate. Her dedication to my development as a young scientist was pivotal and laid the foundation for the researcher that I am today.
TABLE OF CONTENTS

List of Tables .. iv

List of Figures .. v

Abstract ... vii

Chapter One: Introduction ... 1
 Ovarian Cancer ... 1
 Ovarian Cancer Treatment ... 4
 Epithelial Mesenchymal Transition ... 6
 Monolayer versus Spheroid Cell Culture ... 10
 Cancer Stem Cells ... 12
 The Heat Shock Response ... 13
 Mechanics of the Heat Shock Response ... 14
 Other Heat Shock Factors .. 16
 HSF2 ... 16
 HSF3 ... 17
 HSF4 ... 17
 HSF5, HSFY, and HSFX ... 18
 HSF1 Functional Domains .. 19
 HSF1 Post-Translational Modifications ... 20
 Heat Shock Proteins ... 22
 HSF27/HSPB ... 22
 HSP40/DNAJ ... 23
 HSP70/HSPA ... 23
 HSP90/HSPC ... 24
 HSR Negative Feedback Mechanism ... 24
 HSF1 Target Genes .. 25
 HSR and Aging ... 26
 HSR and Cancer ... 27
 Specific Aims ... 29

Chapter Two: Spheroid Growth in Ovarian Cancer Alters Transcriptome Responses for Stress Pathways and Epigenetic Responses ... 31
 Introduction .. 31
 Materials and Methods .. 33
3D Culturing Reveals a Marked Effect of HSF1 on the Induction of EMT Transcription Factors
- Page 66

Discussion
- Page 68

Figures
- Page 70

Chapter Four: Discussion and Future Directions
- Page 79
 1. **Overview of Major Findings**
- Page 79
 2. **Spheroids as a Therapeutic Model**
- Page 83
 3. **Future Studies for Ovarian Cancer Spheroids**
- Page 83
 4. **Implications for HSF1’s Role in Ovarian Cancer Progression**
- Page 84
 5. **Therapeutically Targeting the HSR**
- Page 85
 6. **Future *in vitro* Studies for Targeting the HSR in Ovarian Cancer**
- Page 87
 7. **Future *in vivo* Studies for Targeting the HSR in Ovarian Cancer**
- Page 91
 8. **Final Thoughts**
- Page 93

References
- Page 94

Appendices
- Page 109
 1. **Appendix A: Protocols**
- Page 109
 - **Counting and Passaging Cells**
 - Page 109
 - **Collecting Cells**
 - Page 110
 - **Creating Spheroids with TGFβ**
 - Page 111
 - **Collecting Spheroids**
 - Page 111
 - **RNA Extraction and Sample Processing for Affymetrix 3'IVT Expression System**
 - Page 112
 - **Reverse Transcription Reaction**
 - Page 112
 - **Real-Time Quantitative PCR with SYBR Green**
 - Page 113
 - **PrestoBlue Cell Viability**
 - Page 114
 - **Western Blot Analysis**
 - Page 114
 - **SDS-PAGE Gels**
 - Page 114
 - **Sample Preparation**
 - Page 115
 - **Blotting**
 - Page 115
 - **Antibody Staining and Detection**
 - Page 116
 - **Doxycycline-Inducible TRIPZ shRNA HSF1 Knockdown Cell Creation**
 - Page 117
 - **Day 1: Packaging Cells Preparation**
 - Page 117
 - **Day 2: Packaging Cells Transfection**
 - Page 117
 - **Day 3: Replace Media and Target Cell Preparation**
 - Page 118
 - **Day 4: Collect Virus and Infect Target Cells**
 - Page 118
 - **Day 5: Collect Second Round of Virus**
 - Page 118
 - **Day 6: Re-Infect Target Cells**
 - Page 118
 - **Day 7: Replace Target Cell Media**
 - Page 118
 - **Day 8+: Selection**
 - Page 118
 - **Wound Healing Assay**
 - Page 119
 - **Cell Migration Assay**
 - Page 119
 2. **Appendix B: Gene Set Enrichment Analysis**
- Page 120
Appendix C: Sub-Networks Related to Stress, DNA Methylation, and Histone Acetylation

... 124
LIST OF TABLES

Table 2.1: List of Primers used in Quantitative RT-qPCR .. 45
Table 2.2: Top 20 Genes with most Significant Fold Changes.. 50
Table 2.3: Top SNEA Pathways ... 51
Table 3.1: List of Primers used in Quantitative RT-qPCR .. 77
Table 3.2: Locations of HSEs in EMT Genes ... 78
Table A1: Solution Volumes for Passaging ... 109
Table A2: Reagent Volumes for Reverse Transcription Mastermix............................ 112
Table A3: Temperature Conditions for Reverse Transcription Reaction 112
Table A4: Temperature Conditions for RT-qPCR .. 113
Table A5: Reagent Volumes for RT-qPCR Mastermix ... 113
Table A6: Reagent Volumes for Separating Gel .. 114
Table A7: Reagent Volumes for Staking Gel .. 115
Table A8: Primary Antibodies for Western Blot Analysis .. 117
Table A9: Secondary Antibodies for Western Blot Analysis 117
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>TGFβ Induction of Epithelial to Mesenchymal Transition</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>TGFβ Induces Transient EMT within Hours of Treatment through</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Phosphorylation of TGFβ Receptor</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Spheroid Cell Culturing Closely Mimics Patient Tumors In Vivo</td>
<td>11</td>
</tr>
<tr>
<td>1.4</td>
<td>The Heat Shock Response through Activation of HSF1</td>
<td>15</td>
</tr>
<tr>
<td>1.5</td>
<td>Well-Described HSF1 Post-Translational Modification Sites</td>
<td>21</td>
</tr>
<tr>
<td>2.1</td>
<td>Establishment of 3D Mesenchymal Cell Populations from Confluent Monolayers</td>
<td>46</td>
</tr>
<tr>
<td>2.2</td>
<td>HEY Cells Treated with TGFβ have Distinct Gene Expression Profiles when</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Grown as 3D Spheroids vs. 2D Monolayer</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Volcano Plot for Differentially Expressed Transcripts</td>
<td>48</td>
</tr>
<tr>
<td>2.4</td>
<td>Real Time PCR Analysis Validates Microarray Results</td>
<td>49</td>
</tr>
<tr>
<td>2.5</td>
<td>Gene Networks Related to Stress</td>
<td>52</td>
</tr>
<tr>
<td>2.6</td>
<td>DNA Methylation</td>
<td>53</td>
</tr>
<tr>
<td>2.7</td>
<td>Histone Acetylation</td>
<td>54</td>
</tr>
<tr>
<td>3.1</td>
<td>HSF1 Levels are Elevated in Ovarian Cancer Patients Samples</td>
<td>70</td>
</tr>
<tr>
<td>3.2</td>
<td>Validation of Inducible HSF1 Knockdown Ovarian Cancer Cell Lines</td>
<td>71</td>
</tr>
<tr>
<td>3.3</td>
<td>Doxycycline Treatment Alone does not Alter HSF1 Levels or Induce</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>HSP90 Expression in Ovarian Cancer Cell Lines</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>HSF1 Knockdown Reduces Colony Formation</td>
<td>73</td>
</tr>
<tr>
<td>3.5</td>
<td>HSF1 Knockdown Inhibits Wound Healing, Migration, and Induction of Fibronectin</td>
<td>74</td>
</tr>
<tr>
<td>3.6</td>
<td>Fibronectin Expression is Induced by 3D Growth</td>
<td>75</td>
</tr>
</tbody>
</table>
Figure 3.7: TGFβ Induction of EMT Master-Switch Transcription Factors are Reduced upon HSF1 Knockdown, and the Effect is Enhanced upon 3D Culturing .. 76

Figure 4.1: Small Molecule Modulators of the HSR and HSP90 86

Figure 4.2: Proposed Combinational Treatment Assay in 3D Spheroids 89

Figure 4.3: Proposed Experimental Outline to Investigate HSF1’s Role in Ovarian Cancer Progression and Metastasis ... 91

Figure A1: Cell Counting with Hemacytometer .. 110

Figure A2: Western Blotting “Sandwich” for Transfer to Membrane 115
ABSTRACT

Ovarian cancer is the most lethal gynecological cancer, with over 200,000 women diagnosed each year and over half of those cases leading to death. These poor statistics are related to a lack of early symptoms and inadequate screening techniques. This results in the cancer going undetected until later stages when the tumor has metastasized through a process that requires the epithelial to mesenchymal transition (EMT). In lieu of traditional monolayer cell culture, EMT and cancer progression in general is best characterized through the use of 3D spheroid models. In this study, we examine gene expression changes through microarray analysis in spheroid versus monolayer ovarian cancer cells treated with TGFβ to induce EMT. Transcripts that included Coiled-Coil Domain Containing 80 (CCDC80), Solute Carrier Family 6 (Neutral Amino Acid Transporter), Member 15 (SLC6A15), Semaphorin 3E (SEMA3E) and PIF1 5'-To-3' DNA Helicase (PIF1) were downregulated more than 10-fold in the 3D cells while Inhibitor Of DNA Binding 2, HLH Protein (ID2), Regulator Of Cell Cycle (RGCC), Protease, Serine 35 (PRSS35), and Aldo-Keto Reductase Family 1, Member C1 (AKR1C1) were increased more than 50-fold.

Interestingly, stress responses and epigenetic processes were significantly affected by 3D growth. The heat shock response and the oxidative stress response were also identified as transcriptome responses that showed significant changes upon 3D growth. Subnetwork enrichment analysis revealed that DNA integrity (e.g. DNA
damage, genetic instability, nucleotide excision repair, and the DNA damage checkpoint pathway) were altered in the 3D spheroid model. In addition, two epigenetic processes, DNA methylation and histone acetylation, were increased with 3D growth. These findings support the hypothesis that three dimensional ovarian cell culturing is physiologically different from its monolayer counterpart.

The proteotoxic stress-responsive transcription factor HSF1 is frequently overexpressed in a variety of cancers and is vital to cellular proliferation and invasion in some cancers. Upon analysis of various patient data sets, we find that HSF1 is frequently overexpressed in ovarian tumor samples. In order to determine the role of HSF1 in ovarian cancer, inducible HSF1 knockdown cell lines were created. Knockdown of HSF1 in SKOV3 and HEY ovarian cancer cell lines attenuates the epithelial-to-mesenchymal transition (EMT) in cells treated with TGFβ, as determined by western blot and quantitative RT-PCR analysis of multiple EMT markers.

To further explore the role of HSF1 in ovarian cancer EMT, we cultured multicellular spheroids in a non-adherent environment to simulate early avascular tumors. In the spheroid model, cells more readily undergo EMT; however, EMT inhibition by HSF1 knockdown becomes more pronounced in the spheroid model. These findings suggest that HSF1 is important in the ovarian cancer TGFβ response and in EMT.
CHAPTER ONE: INTRODUCTION

Ovarian Cancer

In the United States, an estimated 22,280 new cases of ovarian cancer will emerge and 14,240 deaths will occur in 2016, making ovarian cancer the fifth leading cause of cancer deaths in women [2]. Despite research efforts, ovarian cancer is still the most lethal gynecological malignancy [2]. This is due to several factors, including inadequate screening techniques, the absence of early stage symptoms, insufficient chemotherapy options, and the molecular heterogeneity found in ovarian tumors [4]. Ovarian cancer’s high molecular heterogeneity is due to the large tumor volume, often several cubic centimeters, found in most patients who present with the disease [5]. Each cubic centimeter may be composed of up to a billion cells, indicating a high number of cell divisions which leads to high molecular and genetic heterogeneity. The number of cancer cells and how long they have been present are directly related to the patient’s probability of chemotherapy resistance through the development of resistant clone cells [6].

Due to a lack of early symptoms, ovarian cancer is commonly referred to as a silent disease. Some patients may experience abdominal pain, swelling, gastrointestinal distress, abnormal vaginal bleeding, appetite changes, frequent
urination, and/or fatigue [7]. Commonly, patients will experience little to no symptoms until the cancer has metastasized and is affecting other organs. Current screening techniques include pelvic examination, ultrasound, computed tomography (CT) scanning, magnetic resonance imaging (MRI), and CA-125 blood testing [8]. The CA-125 serum tumor marker is elevated in 80% of epithelial ovarian cancers and is detected by a radioimmunoassay [9]. Unfortunately, only half of stage I patients have significantly elevated levels of this marker [10]. This, in addition to the fact that CA-125 levels are also elevated in many cancer-free women, makes it an inadequate screening technique [10].

Carcinogenesis is described as the process in which a sufficient number of somatic mutations occur within a single cell to cause molecular modifications which yield a malignant phenotype [11]. The first phase of this step-wise process is initiation, where DNA damage occurs. Second, the precancerous cells continue to proliferate and accumulate genetic alterations in the step known as promotion. Lastly, progression is considered the last phase in which these alterations lead to the transformation to malignant cells.

A number of factors contribute to a patient’s likelihood of developing ovarian cancer. It has been proposed that incessant ovulation may lead to genetic damage which could cause ovarian cancer in some women [12]. For instance, the use of oral contraceptives (OC), child-bearing, breastfeeding, and a healthy weight all reduce a woman’s risk of presenting with the disease [13]. Contradictory to the incessant ovulation theory is the finding that taking OCs for three years, only inhibiting ten percent of lifetime ovulation cycles, reduces the risk of ovarian cancer by as much as fifty
percent [14]. Likewise, a single pregnancy is linked to a thirty-five percent reduction [15]. Studies such as these indicate that ovarian biology, including ovarian cancer risk, may be greatly affected by the patient’s hormonal balance. Receptors for estrogen, progestin, androgens, vitamin D, and retinoids are all present in the ovarian epithelium. During normal pregnancy, women express high levels of progestin which induces apoptosis and may be the underlying cause for the subsequent reduction in ovarian cancer risk [16]. In fact, Rodriguez et al. showed that primates treated with estrogen or progestin presented with a six-fold increase in ovarian epithelium cell apoptosis for progestin-only subjects [17]. Contraceptives containing progestin only do not dependably deter ovulation which again does not support the incessant ovulation theory [18]. Markedly, androgens, however, may have stimulatory effects leading to an increased risk of ovarian cancer [19]. These studies support the theory that ovarian cancer develops from the ovarian epithelium’s response to the individual’s hormone expression.

Genes also play a role in the risk equation. Hereditary genetic mutations are seen in about ten percent of ovarian cancer patients, wherein lifestyle choices may have little effect on the outcome [20]. Research has shown that two genes commonly associated with hereditary types of breast cancer, BRCA1 and BCRA2, are also linked to a greater chance of ovarian cancer [21, 22]. PTEN, a tumor-suppressor gene, is frequently mutated in endometrioid ovarian cancer, but PTEN mutation is not seen in other histological subtypes, indicating that the cancer develops through separate distinct pathways [23]. It has also been shown that the HER2 oncogene is overexpressed in nearly thirty percent of ovarian cancers that are linked to poor prognosis [24, 25].
Approximately 90% of ovarian cancers develop in the epithelium, while the remaining cases originate from germ or stromal cells. The major morphological subtypes of epithelial ovarian cancer include serous, clear cell, mucinous, and endometrioid [26]. Recent research has shown that accurate pathological typing is imperative to successful treatment, as each subtype independently responds to therapy and may indicate underlying genetic conditions [27-29]. These tumors are characterized as benign, malignant, or intermediate/borderline. Surface epithelial tumors can be further categorized into type I or type II based on their tumorigenesis pathways [27]. This categorization is based on broad tumor development mechanisms to be used in conjunction with the above histological subtypes. Type I tumors are typically described as low-grade neoplasms which arise from borderline tumors and type II tumors are high-grade neoplasms with de novo development [27].

Ovarian Cancer Treatment

Upon diagnosis, patients may undergo a series of treatment options to include surgery, chemotherapy, and in rare cases, radiation. Surgical procedures may aim to remove the uterus via a hysterectomy, the ovaries and fallopian tubes through a bilateral salpingo-oophorectomy, the omentum, and/or other affected tissues and organs [30].

Once surgery is complete, patients typically receive a combinational approach to chemotherapy utilizing a platinum-based medication such as carboplatin or cisplatin with a taxane such as paclitaxel or docetaxel. Increased survival rates have been
shown in women whose drugs are administered in an amalgamation of intravenous and intraperitoneal injections [31]. Platinum-based medications have a cytotoxic effect through several cellular events, the most important being DNA platination. DNA platination is a specific cross-linking event which occurs when the platinum compound reacts with the N(7) of guanine. Conversely, taxane chemotherapy agents utilized for ovarian cancer treatment induce cell cycle arrest, and consequentially apoptosis, by stabilizing microtubules through preventing depolymerization. However, both medications are accompanied by an array of side effects to include dose-limiting nephrotoxicity, ototoxicity, dizziness, blurred vision, nausea, painful urination, and vomiting.

Although most patients respond to platinum and taxane chemotherapeutic agents at first, the relapse rate is roughly 85% [32]. Ovarian cancer recurrence is seen when cancerous or precancerous cells remain after treatment and eventually proliferate into a tumor. Once relapse occurs, it is not unusual for patients to no longer respond to traditional chemotherapy, as a resistance is developed to the previously exposed medications. At this stage, supplementary treatment options include topotecan, hormones, additional surgery, and experimental agents [33]. Topotecan induces apoptosis by intercalating between the topoisomerase-I cleavage complex and DNA, thereby leading to an accumulation of double stand DNA breaks. Hormone therapy may also be utilized to reduce estrogen and increase progesterone levels, which has an inhibitory effect on cancer proliferation. Even with these alternate treatment routes, relapse rates are still staggering and most patients with advanced ovarian cancer succumb to their disease within five years of initial diagnosis [34].
Epithelial Mesenchymal Transition

The epithelial to mesenchymal transition (EMT) was first described by Greenburg in 1982 as a distinct process wherein “cuboidal” epithelial cells undergo changes to adopt an elongated mesenchymal phenotype (Fig. 1.1) [35]. EMT is most commonly observed during metazoan embryonic development when epithelial cells must migrate and dedifferentiate, such as during the formation of the mesoderm layer during gastrulation [36]. Processes such as gastrulation and neural crest formation are examples of primary developmental EMTs while secondary developmental EMT is implicated in organogenesis [37]. Equally as important in embryogenesis is the

Figure 1.1: TGFβ Induction of Epithelial to Mesenchymal Transition.

Addition of TGFβ to epithelial cells promotes their transition to a mesenchymal phenotype through expression of mesenchymal proteins. This disrupts cell-cell and cell-extracellular matrix connections to allow the cells to disengage from the tumor and metastasize to other organs. In ovarian cancer patients, these separated cells can be found free floating within the peritoneal cavity, making organs such as the stomach, liver, and kidneys prime locations for secondary tumors. (Adapted from Palena et al., 2011). (Figure created by Trillitye Paullin).
mesenchymal to epithelial transition (MET) which is the reverse process of EMT [38]. This advancement in embryogenesis allowed for higher organism complexity from diploblastic to triploblastic embryos [35]. In addition to development, EMT is also vital for wound healing and tissue regeneration. During this processes, EMT is associated with inflammation and is induced by a repair response in order to reconstruct tissues [39].

EMT is tightly regulated by a number of genes. Specifically, downregulation of E-cadherin is considered a hallmark for this process and one of the most studied EMT markers [40]. The protein is responsible for epithelial cell-cell adhesion and downregulation can affect other proteins during EMT including cytokeratins, desmosomes, and cell polarity proteins. During EMT, expression of E-cadherin “switches” to N-cadherin, allowing for a more fibroblast-like morphology and increased cell motility [41]. This phenomenon can be triggered through cellular release of growth factors, such as TGFβ, PDGF, EGF, and FGF2 [42]. Specifically, TGFβ initiates a response through the binding of receptors with serine/threonine kinase activity, which subsequently phosphorylates Smad2 and Smad3 [43]. Activated Smad2 and Smad3 form a complex with Smad4 which is then translocated into the nucleus to activate transcription of target genes [44, 45]. These genes act as transcription factors which are responsible for regulating the EMT process (Fig. 1.2) [46].
Figure 1.2: TGFβ Induces Transient EMT within Hours of Treatment through Phosphorylation of the TGFβ Receptor.

The binding of TGFβ ligand to TGFβ receptors results in phosphorylation of the receptor and a cascade of signaling events. First, Smad2/3 is activated through phosphorylation and forms a trimer with Smad4. This trimer then translocates to the nucleus to form a complex with co-transcription factors. Lastly, the complex activates or represses target gene transcription. Of these, the EMT markers Snail, Slug, Twist, and Zeb are all transcribed. (Adapted from Debangshu and Datta, 2012). (Figure created by Trillitye Paullin).

TGFβ is secreted by several cell types, including macrophages, B cells, and dendritic cells, and its activation can be regulated by the BMP1 protease family [47]. Its signaling is implicated in driving several developmental pathways and controlling cellular behavior [48]. As such, TGFβ plays dual roles of both anti- and pro-tumorigenesis depending on the cancer stage. In early-stage tumors, increased TGFβ expression levels are linked to favorable prognosis due to its ability to stimulate cell cycle arrest [49, 50]. However, it has been shown to enhance motility, invasion, EMT,
and stemness in advanced stage tumors [51]. This phenomenon has been coined the “TGFβ paradox” [52]. Similarly, TGFβ is vital to inhibiting cell proliferation in normal ovarian epithelial cells, however 40% of ovarian carcinomas are shown to contain mutated TGFβ which negates its cytostatic effects while preserving its ability to induce EMT [53]. In serous epithelial ovarian cancer, the 3q26.2 chromosomal region containing TGFβ co-repressors, ecotropic viral integration site-1 (EVI1) and SnoN/SKiL, is frequently amplified [54, 55]. In our studies, TGFβ was utilized to induce EMT in SKOV3 and HEY ovarian cancer cell lines.

