2-11-2016

Label Noise Cleaning Using Support Vector Machines

Rajmadhan Ekambaram
University of South Florida, rajmadhan@mail.usf.edu

Follow this and additional works at: http://scholarcommons.usf.edu/etd
Part of the Computer Sciences Commons

Scholar Commons Citation
http://scholarcommons.usf.edu/etd/5943

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.
Label Noise Cleaning Using Support Vector Machines

by

Rajmadhan Ekambaram

A thesis submitted in partial fulfillment
of the requirements for the degree of
Master of Science in Computer Science
Department of Computer Science and Engineering
College of Engineering
University of South Florida

Major Professor: Lawrence Hall, Ph.D.
Rangachar Kasturi, Ph.D.
Dmitry Goldgof, Ph.D.

Date of Approval:
February 9, 2016

Keywords: Mislabeled Examples, SVM

Copyright © 2016, Rajmadhan Ekambaram
DEDICATION

I dedicate this MS. to Dr. Surendra Ranganath. He was my master’s project adviser and mentor at NUS. He provided me the opportunity to learn about this fascinating field of computer vision and machine learning. His teaching style instilled me the interest in pattern recognition. His mentoring helped me to complete my master’s project at NUS and pursue Ph.D. in computer vision and machine learning.
ACKNOWLEDGMENTS

I would like to thank Dr. Lawrence Hall, Dr. Dmitry Goldgof and Dr. Rangachar Kasturi for proving me the opportunity to work on this project. I particularly thank Dr. Lawrence Hall for spending time with all the discussion about the experiments, and in reviewing the paper drafts and this Thesis and providing critical comments. Without his help this work would have not been completed. I also thank Dr. Sergiy Fefilatyev, Dr. Matthew Shreve and Dr. Kurt Kramer for helping with the experiments and in reviewing the paper published through this work. I also thank the research computing team at USF for helping me run the experiments efficiently.
TABLE OF CONTENTS

LIST OF TABLES ... iii

LIST OF FIGURES ... iv

ABSTRACT ... v

CHAPTER 1 : INTRODUCTION ... 1
 1.1 Motivation ... 1
 1.2 Contributions... 3
 1.3 Thesis Overview ... 4

CHAPTER 2 : BACKGROUND .. 5
 2.1 Introduction .. 5
 2.2 Related Work .. 8
 2.2.1 Weight or Confidence Based Measures 9
 2.2.2 Approaches Exploiting the Classifier’s Properties 11
 2.2.3 Mitigation of the Effects of the Label Noise Examples on to the Classifier 12
 2.2.4 Outliers Detection Using OCSVM 13
 2.2.5 Comparing to a Probabilistic Approach 13
 2.3 Conclusions .. 14

CHAPTER 3 : LABEL NOISE REDUCTION USING SVM 15
 3.1 Introduction .. 15
 3.2 Experimental Setup .. 15
 3.2.1 Datasets ... 15
 3.2.2 Features .. 16
 3.2.3 Experimental Protocol ... 17
 3.2.3.1 OCSVM Example Selection 17
 3.2.3.2 TCSVM Example Selection 18
 3.2.3.3 SVM Classifier Parameter Selection 20
 3.3 Results ... 20
 3.4 Conclusions .. 23

CHAPTER 4 : ACTIVE LABEL NOISE CLEANING 25
 4.1 Introduction .. 25
 4.2 Experimental Setup .. 26
 4.2.1 Datasets ... 26
 4.2.2 Features .. 27
 4.2.3 Experimental Protocol ... 28
 4.2.3.1 Example Selection ... 28
 4.2.3.2 SVM Classifier Parameter Selection 29
 4.2.3.3 ICCN_SMO .. 29
4.3 Results .. 31
 4.3.1 Computation of Performance Values in the Tables and Graphs 32
 4.3.2 Noise Removal Performance of ALNR .. 36
 4.3.3 Performance Comparison of ALNR and ICCN_SMO 37
 4.3.3.1 Noise Removal Performance ... 37
 4.3.3.2 Classifier Performance ... 38
 4.3.3.3 Parameter Selection .. 38
 4.3.4 Computational Complexity .. 38