Recently, scientists have focused on EMT processes that are activated under pathological situations as well, including tumor progression and metastasis [46, 56, 57]. In tumor progression, EMT allows the cells to detach from one another, invade the basement membrane, and migrate to other organs within the body [58]. Once the mesenchymal-like cell has migrated into a new organ, it can undergo MET and begin to form a secondary tumor [46]. In fact, many studies have shown a functional loss of E-cadherin as one of the most important steps in cancer progression [59, 60]. The most common E-cadherin alterations found in tumors include exon skipping and out-of-frame mutations and it is believed that the protein acts as a tumor suppressor for certain cancer types [61]. In many carcinomas, EMT-inducing transcription factors, such as Snail, Slug, Twist, and Zeb, appear to be induced or activated by signals stemming from the tumor-associated stroma [62, 63]. Such signals include growth factors such as TGFβ, EGF, PDGF, and HGF. Downstream, these transcription factors activate EMT through a series of signaling networks involving proteins such as MAPK, PI3K, Akt, Smads, ERK, and many others [64].
Monolayer versus Spheroid Cell Culture

HeLa was the first continuous human cancer cell line which was derived from a woman’s cervical cancer and developed in 1952 [65]. Today, there are hundreds of cells lines originating from every histological type of cancer. A majority of cell lines used for experimental purposes are considered adherent or monolayer cultures because they are anchorage-dependent and grow on a solid substrate. While monolayer cultures are commonly used to study ovarian cancer and the EMT process, the spheroid culture model has been shown to be more physiologically relevant due to its significant similarity to in vivo solid tumors in regards to pH conditions, oxygen levels, extracellular matrix interaction, cell to cell interaction, and glucose levels [66-68]. This is especially the case when studying metastasis, angiogenesis, and drug sensitivity [69-71]. Using spheroid cultures is particularly important for this study, as ovarian cancer patients often present with ascites [72]. Ascites is the accumulation of fluid in the peritoneal cavity, in which ovarian cancer cells, lymphocytes, and mesothelial cells can be found [73]. This occurs when malignant cells detach from the primary tumor into the ascitic fluid. These free-floating cancer cells have sphere-forming capability and have been shown to hinder treatment due to their role in metastasis, progression, and resistance to chemotherapy treatment [74-77].
Biomedical science began utilizing spheroidal cell clusters as early as the 1940’s as a means to study morphogenesis in embryonic and malignant cells [78-81]. Sutherland and associates later used this concept to determine therapy response in multicellular tumor spheroids [82, 83]. Research using 3D spheroids has led to new discoveries in the processes behind invasion, angiogenesis, metastasis, and cell cycle kinetics. Due to the relevance of spheroid cell cultures to actual in vivo solid tumors (Fig. 1.3), 3D culture should become a mandatory test system in therapeutic screening [84].

Figure 1.3: Spheroid Cell Culturing Closely Mimics Patient Tumors In Vivo.

Compared to monolayer cell culturing, which does not allow for areas of hypoxia, diverse cell proliferation rates, and varying nutrient and waste transport, tumor spheroids have been shown to be more physiologically relevant to tumors analyzed in vivo [1], even though these tumors are capable of developing into nearly any shape. Some spheroid culturing methods also include tissue support matrices which mimic the ECM in vivo. This makes spheroids a better experimental model than monolayer cells. (Adapted from Phung et al., 2011). (Figure created by Trillitye Paullin).

A wide variety of techniques are used to form spheroids from monolayer cell culture. The spinner flask culture was the first method described and is still commonly
used. In this method, fluid turbulence promotes cellular aggregation by preventing attachment to other surfaces [82]. Using the same basic concept, the rotary wall vessel reactor mimics microgravity by suspending cells between rotating cylindrical walls [85]. While these two approaches produce large quantities of spheroids, they also required special equipment and processing methods. Another technique consists of placing cells in non-adherent plates, however this usually results in less consistent spheroid size [86]. An alternative method involves a microfluidic device that is based on hydrodynamic trapping of cells in controlled geometries [87]. More recently, the hanging drop method, was established and provided more reliable spheroid size and arrangement [88]. Many new models for spheroid generation have been developed and patented based around these original techniques [89]. Today, three dimensional cell culture methods are grouped into three basic categories: cells cultured as multicellular aggregates, on plastic inserts containing a rich matrix such as a matrigel, or embedded in tissue support matrices meant to closely mimic the tumor microenvironment [89]. For its simplicity and reproducibility, we utilized the hanging drop method to study the effect of 3D spheroid cell culturing compared to monolayer in ovarian cancer cells.

Cancer Stem Cells

It has been postulated that a tumor may only arise through a small subclass of cells known as cancer stem cells (CSC) or tumor-initiating cells. CSC are characterized as tumorigenic, self-renewing, and pluripotent, meaning that they are capable of developing into a tumor comprised of heterogeneous cells. CSC are resistant to current conventional therapy options, allowing for their survival throughout treatment and leading to patient relapse after treatment is discontinued. Research has implicated...
CSC targeting mechanisms, such as differentiation therapy, as a necessity to halt the reestablishment of the tumor. This treatment would involve introducing inhibitory RNA, thereby blocking pathways which maintain stemness and causing the cells to differentiate.

Research supports the existence of stem cell populations in ovarian cancer patients [90]. In vitro studies have shown that a higher population of cancer stem cells can be located within anchorage-independent growing spheres and that the formation of said spheres is associated with cell differentiation [91]. This is important for ovarian cancer because the disease disseminates into both peritoneum adherent nodules containing their own blood supply as well as non-adherent spheroids which can be found within the peritoneal cavity. Additional evidence relating cancer stem cells to ovarian cancer progression is its unique reaction to bevacizumab, an anti-angiogenic therapy through VEGF blockage which is vital to the interaction of stem cells to the vascular niche [92]. In Chapter Two, we show that pathways for cancer stemness are enhanced upon 3D spheroid culturing methods in HEY ovarian cancer cells.

The Heat Shock Response

The heat shock response (HSR) was discovered accidentally by Ferruccio Ritossa in the 1960s. At the time, Ritossa was studying puffing patterns observed in Drosophila busckii salivary gland chromosomes. The salivary glands are of particular interest due to the chromosomal puffing changes directly related to expression levels of the growth hormone, ecdysone [93]. After one of his lab mates changed the incubator temperature for the fruit fly, Ritossa witnessed a puffing pattern change, indicating new
RNA synthesis [94]. The first journal that he submitted these findings to rejected Ritossa’s manuscript outright, claiming that it lacked biological significance. Eventually, his article would be published in *Experientia* in 1962 [95].

Initially, this discovery slowly sparked different experiments at the cytological level. It was discovered that the chromosomal response to temperature could be produced in minutes [96, 97] and was associated with newly synthesized RNA [95, 98]. In early research, it was discovered that this shift in chromosomal puffing patterns could be induced by stressors not related to temperature, such as inhibition of hydrogen transfer between NADH and Coenzyme Q10 [98] or by the increase of oxygen tension [99]. Since then, several other stress mechanisms have been linked to the HSR, to include oxygen-free radicals, aging, cancer, infection, and heavy metals [100]. Further studies in different *Drosophila* species and tissue types led scientists to believe that this response was not limited to *Drosophila busckii* salivary gland chromosomes [97, 101, 102]. In fact, the HSR has been shown to be a highly conserved, universal response which is found in every organism and nearly every cell and tissue type [103, 104].

Mechanics of the Heat Shock Response

The HSR is regulated by the phosphoprotein heat shock factor 1 (HSF1) is located on chromosome 8 and exists naturally as a monomer bound to heat shock protein 90 (HSP90). HSF1 and HSP90 dissociate upon stress, then homotrimerization of HSF1 allows it to bind to heat shock elements (HSEs) in the promoter regions of heat shock protein genes and stimulate transcription (Fig. 1.4) [105, 106]. HSF1 trimer binding to adjacent HSE sites is highly cooperative [107]. Posttranslational
modifications such as phosphorylation, deacetylation, and sumoylation are responsible for controlling HSF1 activation [108]. HSF1 can be acetylated by p300, causing it to attenuate off DNA, and can be deacetylated by the NAD+ dependent regulator SIRT1 [100]. Deletion of HSF1 in mammalian cells abolishes stress-induced HSPs expression, however it does not change their normal basal expression [109].

HSEs are denoted by a five base pair sequence of nGAA{n, where n is any nucleotide, ordered in alternating orientation [110, 111]. The number of units within a HSE usually ranges from three to five, producing a sequence such as

![Figure 1.4: The Heat Shock Response through Activation of HSF1.](image)

HSF1 is a phosphoprotein which exists as a monomer bound to Hsp90 under normal conditions. Upon stress HSF1 binds to HSEs of HSPs and promotes transcription. HSF1 is later attenuated off of the HSEs through negative feedback from Hsp70 and Hsp90 as well as acetylation. HSF1 is deacetylated by SIRT1, a NAD+ dependent protein deacetylase. (Adapted from Akerfelt et al., 2010). (Figure created by Trillitye Paullin).
TTCnnGAAAnnTTC which is found approximately 1.5 helical turns upstream of the TATA box [112]. This sequence is bound by each of the three HSF1 trimer’s DNA binding sites within seconds of stress exposure [113-115]. Upon heat shock, HSE chromatin regions become refractory to digestion, indicating protein binding [103].

Other Heat Shock Factors

The transcription factor HSF was originally discovered in 1984 through studying DNA-protein interactions in *Drosophila melanogaster* cells [116, 117]. While invertebrates only contained a single HSF, further research revealed expression of multiple HSFs in plants and vertebrates [118, 119]. The HSFs expressed in mammals, HSF1, HSF2, HSF3, and HSF4, HSF5, HSFX1, and HSFY1 exhibit both distinct and corresponding functions. HSF1, found in mammals, is the ortholog to the single HSF in *S. cerevisiae*, *C. elegans*, and *D. melanogaster* [120, 121]. The protein is vital to development and *Hsf1*−/− mice exhibit female infertility, growth retardation, elimination of the classical HSR, and prenatal lethality [109].

HSF2

In 1991, it was discovered that there were at least two separate HSF-related genes in humans, coined HSF1 and HSF2 [122, 123]. These two sequences have 40% identity at the amino acid level, with the highest conservation found within the DNA binding domain and heptad repeats. However, unlike HSF1, HSF2 in not activated by cellular stress but instead by distinct signaling mechanisms related to the ubiquitin-proteasome pathway [124]. Hemin, an iron containing protoporphyrin, induces erythroid differentiation in K562 cells and activates HSF2 [125]. Through studies in
mouse embryogenesis and spermatogenesis, HSF2 has been found to be vital for development and differentiation [126, 127]. Interestingly, while HSF2 deficiency is not embryonically lethal, Hsf2-/- mice present with brain abnormalities, and meiotic and gametogenesis defects in both males and females [128]. Recent research has shown that HSF2 is decreased in a wide range of cancer tumor types, including ovarian serous papillary epithelial cancer [129]. Furthermore, HSF2 suppresses prostate cancer tumor invasion and low expression levels have been linked to poor prostate cancer patient survival [129].

HSF3

Shortly after the discovery of HSF2, HSF3 was isolated and characterized from avian cells in 1993 [130]. The sequence for HSF3 is approximately 40% related to both HSF1 and HSF2, mainly found within the DNA binding domain and heptad repeats. Sequencing of the syntenic regions for HSF3 between chicken, mouse, and human revealed the mouse HSF3 gene, but only a human HSF3 psuedogene [131]. In avian cells, HSF1 and HSF3 are coactivated by stressors and are both required for induction of the HSR [132]. In fact, HSF3-null chicken B-lymphocyte cells significantly reduced HSP70 inducible expression and halted expression of HSP40, HSP90α, HSP90β, and HSP110 [133]. Independent of HS, HSF3 can be activated by the Myb oncogene via direct protein-protein interaction [134].

HSF4

Through screening of human and mouse cDNA libraries with a chicken HSF3 cDNA probe, HSF4 was isolated and characterized [135]. HSF4 is highly expressed in
the lens as a trimer due to its lack of a trimerization inhibitory domain, HR-C [135].
Deficiency in this gene causes cataracts in mice at early postnatal days [136]. HSF4 has been found to regulate nontraditional heat shock genes in murine lens cells independently of the HSR. Among the genes associated with HSF4 binding regions, approximately a third were induced upon HS [137]. In half of these genes, HSF4 was required as a chromatin remodeler to facilitate the binding of HSF1 to the promoter region [137].

HSF5, HSFY, and HSFX

HSF5 was discovered in 2001 as a potential HSF family member with a conserved region of the DNA binding domain, however it has yet to be fully characterized [138]. The HSFY gene is located within one of the three candidate regions for azoospermic factor (AZF) of the Y chromosome. Three HSFY transcripts were found to be differentially expressed in different tissue types, with transcripts 2 and 3 being testis-specific [139]. While the first transcript shares portion of the DNA binding domain with other HSF family members, the other two transcripts lack this conservation [139]. The expression of HSFY within the testis is highly dependent on its spermatogenic stage [140]. Reduced expression of HSFY within the testis may be associated with altered differentiation of spermatogenic cells in testes with deteriorated spermatogenesis [141]. There is little information about HSFX as it has yet to be fully characterized.
HSF1 Functional Domains

HSF1 is made up of several highly characterized domains. The DNA binding domain (DBD) is located on the amino-terminal region of the protein, and forms a globular structure with a flexible wing section [142, 143]. This wing allows for a protein-protein interface between the HSF1 monomers in order to promote the trimer binding to HSEs in the promoter regions of HSPs. This binding is highly cooperative between the subunits of the HSF1 trimer and from trimer to trimer, increasing the chances of a second trimer binding to an adjacent HSE by over 2000-fold [144].

Just after the DBD lies an oligomerization domain composed of hydrophobic heptad repeats (HR-A and HR-B) which are responsible for mediating HSF1 trimerization. This domain forms a coiled-coil, which is typical of a region containing several Leucine zippers. However, while most Leucine zippers facilitate the assembly of homodimers, the HSF1 heptad repeats form a triple-stranded configuration [119]. A third heptad repeat domain (HR-C) is located more closely to the carboxyl-terminus and is responsible for suppression of spontaneous HSF1 trimerization by folding back to interact with the HR-A and HR-B domains [119, 145].

Located between HR-A/B and HR-C, amino acids 221-310, is the regulatory domain (RD) which contains several serine residues that are phosphorylated upon stress. This domain is responsible for inhibition of the transactivation domains which make up the carboxy-terminal region of HSF1 [146]. The transactivation domains (AD-1 and AD-2) contain hydrophobic and acidic residues allowing the proteins to provide a prompt and sustained response to stress [146, 147]. AD-1 is made up of amino acids
371-430, is negatively charged, and forms an α-helix, while AD-2 is made up of the last 100 amino acids in the protein, is negatively charged, and is rich in proline and glycine [146, 148].

HSF1 Post-Translational Modification

HSF1 may undergo several different post-translational modifications which dictate the proteins overall function within a cell at any given time (Fig. 1.5). Activation of HSF1 is dependent on phosphorylation and several kinases have been shown to activate HSF1. Such kinases include casein kinase 2 (CK2) phosphorylation of Thr142 [149], calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylation of Ser230 [150], protein kinase A (PKA) phosphorylation of Ser320 [151], p38 mitogen-activated protein kinase (MAPK) phosphorylation of S326 [152], and polo-like kinase 1 (PLK1) phosphorylation of Ser419 [153]. Some HSF1 phosphorylation events, such as Ser121, Ser303, Ser307, and Ser363, have a negative impact on transcriptional activity [154, 155]. In addition to the sites described in Fig. 1.5, further phosphorylation sites have been located on serine residues 97, 230, 314, 319, and 363, however only S326 phosphorylation was shown to significantly activate HSF1 upon heat shock [3].

After HSF1 has been hyperphosphorylated, it undergoes sumoylation at lysine 298 by SUMO-1. Neighboring consensus sequences for phosphorylation and sumoylation together make up HSF1s phosphorylation-dependent sumolyation motif (PDSM). Phosphorylation-mediated sumoylation of this domain is stress sensitive and allows for the RD to restrict HSF1 activity. HSF1 sumoylation is persistent in cells exposed to mild heat stress while it is more transient in cells which experience a severe
heat stress [156].

HSF1 is subject to stress inducible acetylation which plays a role in the attenuation of HSF1 activity. The domains most affected by acetylation are responsible for protein subcellular location, oligomerization, and DNA recognition. Acetylation of this protein may be increased by sirtuin inhibition and likewise decreased by overexpression of sirtuin 1 (SIRT1), indicating that HSF1 is deacetylated by SIRT1 [100]. In fact, acetylation of K80 within the DBD diminishes the HSR by reducing DNA binding activity. HSF1 deacetylation by SIRT1 was shown to promote the HSR by

![Figure 1.5: Well-Described HSF1 Post-Translational Modification Sites.](image)

Acetylation of K80 is responsible for HSF1s loss of DNA affinity. S121, S230, S298, S303, S307, S320, S326, S419, and S444 are shown through mass spectrometry to be phosphorylated upon heat shock treatment [3]. Phosphorylation of T142 is also responsible for heat-induced transcriptional activity. Lastly, sumoylation at K298 by SUMO-1 inhibits HSF1 activity. (Adapted from Neef et al., 2011). (Figure created by Trillitye Paullin)

maintaining HSF1 in its DNA binding state [100]. This regulation of HSF1 via the longevity factor SIRT1 may indicate why a reduction of the HSR is seen with aging.

Additional uncharacterized acetylation sites exist on lysine residues 116, 118, 126, 148, 157, 208, 224, 298, and 524 [100, 157].
Heat Shock Proteins

Once HSF1 is bound to HSEs, it promotes transcription of heat shock protein (HSP) genes, which are among the most highly conserved genes in existence. While their transcription is induced by a stressor such as heat, they are also essential for normal cellular functions at basal temperatures. HSPs are also responsible for reducing the accumulation of damaged and misfolded proteins commonly found in aging cells. A discrepancy in protein homeostasis is a hallmark of both normal aging and age-related neurodegenerative diseases [158-161]. Molecular chaperones, such as HSPs, prevent toxic protein aggregation by binding to non-native polypeptides and correctly folding such proteins or by degrading them through the ubiquitin-proteasome system [162]. There are six major classifications of HSPs based on their molecular mass: small HSP/HSPB, HSP40/DNAJ, HSP60/HSPD, HSP70/HSPA, HSP90/HSPC, and HSP110/HSPH.

HSP27/HSPB

One such sHSP is heat shock protein 27 (HSP27), also referred to as HSPB1. HSP27 contains a highly conserved α-crystallin domain, which is required for oligomerization, within its 205 amino acid protein complex. As a protein chaperone, HSP27 has been implicated in several cellular processes, to include growth, differentiation, survival, and tumorigenesis [163]. HSP27s serine residue phosphorylation can determine its biological function. Non-phosphorylated HSP27 acts as an actin capping protein on the plus end of actin filaments, thereby inhibiting actin
polymerization while phosphorylated HSP27 promotes polymerization [164]. HSP27 expression and HSP27 overexpression increased overall tumor size when colon adenocarcinoma cells were injected into syngeneic rats [165]. Phosphorylation inhibition of HSP27 causes reduced tumor cell migration and invasion in breast cancer cells [166] and phosphorylation of Ser78 on HSP27 correlates with Her2/neu expression [167].

HSP40/DNAJ

HSP40, or DNAJ, contains a J domain made up of 70 amino acid residues which are responsible for binding the HSP70 nucleotide-binding domain (NBD) and stimulating its ATPase activity through hydrolysis [168]. Known as co-chaperones, several members of the HSP40 family have been characterized as binding a diverse array of client proteins to be manipulated by HSP70. Through a multi-step process, hydrolysis of ATP to ADP causes a conformation change in the HSP70 substrate-binding domain (SBD), increasing HSP70 affinity for its aggregated target [169, 170]. After ADP is replaced for ATP via nucleotide exchange factors (NEFs), the polypeptide is released and can fold into its native conformation [171]. If the polypeptide remains misfolded, it can either reenter the cycle for refolding or be targeted for degradation by the ubiquitin-proteasome system [172].

HSP70/HSPA

HSP70 is one of the most highly induced proteins in response to cellular stress [173]. HSP70 is present in the cytosol and in membrane-bound organelles and has a number of client proteins. Misfolded client proteins are escorted by HSP40 to HSP70s’
substrate-binding domain as described above. Its chaperone function for a wide range of client proteins leads to HSP70s key influence on apoptosis [174], immunomodulation [175], and tumorigenicity [176]. HSP70 knockdown has been shown to enhance cancer cell death over normal cells because its down-regulation is cytotoxic to transformed cells [177].

HSP90/HSPC

HSP90 plays a role in cellular homeostasis by providing stability and correctly folding client proteins which have been denatured upon stress [112]. This chaperone exists as an ATPase which recruits the assistance of co-chaperones to refold denatured proteins [178]. Over 20 HSP90 co-chaperones have been discovered which work to inhibit or activate HSP90 by regulating its ATPase activity or recruiting client proteins [179, 180]. Identified client proteins are implicated in several physiological events, to include signal transduction [181], tumor progression [182], cell cycle machinery [183], apoptosis [184], telomere elongation [185], and cell invasion and metastasis [186]. Due to its role in several oncogenic pathways, inhibition of HSP90 is being studied for its potential anti-tumor affects [187, 188].

HSR Negative Feedback Mechanism

The HSR is thought to be regulated by a negative feedback loop mechanism where HSF1 is kept inactive by the presence of excess HSPs [189]. Upon stress, HSPs bind to client misfolded proteins and release HSF1 from chaperone complexes, allowing for HSF1 trimerization and induction of the HSR. Once HSP expression has been saturated, they will bind and inhibit HSF1 once more. This was shown through the
activation of HSF1 by injection of non-native denatured proteins into Xenopus oocytes [190].

HSF1 Target Genes

Target genes of HSF1 are implicated in a wide range of cellular functions including cell division, development, insulin signaling, energy production, cytoskeletal organization, and vesicular transport. The most investigated HSF1 target genes are HSPs, as discussed above, which may serve as molecular chaperones to refold and disaggregate damaged polypeptides. HSF1 activation of these genes is vital to cell survival upon a number of stressors.

In addition to molecular chaperones, HSF1 is associated with several genes implicated in other physiological responses. Through suppression of the NFKB pathway, HSF1 binds directly to the nuclear factor of interleukin 6 (NF-IL6) and represses transcription of IL-1 beta gene, which is an essential mediator of the inflammatory response [191]. HSF1 has been shown to regulate expression of several other non-HSP genes including heme oxygenase 1 (HO-1) [192], BCL2-associated athanogene 3 (BAG3) [193], clusterin (CLU) [194], thrombomodulin (THBD) [195], and plasminogen activator inhibitor-1 (PAI-1) [196].

HSF1 plays a critical role in oncogenesis which has been shown to be transcriptionally unique from that of the classical heat shock response. Utilizing ChIP-Seq analysis, it was determined that HSF1 strongly binds to several genes in cancer cells which are not bound upon heat shock to include chaperone containing TCP1 subunit 6A (CCT6A), CDC28 protein kinase regulatory subunit 2 (CKS2), CDC protein
kinase regulatory subunit 1B (CKS1B), eukaryotic translation initiation factor 4A2 (EIF4A2), lymphocyte antigen 6 complex locus K (LY6K), RNA binding motif protein 23 (RBM23), and suppression of tumorigenicity 13 (ST13) [197]. Conversely, heat shock protein family A (HSPA6/HSP70) and DnaJ heat shock family member C7 (DNAJC7/HSP40) genes were strongly bound by HSF1 upon heat shock but not in cancer cells [197]. While the exact mechanism for HSF1’s district cancer role is not well defined, scientists have postulated that cancer activated pathways, such as EGFR/HER2 [198] and RAS/MAPK [199], may be implicated due to their ability to alter HSF1 activity [197]. Further analysis of this specialized transcription pathway could lead to new therapeutic targets in cancer treatment.

HSR and Aging

Several studies have implicated the HSR and HSPs in aging. Throughout the aging process, cellular death and degeneration occurs within vital organs. This degeneration causes an accumulation of damaged and dysfunctional proteins. However, an increase of misfolded proteins within the cell is also coupled with a diminishing of the HSR with age. Age-dependent decrease in the HSR can be found in the liver, neuronal tissues, and skeletal and cardiac muscle [200-202]. Specifically in neuronal tissues, this results in the formation of inclusion bodies, or aggregated proteins. Inclusion bodies have been linked to several neurodegenerative disorders, to include Alzheimer’s and Parkinson’s disease. Alzheimer’s disease has been associated with amyloid-β peptide and tau aggregation while Parkinson’s stems from α-synuclein inclusions. These connections implicate an age-dependent loss of protein quality control as a potential cause. In fact, downregulation of HSF1 results in a shortened
lifespan in *C. elegans* while overexpression lengthens it [203]. Additionally, shortened lifespan was found in *hsf1*−/− mice which were inoculated with prions compared to wild-type mice [204].

Several studies have been conducted which focus on exercise-induced stress response in skeletal muscles. In young organisms, non-damaging exercise results in a significant increase in HSPs, while this is not the case for old individuals [205]. Interestingly, DNA binding activity of HSF1 is not reduced in old organisms, suggesting that failure to induce the HSR occurring during or post-transcription [206].

HSR and Cancer

One of the basic hallmarks of cancer is that it must evade apoptosis in order to continue cell proliferation and create a tumor. Commonly, this is accomplished through the mutation or overexpression of one or more oncogenes or tumor suppressors. Recent studies have shown that many cancer types may utilize HSF1’s potential chaperone function to stabilize such oncogenes within the cell, thereby allowing the cancer to progress [207]. Additionally, increased HSPs in tumor cells as compared to normal cells provide a cytoprotective response in advanced cancers with acidotic, hypoxic, and nutrient deprived microenvironments [208]. Likewise, HSP70 overexpression can cause reversible oncogenic transformation [209]. HSP70 may increase drug resistance in some cancer cells due to its ability to inhibit apoptosis both upstream and downstream of the mitochondria [210].

High HSP70 and HSF1 levels promote cell survival, migration, invasion, and angiogenesis [108, 211-214]. Increased expression of HSF1 has been shown in
prostate, breast, colon, bladder, and lung cancer [197, 215-217]. This influx in HSF1 and HSP70 levels has been connected to cancer metastasis, poor patient outcome, and chemotherapy and radiotherapy resistance. Interestingly, this effect can be seen in cancers derived from multiple oncogenes, including p53, RAS, NF1, and PDGF [207, 218-220]. HSF1 may also be used as a biomarker for poor patient prognosis and highly metastatic tumors in these cancer types [197, 221].

In mice, HSF1 is recruited to enhance cancer cell survival, causing tumor size to be greatly reduced in HSF1 knockout mice compared to wild type [207]. HSF1 knockdown in breast cancer cells inhibits spheroid formation, decreases cancer stem cell marker expression, and increased sensitivity to paclitaxel chemotherapy treatment [222]. Furthermore, HSF1 knockdown MEFs exhibited a significant suppression of focus formation induced by PDGF-B [207]. In our studies, Chapter Three shows that knockdown of HSF1 also reduced spheroid and focus formation in SKOV3 and HEY ovarian cancer cells. Through microarray analysis, spheroid formation resulted in differentially expressed genes involved in cancer stemness and tumorigenesis as seen in Chapter Two.

HSF1’s ability to promote transcription of chaperones utilized for cancer progression makes it and subsequent chaperones strong potential targets for cancer therapy. New research has revealed that HSF1 expression is significantly higher in malignant ovarian cancer tumors than in benign tumors [223], however further studies have yet to be conducted showing its full effects within this deadly cancer. As shown in Chapter Three, our studies show that HSF1 plays a vital role in ovarian cancer
progression and that HSF1 knockdown reduces migration, invasion, and EMT in SKOV3 and HEY cell lines.

Specific Aims

The objective of this study is to investigate the difference between monolayer and spheroid culturing and determine what role HSF1 plays in ovarian cancer progression. **We hypothesize that ovarian cancer monolayer cells will significantly differ in gene expression profile from that of spheroidal cells, that HSF1 knockdown will inhibit ovarian cancer progression in both monolayer and spheroid model cells, that the effects of this knockdown will be more fully revealed in 3D culture, and that spheroids will prove more susceptible to the chemotherapy agents paclitaxel and cisplatin upon HSF1 knockdown or treatment with small molecule modulators of HSF1 and HSP90.** The following specific aims are intended to assess this hypothesis.

Specific Aim 1: Investigate the differences between monolayer and spheroid cell culturing in ovarian cancer (Chapter 2).

1.1: Determine gene expression profile changes in 3D spheroids versus 2D monolayers.

1.2: Validate microarray data through quantitative RT-PCR.

1.3: Evaluate pathways significantly affected by spheroid culturing.

Specific Aim 2: Determine HSF1’s role in ovarian cancer proliferation and progression (Chapter 3).

2.1: Evaluate effects of HSF1 knockdown on ovarian cancer cell proliferation.
2.2: Test the colony formation ability, and the migration and invasion efficiency of ovarian cancer cells upon HSF1 knockdown.

2.3: Assess the consequence of HSF1 knockdown on EMT in 2D and 3D ovarian cell culture.
CHAPTER TWO: SPHEROID GROWTH IN OVARIAN CANCER ALTERS TRANSCRIPTOME RESPONSES FOR STRESS PATHWAYS AND EPIGENETIC RESPONSES

Authored by Trillitye Paullin, Chase Powell, Christopher Menzie, Robert Hill, Feng Cheng, Christopher J. Martyniuk, and Sandy D. Westerheide

Experiments were designed, performed, and analyzed by T. Paullin or performed under the direction of T. Paullin. C. Menzie and T. Paullin performed qPCR analysis for Figure 2.4. Expression analysis and subsequent figures were created by C. Martyniuk and F. Cheng. Manuscript was written by T. Paullin and S. Westerheide.

Introduction

Despite recent improvements in surgery and chemotherapy, ovarian cancer is still the leading cause of death from gynecological malignancy [224]. Due to poor detection methods and a lack of symptoms, most patients are diagnosed at advanced stages, when the tumor has metastasized and spread [225]. Studies suggest that in order for metastasis to occur, the cancer cells must undergo phenotypic changes modulated by the epithelial-mesenchymal transition (EMT) [58].

EMT is a distinct process whereby epithelial cells undergo changes in favor of mesenchymal properties [35]. This process is most commonly observed during developmental stages when epithelial cells must migrate and dedifferentiate, such as in
the formation of the mesoderm during gastrulation [36]. A well-defined inducer of EMT is transforming growth factor-β (TGFβ) [226, 227]. The addition of TGFβ to epithelial cells induces transient EMT within hours of treatment through activation of the Smad pathway [228].

Although two dimensional (monolayer) tissue culture models are largely used to study the EMT process, evidence suggests that three dimensional (spheroid) culturing may be more physiologically relevant as it better emulates oxygen levels, pH conditions, glucose levels, extracellular matrix strength, and overall morphology of in vivo solid tumors [66-68, 229]. This is especially the case when focusing on metastasis, tissue invasion, angiogenesis, and drug sensitivity [69-71].

At least a third of ovarian cancer patients present with ascites [72]. Ascites is the accumulation of fluid in the peritoneal cavity which may contain ovarian cancer cells, lymphocytes, and mesothelial cells in the form of single cells and aggregates [73]. Further studies revealed that ascites spheroids may cause secondary tumors due to their ability to adhere to extracellular matrix proteins via interaction between multiple integrins and their ligands [230, 231]. Here, we conducted a comprehensive gene expression analysis for the process of culturing HEY ovarian cancer cells in 3D vs. 2D cultures during the TGFβ-induced EMT process. Using subnetwork enrichment analysis, we identified stress pathways, DNA integrity pathways, and epigenetic processes as those most affected by 3D vs. 2D growth.
Materials and Methods

Cell Culture and Treatments

The HEY human ovarian cancer cell line was authenticated by short tandem repeat (STR) DNA profiling (Genetica, Inc.) and was compared to ATCC and previously published profiles [232]. Cells were cultured in a humidified incubator containing 5% CO₂ at 37°C in RPMI with 10% fetal bovine serum and 1% Pen-Strep-Glutamine. Spheroid formation was accomplished through the hanging drop method. Briefly, trypsinized HEY cells were resuspended at 1 x 10⁶ cells/mL in supplemented RPMI. Multiple 25 µl droplets of the cell solution were then placed onto plate lids, inverted, and incubated for 72 hours to allow cells to aggregate into spheroids. To induce EMT, a final concentration of 10 ng/µl TGFβ was added to cells and incubated for 72 hours as monolayer cell culture or hanging drops during the creation of spheroids. Following incubation, monolayer cells and spheroids were photographed using an Evos® FL Cell Imaging microscope (ThermoFisher Scientific) and then collected in 1X PBS.

Quantitative RT-PCR

RNA was extracted from harvested cells using the RNeasy Mini Kit (Qiagen). RNA samples were then reversed transcribed with a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) per the manufacturer’s instructions. Subsequent samples were then diluted to 50 ng/ µL and used as a template for quantitative PCR (qPCR). qPCR was accomplished with a Step One Plus Real-time PCR system (Applied Biosystems) and SYBR® Green Supermix with ROX (BioRad) according to the
manufacturer’s protocol. Relative mRNA levels were quantified for ahnak2, akr1c1, ccdc80, hspa1a, hsp1, prss35, rgs2, and rrad using gene-specific primers (Table 2.1).

Affymetrix GeneAtlas Platform and 3'IVT Compatible U219 Probe Arrays

The oligonucleotide probe arrays used were the Affymetrix HG-U219 human array strips. These arrays consist of more than 530,000 probes detecting over 36,000 transcripts and variants-representing more than 20,000 genes.

Sample Processing and Validation

HEY Human ovarian carcinoma cells treated with TGF-β were cultured on a 2-dimensional substrate or 3-dimensional substrate as described above. Replicates of 4 separate experiments were performed on 4 different culturing days, cells isolated and stored in RNAlater Soln (Ambion) for no more than 7 days. Up to 100 µg of total RNA was isolated from all 8 samples using Qiagen’s RNeasy Mini Kit according to the manufacturer’s instructions. RNA integrity was verified with 1 µl of total RNA on RNA 6000 nanochips (Agilent) using The Agilent 2100 Bioanalyzer. All results for all 8 samples reported RNA Integrity Numbers (RIN) > 9. 100 ng of polyadenylated RNA was converted to cDNA and then amplified and labeled with biotin using Affymetrix 3'IVT Expression System according to the manufacturer’s instructions. Hybridization with the biotin-labeled RNA, staining, and scanning of the chips followed the proscribed procedure outlined in the Affymetrix technical manual and has been previously described.
Data Analysis

Scanned output files were visually inspected for hybridization artifacts and then annotated and normalized using Affymetrix Expression Console v1.3.1. Additionally, all QC metrics reported no outlier samples. Signal intensity was scaled to an average intensity of 500 during comparison analysis. Annotated expression data were assigned an ANOVA P value for the likelihood that any perceived difference was due to chance. The P values for all probe sets were exported to a text file and all pairwise comparisons of Bi-weight average signals were then aligned in MS Excel. For the comprehensive analysis, P < 0.05 was identified as having a linear change (increased or decreased) for the comparison. This analysis reported ~3,329 genes that showed differential regulation greater or less than 2-fold. To increase stringency, only genes whose fold-change was greater than or less than four (p < 0.05) were considered to be differentially expressed, reducing the pool to 493 candidate genes.

Data were analyzed using different visualization techniques that included hierarchical clustering, principle component analysis (PCA), and Volcano plots. All analyses were conducted in JMP Genomics v7.0. Transcripts that showed p<0.01 were used in the two-way clustering using the Fast ward algorithm after each row was centered to a mean of zero (0) and variance scaled to one. Results from hierarchical cluster analyses were visualized using heat map dendrograms, and biological replicates are partitioned into groups based on similarity (i.e., individuals clustered together are most similar). PCA used spatially weighted averages and were conducted on normalized expression values, the same dataset used in the cluster analysis. Volcano
plots were generated in JMP Genomics 7.0 following an ANOVA to identify differentially expressed transcripts.

Pathway Studio Analysis

Pathway Studio 9.0 (Elsevier) and ResNet 10.0 were used for sub-network enrichment analysis (SNEA) of cell processes [233]. The option of “best p value, highest magnitude fold change” in Pathway Studio was used for duplicated probes. Transcripts were successfully mapped using GeneBank ID. SNEA was performed to identify gene networks that were significantly different. A Kolmogorov–Smirnov test with 1000 permutations was conducted to determine whether certain networks were preferentially regulated compared to the background reference probability distribution. Networks are constructed based on common regulators of expression and regulators of specific cell processes. The enrichment P-value for a gene seed was set at $P < 0.05$. Additional details on the use of SNEA can be found in Langlois and Martyniuk [234].

Results and Discussion

HEY Cells Treated with TGFβ have Distinct Gene Expression Profiles when grown as 3D Spheroids vs. 2D Monolayers

To examine whether growth of HEY ovarian cancer cells as 3D spheroids vs. 2D monolayers could influence gene expression, we performed microarray analysis on biological quadruplets with cells grown under each condition. To create spheroids, the hanging drop method [235] was used as outlined (Fig. 2.1). We find that HEY cells treated with TGFβ have distinct gene expression profiles, depending on whether they are cultured under 2D vs. 3D conditions (Fig. 2.2). Hierarchical clustering reveals that
each of the two groups form into distinct clades based on gene expression (Fig. 2.2A). Additionally, principle component analysis shows that biological quadruplicates for HEY 2D and HEY 3D samples are more similar to themselves than to each other (Fig. 2.2B). Volcano plot analysis shows that there are numerous genes between the two groups that have a high fold change and that are also statistically significant (Fig. 2.3).

RT-qPCR was performed on eight different genes which were found to be up or downregulated by varying degrees upon 3D culturing to validate our microarray analysis (Fig. 2.4). The eight genes we chose to validate include two highly upregulated genes, the serine protease PRSS35 and the aldo-keto reductase AKR1C1, as well as the highly downregulated E-cadherin regulator CCDC80. Additionally, we chose some genes that were more moderately regulated, including the chaperones HSP110 and HSP70, the G-protein signaling inhibitor RGS2, the fibroblast growth factor secretion regulator AHNAK2 and the apoptotic inducer RRAD. Our results show that similar trends are observed via RT-qPCR for these genes as compared to our microarray results. Overall, our data show that HEY ovarian cancer cells, treated with TGFβ to induce EMT, show dramatic differences in gene expression profiles when grown as 3D spheroids vs. standard 2D culture.

Transcripts Affected by 3D Culturing may Enhance the Tumorigenicity of HEY Cells

Growth as 3D spheroids leads to both the upregulation and downregulation of gene expression (Table 2.2). The most highly upregulated gene under 3D growth conditions in HEY cells is AKR1C1 (Aldo-Keto Reductase Family 1, Member C1), part of a family of cytosolic NADP(H)-dependent oxidoreductases that is involved in
detoxification of xenobiotics, steroids, and polycyclic aromatic hydrocarbons [236]. Increased expression of AKR1C1 is associated with the development of cisplatin resistance in human ovarian carcinoma cells [237]. Previous work shows that ovarian cancer cells, grown in 3D, are more resistant to chemotherapy treatment [74]. It is therefore plausible that the increased expression of AKR1C1 upon ovarian cancer cell 3D growth may promote chemotherapy resistance. PRSS35 (Protease, Serine 35), another highly upregulated gene upon 3D growth, belongs to the trypsin class of serine proteases. This protease is highly expressed in the mouse ovary [238]. Proteases play an important role in proteolysis that is essential for tissue remodeling that occurs during EMT by breaking down the extracellular matrix. While metalloproteases play the largest role in this process, serine proteases also contribute [239]. We postulate that enhanced expression of PRSS35 under 3D growth conditions may promote ovarian EMT through the proteolytic digestion of cell attachments. A transcript that was highly downregulated upon 3D growth is CCDC80 (Coiled-Coil Domain Containing 80). Interestingly, CCDC80 null mice develop thyroid adenomas and ovarian carcinomas, and CCDC80 gene expression is decreased in human ovarian cancer samples as compared to normal ovarian samples [240]. The mechanism for the tumor suppressor properties of CCDC80 may be through its ability to induce E-cadherin expression [240]. E-cadherin provides crucial cell-cell adhesion to hold epithelial cells tightly together, and enhanced E-cadherin expression promotes the epithelial phenotype over the cancer-promoting mesenchymal phenotype [241]. Collectively, we propose that regulation of these and other genes upon 3D growth may enhance the tumorigenic properties of ovarian cancer cells.
Gene-Set Enrichment Analysis Reveals Novel Pathways that are enriched upon HEY Cell Growth as 3D Spheroids

Gene set enrichment analysis suggested that pathways downregulated by more than 15% include branched chain amino acid metabolism, folate biosynthesis, fatty acid oxidation, and the mevalonate pathway, while pathways upregulated in the 3D cells include those related to tumor necrosis factor receptor (TNFR) superfamily member 1A and 6. These pathways were increased more than 20% with 3D growth in HEY cells, and they have all been related to cancer growth. Branched chain amino acids, such as leucine, positively regulate the mammalian-target-of-rapamycin (mTOR) pathway [242]. The mTOR pathway is involved in regulating cellular functions involved in growth and proliferation, and upregulation of this pathway is commonly observed in human cancers [243]. Folate plays a role in nucleotide synthesis and methylation, making it essential to rapidly growing cancer cells [244]. Fatty acid oxidation is required for functional angiogenesis and is utilized by cancer cells to overcome metabolic stress to proliferate [245]. The mevalonate pathway is responsible for converting acetyl-coenzyme A into isoprenoids, which are required for cholesterol and steroid synthesis [246]. LDL-cholesterol accumulates in cancer tissues and is associated with migration, proliferation, and loss of adhesion from the primary tumor which are vital steps in the epithelial to mesenchymal transition [246]. Upregulation of TNFR family members allows signaling via the NF-κB transcription factor, which can promote tumorigenesis through the activation of the expression of genes involved in processes including cell proliferation, migration and anti-apoptosis [247].
Transcriptional Networks Involving Stress Pathways are Altered in HEY Cell Growth as 3D Spheroids

Unique sub-networks underlie the transition from 2D to 3D growth in HEY cells (Table 2.3, for a complete list of enriched cell networks see Appendix B). We note that a number of the identified sub-networks are related to the response to stress (Fig. 2.5, for a complete list of gene networks related to stress Appendix C). The finding that stress responses are activated upon 3D growth is not surprising, given that growth under these conditions is likely to cause nutrient limitation and hypoxia, among other cellular stresses.

Transcripts in the network that are related to the oxidative stress response include Peroxiredoxin 2 (PRDX2) (Fold change = +2.2), Catalase (CAT) (+1.3), Superoxide dismutase 1, soluble (SOD1) (+1.2), and Glutathione S-transferase omega 1 (GST01) (-1.3). In 1984, it was shown that transformation may result from the exposure of reactive oxygen species to mouse fibroblasts [248]. It has since then been hypothesized that the rise in cancer diagnosis for older individuals may be due to a lifetime of DNA damage by reactive species accumulated endogenously and exogenously [249]. Oxidative stress activates ERK/MEK and PI3K/AKT pathways and impacts signaling proteins important in cancer such as Ras, Raf, p53, PKC, c-Myc, and Nrf2 [250-252]. The changes detected in the oxidative stress pathway upon growth of HEY cells in 3D may thus promote tumorigenic properties of the cells.

Also changed in 3D cells are transcripts that are associated with the heat shock response. Some examples include heat shock protein 90kDa alpha (cytosolic), class A
member 1 (HSP90AA1) (+1.16), heat shock 27kDa protein 1 (HSPB1) (+1.20), and heat shock transcription factor 1 (HSF1) (+1.28). Recent studies have suggested that many cancer types utilize activation of heat shock factor 1 (HSF1), the master regulator of the heat shock response, to stabilize oncogenes within the cell [207]. The heat shock response is a highly conserved response to specific environmental stressors such as heat shock, heavy metals, and oxidative stress [104]. HSF1 promotes the transcription of heat shock protein genes, many of which encode molecular chaperones. Increased chaperone expression provides a cytoprotective response in advanced cancers with acidotic, hypoxic, and nutrient-deprived microenvironments [208]. Elevated levels of one or more chaperones are commonly found in both solid cancer tumors and hematological malignancies [253-257]. In fact, overexpression of HSP27, HSP70, or HSP90 correlates with poor prognosis and may contribute to drug resistance in some cancer types [258-261]. Activation of the heat shock response in spheroids may promote cell survival, in the face of multiple cellular stresses, through enhanced expression of HSF1 target genes, including molecular chaperones. Further analysis of this spheroid model could offer valuable insight into how HSF1 and HSPs could be utilized as targets for chemotherapy in ovarian cancer patients.

Other examples of stress-related genes that show a high magnitude of response in terms of downregulation include the PIF1 5’-to-3’ DNA helicase homolog (S. cerevisiae) (-13.0), epidermal growth factor receptor (-4.6), far upstream element (FUSE) binding protein (-4.4), and cysteine-rich, angiogenic inducer (-4.4). Increasing transcripts in the network included nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (+10.3), FBJ murine osteosarcoma viral oncogene
homolog (+14.7), prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase) (+29.5), and interleukin 8 (+49.8). Many of these aforementioned transcripts have been shown to play critical roles in the progression of cancer. For example, PIF1 is a DNA-dependent adenosine triphosphate (ATP)-metabolizing enzyme that is required for proper replication and repair during cell division. Studies show that this protein inhibits S-phase progression and reduces proliferation rates of RAS oncogene-transformed fibroblasts [262], and may therefore be a novel drug target for cancer therapy. Here, the downregulation of PIF1 mRNA may lead to increased proliferative activity during the transition from a non-cancerous cell to a cancerous cell. Our network analysis also identifies DNA duplex unwinding (down regulated -1.49) and S-M checkpoint (down-regulated -1.59) as processes significantly down-regulated in 3D spheroids, processes which may be related to changes in PIF1 expression. In terms of ovarian cancer, there are many studies implicating epidermal growth factor receptor (EGFR) as a key regulator of cell differentiation. Specifically, EGF-induced EMT increases phosphorylation of Akt, ERK1/2, and S6 ribosomal protein, which alters ovarian cancer cell proliferation and differentiation [263]. Additionally, elevated EGFR expression in tumor stroma is linked to aggressive epithelial ovarian cancer in patients and relates to Ki-67 expression in tumor cells [264]. In terms of up-regulated transcripts, notable transcripts included FBJ murine osteosarcoma viral oncogene homolog, a member of the Fos family of transcription factors. In cancer, this gene is a proto-oncogene implicated in cell proliferation and transformation [265]. Lastly of interest in the network was IL8, a gene that showed a dramatic increase in expression of ~50-fold in 3D cells (Table 2.2). Polymorphisms in this gene have been shown to be
associated with a significantly higher risk of ovarian cancer [266, 267]. Studies also show that increases in IL8 is associated with increased tumor growth and metastases [268].

Various responses related to DNA integrity were altered, including the response to DNA damage, genetic instability, nucleotide excision repair, and the DNA damage checkpoint pathway. The hypoxic environment created within spheroids may lead to increased DNA damage. Spheroid culturing has shown to alter chromatin packaging which in turn improves DNA repair through what is known as the “contact” effect [269]. DNA damage via metabolic products and by-products, such as ROS, may decrease replication fidelity, resulting in increased mutagenesis. Mutations and chromosomal abnormalities can increase the risk of cancer through the activation of oncogenes or the inactivation of tumor suppressor genes. Complex DNA-damage response mechanisms have evolved in order to isolate and repair these mutations. One such mechanism is the nucleotide excision repair (NER) pathway. NER is able to eradicate a variety of DNA lesions due to its ability to circumvent recognition of the lesion itself and focus on a set of commonalities shared by many different lesions [40]. Our analysis showed a significant enrichment of the NER pathway when cells are cultured as 3D spheroids.

Sub-Network Enrichment Analysis Identifies that Genes Involved in Epigenetic Processes are enriched upon HEY Cell Growth as 3D Spheroids

Two epigenetic processes, DNA methylation and histone acetylation, are also enriched upon 3D growth. A number of genes are both up- and downregulated related to DNA methylation, and this process is affected by about 4-5% (Fig. 2.6). DNA methylation changes are seen in several cancer types and have been linked to changes
in gene expression in highly metastatic tumors [270]. The process of histone acetylation is also significantly affected in both positive and negative fashions (Fig. 2.7).

Conclusion

Spheroid formation more closely mimics that of an *in vivo* tumor due to the cells ability to form an extracellular matrix and cell adhesions. Here, using the HEY ovarian cancer cell line, we show that 3D spheroid growth utilizing the hanging drop method affects a number of cellular processes, including the multiple cellular stress pathways, DNA integrity pathways, and epigenetic pathways. As these pathways all could affect tumorigenesis and the response to chemotherapies, our studies suggest that using 3D culture instead of 2D monolayers may be more informative in studying the properties of ovarian cancer cell lines.
Table 2.1: List of Primers used in Quantitative RT-qPCR.

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Sequence</th>
</tr>
</thead>
</table>
| AHNAK2 | F: 5' - GAAAATCCAGAGCCAC - 3'
| | R: 5' - GTGCCCTCTGAGTCCTAGA - 3' |
| AKR1C1 | F: 5' - TGGCCCATCCGAAGCAAGATT - 3'
| | R: 5' - GAGGATCATCTCCAGCTGCC - 3' |
| CCDC80 | F: 5' - CACGCAGAGTCCCAAGAAGT - 3'
| | R: 5' - CAAAATTGCACGCTGACCA - 3' |
| HSPA1A | F: 5' - GAGGGCCATGACGAAAGACA - 3'
| | R: 5' - TCGCTGATCTTGCCCTTGAG - 3' |
| HSPH1 | F: 5' - AGGATCTCCCAAGCCTGGAT - 3'
| | R: 5' - TGGAGAAAGGAGCCAGCATGG - 3' |
| PRSS35 | F: 5' - GCTGAAGCGTGCTCACAAA - 3'
| | R: 5' - GTCGGACACACTGCAAAACC - 3' |
| RGS2 | F: 5' - TCTACTCCTGGGAAGCCCAA - 3'
| | R: 5' - GAGGACAGCTTTTGGGGTGTA - 3' |
| RRAD | F: 5' - CCATGGGGGATGCCTATGTC - 3'
| | R: 5' - CGGCTTTACGAGCTACGAT - 3' |
Figure 2.1: Establishment of 3D Mesenchymal Cell Populations from Confluent Monolayers.

A) HEY cells grown in a monolayer are released and then suspended in drops of culture media containing TGFβ (20,000 cells per drop) using the hanging drop method. After 72 hours, the resulting 3D spheroids are then assayed. B) Image of HEY cells grown in monolayer culture. C) Image of HEY cells grown as a 3D spheroid and treated with TGFβ.
Figure 2.2: HEY Cells Treated with TGFβ have Distinct Gene Expression Profiles when grown as 3D Spheroids vs. 2D Monolayers.

A) Hierarchical clustering of expression profiles. Clustering revealed that each of the two groups form into distinct clades based on expression. B) Principle component analysis for expression profiles. Variability in transcriptome response separates strongly along the first PCA1. Red color is HEY 2D biological replicates and green color is HEY 3D biological replicates. Biological replicates for HEY2D are more closely related in expression compared to HEY 3D.
Figure 2.3: Volcano Plot for Differentially Expressed Transcripts.

The Volcano plot shows the significantly expressed transcripts vs. fold change of the pairwise comparison made between the two groups. Negative log10 p value on y axis indicates the significance of each gene, and the fold change (log base 2) mean expression difference on x axis. The dashed line is the significance threshold for selecting the differentially expressed genes at FDR of 0.05.
Figure 2.4: Real Time PCR Analysis Validates Microarray Results.

A) Real time PCR results for select genes that are moderately to highly affected by 3D vs. 2D growth. Biological and technical triplicates were utilized. B) Microarray results are plotted for the same genes.
Table 2.2: Top 20 Genes with most Significant Fold Changes

<table>
<thead>
<tr>
<th>Direction of Change</th>
<th>Gene</th>
<th>Role</th>
<th>Fold Change</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down-regulated</td>
<td>CCDC80</td>
<td>Heparin binding and fibronectin binding</td>
<td>-17.39</td>
<td>2.87E-09</td>
</tr>
<tr>
<td></td>
<td>SLCOA15</td>
<td>Amino acids transport</td>
<td>-14.75</td>
<td>2.3E-08</td>
</tr>
<tr>
<td></td>
<td>SEMA3E</td>
<td>Axon guidance ligands</td>
<td>-14.67</td>
<td>9.3E-09</td>
</tr>
<tr>
<td></td>
<td>TLENM2</td>
<td>Protein homodimerization activity</td>
<td>-13.71</td>
<td>7.28E-10</td>
</tr>
<tr>
<td></td>
<td>PLCB4</td>
<td>Catalyzes the formation of inositol 1,4,5-trisphosphate and diacylglycerol</td>
<td>-13.13</td>
<td>2.43E-08</td>
</tr>
<tr>
<td></td>
<td>MIR17</td>
<td>Involved in cancer and cell carcinomas</td>
<td>-13.09</td>
<td>2.91E-08</td>
</tr>
<tr>
<td></td>
<td>PIF1</td>
<td>5’ to 3’ DNA helicase</td>
<td>-13.02</td>
<td>1.09E-08</td>
</tr>
<tr>
<td></td>
<td>ILL1AP</td>
<td>Associates with interleukin to mediate NF kappab signaling</td>
<td>-11.49</td>
<td>1.16e-08</td>
</tr>
<tr>
<td></td>
<td>GPR126</td>
<td>G-protein orphan receptor</td>
<td>-10.83</td>
<td>6.66E-09</td>
</tr>
<tr>
<td></td>
<td>FBN2</td>
<td>Component of connective tissue microfibrils</td>
<td>-10.45</td>
<td>2.36E-08</td>
</tr>
<tr>
<td></td>
<td>MIR1304</td>
<td>mRNA regulation</td>
<td>-9.92</td>
<td>1.22E-08</td>
</tr>
<tr>
<td></td>
<td>TRMT13</td>
<td>Methytransferase activity</td>
<td>-9.22</td>
<td>7.77E-09</td>
</tr>
<tr>
<td></td>
<td>DLEU2</td>
<td>Associated with chronic lymphocytic leukemia</td>
<td>-9.09</td>
<td>4.32E-09</td>
</tr>
<tr>
<td></td>
<td>TIGD1</td>
<td>Unknown</td>
<td>-8.98</td>
<td>6.51E-08</td>
</tr>
<tr>
<td></td>
<td>TPM1</td>
<td>Involved in the contractile system of striated and smooth muscles</td>
<td>-8.91</td>
<td>9.32E-08</td>
</tr>
<tr>
<td></td>
<td>KRTAP2</td>
<td>Formation of a rigid and resistant hair shaft</td>
<td>-8.78</td>
<td>4.61E-09</td>
</tr>
<tr>
<td></td>
<td>RIMS2</td>
<td>Ion channel binding and Rab GTPase binding</td>
<td>-8.77</td>
<td>6.88E-10</td>
</tr>
<tr>
<td></td>
<td>ATP8B1</td>
<td>Transport of phosphatidylinerine and phosphatidylethanolamine</td>
<td>-8.66</td>
<td>7.27E-10</td>
</tr>
<tr>
<td></td>
<td>AHNAK2</td>
<td>Cell differentiation</td>
<td>-8.56</td>
<td>8.3E-09</td>
</tr>
<tr>
<td></td>
<td>AKAP12</td>
<td>Scaffold protein in signal transduction</td>
<td>-8.08</td>
<td>5.87E-09</td>
</tr>
<tr>
<td></td>
<td>MRP56</td>
<td>Protein synthesis in mitochondria</td>
<td>18.56</td>
<td>5.7E-10</td>
</tr>
<tr>
<td></td>
<td>TNFSF15</td>
<td>Cytokine inducible by TNF and IL-1 alpha</td>
<td>20.18</td>
<td>2.85E-08</td>
</tr>
<tr>
<td></td>
<td>RANBP3L</td>
<td>Binding protein</td>
<td>20.29</td>
<td>3.27E-09</td>
</tr>
<tr>
<td></td>
<td>SLC1A3</td>
<td>Termination of excitatory neurotransmission in central nervous system</td>
<td>22.47</td>
<td>1.07E-09</td>
</tr>
<tr>
<td></td>
<td>TMEM171</td>
<td>Unknown</td>
<td>24.17</td>
<td>7.76E-10</td>
</tr>
<tr>
<td></td>
<td>FZRL1</td>
<td>Receptor for trypsin and trypsin-like enzymes coupled to G proteins</td>
<td>25.68</td>
<td>5.85E-10</td>
</tr>
<tr>
<td></td>
<td>S100A4</td>
<td>Cell cycle progression and differentiation</td>
<td>28.15</td>
<td>5.7E-10</td>
</tr>
<tr>
<td></td>
<td>PTGS2</td>
<td>Prostaglandin biosynthesis</td>
<td>29.55</td>
<td>3.06E-08</td>
</tr>
<tr>
<td></td>
<td>SOD2</td>
<td>Converts superoxide byproducts to H2O2</td>
<td>32.39</td>
<td>4.72E-09</td>
</tr>
<tr>
<td></td>
<td>CXCR4</td>
<td>CXC chemokine receptor</td>
<td>35.08</td>
<td>6.24E-10</td>
</tr>
<tr>
<td></td>
<td>IL8</td>
<td>Neutrophil chemotactic factor</td>
<td>55.81</td>
<td>7.76E-10</td>
</tr>
<tr>
<td></td>
<td>SPOCK1</td>
<td>Protease inhibition</td>
<td>56.38</td>
<td>6.76E-10</td>
</tr>
<tr>
<td></td>
<td>NADK2</td>
<td>Catalyzes the phosphorylation of NAD to yield NADP</td>
<td>57.98</td>
<td>2.16E-08</td>
</tr>
<tr>
<td></td>
<td>GLS</td>
<td>Catalyzes the hydrolysis of glutamine to glutamate</td>
<td>59.61</td>
<td>6.06E-08</td>
</tr>
<tr>
<td></td>
<td>ITGβ8</td>
<td>Mediate cell-cell and cell-extracellular matrix interactions</td>
<td>60.23</td>
<td>2.1E-09</td>
</tr>
<tr>
<td></td>
<td>ID2</td>
<td>Cellular growth, senescence, differentiation, apoptosis, angiogenesis</td>
<td>70.77</td>
<td>4.63E-09</td>
</tr>
<tr>
<td></td>
<td>RGC6</td>
<td>Regulates cell cycle, induced by p53</td>
<td>78.93</td>
<td>5.85E-10</td>
</tr>
<tr>
<td></td>
<td>PRSS35</td>
<td>Protease activity</td>
<td>179.46</td>
<td>5.85E-10</td>
</tr>
<tr>
<td></td>
<td>AKR1C1</td>
<td>Conversion of aldehydes and ketones to their corresponding alcohols</td>
<td>198.09</td>
<td>5.7E-10</td>
</tr>
</tbody>
</table>

Transcripts are organized as those down-regulated and up-regulated between the two groups. The gene, as well as the role of the protein in the cell is provided in addition to the relative fold change and p-value. For a complete list of gene expression changes see Table S2.
Table 2.3: Top SNEA Pathways.

<table>
<thead>
<tr>
<th>Theme</th>
<th>Gene Set Seed</th>
<th>Total # of Neighbors</th>
<th># of Measured Neighbors</th>
<th>Median change</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autophagy</td>
<td>autophagy</td>
<td>418</td>
<td>407</td>
<td>1.08</td>
<td>3.9E-06</td>
</tr>
<tr>
<td>Apoptosis</td>
<td></td>
<td>78</td>
<td>75</td>
<td>1.15</td>
<td>0.00076</td>
</tr>
<tr>
<td>Cancer and Aging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>senescence</td>
<td>851</td>
<td>596</td>
<td>1.05</td>
<td>7.79E-08</td>
<td></td>
</tr>
<tr>
<td>cell aging</td>
<td>251</td>
<td>215</td>
<td>1.06</td>
<td>2.1E-07</td>
<td></td>
</tr>
<tr>
<td>oncogenesis</td>
<td>523</td>
<td>486</td>
<td>1.05</td>
<td>1.36E-05</td>
<td></td>
</tr>
<tr>
<td>Cell Cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S phase</td>
<td>857</td>
<td>797</td>
<td>1.05</td>
<td>4.38E-09</td>
<td></td>
</tr>
<tr>
<td>interphase</td>
<td>196</td>
<td>192</td>
<td>-1.05</td>
<td>1.1E-08</td>
<td></td>
</tr>
<tr>
<td>G1/S transition</td>
<td>411</td>
<td>358</td>
<td>1.07</td>
<td>1.79E-08</td>
<td></td>
</tr>
<tr>
<td>G2 phase</td>
<td>171</td>
<td>164</td>
<td>1.07</td>
<td>2.51E-05</td>
<td></td>
</tr>
<tr>
<td>cell cycle checkpoint</td>
<td>161</td>
<td>150</td>
<td>1.06</td>
<td>4.1E-05</td>
<td></td>
</tr>
<tr>
<td>exit from mitosis</td>
<td>62</td>
<td>59</td>
<td>1.06</td>
<td>0.000284</td>
<td></td>
</tr>
<tr>
<td>Chromosome Separation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>spindle assembly</td>
<td>507</td>
<td>478</td>
<td>-1.06</td>
<td>1.1E-11</td>
<td></td>
</tr>
<tr>
<td>centridex duplication</td>
<td>106</td>
<td>103</td>
<td>-1.10</td>
<td>6.98E-07</td>
<td></td>
</tr>
<tr>
<td>mitotic spindle assembly</td>
<td>59</td>
<td>58</td>
<td>-1.18</td>
<td>2.98E-05</td>
<td></td>
</tr>
<tr>
<td>microtubule/kinetochore Inter</td>
<td>19</td>
<td>19</td>
<td>-1.54</td>
<td>0.000872</td>
<td></td>
</tr>
<tr>
<td>DNA Damage and Repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>response to DNA damage</td>
<td>460</td>
<td>428</td>
<td>1.07</td>
<td>1.32E-12</td>
<td></td>
</tr>
<tr>
<td>DNA repair</td>
<td>854</td>
<td>659</td>
<td>1.05</td>
<td>1.8E-10</td>
<td></td>
</tr>
<tr>
<td>genome instability</td>
<td>292</td>
<td>272</td>
<td>1.06</td>
<td>4.69E-08</td>
<td></td>
</tr>
<tr>
<td>genetic instability</td>
<td>113</td>
<td>111</td>
<td>1.08</td>
<td>5.78E-07</td>
<td></td>
</tr>
<tr>
<td>nucleotide excision repair</td>
<td>120</td>
<td>113</td>
<td>1.09</td>
<td>7.58E-06</td>
<td></td>
</tr>
<tr>
<td>DNA damage checkpoint</td>
<td>126</td>
<td>122</td>
<td>1.06</td>
<td>8.2E-05</td>
<td></td>
</tr>
<tr>
<td>Protein Modification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>protein degradation</td>
<td>470</td>
<td>449</td>
<td>1.05</td>
<td>7.1E-08</td>
<td></td>
</tr>
<tr>
<td>ubiquitin-dependent protein degradation</td>
<td>193</td>
<td>186</td>
<td>1.16</td>
<td>3.23E-05</td>
<td></td>
</tr>
<tr>
<td>protein ubiquitination</td>
<td>69</td>
<td>68</td>
<td>1.15</td>
<td>3.27E-05</td>
<td></td>
</tr>
<tr>
<td>protein sumolation</td>
<td>167</td>
<td>158</td>
<td>1.13</td>
<td>4.71E-05</td>
<td></td>
</tr>
<tr>
<td>Stress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>response to oxidative stress</td>
<td>166</td>
<td>159</td>
<td>1.06</td>
<td>3.55E-05</td>
<td></td>
</tr>
<tr>
<td>heat-shock response</td>
<td>65</td>
<td>59</td>
<td>1.14</td>
<td>0.000722</td>
<td></td>
</tr>
<tr>
<td>Transcription</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>poly(A)+mRNA-nucleus export</td>
<td>84</td>
<td>77</td>
<td>1.13</td>
<td>1.68E-05</td>
<td></td>
</tr>
<tr>
<td>Polymere II transcription</td>
<td>75</td>
<td>70</td>
<td>1.13</td>
<td>0.000035</td>
<td></td>
</tr>
<tr>
<td>wall integrity</td>
<td>51</td>
<td>51</td>
<td>1.37</td>
<td>5.74E-06</td>
<td></td>
</tr>
<tr>
<td>myoblast differentiation</td>
<td>212</td>
<td>196</td>
<td>1.08</td>
<td>1.83E-05</td>
<td></td>
</tr>
<tr>
<td>nucleocytoplasmic transport</td>
<td>122</td>
<td>112</td>
<td>1.10</td>
<td>2.5E-05</td>
<td></td>
</tr>
<tr>
<td>adherens junction assembly</td>
<td>52</td>
<td>50</td>
<td>1.12</td>
<td>2.19E-05</td>
<td></td>
</tr>
<tr>
<td>skin development</td>
<td>69</td>
<td>67</td>
<td>1.10</td>
<td>0.000375</td>
<td></td>
</tr>
<tr>
<td>blood vessel barrier</td>
<td>28</td>
<td>26</td>
<td>1.26</td>
<td>0.000045</td>
<td></td>
</tr>
<tr>
<td>basement membrane</td>
<td>25</td>
<td>24</td>
<td>-1.14</td>
<td>0.000756</td>
<td></td>
</tr>
</tbody>
</table>

Only cell processes that showed >5% change in the pathway, as well a significant change at p>0.001 are shown. Provided are the total number of neighbors within a network, number of neighbors measured on the microarray, the median fold change of the network, and the p-value. All cell processes differentially expressed between cells are provided in Table S3. Major themes included those related to cell cycle DNA damage and repair, and stress.
Figure 2.5: Gene Networks Related to Stress.

These cell processes were significantly enriched following sub-network enrichment analysis when comparing 3D vs. 2D growth. These processes were preferentially increased in the 3D group. Red indicates the gene is upregulated and blue indicates the gene is downregulated. All genes for pathways are listed in Supplemental Files.
DNA methylation was significantly enriched following sub-network enrichment analysis when comparing 3D vs. 2D growth. DNA methylation was preferentially increased approximately 4% (197 genes measured, \(P = 0.006 \)) in the 3D group at the level of the transcriptome based on the sub-network enrichment analysis. Red indicates the gene is up-regulated and blue indicates the gene is down-regulated. All genes for pathways are listed in Supplemental Files.
Figure 2.7: Histone Acetylation.

Pathway for histone acetylation. A number of histone modifying enzymes were increased in expression in the 3D group, and this may be reflective of chromatin remodeling during cancer progression. Red indicates the gene or process is up-regulated and blue indicates the gene or process is down-regulated. All genes for pathways are listed in Appendices.
CHAPTER THREE: THE HEAT SHOCK TRANSCRIPTION FACTOR HSF1 INDUCES OVARIAN CANCER EPITHELIAL-MESENCHYMAL TRANSITION IN A 3D SPHEROID GROWTH MODEL

Authored by Chase Powell*, Trillitye Paullin*, Candice Aoisa, Christopher Menzie, Ashley Ubaldini, and Sandy D. Westerheide *Co-first authors

Experiments were designed, performed, and analyzed by C. Powell and T. Paullin or performed under the direction of C. Powell and T. Paullin. Manuscript was written by T. Paullin and S. Westerheide.

Introduction

Ovarian cancer is the number one gynecological malignancy cause of death [271]. This is partially due to a lack of physical symptoms during early cancer stages as well as shortcomings in screening techniques. In fact, a majority of newly diagnosed ovarian cancer cases present with stage III and IV disease [272]. Recent advances in surgery and chemotherapy treatment have led to improvement in short-term survival of ovarian cancer patients, however long-term survival remains bleak [225]. Conventional chemotherapy agents used to treat ovarian cancer include platinum and taxol-based drugs. While these agents are largely effective upon initial treatment, the patient commonly develops resistance to the drugs, yielding them inefficient should the patient relapse [273]. In addition, agents such as cisplatin can be toxic to the patient’s organs,
such as the kidneys and gastrointestinal tract, indicating a need for more efficient, as well as safer, treatment options [274].

The heat shock response (HSR), driven by the heat shock transcription factor HSF1, is a cytoprotective response to proteotoxic stressors, including heat shock, that results in the induction of various genes including molecular chaperones essential for recovery from cellular damage [275]. Chaperones function to guide protein folding and protect cells against proteotoxic stress [276]. The HSR is regulated at the transcriptional level by the heat shock transcription factor 1 (HSF1) [275].

Multiple lines of evidence suggest that HSF1 is important in promoting tumorigenesis. For instance, studies in HSF1 null mice show they are refractory to chemically-induced tumors, and HSF1 -/- mouse embryonic fibroblasts resist oncogene-induced transformation [207]. In cancer, HSF1 controls many genes that may support the transformed phenotype, including genes involved in cell-cycle regulation, signaling, metabolism, adhesion and translation [197]. HSF1 is elevated in breast, colon, lung and hepatocellular cancers, and activated or elevated HSF1 often couples with poor cancer prognosis [197, 212].

The dissemination of primary tumors occurs through a multi-step process called the epithelial-to-mesenchymal transition (EMT). EMT consists of detachment of primary tumor cells, infiltration of local stroma, spread through cavities or vascular and lymphatic vessels, and adhesion followed by colonization at distant sites [277]. Sweeping changes are made in the cytoskeleton and extracellular matrix during EMT, and cells develop a spindle-like morphology. TGFβ inhibits proliferation in normal tissues, but this effect is lost in advanced cancer where it strongly promotes EMT [278]. The expression of a
number of transcription factors are induced by TGFβ and support the EMT process, including SNAI2/SLUG, SNAI1/SNAIL, TWIST1 and ZEB1 [277]. Once the mesenchymal-like cell has migrated into a new organ, it can then undergo the reverse mesenchymal-to-epithelial transition (MET) and begin to form a secondary tumor [46].

Here, we have established two ovarian cancer inducible HSF1 knockdown cell lines to study the effect of HSF1 on ovarian cancer. We show that HSF1 knockdown inhibits colony formation, wound healing, migration and the induction of FN1/fibronectin, a protein important in the EMT process. We also show that the induction of EMT markers by TGFβ is enhanced when cells are grown as 3D spheroid cultures vs. 2D monolayer cultures. Upon 3D culturing, there is a marked effect of HSF1 on the induction of transcription factors known to promote EMT. HSF1 knockdown also alters spheroid morphology. Thus, we conclude that HSF1 plays a striking role in regulating the EMT process under 3D growth conditions.

Materials and Methods

HSF1 Copy Number, Expression Determination, and Survival Analysis

Data comparing HSF1 copy number across multiple cancers with GISTIC analysis was obtained from The Cancer Genome Atlas (TCGA) via the cBio portal [279, 280]. HSF1 expression levels across multiple cancers were assessed from TCGA RNA seq V2 data via the cBio portal. Data for the comparison of ovarian cancer and normal ovarian tissue were obtained from GEO and the TCGA. The datasets analyzed were: GSE18520, consisting of 10 normal ovary and 53 ovarian cancer samples assayed on Affymetrix HG-U133 Plus 2.0 GeneChips, and TCGA data, consisting of 8 normal ovary
and 568 ovarian cancer samples assayed on Affymetrix HG-U133A GeneChips. Gene intensity was compared by one-sided unpaired T-test.

Cell Culture and Treatments

HEY, SKOV3 and T80 cells were authenticated using short tandem repeat (STR) DNA profiling (Genetica, Inc.) and comparing profiles to ATCC profiles and other previously published profiles [232]. Cells were cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum (GIBCO) and 1% Pen-Strep-Glutamine (CellGro) in a humidified incubator at 37°C with 5% CO₂. Heat shock treatment was performed by wrapping plates in parafilm and submerging them in a 42°C circulating water bath for designated times. Cells were treated as indicated with 1 µg/ml doxycycline (Sigma-Aldrich) and 5 ng/mL TGFβ1 (Thermo Fisher).

Lentiviral Creation and Infection for Stable, Inducible shRNA-Mediated HSF1 Knockdown

To allow for inducible knockdown of HSF1, we utilized the doxycycline-inducible TRIPZ shRNAmir system (Thermo Scientific). Two shRNA sequences targeting HSF1 were obtained from the RNAi codex database [281]: CGCAGCTCCTTGAGAACATCAA (shHSF1A) and CCCACAGAGATACACAGATATA (shHSF1B). These two sequences were cloned into the pTRIPZ vector. For lentiviral packaging, a 2nd generation lentiviral system was used with the pCGP packaging and pVSVG envelope plasmids (Addgene). HEK293T cells, cultured in RPMI medium, were used as the packaging cell line. Transfection was achieved using Polyfect Transfection Reagent (Qiagen) according to the manufacturer’s protocol using a 1:1:1 ratio of lentiviral vectors. 24 hours post-transfection, medium with transfection reagent was removed and replaced with fresh
RPMI. Medium containing viral stock from the HEK293T cells was harvested 48 hours post-transfection. A 0.45 micron PVDF filter was used to filter viral stock and infection of the HEY and SKOV3 cell lines was performed in a single round with the addition of 8 \(\mu g/mL \) of hexadimethrinebromide (Sigma-Aldrich). Selection of stable HEY and SKOV3 cells was achieved with 1 \(\mu g/ml \) and 0.5 \(\mu g/ml \) of puromycin (Thermo Fisher) for the HEY and SKOV3 cell lines, respectively. Infection was verified via immunoblotting analysis for knockdown of HSF1 after doxycycline-induced expression of the shRNAs.

Protein Isolation, SDS-PAGE, and Western Analysis

Cells were washed once and scraped in chilled PBS. After pelleting the cells, protein was extracted using the M-PER lysis buffer (Thermo Scientific) with a protease inhibitor cocktail (Halt™ Protease Inhibitors, Thermo Scientific). A Bio-Rad Protein Assay was then utilized to quantify protein concentrations. 20 \(\mu g \) of lysate was resolved on 8% to 12% sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) gels and transferred to Immun-Blot® 0.2\(\mu m \) PVDF Membrane with a Trans-Blot semi-dry transfer cell (Bio-Rad). Membranes were blocked in 2% w/v non-fat milk in TBS with 0.1% Tween (TBST milk). Blots were probed with primary and secondary antibodies before incubation in ECL Prime Western Blotting Detection System (Amersham™) and film exposure. Primary antibodies used were: HSF1 (Assay Designs), HSF1 P-S326 (Abcam) fibronectin (BD Biosciences), HSP90 (Cell Signaling), HSP70 (Cell Signaling) and Actin (Santa Cruz). HRP-conjugated secondary antibodies were from Millipore and Jackson ImmunoResearch.
Cell Viability Assay

Cells at a concentration of 2×10^5 cells/ml were seeded in a 96-well plate at 100 µl per well with eight replicates for each test condition. The cells were then incubated either with or without doxycycline treatment for 72 hours. After incubation, 10 µl of PrestoBlue Cell Viability Reagent (Invitrogen) was added to each well and incubated for 1 hour at 37°C. The reduction of the reagent was measured by fluorescence (excitation 570 nm, emission 600 nm) using a microplate reader (BioTek). Mean percent viability and standard error were then plotted.

Clonogenic Assay

Cells were seeded at 500 cells per well in 6-well plates and were treated with or without 1 µg/ml doxycycline to induce HSF1 knockdown. Treated wells were given an additional treatment with 1 µg/ml doxycycline on day 4 to maintain doxycycline levels. After 8 days, colonies were stained with 1% crystal violet (w/v) in methanol and rinsed 3X in deionized water. Stained colonies were subsequently photographed and counted.

Wound Healing Assay

Cells were plated at 3×10^5 cells per well in a 6-well plate, and then either treated with 1 µg/ml doxycycline 48 hours prior to the assay or left untreated. Once the cells reached confluency, a 2 µl pipet tip was used to scrape the cells in 2 vertical and 2 horizontal lines yielding 4 intersections per well. Cells were washed twice with PBS to remove debris and serum-free medium was added. Pictures were taken immediately and again 12 hours after the creation of the wound, using an EVOS inverted microscope (Advanced Microscopy Group). The experiment was performed in triplicate and wound
closure was determined using TScratch software [282]. Significant differences were calculated by ANOVA and Bonferroni post-hoc tests.

Cell Migration

For the transwell migration assay, cells were treated with or without 1 μg/ml doxycycline 48 hours prior to the assay to induce HSF1 knockdown, and cells were then serum-starved 24 hours before performing the assay. Cells were then resuspended in serum-free medium, and seeded at 2.5 x 10^4 cells per upper chamber. 400 μL of complete medium containing FBS was added as a chemoattractant to the lower chamber. After a 16-hour incubation, non-migrating cells on the upper surface of the filter were removed by scrubbing with a cotton swab. The remaining cells on the lower surface were fixed and stained with 1% (w/v) crystal violet in methanol. Migrated cells were counted from 10 random fields of view from each well and each condition was performed with triplicate samples. Statistical analysis done by paired t-test.

Spheroid Formation

The hanging drop method was utilized to form spheroids [283]. Briefly, cells released with trypsin were resuspended at 1 X 10^6 cells/mL in RPMI medium, supplemented as described above. Cell suspension droplets of 25 μl were placed on the plate lids, which were then inverted and put back on plates containing phosphate buffered saline (PBS) and incubated for 48 hours. Upon incubation, cells aggregated into spheroids. Prior to plating the cells, TGFβ1 was added to the suspension as indicated at a final concentration of 5 ng/mL. Following aggregation for 48 hours, spheroids were collected in 1X PBS. Pictures were obtained using an EVOS (Advanced Microscopy Group) inverted microscope.
Quantitative RT-PCR

Cells were harvested in cold 1X PBS and RNA extraction was completed utilizing the TRIzol reagent (Thermo Fisher) according to standard protocol. Reverse transcription reactions of the RNA were performed with the High Capacity cDNA Reverse Transcription Kit (Applied Biosystem), as per the manufacturer’s protocol. The cDNA samples were then used as a template for qRT-PCR. Applied Biosystem’s Step One Plus Real-time PCR machine was used with BioRad’s iTaq™ Fast SYBR® Green Supermix with ROX according to the manufacturer’s protocol. The primer sets used for each gene can be found in Table 3.1. GAPDH was used as the endogenous reference control. Statistical significance was measured by Student’s t test.

Results

HSF1 is Overexpressed in Ovarian Cancer

We analyzed data from The Cancer Genome Atlas (TCGA) database to compare HSF1 levels across multiple cancer types. Interestingly, we find that HSF1 gene duplication is more common in ovarian cancer than in any other cancer type in this database by a large margin (Fig. 3.1A). Additionally, we find that HSF1 mRNA transcripts are elevated in ovarian cancer tumor tissue vs. normal epithelial tissue from matched patient samples (Fig. 3.1B). Other cancers with high HSF1 mRNA levels include liver cancer, head and neck cancer, and breast cancer (Fig. 3.1B). Two distinct data sets of matched ovarian tumor tissue vs. normal tissue show that HSF1 mRNA expression is significantly higher in tumor tissue (Fig. 3.1C-D). Given this data, we postulate that HSF1 may drive ovarian cancer progression. We thus sought to study the effect of HSF1 knockdown in ovarian cancer cell lines.
Establishment of SKOV3 and HEY Inducible HSF1 Knockdown Ovarian Cancer Cell lines

We chose two epithelial ovarian cancer cell lines for our studies, SKOV3 and HEY. These cell lines were authenticated by using short tandem repeat (STR) DNA profiling (Genetica, Inc.) and comparing the profiles to ATCC profiles and other previously published profiles [232]. We first wanted to test whether the cell lines we selected exhibited a normal response to heat, including the characteristic activation of HSF1 and induction of chaperones. We find that both SKOV3 and HEY cells exhibit multiple hallmarks of activation of the heat shock response (Fig. 3.2A). Upon treatment with a 42°C heat shock over a 6 hour timecourse, we observe stress-induced hyperphosphorylation of HSF1 followed by a return to the hypophosphorylated state. This result is characteristic of HSF1 activation by heat shock and can be readily detected by electrophoretic retardation on SDS-PAGE and Western blot analysis [284]. Interestingly, while SKOV3 cells contain a similar level of basal and activated HSF1 as compared to normal ovarian epithelial T80 cells, HEY cells express higher levels of HSF1, corresponding to the higher levels of HSF1 expression we identified in ovarian cancer patient databases. Upon heat shock, we also observed that both SKOV3 and HEY cells show HSF1 phosphorylation at serine 326, a marker of activated HSF1 [3]. Additionally, the chaperone HSP70 was induced by heat shock in both SKOV3 and HEY cells, and HSP90 was induced in HEY cells. Overall, we conclude that both SKOV3 and HEY cells express HSF1 and respond to heat shock, validating the choice of these two ovarian cancer cell lines for our studies.
We next wanted to generate HSF1 knockdown SKOV3 and HEY cell lines. Our initial attempts to create stable HSF1 knockdown in these cell lines were not successful, perhaps due to selective pressure for the cancer cells to re-express HSF1. We therefore employed a doxycycline-inducible shHSF1 system (pTRIPZ vector, Open Biosystems). To ensure that doxycycline treatment alone would not alter HSF1 levels or activity, we treated SKOV3 and HEY cells with both 0.5 and 2.0 \(\mu \text{g/ml} \) of doxycycline for 48 hours and found no changes in HSF1 levels or hyperphosphorylation status (Fig. 3.3). We also found no change in HSP90 levels (Fig. 3.4). We therefore concluded that a doxycycline-inducible system would be a viable option for HSF1 knockdown in our studies.

We used two shHSF1 sequences obtained from the RNAi codex database [281], shHSF1A (CGCAGCTCCTTGAGAACATCAA) and shHSF1B (CCCACAGAGATACACAGATATA), as well as a control sequence that is non-targeting, to create SKOV3.shControl, SKOV3.shHSF1A, SKOV3.shHSF1B, HEY.shControl, HEY.shHSF1A and HEY.shHSF1B stable cell lines (Fig. 3.2B). The shHSF1A sequence knocks down HSF1 expression by about 75%, while shHSF1B knocks down HSF1 expression more completely. Knockdown of HSF1 resulted in only a marginal reduction of cell viability in the SKOV3 or HEY cell lines over a 72 hour doxycycline treatment timecourse (Fig. 3.2C). We thus have established an effective means of knocking down HSF1 to varying degrees in two different ovarian cancer cell lines.
HSF1 Knockdown Inhibits Colony Formation, Wound Healing, Cell Migration and Fibronectin Expression

We then assayed our HSF1 knockdown cell lines to determine whether HSF1 is important for ovarian cancer tumorigenicity. As a measure of the ability of HSF1 to allow cell survival and growth upon plating at a low cell density, clonogenic assays were performed (Fig. 3.4). SKOV3.shControl, SKOV3.shHSF1B, HEY.shControl and HEY.shHSF1B stable cells were treated with or without doxycycline to induce HSF1 knockdown and then plated at 250 cells per well in 6-well plates in triplicate. Colonies, stained after 8 days, show that HSF1 knockdown strongly inhibits colony formation in both HEY and SKOV3 cells.

To assess the ability of HSF1 to affect cellular motility, we used a wound healing assay as well as a cell migration assay. For the wound healing assay, cells were seeded in equal numbers into 6-well plates and grown to ~80% confluence prior to introducing scratches in straight lines through the monolayers. TScratch software was then used to automatically analyze wound healing rates (Fig. 3.5A). HSF1 knockdown in SKOV3 and HEY cells inhibits wound-healing ability by 25% and 28%, respectively. Next, cell migration assays were employed to assess the ability of cells to pass through a matrigel-coated transwell membrane (Fig. 3.5B). Cells were seeded in equal numbers into the insert of a transwell plate, with no cells in the lower chamber. The number of cells that passed through the membrane were then calculated and plotted after 48 hrs. HSF1 knockdown was found to inhibit cell migration by 29% in SKOV3 cells and 33% in HEY cells. These experiments in sum support a role for HSF1 in promoting cell motility in ovarian cancer.
We next wanted to test whether HSF1 knockdown can suppress the EMT process. Fibronectin, a mesenchymal marker, is upregulated during EMT and plays a crucial role in altering cell adhesion and migration processes, allowing for transition to the mesenchymal state [36]. We tested protein expression levels of fibronectin using Western blot analysis of SKOV3.shHSF1B and HEY.shHSF1B cells treated with and without doxycycline and with and without the EMT inducer TGFβ (Fig. 3.5C). As expected, TGFβ treatment induces fibronectin expression (Fig. 3.5C, compare lanes 1 with lanes 3). Interestingly, HSF1 knockdown in both SKOV3 and HEY cells reduces both the basal expression levels of fibronectin (Fig. 3.5C, compare lanes 1 and 2) as well as the TGFβ-induced levels of fibronectin (Fig. 3.5C, compare lanes 3 and 4). Therefore, HSF1 may promote the EMT process by enhancing TGFβ-induced fibronectin expression.

The Induction of Fibronectin by TGFβ is Enhanced in 3D Cultures as Compared to 2D Cultures

As ovarian cancer cells typically spread throughout the peritoneal cavity in the form of 3D spheroids, we cultured cells in 3D culture using the hanging drop method [235] in order to create a more biologically-relevant in vitro system for our studies. We first tested whether the induction of fibronectin by TGFβ is altered in 3D cultures as compared to 2D cultures. In both monolayer and spheroid SKOV3 cells, TGFβ increased fibronectin expression (Fig. 3.6). Surprisingly, this effect was enhanced in the SKOV3 spheroid model as compared to monolayer cells (Fig. 3.6, compare lanes 2 and 4). The HEY cells also showed enhanced fibronectin expression upon 3D growth,
although this effect was not enhanced by TGFβ. Therefore, we conclude that 3D culturing enhances fibronectin expression.

3D Culturing Reveals a Marked Effect of HSF1 on the Induction of EMT Transcription Factors

Various transcription factors, including snail, slug, twist, and zeb, help to coordinate the EMT process [277]. We tested whether 3D growth affected the expression of these genes (Fig. 4.6). We find that 3D growth enhances TGFβ induction of these transcription factors as shown by qRT-PCR (Fig. 3.7, compare lanes 2 and 4). We wondered whether HSF1 may regulate the expression of these EMT transcription factors. We thus tested our HSF1 knockdown cell lines, grown under both 2D and 3D conditions, to test for effects on the expression of SNAIL, TWIST1, SLUG and ZEB1 mRNAs (Fig. 3.7). SKOV3.shControl, SKOV3.shHSF1B, HEY.shControl, and HEY.shHSF1B stable cell lines, grown both as 2D and 3D cultures, were treated with and without doxycycline treatment to induce HSF1 knockdown. We find that HSF1 knockdown in most cases slightly inhibits the expression of EMT transcription factors in SKOV3 and HEY cells grown in 2D (Fig. 3.7, compare lanes 2 with lanes 3). Interestingly, the effect of HSF1 knockdown on the expression of these genes is magnified for most of the genes upon growth in 3D conditions (Fig. 3.7, compare lanes 4 with lanes 5). Therefore, using a 3D ovarian cancer culturing system, we have uncovered a positive effect of HSF1 on the ability of TGFβ to induce EMT genes. We thus conclude that HSF1 promotes EMT in ovarian cancer 3D spheroids at least in part through regulating the levels of EMT-inducing transcription factors.
Discussion

As ovarian cancer is highly lethal and has few treatment options, identifying new therapeutic targets for this disease is highly important. Through mining patient data, we find that HSF1 DNA levels are most highly amplified in ovarian cancer as compared to other cancers, and also that ovarian cancer is one of the top cancer types with amplified HSF1 mRNA levels. A previous study of 37 malignant vs. benign ovarian tumors has shown that HSF1 expression is higher in the malignant tumors [223]. Our findings thus add to this data and suggest that HSF1 may be an important therapeutic target for ovarian cancer.

We have identified HSF1 as a critical player in promoting ovarian cancer tumorigenicity by multiple measures in both SKOV3 and HEY ovarian cancer cells. Via HSF1 knockdown and colony formation assays, we show that HSF1 promotes the ability of cells to grow under conditions of low cell density, a hallmark of cancer cells. Cell motility is another characteristic of cancer cells. Previous work has shown that cell motility is inhibited in immortalized mouse embryonic fibroblast cells derived from hsf1-/- mice [285]. In addition, HSF1 knockdown reduces the invasiveness of multiple types of tumor cells [212, 214, 286-288]. Consistent with these findings, we show that HSF1 knockdown inhibits wound healing and cell migration in SKOV3 and HEY ovarian cancer cell lines. Our results thus add further evidence that HSF1 enhances tumorigenicity in multiple types of cancer.

EMT is essential for cell migration and is a key rate-limiting step in metastasis. Previous studies have shown that HSF1 promotes EMT in breast cancer cells through a mechanism that requires HER2 [289, 290]. As ovarian cancer cells typically spread
throughout the peritoneal cavity in the form of 3D spheroids [74], culturing ovarian cancer cells as spheroids is likely to better mimic the \textit{in vivo} growth conditions as compared to conventional 2D culturing conditions. Here, we show that HSF1 knockdown reduces the ability of TGFβ to induce EMT. Interestingly, we find that this effect is stronger upon growth in 3D spheroids. We also show that HSF1 is required for the compact morphological structure of spheroid growth.

Our data suggests that HSF1, either directly or indirectly, controls the expression of transcription factors that are important for the EMT process. Interestingly, upon promoter analysis, we find consensus heat shock element (HSE) sequences containing three inverted arrays of the sequence nGAA\textit{n} [291] in the promoters of the EMT transcription factor genes \textit{SNAIL}, \textit{ZEB} and \textit{TWIST1} (Table S2). Putative HSEs are also present in the \textit{FN1} (fibronectin), \textit{VIM} (vimentin), and \textit{CDH2} (N-cadherin) promoters, additional genes that are associated with EMT (Table 3.2). Future experiments will be required to determine whether any of these genes are direct HSF1 targets. This is plausible given that HSF1 was recently found to bind to the \textit{SLUG} promoter through an imperfect HSE motif [289].

In summary, we have identified HSF1 as a critical player in ovarian cancer progression, and have identified EMT as a process that is promoted by HSF1. The effects for HSF1 are more striking when cells are grown as 3D spheroids, which more closely mimic the \textit{in vivo} growth conditions of ovarian cancer. Therefore, HSF1 deserves further research and development as a promising anticancer strategy for ovarian cancer.
Figure 3.1. HSF1 Levels are Elevated in Ovarian Cancer Patient Samples.

A, HSF1 copy number is increased most frequently in ovarian cancer. HSF1 copy number was analyzed in a variety of cancers using TCGA data and GISTIC analysis with a threshold CNA change of +/-2. B, HSF1 transcripts are elevated in a variety of cancers. Samples from tumor tissue and matched normal tissue were compared in the TCGA database using RNA Seq V2 RSEM data with a z-score threshold of +/-2. C, HSF1 is increased at the mRNA level in an ovarian cancer data set GSE18520 consisting of 10 normal ovarian samples and 53 late stage, primary site, high grade ovarian cancer samples. D, HSF1 is increased at the mRNA level in a TCGA ovarian cancer data set consisting of 8 normal ovarian samples and 568 ovarian cancer samples.
Figure 3.2. Validation of Inducible HSF1 Knockdown Ovarian Cancer Cell Lines.

A, The heat shock response in the epithelial ovarian carcinoma cell lines SKOV3 and HEY as compared to normal ovarian epithelial T80 cells. T80, SKOV3, and HEY cells were treated with a 42°C heat shock for the indicated times and harvested immediately after. Cell lysates were subjected to Western blot analysis using antibodies recognizing HSF1, HSF1 phosphorylated at S326, HSP90, HSP70, and actin as a loading control. B, The pTRIPZ system was used to create the doxycycline-inducible HSF1 knockdown cell lines SKOV3.shHSF1A, SKOV3.shHSF1B, HEY.shHSF1A and HEY.shHSF1B. After treatment with 1 µg/ml doxycycline for 48 hours, cell lysates were subjected to Western blot analysis using antibodies recognizing HSF1 and actin as a loading control. Both short and long exposures are shown for the HSF1 blot. C, HSF1 knockdown does not cause a large decrease in cell viability. The viability of the SKOV3.shHSF1B and HEY.shHSF1B cell lines as compared to shControl cells was assessed after treatment with 1 µg/ml doxycycline for the indicated times using the PrestoBlue cell viability assay. Mean percent viability (n=8) and standard error is shown.
Figure 3.3. Doxycycline treatment alone does not alter HSF1 levels or induce HSP90 expression in ovarian cancer cell lines.

SKOV3 and HEY cells were treated with 0-2 μg/ml doxycycline, as indicated, for 48 hours. Cell lysates were subjected to Western blot analysis using antibodies recognizing HSF1, HSP90, and actin as a loading control.
Figure 3.4. HSF1 Knockdown Reduces Colony Formation.

SKOV3.shHSF1B, HEY.shHSF1B and control cell lines were plated 250 cells per well in 6-well plates in triplicate. Cells were treated with or without 1 µg/ml doxycycline (Dox) to induce HSF1 knockdown and were given an additional dose after 4 days. Cells were stained with crystal violet after 8 days to visualize colonies.
Figure 3.5. HSF1 Knockdown Inhibits Wound Healing, Migration, and Induction of Fibronectin.

A, HSF1 knockdown reduces wound closure. Cells treated with or without 1 μg/ml doxycycline were grown in 6-well plates to confluency. Cells were scraped to create wounds, the cells were washed and serum-free media was added. The intersections of perpendicular scratches were photographed immediately and 12 hours after and analyzed using Tscratch software. Asterisk denotes significant difference from all other samples calculated by ANOVA (P < 0.05). B, HSF1 knockdown reduces migration. After treatment with or without 1 μg/ml doxycycline and 12 hours of serum starvation, cells were added to a Boyden chamber at 2.5 x 10^4 cells per chamber. Serum was used as the chemoattractant in the lower chamber. After 16 hours, nonmigrating cells were scrubbed and cells which had migrated stained. The experiment was done in triplicate and analysis done by paired t-test. Asterisk marks significant difference (P < 0.05). C, HSF1 KD reduces TGFβ-induced expression of fibronectin. SKOV3.shHSF1B and HEY.shHSF1B were treated with 1ug/ml doxycycline, 10 ng/µl TGFβ, or both, and cell lysates were harvested for immunoblotting. Cell lysates were subjected to Western blot analysis using antibodies recognizing fibronectin, HSF1, and actin as a loading control.
Figure 3.6. Fibronectin Expression is induced by 3D Growth.

SKOV3 and HEY cells were cultured under 2D or 3D conditions, with or without TGFβ, as indicated. Cell lysates were subjected to Western blot analysis using antibodies recognizing fibronectin, and actin as a loading control.
Figure 3.7. TGFβ Induction of EMT Master-Switch Transcription Factors are Reduced upon HSF1 Knockdown, and the effect is enhanced upon 3D Culturing. Quantitative real-time polymerase chain reaction (qRT-PCR) of selected genes shows that the EMT master-switch transcription factors SNAIL/SNAIL, TWIST1, ZEB1, and SNAI2/SLUG are upregulated when HSF1 inducible knockdown SKOV3.shHSF1B and HEY.shHSF1B cells are cultured as 3D spheroids. This effect is significantly reduced upon knockdown of HSF1 via doxycycline treatment. Gene expression was normalized to the housekeeping gene GAPDH, and fold change was calculated relative to monolayer non-treated conditions. Statistical significance was measured by Student’s t test as compared to untreated monolayer cell culture (*p<0.05; **p<0.01 ; ***p<0.001). Experiment performed with biological and technical triplicates.
Table 3.1. List of Primers used in Quantitative RT-qPCR.

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Common Name</th>
<th>Sequence</th>
</tr>
</thead>
</table>
| GAPDH | GAPDH | F: 5' - CCACCTTCTCCACTTTGAC - 3'
| | | R: 5' - ACCCTGTGGCTGTAGCCA - 3' |
| SNAI1 | SNAIL | F: 5' - TCCCAGATGAGCATTTGCGAG - 3'
| | | R: 5' - CGGCTCTTTTCCTCGTCAG - 3' |
| SNAI2 | SLUG | F: 5' - TTGGGACCCACACATTACCT - 3'
| | | R: 5' - GCAGTGGGCAAGAAAG - 3' |
| TWIST1 | TWIST | F: 5' - GGAGTCGTCAGTTACCGAG - 3'
| | | R: 5' - TCTGGAGGACCTGGTAGAGG - 3' |
| ZEB1 | ZEB | F: 5' - CAAATCCGTCATCTTCAGCA - 3'
| | | R: 5' - CCAATCCCCAGGAAAAAC - 3' |
Table 3.2. Locations of HSEs in EMT Genes.

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Common Name</th>
<th>Location from CDS</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>FN1</td>
<td>fibronectin</td>
<td>-3254</td>
<td>TTCTGCAAATTTCA</td>
</tr>
<tr>
<td>VIM</td>
<td>vimentin</td>
<td>-3754</td>
<td>TTCCGAAAGGTTAA</td>
</tr>
<tr>
<td>SNAI1</td>
<td>SNAIL</td>
<td>-3201</td>
<td>TTCTAGAAGGTTCA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3207</td>
<td>TTCTAGAATTTTG</td>
</tr>
<tr>
<td>CDH2</td>
<td>N-cadherin</td>
<td>-4429</td>
<td>TTCTGGGAGTTCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2183</td>
<td>TTCCGGAACCTTTT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2177</td>
<td>TTCCGGAATTTTA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2544</td>
<td>TTCTGGATTTTC</td>
</tr>
<tr>
<td>ZEB1</td>
<td>ZEB</td>
<td>-289</td>
<td>TTGACTAAACTTTCC</td>
</tr>
<tr>
<td>TWIST1</td>
<td>TWIST</td>
<td>-1301</td>
<td>TTGAGCACCCTTC</td>
</tr>
<tr>
<td>Consensus</td>
<td></td>
<td></td>
<td>TTGnGAnnTTCn</td>
</tr>
</tbody>
</table>
CHAPTER FOUR: DISCUSSION AND FUTURE DIRECTIONS

Overview of Major Findings

We have shown that gene expression profiles significantly change upon three dimensional spheroid culturing when compared to two dimensional monolayers. Using the HEY ovarian cancer cell line, we show that 3D growth affects DNA integrity pathways, stem cell differentiation, epigenetic pathways, and stress pathways. Namely, transcripts that included Coiled-Coil Domain Containing 80 (CCDC80), Solute Carrier Family 6 (Neutral Amino Acid Transporter), Member 15 (SLC6A15), Semaphorin 3E (SEMA3E) and PIF1 5'-To-3' DNA Helicase (PIF1) were downregulated more than 10-fold in the 3D cells while Inhibitor Of DNA Binding 2, HLH Protein (ID2), Regulator Of Cell Cycle (RGCC), Protease, Serine 35 (PRSS35), and Aldo-Keto Reductase Family 1, Member C1 (AKR1C1) were increased more than 50-fold.

Several of the above genes have been implicated in increasing tumorigenicity, including upregulation of AKRC1C and PRSS35, in addition to a reduction in CCDC80 expression. More specifically, AKR1C1 expression has been linked to cisplatin resistance in ovarian cancer cells [237]. PRSS35, a serine protease, may be responsible for proteolytic digestion of cell attachment and thereby promote EMT in ovarian cancer. Lastly, CCDC80 has been shown to be reduced in human ovarian cancer samples compared to normal tissue. This is likely due to its role in inducing E –
cadherin [240], which is responsible for promoting an epithelial phenotype by enhancing cell-cell adhesion [241].

Novel pathways which were affected upon spheroid culturing included branched chain amino acid metabolism, folate biosynthesis, mevalonate pathway, and fatty acid oxidation. Branched chain amino acids, such as leucine, positively regulate the mammalian-target-of-rapamycin (mTOR) pathway [242]. FRAP/mTOR inhibition has been shown to reduce cancer cell growth in PTEN null cells [292]. Mutations in PTEN, a known tumor suppressor which regulates signaling through the PI3-kinase/Akt-signaling pathway, are seen in several cancer cell types. Consequently, recent ovarian cancer clinical trials have focused on molecular agents which target the PI3K/Akt/mTOR pathway. Another possible target is folate and its membrane-bound folate receptors (FRs). Folate plays a role in nucleotide synthesis and methylation, making it essential to cancer cells for DNA replication. Analysis of 104 human ovarian carcinomas revealed 83% overexpressed alpha-folate receptor protein at moderate to high levels compared to 0% in non-neoplastic ovaries [293]. Therefore, antifolate and FR agents such as thymidylate synthase inhibitors, antifolate receptor antibodies, and folate-chemotherapy conjugates may have anti-tumor affects in ovarian cancer [294]. Conversely, the mevalonate pathway converts acetyl-coenzyme A into isoprenoids, which are vital for cholesterol synthesis. Low-density lipoprotein (LDL) cholesterol has been shown to collect in cancer tissues and increased levels have been linked to proliferation and migration [246].

Related specifically to stress pathways, networks involved in oxidative stress, DNA damage response, and heat shock response were all altered upon three
dimensional spheroid culturing methods. This is not shocking since it is known that
spheroid growth conditions may cause hypoxia and a reduction in nutrient and waste
transport. Gene expression changes related to oxidative stress included: Peroxiredoxin
2 (PRDX2), Catalase (CAT), Superoxide dismutase 1, soluble (SOD1), and Glutathione
S-transferase omega 1 (GST01). Oxidative stress promotes tumorigenic properties by
impacting important signaling cascades such as Ras, Raf, p53, PKC, and Nrf2 [250-
252]. This oxidation process guards cancer cells from ROS through the synthesis of
ATP and NADPH [245]. Related to oxidation, fatty acid oxidation is essential for
angiogenesis and enables cancer tumors to overcome metabolic stress [245]. This
makes fatty acid oxidation yet another potential target for cancer treatment.

DNA integrity responses, such as DNA damage, nucleotide excision repair
(NER), and genetic instability were also altered upon three dimensional spheroid
culturing. Microenvironment differences in the spheroid environment leads to hypoxia
and ROS which causes DNA damage and therefore mutagenesis. To identify and
repair this damage, mechanisms such as NER is utilized, which was enriched in our
analysis.

Our gene expression studies show significant changes in transcripts which are
related to the HSR, to include: heat shock protein 90kDa alpha (cytosolic), class A
member 1 (HSP90AA1), heat shock 27kDa protein 1 (HSPB1), and heat shock
transcription factor 1 (HSF1). Research has suggested that tumor progression for some
cancer types may heavily rely on HSF1, the master regulator of the HSR. In our TCGA
analysis, we revealed that HSF1 gene duplication is more common in ovarian cancer
than any other cancer type and that HSF1 mRNA transcripts are significantly elevated in
ovarian cancer tumor tissue compared to that of normal epithelial tissue derived from the same patient.

Further analysis utilizing SKOV3 and HEY ovarian cancer cell lines shown that HSF1 plays an essential role in promoting ovarian cancer tumorigenicity. HSF1 knockdown SKOV3 and HEY ovarian cancer cells were created utilizing a doxycycline-inducible shHSF1 system. We ensured that doxycycline treatment alone would not alter HSF1 levels, HSF1 hyperphosphorylation status, or HSP90 levels.

Subsequent HSF1 knockdown diminishes cell invasiveness, mobility, and the cells ability to grow without contact inhibition. First, a matrigel-coated transwell membrane was utilized to determine that HSF1 knockdown inhibits cell migration in both SKOV3 and HEY. Second, a wound healing assay showed that reduction in HSF1 correlates to the inhibition of cell mobility in order to effectively close implemented scratches in monolayer cells. Lastly, focus assays proved that HSF1 knockdown significantly reduces focus formation in HEY and SKOV3 ovarian cancer cells. Knockdown of HSF1 also caused a reduction in Fibronectin, a mesenchymal marker which is vital for the EMT process. Further analysis revealed that HSF1 knockdown alters the expression of EMT transcription factor genes, SNAIL, ZEB, TWIST1, and SLUG.

Utilizing the hanging drop method, we determined that three dimensional culturing enhances TGFβs ability to induce EMT. Interestingly, this reduction in the ability TGFβ to induce EMT in response to decreased HSF1 expression is significantly stronger in three-dimensional spheroids. Therefore, we determined that HSF1
promotes EMT in ovarian cancer spheroids through regulating EMT-inducing transcription factor expression. In all, HSF1 is critical for ovarian cancer progression and should be further studied for possible antitumor treatments.

Spheroids as a Therapeutic Model

Approximately 35% of ovarian cancer patients present with metastasized single and aggregated ovarian cancer cells suspended within voluminous exudative fluid in the peritoneal cavity, known as ascites [73]. This phenomenon has been linked to drug insensitivity, amplified cancer progression, and reduced survival [74, 75, 295]. The aggregated cells free floating within the ascetic fluid very closely mimic those created utilizing spheroid cell culturing models. Therefore, spheroid culturing may be utilized to fully characterize and determine the best possible chemotherapeutic techniques.

Future Studies for Ovarian Cancer Spheroids

Upon discovering a plethora of differentially expressed genes between monolayer and spheroid cultured ovarian cancer cells, we suggest further exploration of spheroid treatment in regard to the HSR. We hypothesize that novel HSF1-regulated genes which are vital for EMT and ovarian cancer progression will be discovered. To accomplish this, the focus should be on identifying HSF1 dependent genes that are affected by ovarian cancer spheroid growth. First, target mRNAs that are regulated by 3D growth should be determined by mRNA-sequencing techniques with and without doxycycline treatment for HSF1 knockdown. High-throughput sequencing would determine genes which are induced in EMT in an HSF1 dependent fashion. Next, it would be interesting to identify target miRNAs that are regulated by spheroid growth.
miRNAs have been shown to be vital regulators in cancer progression and metastasis and therefore are essential to understanding the mechanism behind HSF1’s role in ovarian cancer progression. Lastly, ChIP-seq would identify direct HSF1 targets. This would allow for the identification of HSF1 binding sites in gene promoters and other regulatory sequences.

Further expanding on our knowledge of HSF1’s role in EMT, we propose analyzing protein expression changes upon HSF1 knockdown during spheroid culturing and identifying critical pathways in EMT and metastasis. This could be accomplished by utilizing mass spectrometry to evaluate protein expression changes in spheroid cells upon HSF1 knockdown. Analysis of global changes at the protein level is determined through stable isotope labeling by amino acids in cell culture (SILAC). Then, results would be evaluated via Pathway Studio™ to determine critical pathways and targets. From there, it would be interesting to determine the role of critical HSF1 targets on EMT through knockdown or overexpression of identified genes.

Implications for HSF1’s Role in Ovarian Cancer Progression

Several cancer cell types exploit HSF1’s survival properties in order to avoid apoptosis and to proliferate. Elevated HSF1 expression has been shown in prostate, breast, colon, and lung cancer, and is a biomarker for poor prognosis and tumor progression [197, 215-217]. Increased expression of HSPs has been similarly linked to a wide range of tumor histotypes and is linked to chemotherapy resistance and poor prognosis. For instance, HSP90’s chaperone properties maintain the active conformation of overexpressed or mutated signaling proteins which are vital for
development and cell renewal within cancer tumors [296, 297]. Therapeutics which target HSP90 cause morphological differentiation and apoptosis through G1 cell cycle arrest [297]. Similarly, HSP70 correlates with metastasis and poor prognosis while inhibition through anti-sense HSP70 cDNA causes proliferation inhibition and promotes apoptosis [298, 299].

Therapeutically Targeting the HSR

Modulators of HSF1 and HSPs have been implicated in treatment of these various diseases. For instance, HSP90 is an attractive target for cancer treatment and several inhibitors of HSP90 are currently being studied in clinical trials [300, 301]. The first HSP90 inhibitor was not discovered until 1994 when Whitesell *et al.* described the natural product known as geldanamycin (GA) and its ability to bind HSP90’s adenosine triphosphate pocket, causing degradation of client proteins such as the oncogene v-Src [302]. HSP90 aids in the stability of client oncoproteins, which promotes cancer cell progression [303]. HSP90 inhibitors cause ubiquitination and subsequent degradation of these oncoproteins by binding to HSP90’s adenosine triphosphate pocket, rendering it functionally inactive, and preventing client stabilization [187]. Compared to normal cells, many cancer cells have elevated levels of the active HSP90 complex and are selectively sensitive to inhibition of HSP90 [304, 305]. Today, there are several synthetic, second-generation HSP90 inhibitors being studied for potential clinical use in a wide range of human diseases. These inhibitors, such as ganetespib seen in Figure 4.1, are less toxic than their natural first-generation counterparts [306]. Currently there are no agents targeting HSP90 which have been approved for clinical use, however substantial progress has been made in the past decade towards this goal.
Ganetespib (formally known as STA-9090) is a small molecule inhibitor of HSP90 which has superior anti-tumor effects and a superior safety profile as compared to first generation HSP90 inhibitors [306]. Ganetespib is a resorcinol-containing triazole compound developed by Synta Pharmaceuticals (Fig. 4.1). Thus far, the compound has been studied in clinical trials involving non-small cell lung cancer, acute myeloid leukemia, gastrointestinal stromal cancer, and metastatic breast cancer with mixed results [307-311]. In ovarian cancer, ganetespib significantly inhibited tumor progression and growth of orthotopic xenografts and spontaneous ovarian tumors in mice. Additionally, paclitaxel enhanced this effect [312].

Celastrol, an active compound derived from the Tripterygium wilfordii Hook F plant (TWHF) was first characterized by Westerheide et al. as an inducer of the HSR (Fig. 4.1) [313]. More specifically, it induces HSPs in multiple cell lines by inhibiting HSP90, allowing for HSF1 activation which in turn increases HSP expression [314]. Using this response, celastrol has been shown to improve neurodegenerative diseases such as ALS and Parkinson's [315, 316]. This compound is also capable of anti-tumor effects both in vitro and in vivo across multiple histological origins.

Figure 4.1: Small molecule modulators of the HSR and HSP90.

Both celastrol and ganetespib have been shown to regulate the HSR by inhibiting HSP90, allowing for HSF1 activation. Actinonin is a novel compound which reduces celastrol’s HSR effects while increasing its anti-tumor properties.
[317, 318], likely due to it arresting cell cycle progression and inducing apoptosis as seen with other HSP90 inhibitors [319]. However, like other HSP90 inhibitors, celastrol’s ability to induce the HSR is an unwanted effect when applying it to cancer treatment, since enhancing HSP levels increases tumor cell survival. Recently, the addition of the peptide deformylase inhibitor, actinonin, to celastrol-treated cancer cells showed a synergistic effect by reducing the HSR while enhancing proliferation inhibition [320]. Actinonin also has anti-tumor activity in vitro and in vivo for a number of cancer subtypes, however the exact mechanism has not been fully characterized [321].

Future in vitro Studies for Targeting the HSR in Ovarian Cancer

To build on our current studies, in vitro assays examining HSF1’s mechanistic role in EMT as well as assays examining potential synergistic effects of HSF1 and HSP90 small molecule modulators with standard chemotherapy agents could be conducted. We propose using ovarian cancer monolayer and spheroid model cells to determine the mechanism for HSF1 regulation of EMT transcription factor genes and subsequent EMT-associated genes. To do so, one would first evaluate possible HSF1 binding in the promoter region of transcription factor genes SNAIL, ZEB, TWIST1, and SLUG in addition to EMT associated genes FN1, VIM, and CDH2. This could be accomplished through promoter studies using luciferase reporter plasmids to determine if HSF1 can regulate these promoters. Another possible option to shed light on this particular mechanism could be through HSF1 overexpression. Overexpression assays could further validate the findings with HSF1 knockdown in ovarian cancer cell lines by studying EMT gene and protein expression level changes. HSF1 overexpression should induce opposite effects from HSF1 knockdown on proliferation, invasion, and
EMT promotion. Yet another important factor is whether EMT gene or protein expression levels vary throughout a heat shock time course. This may shed some light on whether HSF1’s role in EMT is independent or dependent of its classical HSR mechanism. We propose a study of mRNA and protein expression levels upon multiple heat shock time courses to fully understand the mechanism behind the HSR and ovarian cancer progression.

Due to limited ovarian cancer treatment options, compounded by the fact that relapsed patients are no longer susceptible to the drugs previously administered, it is vital to study ways to enhance treatment alternatives. We hypothesize that ovarian cancer cells will prove to be more susceptible to the chemotherapy agents paclitaxel and cisplatin upon treatment with small molecule modulators of HSF1 and HSP90 using the three dimensional EMT model. Determining the effects of the chemotherapy agents cisplatin and paclitaxel on ovarian cancer spheroid growth would accomplish this. Then followed by assessing the effects of ovarian cancer spheroid treatment with HSP90 and HSF1 small molecule modulators on apoptosis, cell proliferation, cell migration, and critical EMT and HSR genes. Once this has been established, it would be worthwhile to identify possible synergistic effects of combination treatments of chemotherapy drugs and HSP90 and HSF1 modulators in three dimensional spheroids.

While both celastrol and ganetespib have been shown to have anti-tumor affects, they also induce the HSR, which induces tumorigenicity. Reduction of HSR induction could be accomplished with the addition of the antibacterial agent actinonin. Interestingly, the addition of actinonin to celastrol-treated cancer cells showed a synergetic effect by reducing HSR induction while promoting proliferation inhibition.
Figure 4.2 displays possible treatments which could be assayed to determine any possible synergistic combinations. After treatment, the spheroids could be tested for the effects on viability, cell proliferation, cell migration, and expression of EMT and HSR genes.

Another proposed alternative method for inhibiting HSP90 without inducing the cytoprotective effects of the HSR are newly developed C-terminal HSP90 modulators. These compounds inhibit specific co-chaperone binding to the methionine-glutamic acid-glutamic acid-valine-aspartic acid (MEEVD) region of HSP90 while reducing HSP27, HSP40, and HSP70 expression levels in pancreatic, colon, and cervical cancer cells. Previously, C-terminal targeting agents such as Novobiocin and KU174 have been shown to reduce HSP90 activity without HSR induction, however these compounds may not be suitable for pre-clinical trials due to potency and solubility factors. Recently, Armstrong et al. described the novel
HSP90 inhibitor SM258’s ability to significantly reduce proliferation in ex vivo cultured human prostate tumors without inducing the HSR [327]. As an alternative approach, we propose comparing SM258’s activity in ovarian cancer spheroids to the proposed combinational treatment above. The lack of information regarding this compound’s toxicity and potential off-target affects is a limiting factor in this experimentation.

Although initial response to traditional chemotherapy agents is over 80%, a majority of women ultimately relapse and develop drug-resistant ovarian cancer. Therefore, there is a strong need for second-line chemotherapeutic options. We propose to evaluate the response to HSP90 and HSF1 modulators in chemotherapy-resistant ovarian cancer cell lines. First, one could create cisplatin or paclitaxel resistant SKOV-3 and HEY ovarian cancer cells lines through a series of chemotherapy treatments. Next, one could determine the effect of resistance on the cells’ ability to form spheroids and test the effect of resistance on the cells’ ability to respond to HS and what changes this has on HSP mRNA and protein expression. This could then lead to evaluating the possibility of re-sensitizing resistant cells utilizing HSP90 and HSF1 modulators in combination with chemotherapy agents. Experiments should be performed at least in biological duplicate with technical triplicates. Student t test can be used for comparisons between two groups and one-way ANOVA analysis can be used for comparisons among three or more groups. P< 0.050 would be considered significant. Through these experiments, we can expand our understanding of HSF1’s role in ovarian cancer and how it may be utilized as a novel therapeutic target.
Future in vivo Studies for Targeting the HSR in Ovarian Cancer

To further expand our knowledge of HSF1’s role in ovarian cancer progression within a whole organism, it would be interesting to assess these affects using a mouse model. First, CMV-driven luciferase stable cell lines SKOV3.shHSF1B/Luc and HEY.shHSF1B/Luc could be established and grown as three dimensional spheroids. These spheroid cells could be injected directly into the intraperitoneal cavity of immunosuppressed humanized mice that have been treated with doxycycline (0.5 mg/mL) to knockdown HSF1 or left untreated (Fig. 4.3).

Humanized mouse models have a high engraftment success rate while facilitating human-like hematology and immunology [328]. During metastasis, ovarian cancer cells commonly disassociate with the primary tumor and float within the peritoneal cavity before attaching to another organ and producing a secondary tumor. Luciferase expression throughout the mouse could then be assessed.
utilizing an IVIS imaging system which would indicate tumor size and metastasis. Metastasis is likely to occur within organs which reside in the peritoneal cavity, such as the liver, colon, stomach, and kidney, and therefore should be the focus of this study. The mice could then be sacrificed and various tissues analyzed for expression changes in HSF1, HSP70, and previously discussed EMT markers. We hypothesize that HSF1 knockdown will cause a reduction in tumor growth and metastasis \textit{in vivo}. While HSF1 knockdown has been shown to reduce tumor size in other cancer tumor types [207], this experiment would determine what affects it may have for ovarian cancer in a whole organism.

Patient-Derived Xenograft (PDX) ovarian cancer models are also available for \textit{in vivo} studies [329]. These xenograft tumors can be implanted into immunosuppressed mice and retain the genetic and phenotypic characteristics found in human ovarian cancer [329-331]. Ovarian cancer PDX models show a strong similarity to patient solid tumors in cancer proliferation, metastasis, and ascites formation [332]. We propose utilizing this model in conjunction with HSF1 and HSP90 small molecule modulators, as described in the above, to further elucidate the effects of HSF1 and HSP90 inhibition on ovarian cancer progression. However, this method can be limited by time and cost, which may not make it a feasible option. Distinguishable tumor growth can take up to eight months in PDX models and the cost to maintain and test these models can be restrictive [333].
Final Thoughts

These proposed studies investigating the *in vivo* and *in vitro* responses to manipulating HSF1 expression will provide a more thorough understanding of HSF1’s role in ovarian cancer progression and EMT. This may offer a detailed mechanistic outline of how ovarian cancer relies on HSF1 to proliferate and progress. Specific insight on this role could lead to breakthroughs in current treatment options. Additionally, we hypothesize that combining HSR modulators with standard chemotherapy agents may lead to a synergistic effect on inhibiting ovarian cancer cell progression in the spheroid model by reducing proliferation, metastasis, and cell viability. It is yet unknown which combination will result in the most efficient anti-tumor properties, but we anticipate this approach to be closely related to the actual *in vivo* response that would be seen in ovarian cancer patients. Furthermore, we believe that expanding this research through the use of a whole organism model will solidify our *in vitro* findings of HSF1’s vital role in ovarian cancers progression and metastasis.
REFERENCES

108
APPENDICES

Appendix A: Protocols

Counting and Passaging Cells

1. Warm complete media and Trypsin in 37°C water bath for 30 minutes and prepare hood
2. Tilt plate and aspirate off media without touching the bottom of the plate
3. Add 1X PBS¹ to plate and rock gently
4. Aspirate off 1X PBS
5. Add trypsin² to plate, rock gently, and place into 37°C incubator for 5 minutes
6. After 5 minutes, check cells under microscope to ensure they have completely rounded and are no longer adhered to the plate
7. If cells are still adhered to the plate, place back in the incubator for 2 minutes
8. Add media³ to plate to inactivate trypsin
9. Pipette up and down to break up cell clusters
10. Add 50 µL of cells and 50 µL of trypan blue dye to a 1.5 mL microcentrifuge tube
11. Pipette 10 µL of cell mixture to a hemocytometer slide
12. Under the microscope, count 2 boxes of 4x4 squares (Fig. A1)
 a. If total of two boxes is 103, then cell count is 1.03 x 10⁶ cells/mL
13. Calculate the appropriate dilution to reach the desired cell concentration
 a. Usually dilute to 75,000 cells per mL
 b. I.E. (5 mL cells / total number cells counted * 75,000 cells)
14. Pipette the applicable cell and media volumes into the desired plate size

Table A1. Solution Volumes for Passaging

<table>
<thead>
<tr>
<th>Solution</th>
<th>35mm Plate</th>
<th>60mm Plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS¹</td>
<td>5mL</td>
<td>10mL</td>
</tr>
<tr>
<td>Trypsin²</td>
<td>500µL</td>
<td>1000µL</td>
</tr>
<tr>
<td>Media³</td>
<td>5mL</td>
<td>10mL</td>
</tr>
</tbody>
</table>
Collecting Cells

1. Warm complete media and Trypsin in 37°C water bath for 30 minutes and prepare hood
2. Tilt plate and aspirate off media without touching the bottom of the plate
3. Add 1X PBS\(^1\) to plate and rock gently
4. Aspirate off 1X PBS
5. Add trypsin\(^2\) to plate, rock gently, and place into 37°C incubator for 5 minutes
6. After 5 minutes, check cells under microscope to ensure they have completely rounded and are no longer adhered to the plate
7. If cells are still adhered to the plate, place back in the incubator for 2 minutes
8. Add media\(^3\) to plate to inactivate trypsin
9. Pipette up and down to break up cell clusters
10. Collect all identical sample sets into a single conical
11. Spin down conical at 1200 rpm for 2 minutes
12. Aspirate off media, leaving the cell pellet remaining
13. Resuspend cell pellet in 500 µL of 1X PBS
14. Transfer cell solution to a new 1.5 mL microcentrifuge tube
15. Centrifuge for 5 minutes at 1200 rpm
16. Aspirate off 1X PBS and use immediately or freeze at -80°C for future use

Figure A1. Cell Counting with Hemacytometer
Creating spheroids treated with TGFβ

1. Warm complete media and Trypsin in 37°C water bath for 30 minutes and prepare hood
2. Wash cells in 60 mm plate with 10 mL 1X PBS and aspirate off
3. Add 1000 µL trypsin and place in 37°C incubator for 5 minutes
4. Suspend un-adhered cells in 5mL complete media
5. Place in 15 mL conical
6. Spin down at 1000 RPM for 2 minutes
7. Aspirate off media and leave the cell pellet
8. Resuspend in 4 mL complete media
9. Count cells with typan blue via the hemacytometer as described above
10. Dilute cells to concentration of 1x10^6 cells per mL place in boat
11. Take TGFβ from -80°C
12. Add 20µl of TGFβ in 4mL media (5µl per mL) directly to cells in boat
13. Prepare untreated 100 mm petri dishes by adding 5 mL 1X PBS to bottom
14. Set multichannel pipette to 20µl
15. Push down pipette to second stop, pull up completely, dispense only 20µl (first stop)
16. Gently rock boat periodically for settlement
17. Flipping right side up, place the lid onto the bottom of the plate
18. Incubate at 37°C for 72 hours to allow for aggregation

Collecting Spheroids

1. Keep cells on ice during collection
2. Utilizing a 10 mL pipette, tilt plate lid, add 5 mL of chilled 1X PBS to the top cell drop, and allow the subsequent drops to collect at the bottom of the lid
3. Repeat for each row of cell drops
4. Pipette spheroids from the plate into a 15 mL conical
5. Allow spheroids to settle at the bottom of the tube
6. Avoiding the collected spheroids, pipette approximately 4mL of the 1X PBS from conical and repeat procedure for remaining plates
7. Spin down conical at 1000 RPM for 5 minutes
8. Aspirate off 1X PBS without disturbing cell pellet
9. Add 1000 µL 1X PBS to transfer to a 1.5 mL microcentrifuge tube
10. Centrifuge at 1000 RPM for 5 minutes
11. Aspirate 1X PBS, leaving a cell pellet
12. Use immediately or store in -80°C for further experimentation
RNA extraction and sample processing for Affymetrix 3'IVT Expression System

1. Extract RNA from sample cell pellets according to Qiagen’s RNeasy Mini Kit
2. Verify RNA integrity with The Agilent 2100 Bioanalyzer
3. Convert RNA to cDNA and amplify/label with biotin using Affymetrix 3'IVT Expression System
4. Complete the following steps according to Affymetrix technical manual:
 a. Hybridization with the biotin-labeled RNA
 b. Staining
 c. Scanning of chips
5. Normalize data with Affymetrix Expression Console v1.3.1
6. Utilize Pathway Studio 9.0 and ResNEt 10.0 for sub-network enrichment analysis of cell processes

Reverse transcription reaction

1. Make mastermix in 1.5 mL microcentrifuge tube

Table A2. Reagent Volumes for Reverse Transcription Mastermix

<table>
<thead>
<tr>
<th>Reagent</th>
<th>1 rxn</th>
<th>5.5 rxn</th>
<th>10.5 rxn</th>
</tr>
</thead>
<tbody>
<tr>
<td>10X RT Buffer</td>
<td>2.0</td>
<td>11.0</td>
<td>21.0</td>
</tr>
<tr>
<td>25X dNTPs</td>
<td>0.8</td>
<td>4.4</td>
<td>8.4</td>
</tr>
<tr>
<td>10X RT Random Primers</td>
<td>2.0</td>
<td>11.0</td>
<td>21.0</td>
</tr>
<tr>
<td>RT Enzyme</td>
<td>1.0</td>
<td>5.5</td>
<td>10.5</td>
</tr>
<tr>
<td>dH2O</td>
<td>4.2</td>
<td>23.1</td>
<td>44.1</td>
</tr>
<tr>
<td>Total</td>
<td>10 µL</td>
<td>55 µL</td>
<td>105 µL</td>
</tr>
</tbody>
</table>

2. Vortex and short spin
3. Transfer 10 µL of mastermix to 0.1 mL tubes
4. Add 10 µL of RNA solution to the 0.1 mL tubes
 a. If necessary, dilute RNA with dH2O so it does not exceed 2 µg
5. Vortex and short spin
6. Run in thermocycler machine with the following conditions

Table A3. Temperature Conditions for Reverse Transcription Reaction
Real-Time Quantitative PCR with SYBR Green

1. Set computer cycle parameters

Table A4. Temperature Conditions for RT-qPCR

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°C</td>
<td>10</td>
</tr>
<tr>
<td>37°C</td>
<td>120</td>
</tr>
<tr>
<td>85°C</td>
<td>5</td>
</tr>
</tbody>
</table>

2. Made a working stock of 50 ng/µL template cDNA
3. Add 1 µL of template DNA to wells in vertical triplicate sets
4. Create master mix in a 1.5 mL microcentrifuge tube

Table A5. Reagent Volumes for RT-qPCR Mastermix

<table>
<thead>
<tr>
<th>Reagent</th>
<th>1 rxn (1 well)</th>
<th>3.3 rxn (3 wells)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYBR green + ROX</td>
<td>10.0</td>
<td>33.0</td>
</tr>
<tr>
<td>Forward Primer</td>
<td>0.2</td>
<td>0.66</td>
</tr>
<tr>
<td>Reverse Primer</td>
<td>0.2</td>
<td>0.66</td>
</tr>
<tr>
<td>dH₂O</td>
<td>8.6</td>
<td>29.38</td>
</tr>
<tr>
<td>Total</td>
<td>20 mL</td>
<td>66 mL</td>
</tr>
</tbody>
</table>

5. Vortex and short spin
6. Transfer 19 µL of master mix to subsequent wells
7. Cover and seal plate with adhesive and short spin
8. Place plate in RT-qPCR machine and start run
9. After run is complete, analyze relative gene expression via the 2^-ΔΔCt method with GAPDH serving as an endogenous control for normalization as well as normalization to the untreated control cell samples
PrestoBlue Cell Viability

1. Load 96 well plate wells with 90 µL of cell solution
2. Add compound in serial dilutions and incubate at 37°C for prescribed time
3. Pipette 10 µL PrestoBlue to each well
4. Incubate plate 37°C for 20 minutes - 2 hours
5. Measure by fluorescence at 570 nm excitation and 600 nm emission using a microplate reader (BioTek)
6. Normalize sample well average to control average
7. Plot data points and standard error appropriately

Western Blot Analysis

SDS-PAGE Gels

1. Prepare BioRad gel apparatus by setting up the casts
2. Make up the desired percentage separating gel in a conical and immediately pour it into ¾ of the cast
3. Pipette 1 mL of hydrated butanol over the separating gel solution

<table>
<thead>
<tr>
<th>Table A6. Reagent Volumes for Separating Gel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separating Gel</td>
</tr>
<tr>
<td>Reagent</td>
</tr>
<tr>
<td>dH₂O</td>
</tr>
<tr>
<td>1.5 M Tris (pH 8.8)</td>
</tr>
<tr>
<td>40% Acrylamide</td>
</tr>
<tr>
<td>10% SDS</td>
</tr>
<tr>
<td>10% APS</td>
</tr>
<tr>
<td>TEMED*</td>
</tr>
</tbody>
</table>

*Add TEMED component last

4. Allow separating gel to set for 30 minutes
5. Decant off hydrated butanol and rinse with dH₂O
6. Make up the stacking gel, immediately pour it into the remaining ¼ cast, and insert the desired comb
Table A7. Reagent Volumes for Stacking Gel

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH2O</td>
<td>7.3 mL</td>
</tr>
<tr>
<td>1.5 M Tris (pH 8.8)</td>
<td>1.25 mL</td>
</tr>
<tr>
<td>40% Acrylamide</td>
<td>1.25 mL</td>
</tr>
<tr>
<td>10% SDS</td>
<td>100 µL</td>
</tr>
<tr>
<td>10% APS</td>
<td>100 µL</td>
</tr>
<tr>
<td>TEMED*</td>
<td>10 µL</td>
</tr>
</tbody>
</table>

*Add TEMED component last

7. Allow stacking gel to set for 30 minutes
8. Remove comb, rinse wells with dH2O, place into electrophoresis chamber, and cover with running buffer

Sample Preparation

1. Add laemmli buffer with beta-mercaptoethanol to normalized samples
2. Denature the proteins by incubating at 95°C for 5 minutes
3. Vortex, short spin, and load each sample as desired into the gel
4. Add laemmli buffer to any unused wells
5. Run the gel at 180V until the dye front just runs off the gel

Blotting

1. Remove gel from apparatus
2. Carefully detach the stacking layer from the separating layer
3. Activate PVDF membrane in 100% methanol for 1 minute
4. Assemble the blot in a large tray of transfer buffer accordingly:

![Blotting diagram](image)

5. Invert the blot assembly and place on the semi-dry transfer machine
6. Run one gel at 300 mA for one hour and two gels for 90 minutes
7. Briefly stain with 0.1% Ponceau solution and then rinse with dH2O to visualize protein bands and confirm equal loading
8. Add 1-2 drops of NaOH to 5 mL of TBST and incubate the membrane for 30 seconds in this solution to dissipate Ponceau staining

Antibody Staining and Detection

1. Block membrane by rotating at RT in TBST with 5% non-fat dry milk for 30 minutes
2. Rinse in TBST at RT for 30 seconds
3. Incubate the membrane in primary antibody diluted in TBST with 1% non-fat dry milk rotating overnight at 4°C
4. Wash the membrane in TBST for 15 minutes rotating at RT and repeat a total of three times
5. Incubate the membrane in secondary antibody diluted in TBST with 5% non-fat dry milk rotating for 1½ to 2 hours at RT
6. Turn on western blot exposure machine to allow it to warm up for a minimum of 25 minutes
7. Wash the membrane in TBST for 5 minutes rotating at RT and repeat a total of three times
8. Place the membrane on a transparency sheet taped into a cassette
9. Pipette 1 mL of ECL solution (prepared as per box instructions) onto each membrane
10. Cover membrane to reduce light exposure and let incubate for 5 minutes at RT
11. Add another transparency sheet on top of the membrane and tape it down to the cassette
12. In a dark room, expose the membrane to film and run through exposure machine
13. Label the film accordingly and turn off the machine when complete
Western Blot Antibodies

Table A8. Primary Antibodies for Western Blot Analysis

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Manufacturer</th>
<th>Cat #</th>
<th>Dilution</th>
<th>Species</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actin</td>
<td>Santa Cruz</td>
<td>SC-1616-R</td>
<td>1:5000</td>
<td>Rabbit</td>
<td>4°C</td>
</tr>
<tr>
<td>Fibronectin</td>
<td>Thermo Scientific</td>
<td>MS-165-P0</td>
<td>1:1000</td>
<td>Mouse</td>
<td>-20°C</td>
</tr>
<tr>
<td>HSF1 mono</td>
<td>Assay Design</td>
<td>SPA-950</td>
<td>1:750</td>
<td>Rabbit</td>
<td>-20°C</td>
</tr>
<tr>
<td>HSF1 pS326</td>
<td>Abcam</td>
<td>EP1713Y</td>
<td>1:500</td>
<td>Rabbit</td>
<td>-20°C</td>
</tr>
<tr>
<td>HSP70</td>
<td>Stress Marq</td>
<td>SMC-100B</td>
<td>1:1000</td>
<td>Mouse</td>
<td>-20°C</td>
</tr>
<tr>
<td>HSP90</td>
<td>Cell Signaling</td>
<td>8165</td>
<td>1:1000</td>
<td>Rabbit</td>
<td>-20°C</td>
</tr>
</tbody>
</table>

Table A9. Secondary Antibodies for Western Blot Analysis

<table>
<thead>
<tr>
<th>Species</th>
<th>Manufacturer</th>
<th>Cat #</th>
<th>Dilution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabbit</td>
<td>Millipore</td>
<td>PA45011V</td>
<td>1:2500</td>
<td>-20°C</td>
</tr>
<tr>
<td>Mouse</td>
<td>Millipore</td>
<td>PA43009V</td>
<td>1:2500</td>
<td>-20°C</td>
</tr>
<tr>
<td>Rat</td>
<td>Jackson Immuno</td>
<td>112-035-062</td>
<td>1:10,000</td>
<td>4°C</td>
</tr>
</tbody>
</table>

Doxycycline-Inducible TRIPZ shRNA HSF1 Knockdown Cell Creation

Day 1: Packaging Cells Preparation

1. Split cells so they are 50% - 70% confluency on the day of transfection

Day 2: Packaging Cells Transfection

1. Dilute 1 µg each of retroviral construct, pCGP, and pVSVG envelope plasmid with cell media (without any additives) for a total volume of 300 µL per reaction
2. Vortex and short spin
3. Add 50 µL per reaction of Polyfect Transfection Reaction (Qiagen) to the DNA solution
4. Vortex, short spin, and incubate at RT for 10 minutes
5. Aspirate media from cell plates
6. Wash in 5 mL of 1X PBS and aspirate off
7. Add 9 mL of complete media to cells
8. Add 1 mL per reaction of complete media to the DNA solution after incubation period
9. Pipette up and down and transfer 1350 µL of solution to each plate of cells
10. Gently rock each plate
11. Incubate at 37°C for 24 hours

Day 3: Replace Media and Target Cell Preparation
1. Replace transfection media with fresh complete media
2. Incubate at 37°C for 24 hours
3. Plate future transfected cells in 60 mm plate

Day 4: Collect Virus and Infect Target Cells
1. Warm complete media and 37°C water bath for 30 minutes and prepare hood
2. Collect virus media from packaging cells into a conical and replace with fresh complete media
3. Incubate packaging cells at 37°C for 24 hours
4. Filter virus media through a 0.45 micron PVDF filter
5. Add equal volume of complete media to filtered virus media
6. Add 8 µg/mL of hexadimethrinebromide to virus media
7. Pipette 4 mL of virus media solution per plate to target cells
8. Incubate target cells at 37°C

Day 5: Collect Second Round of Virus
1. Collect virus media from packaging cells into a conical and discard cells
2. Filter virus media through a 0.45 micron PVDF filter
3. Add equal volume of complete media to filtered virus media
4. Freeze at -80°C for use in day 6
5. Replace virus media on target cells with fresh media and passage if confluent

Day 6: Re-Infect Target Cells
1. Thaw virus media from day 5 and add 8 µg/mL of hexadimethrinebromide
2. Pipette 4 mL of virus media solution per plate to target cells
3. Incubate target cells at 37°C

Day 7: Replace Target Cell Media
1. Replace virus media on target cells with fresh media and passage if confluent

Day 8+: Selection
1. Select for infected cells by adding puromycin to media (SKOV3=0.5 µg/mL, HEY=1.0 µg/mL)
2. After 5 days of selection, cells which have been successfully infected should begin proliferating
3. After selection, continue treatment of 0.2 µg/mL puromycin for maintenance

Wound healing assay

1. Plate 3 x 10^5 cells per well in a 6-well plate
2. Treat with 1 µg/mL of doxycycline for HSF1 KD inducible cells or leave untreated
3. Incubate for 48 hours at 37°C
4. Create 2 vertical and 2 horizontal lines in the confluent cells with a 2 µL pipette tip
5. Wash cells with 1X PBS
6. Add 5 mL media without additives
7. Photograph the cells immediately and then again after 12 hours with an EVOS inverted microscope (Advanced Microscopy Group)
8. Calculate wound closure with TScratch software

Cell migration assay

1. Treat cells with 1.0 µg/mL of doxycycline for HSF1 KD inducible cells or leave untreated
2. Incubate at 37°C for 48 hours
3. Remove media, wash with 1X PBS, and replace with media containing no additives
4. Incubate at 37°C for 24 hours
5. Wash with 1X PBS, add trypsin to un-adhere the cells, and resuspend in additive-free media
6. Add 2.5 x 10^4 cells to the upper portion of the Boyden chamber
7. Pipette 400 µL of complete media to the lower chamber
8. Incubate at 37°C for 16 hours
9. After incubation, remove cells on the upper chamber surface with a cotton swab
10. Fix and stain cells on the lower chamber surface with 1% (w/v) crystal violet in methanol
11. Count cells in 10 random fields of view from each well
Appendix B: Gene set enrichment analysis. Provided are the total number of entities within a network, expanded and measured entities in the pathway, enrichment scores, median fold change of the network, and the p-value. Also provided is the Gene Set Category.

<table>
<thead>
<tr>
<th>Name</th>
<th>Total Entities</th>
<th>Expanded Entities</th>
<th>Measured Entities</th>
<th>Enrich. Score</th>
<th>Normal. ES</th>
<th>Median change</th>
<th>p-value</th>
<th>Gene Set Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actin Cytoskeleton Regulation</td>
<td>51</td>
<td>551</td>
<td>528</td>
<td>0.31765</td>
<td>1.26305</td>
<td>1.01748</td>
<td>0.01078</td>
<td>Ariadne Cell Signaling Pathways</td>
</tr>
<tr>
<td>AGER -> NF-kB signaling</td>
<td>14</td>
<td>34</td>
<td>33</td>
<td>0.52429</td>
<td>1.46053</td>
<td>1.06437</td>
<td>0.0293</td>
<td>Ariadne Receptor Signaling Pathways</td>
</tr>
<tr>
<td>Axon Guidance</td>
<td>58</td>
<td>1051</td>
<td>983</td>
<td>0.27633</td>
<td>1.14787</td>
<td>1.01045</td>
<td>0.04988</td>
<td>Ariadne Cell Signaling Pathways</td>
</tr>
<tr>
<td>Biosynthesis of CoA and holo-ACP</td>
<td>16</td>
<td>21</td>
<td>10</td>
<td>-0.6627</td>
<td>1.4878</td>
<td>1.19956</td>
<td>0.05</td>
<td>Ariadne Metabolic Pathways</td>
</tr>
<tr>
<td>Branched chain amino acids metabolism</td>
<td>99</td>
<td>123</td>
<td>50</td>
<td>-0.6871</td>
<td>-2.23849</td>
<td>-1.35191</td>
<td>0</td>
<td>Ariadne Metabolic Pathways</td>
</tr>
<tr>
<td>CCR2/5 -> STAT signaling</td>
<td>20</td>
<td>20</td>
<td>16</td>
<td>0.69406</td>
<td>1.58304</td>
<td>1.00347</td>
<td>0.01581</td>
<td>Ariadne Receptor Signaling Pathways</td>
</tr>
<tr>
<td>CCR5 -> TP53 signaling</td>
<td>17</td>
<td>17</td>
<td>13</td>
<td>0.69792</td>
<td>1.63466</td>
<td>-1.0087</td>
<td>0.01931</td>
<td>Ariadne Receptor Signaling Pathways</td>
</tr>
<tr>
<td>Cell cycle</td>
<td>140</td>
<td>585</td>
<td>483</td>
<td>0.30307</td>
<td>1.21387</td>
<td>1.05336</td>
<td>0.03704</td>
<td>Ariadne Cell Process Pathways</td>
</tr>
<tr>
<td>CHRAC Chromating Remodeling</td>
<td>16</td>
<td>289</td>
<td>214</td>
<td>0.39429</td>
<td>1.46877</td>
<td>1.07923</td>
<td>0.0061</td>
<td>Ariadne Cell Process Pathways</td>
</tr>
<tr>
<td>CSF2R -> NF-kB signaling</td>
<td>6</td>
<td>14</td>
<td>14</td>
<td>0.67175</td>
<td>1.58485</td>
<td>1.18509</td>
<td>0.02222</td>
<td>Ariadne Receptor Signaling Pathways</td>
</tr>
<tr>
<td>DDR1 -> NF-kB signaling</td>
<td>14</td>
<td>22</td>
<td>21</td>
<td>0.57985</td>
<td>1.4977</td>
<td>1.17283</td>
<td>0.0303</td>
<td>Ariadne Receptor Signaling Pathways</td>
</tr>
<tr>
<td>DNA Replication</td>
<td>29</td>
<td>134</td>
<td>119</td>
<td>0.39631</td>
<td>1.37964</td>
<td>1.08298</td>
<td>0.03333</td>
<td>Ariadne Cell Process Pathways</td>
</tr>
<tr>
<td>EphrinR -> STAT signaling</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>0.62648</td>
<td>1.48748</td>
<td>1.15269</td>
<td>0.04724</td>
<td>Ariadne Receptor Signaling Pathways</td>
</tr>
<tr>
<td>Fatty acid oxidation</td>
<td>73</td>
<td>99</td>
<td>39</td>
<td>-0.552</td>
<td>-1.64026</td>
<td>-1.1708</td>
<td>0</td>
<td>Ariadne Metabolic Pathways</td>
</tr>
<tr>
<td>FibronectinR -> AP-1/ELK-SRF/SREBF signaling</td>
<td>55</td>
<td>105</td>
<td>98</td>
<td>0.4226</td>
<td>1.43344</td>
<td>1.05885</td>
<td>0.03051</td>
<td>Ariadne Receptor Signaling Pathways</td>
</tr>
<tr>
<td>Pathway</td>
<td>Gene Set</td>
<td>P-value</td>
<td>q-value</td>
<td>DR</td>
<td>PPR</td>
<td>qPR</td>
<td>Signaling Pathways</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>FibronectinR -> NF-kB signaling</td>
<td>22</td>
<td>0.49258</td>
<td>1.51462</td>
<td>1.08298</td>
<td>0.03484</td>
<td>Ariadne Receptor Signaling Pathways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folate biosynthesis</td>
<td>63</td>
<td>-0.6041</td>
<td>-1.60545</td>
<td>-1.30586</td>
<td>0</td>
<td>Ariadne Metabolic Pathways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycogen metabolism</td>
<td>37</td>
<td>-0.5597</td>
<td>-1.68753</td>
<td>-1.12117</td>
<td>0.00413</td>
<td>Ariadne Metabolic Pathways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycosylphosphatidylinositol(GPI)-anchor biosynthesis</td>
<td>32</td>
<td>-0.5068</td>
<td>-1.64655</td>
<td>-1.13092</td>
<td>0</td>
<td>Ariadne Metabolic Pathways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonadotrope Cell Activation</td>
<td>71</td>
<td>0.32639</td>
<td>1.32513</td>
<td>1.05702</td>
<td>0.00272</td>
<td>Ariadne Cell Signaling Pathways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedgehog Pathway</td>
<td>17</td>
<td>0.33211</td>
<td>1.32792</td>
<td>1.05702</td>
<td>0.00272</td>
<td>Ariadne Cell Signaling Pathways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histone Acetylation</td>
<td>33</td>
<td>0.36642</td>
<td>1.38583</td>
<td>1.05702</td>
<td>0.01176</td>
<td>Ariadne Cell Process Pathways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histone and DNA Methylation</td>
<td>37</td>
<td>0.36652</td>
<td>1.39196</td>
<td>1.05885</td>
<td>0</td>
<td>Ariadne Cell Process Pathways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histones Sumoylation</td>
<td>25</td>
<td>0.40564</td>
<td>1.48278</td>
<td>1.09051</td>
<td>0</td>
<td>Ariadne Cell Process Pathways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histones Ubiquitylation</td>
<td>23</td>
<td>0.44031</td>
<td>1.67112</td>
<td>1.12506</td>
<td>0</td>
<td>Ariadne Cell Process Pathways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGF1R -> ELK-SRF/HIF1A/MYC/SREBF signaling</td>
<td>23</td>
<td>0.52628</td>
<td>1.51745</td>
<td>1.26138</td>
<td>0.02555</td>
<td>Ariadne Receptor Signaling Pathways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL6R -> CEBP/ELK-SRF signaling</td>
<td>18</td>
<td>0.64418</td>
<td>1.66813</td>
<td>1.36841</td>
<td>0</td>
<td>Ariadne Receptor Signaling Pathways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INO80 Chromating Remodeling</td>
<td>25</td>
<td>0.32253</td>
<td>1.25759</td>
<td>1.05702</td>
<td>0.02571</td>
<td>Ariadne Cell Process Pathways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin Action</td>
<td>50</td>
<td>-0.2518</td>
<td>-1.12304</td>
<td>-1.0299</td>
<td>0.02885</td>
<td>Ariadne Cell Signaling Pathways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LeptinR -> ELK-SRF signaling</td>
<td>16</td>
<td>0.61225</td>
<td>1.55556</td>
<td>1.36841</td>
<td>0.01852</td>
<td>Ariadne Receptor Signaling Pathways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lysine metabolism</td>
<td>84</td>
<td>-0.4593</td>
<td>-1.50721</td>
<td>-1.18304</td>
<td>0.01869</td>
<td>Ariadne Metabolic Pathways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MacrophageR -> CEBP/NF-kB signaling</td>
<td>21</td>
<td>0.49483</td>
<td>1.46306</td>
<td>1.06992</td>
<td>0.04348</td>
<td>Ariadne Receptor Signaling Pathways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malonate, propanoate and beta-alanine metabolism</td>
<td>99</td>
<td>-0.4545</td>
<td>-1.46122</td>
<td>-1.08862</td>
<td>0.0177</td>
<td>Ariadne Metabolic Pathways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathway</td>
<td>p-value</td>
<td>q-value</td>
<td>Benjamini-Hochberg-adjusted p-value</td>
<td>Fold Change</td>
<td>Mean Log2</td>
<td>90% CI Lower</td>
<td>90% CI Upper</td>
<td>Fold Change Mean Log2</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>---------</td>
<td>-------------------------------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------------</td>
<td>--------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Mast Cell Activation</td>
<td>0.3692</td>
<td>-</td>
<td>0</td>
<td>1.4816</td>
<td>-</td>
<td>1.0104</td>
<td>1.4816</td>
<td>-</td>
</tr>
<tr>
<td>Metabolism of glucocorticoids and mineralcorticoids</td>
<td>0.7786</td>
<td>-</td>
<td>0</td>
<td>1.6404</td>
<td>-</td>
<td>1.0497</td>
<td>1.6404</td>
<td>-</td>
</tr>
<tr>
<td>Metabolism of glycerophospholipids and ether lipids</td>
<td>-0.3425</td>
<td>-</td>
<td>0</td>
<td>1.3633</td>
<td>-</td>
<td>1.0643</td>
<td>1.3633</td>
<td>-</td>
</tr>
<tr>
<td>Mevalonate pathway</td>
<td>-0.5792</td>
<td>-</td>
<td>0</td>
<td>1.4826</td>
<td>-</td>
<td>1.1667</td>
<td>1.4826</td>
<td>-</td>
</tr>
<tr>
<td>mRNA Transcription and Processing</td>
<td>0.3581</td>
<td>-</td>
<td>0</td>
<td>1.3867</td>
<td>-</td>
<td>1.0754</td>
<td>1.3867</td>
<td>-</td>
</tr>
<tr>
<td>N-Glycan biosynthesis</td>
<td>-0.4706</td>
<td>-</td>
<td>0</td>
<td>1.6339</td>
<td>-</td>
<td>1.1019</td>
<td>1.6339</td>
<td>-</td>
</tr>
<tr>
<td>Nicotinate and nicotinamide metabolism</td>
<td>-0.5403</td>
<td>-</td>
<td>0</td>
<td>1.5901</td>
<td>-</td>
<td>1.1569</td>
<td>1.5901</td>
<td>-</td>
</tr>
<tr>
<td>NK Cell Activation</td>
<td>0.3524</td>
<td>-</td>
<td>0</td>
<td>1.3981</td>
<td>-</td>
<td>1.0069</td>
<td>1.3981</td>
<td>-</td>
</tr>
<tr>
<td>Notch Pathway</td>
<td>0.2781</td>
<td>-</td>
<td>0</td>
<td>1.1630</td>
<td>-</td>
<td>1.0052</td>
<td>1.1630</td>
<td>-</td>
</tr>
<tr>
<td>NURD Chromating Remodeling</td>
<td>0.3802</td>
<td>-</td>
<td>0</td>
<td>1.3985</td>
<td>-</td>
<td>1.0625</td>
<td>1.3985</td>
<td>-</td>
</tr>
<tr>
<td>NURF Chromating Remodeling</td>
<td>0.3926</td>
<td>-</td>
<td>0</td>
<td>1.4506</td>
<td>-</td>
<td>1.0625</td>
<td>1.4506</td>
<td>-</td>
</tr>
<tr>
<td>PECAM -> SP1 signaling</td>
<td>0.6912</td>
<td>-</td>
<td>0</td>
<td>1.6712</td>
<td>-</td>
<td>1.3684</td>
<td>1.6712</td>
<td>-</td>
</tr>
<tr>
<td>Phenylalanine and Tyrosine metabolism</td>
<td>-0.4499</td>
<td>-</td>
<td>0</td>
<td>1.4654</td>
<td>-</td>
<td>1.0886</td>
<td>1.4654</td>
<td>-</td>
</tr>
<tr>
<td>PTAFR -> NF-kB signaling</td>
<td>0.4728</td>
<td>-</td>
<td>0</td>
<td>1.4130</td>
<td>-</td>
<td>1.1289</td>
<td>1.4130</td>
<td>-</td>
</tr>
<tr>
<td>PTPRC -> BCL6 signaling</td>
<td>0.6188</td>
<td>-</td>
<td>0</td>
<td>1.5916</td>
<td>-</td>
<td>1.1769</td>
<td>1.5916</td>
<td>-</td>
</tr>
<tr>
<td>ROS metabolism</td>
<td>0.6128</td>
<td>-</td>
<td>0</td>
<td>1.7122</td>
<td>-</td>
<td>1.0034</td>
<td>1.7122</td>
<td>-</td>
</tr>
<tr>
<td>Skeletal Myogenesis Control</td>
<td>0.2961</td>
<td>-</td>
<td>0</td>
<td>1.1978</td>
<td>-</td>
<td>1.0388</td>
<td>1.1978</td>
<td>-</td>
</tr>
<tr>
<td>Sphingolipid metabolism</td>
<td>-0.4111</td>
<td>-</td>
<td>0</td>
<td>1.5362</td>
<td>-</td>
<td>1.0662</td>
<td>1.5362</td>
<td>-</td>
</tr>
<tr>
<td>SRCAP Chromating Remodeling</td>
<td>0.3977</td>
<td>-</td>
<td>0</td>
<td>1.4495</td>
<td>-</td>
<td>1.0792</td>
<td>1.4495</td>
<td>-</td>
</tr>
<tr>
<td>Pathway</td>
<td>Set1</td>
<td>Set2</td>
<td>Set3</td>
<td>Set4</td>
<td>Set5</td>
<td>Set6</td>
<td>Set7</td>
<td>Set8</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>SWI/SNF BRG1/BAF Chromating Remodeling</td>
<td>25</td>
<td>284</td>
<td>210</td>
<td>0.39355</td>
<td>1.46011</td>
<td>1.07549</td>
<td>0.00304</td>
<td>Ariadne Cell Process Pathways</td>
</tr>
<tr>
<td>SWI/SNF BRG1/PBAF Chromating Remodeling</td>
<td>26</td>
<td>285</td>
<td>211</td>
<td>0.39264</td>
<td>1.45068</td>
<td>1.06253</td>
<td>0.00617</td>
<td>Ariadne Cell Process Pathways</td>
</tr>
<tr>
<td>T Cell Activation</td>
<td>80</td>
<td>957</td>
<td>794</td>
<td>0.32951</td>
<td>1.34745</td>
<td>1.00347</td>
<td>0</td>
<td>Ariadne Cell Signaling Pathways</td>
</tr>
<tr>
<td>ThrombopoietinR -> SP1 signaling</td>
<td>12</td>
<td>18</td>
<td>18</td>
<td>0.63547</td>
<td>1.49265</td>
<td>1.35191</td>
<td>0.01538</td>
<td>Ariadne Receptor Signaling Pathways</td>
</tr>
<tr>
<td>TLR4/5/7/9 -> NF-kB signaling</td>
<td>19</td>
<td>27</td>
<td>23</td>
<td>0.56954</td>
<td>1.47303</td>
<td>1.07363</td>
<td>0.03008</td>
<td>Ariadne Receptor Signaling Pathways</td>
</tr>
<tr>
<td>TNFR -> AP-1/ATF/TP53 signaling</td>
<td>40</td>
<td>40</td>
<td>38</td>
<td>0.57226</td>
<td>1.64605</td>
<td>1.16473</td>
<td>0.00346</td>
<td>Ariadne Receptor Signaling Pathways</td>
</tr>
<tr>
<td>TNFR -> CREB/ELK-SRF signaling</td>
<td>42</td>
<td>45</td>
<td>43</td>
<td>0.53299</td>
<td>1.59125</td>
<td>1.16473</td>
<td>0.01695</td>
<td>Ariadne Receptor Signaling Pathways</td>
</tr>
<tr>
<td>TNFR -> NF-kB signaling</td>
<td>32</td>
<td>40</td>
<td>38</td>
<td>0.61455</td>
<td>1.76894</td>
<td>1.12896</td>
<td>0.0034</td>
<td>Ariadne Receptor Signaling Pathways</td>
</tr>
<tr>
<td>TNFRSF1A -> AP-1/ATF/TP53 signaling</td>
<td>30</td>
<td>36</td>
<td>34</td>
<td>0.63831</td>
<td>1.77934</td>
<td>1.27456</td>
<td>0</td>
<td>Ariadne Receptor Signaling Pathways</td>
</tr>
<tr>
<td>TNFRSF1A -> CREB/ELK-SRF signaling</td>
<td>32</td>
<td>41</td>
<td>39</td>
<td>0.60603</td>
<td>1.75651</td>
<td>1.29012</td>
<td>0.00353</td>
<td>Ariadne Receptor Signaling Pathways</td>
</tr>
<tr>
<td>TNFRSF6 -> HSF1 signaling</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>0.67724</td>
<td>1.59139</td>
<td>1.25266</td>
<td>0.00781</td>
<td>Ariadne Receptor Signaling Pathways</td>
</tr>
<tr>
<td>Translation Control</td>
<td>86</td>
<td>1012</td>
<td>922</td>
<td>0.27908</td>
<td>1.15021</td>
<td>-</td>
<td>1.02633</td>
<td>0.03874</td>
</tr>
<tr>
<td>Tryptophan metabolism</td>
<td>112</td>
<td>326</td>
<td>135</td>
<td>-0.465</td>
<td>-</td>
<td>1.72372</td>
<td>-</td>
<td>1.10957</td>
</tr>
<tr>
<td>Ubiquitin-dependent Protein Degradation</td>
<td>15</td>
<td>125</td>
<td>100</td>
<td>0.5559</td>
<td>1.84663</td>
<td>1.32869</td>
<td>0</td>
<td>Ariadne Cell Process Pathways</td>
</tr>
<tr>
<td>VasopressinR1 -> STAT signaling</td>
<td>16</td>
<td>50</td>
<td>45</td>
<td>-0.4917</td>
<td>-</td>
<td>1.50595</td>
<td>-</td>
<td>1.09809</td>
</tr>
<tr>
<td>VEGFR -> NFATC signaling</td>
<td>26</td>
<td>37</td>
<td>31</td>
<td>0.60393</td>
<td>1.72553</td>
<td>1.12896</td>
<td>0.00733</td>
<td>Ariadne Receptor Signaling Pathways</td>
</tr>
<tr>
<td>Vitamin B5 (pantothenate) metabolism</td>
<td>24</td>
<td>29</td>
<td>9</td>
<td>0.77523</td>
<td>1.64224</td>
<td>1.06069</td>
<td>0.0155</td>
<td>Ariadne Metabolic Pathways</td>
</tr>
</tbody>
</table>
Appendix C: Complete list of sub-networks that are related to the response to stress, the DNA methylation pathway and the histone acetylation pathway.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
<th>Connectivity</th>
<th>Probe Value</th>
<th>Local Connectivity</th>
<th>Indegree</th>
<th>Outdegree</th>
</tr>
</thead>
<tbody>
<tr>
<td>chromosome condensation</td>
<td>Cell Process</td>
<td></td>
<td>330</td>
<td>-</td>
<td>2.4751</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>chromatin remodeling</td>
<td>Cell Process</td>
<td></td>
<td>1017</td>
<td>8.2821</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EP300</td>
<td>Protein</td>
<td>E1A binding protein p300</td>
<td>1503</td>
<td>1.1627</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>KAT2B</td>
<td>Protein</td>
<td>K(lysine) acetyltransferase 2B</td>
<td>406</td>
<td>1.3732</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>transcription initiation</td>
<td>Cell Process</td>
<td></td>
<td>278</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>SIRT1</td>
<td>Protein</td>
<td>sirtuin 1</td>
<td>844</td>
<td>2.3254</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>MECP2</td>
<td>Protein</td>
<td>methyl CpG binding protein 2 (Rett syndrome)</td>
<td>343</td>
<td>1.4845</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>NCOA1</td>
<td>Protein</td>
<td>nuclear receptor coactivator 1</td>
<td>414</td>
<td>-</td>
<td>1.2592</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>BRCA1</td>
<td>Protein</td>
<td>breast cancer 1, early onset</td>
<td>858</td>
<td>-</td>
<td>1.1507</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>NCOA3</td>
<td>Protein</td>
<td>nuclear receptor coactivator 3</td>
<td>468</td>
<td>8.4708</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CREBBP</td>
<td>Protein</td>
<td>CREB binding protein</td>
<td>813</td>
<td>2.254</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>histone H3</td>
<td>Functional Class</td>
<td></td>
<td>1267</td>
<td>1.0943</td>
<td>8</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>histone deacetylase</td>
<td>Functional Class</td>
<td></td>
<td>2000</td>
<td>-</td>
<td>3.1766</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>histone acetyltransferase</td>
<td>Functional Class</td>
<td></td>
<td>754</td>
<td>-</td>
<td>2.1886</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>HDAC2</td>
<td>Protein</td>
<td>histone deacetylase 2</td>
<td>461</td>
<td>2.0314</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>KAT5</td>
<td>Protein</td>
<td>K(lysine) acetyltransferase 5</td>
<td>290</td>
<td>1.3059</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>HDAC1</td>
<td>Protein</td>
<td>histone deacetylase 1</td>
<td>890</td>
<td>1.6818</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>histone H4</td>
<td>Functional Class</td>
<td></td>
<td>506</td>
<td>1.0122</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>protein nucleus import</td>
<td>Cell Process</td>
<td></td>
<td>42</td>
<td>1.7441</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>NuRD complex</td>
<td>Complex</td>
<td></td>
<td>125</td>
<td>2.2153</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>histone H2B</td>
<td>Functional Class</td>
<td></td>
<td>190</td>
<td>8.2821</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>NCO2</td>
<td>Protein</td>
<td>nuclear receptor corepressor 2</td>
<td>376</td>
<td>-</td>
<td>1.1728</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>NCO1</td>
<td>Protein</td>
<td>nuclear receptor co-repressor 1</td>
<td>423</td>
<td>-</td>
<td>1.2746</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>RBBP4</td>
<td>Protein</td>
<td>retinoblastoma binding protein 4</td>
<td>128</td>
<td>1.3566</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SIN3A</td>
<td>Protein</td>
<td>SIN3 homolog A, transcription regulator (yeast)</td>
<td>156</td>
<td>1.4439</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>KAT2A</td>
<td>Protein</td>
<td>K(lysine) acetyltransferase 2A</td>
<td>287</td>
<td>-</td>
<td>1.9725</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SAP30</td>
<td>Protein</td>
<td>Sin3A-associated protein, 30kDa</td>
<td>231</td>
<td>3.0367</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Protein</td>
<td>Functional Class</td>
<td>Functional Class</td>
<td>172</td>
<td>2.1697</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------</td>
<td>------------------</td>
<td>-----</td>
<td>---------</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>KPNA2</td>
<td>Protein</td>
<td>karyopherin alpha 2 (RAG cohort 1, importin alpha 1)</td>
<td>343</td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RBBP7</td>
<td>Protein</td>
<td>retinoblastoma binding protein 7</td>
<td>80</td>
<td>1.0886</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>SAP18</td>
<td>Protein</td>
<td>Sin3A-associated protein, 18kDa</td>
<td>19</td>
<td>2.7274</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>trichostatin A</td>
<td>Small Molecule</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>sodium butyrate</td>
<td>Small Molecule</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>