4.4 Conclusions ... 39

CHAPTER 5 : CONCLUSIONS ... 48

REFERENCES ... 50

APPENDIX A: COPYRIGHT CLEARANCE FORMS .. 53
LIST OF TABLES

Table 3.1 Algorithm to verify the hypothesis that the label noise examples are captured in the support vectors ... 16
Table 3.2 Algorithm to find the label noise examples with One-class SVM classifier................. 18
Table 3.3 The number of examples used in each of the experiments at 10% the noise level.... 19
Table 3.4 The result of a single run of experiment 4 with an OCSVM classifier on the MNIST data at the 10% noise level.. 21
Table 3.5 The result of a single run of experiment 4 with a TCSVM classifier on the MNIST data at 10% noise level.. 21
Table 3.6 The average performance over 180 experiments on both the MNIST and UCI data sets and the overall performance at the 10% noise level......................... 22
Table 3.7 The average performance of OCSVM with RBF kernel for different “µ” values over 180 experiments on both the MNIST and UCI data set at the 10% noise level...... 23
Table 4.1 The proposed algorithm to efficiently target the label noise examples in the support vectors.. 26
Table 4.2 The number of examples used in each of the experiments at 10% noise level.............. 30
Table 4.3 The average performance of ALNR in selecting the label noise examples for labeling over 240 experiments on all the data sets for the Random and Default parameter selection experiments ... 33
Table 4.4 Average noise removal performance of ALNR and ICCN_SMO on all the datasets . 34
Table 4.5 Average examples reviewed for ALNR and ICCN_SMO on all the datasets 35
Table 4.6 Average number of batches required for reviewing the datasets by ALNR and ICCN_SMO .. 35
LIST OF FIGURES

Figure 2.1 Decision boundary created by a two class SVM classifier 6
Figure 3.1 The sampling process of examples for an experiment 18
Figure 3.2 Example misclassification results ... 23
Figure 4.1 The sampling process of examples for an experiment 29
Figure 4.2 Performance comparison of ALNR and ICCN_SMO with the Linear Kernel SVM for different parameter selection methods on the UCI Letter recognition dataset . 40
Figure 4.3 Performance comparison of ALNR and ICCN_SMO with the RBF Kernel SVM for different parameter selection methods on the UCI Letter recognition dataset . 41
Figure 4.4 Performance comparison of ALNR and ICCN_SMO with the Linear Kernel SVM for different parameter selection methods on the MNIST Digit recognition dataset 42
Figure 4.5 Performance comparison of ALNR and ICCN_SMO with the RBF Kernel SVM for different parameter selection methods on the MNIST Digit dataset 43
Figure 4.6 Performance comparison of ALNR and ICCN_SMO with the Linear Kernel SVM for different parameter selection methods on the Wine Quality dataset 44
Figure 4.7 Performance comparison of ALNR and ICCN_SMO with the RBF Kernel SVM for different parameter selection methods on the Wine Quality dataset 45
Figure 4.8 Performance comparison of ALNR and ICCN_SMO with the linear kernel SVM for different parameter selection methods on the Breast cancer dataset 46
Figure 4.9 Performance comparison of ALNR and ICCN_SMO with the RBF Kernel SVM for different parameter selection methods on the Breast cancer dataset 47
ABSTRACT

Mislabeled examples affect the performance of supervised learning algorithms. Two novel approaches to this problem are presented in this Thesis. Both methods build on the hypothesis that the large margin and the soft margin principles of support vector machines provide the characteristics to select mislabeled examples. Extensive experimental results on several datasets support this hypothesis. The support vectors of the one-class and two-class SVM classifiers captures around 85% and 99% of the randomly generated label noise examples (10% of the training data) on two character recognition datasets. The numbers of examples that need to be reviewed can be reduced by creating a two-class SVM classifier with the non-support vector examples, and then by only reviewing the support vector examples based on their classification score from the classifier. Experimental results on four datasets show that this method removes around 95% of the mislabeled examples by reviewing only around about 14% of the training data. The parameter independence of this method is also verified through the experiments. All the experimental results show that most of the label noise examples can be removed by (re-)examining the selective support vector examples. This property can be very useful while building large labeled datasets.
1.1 Motivation

The deepwater horizon oil created an interesting problem for computer vision and machine learning scientists which involved finding ways to separate the oil-droplets and plankton from the images captured with the SIPPER platform [1]. A Plankton and other objects dataset was created to explore machine learning solutions to this problem. The plankton dataset had 36 classes and consists of examples belonging to the classes: planktons (32 classes), air bubbles, oil droplets/suspected fish eggs and noise. There were about 8537 examples in this dataset, which is just 0.5% of all the collected SIPPER images. The dataset was labeled by marine science experts based on visual analysis. Originally, small particles were labeled oil droplets. Later, NOAA asked that they be labeled fish eggs. In any event, it was desired to get their labels correct and that was non-trivial. During this labeling process several of the suspected fish eggs were mislabeled, mainly because it is a new class, as air bubbles and to some other classes in the dataset. One solution to correct the mislabeled examples is to manually relabel all the examples. This process will be laborious and requires the precious time of the marine science experts. A better solution will be to sample a small subset of potentially mislabeled examples and produce only these examples to the experts for review. This solution will act as a trade-off between amount of noise that gets removed from the dataset.

1 Portions of this chapter were reprinted from Pattern Recognition, 51, Ekambaram, R., Fefilatyev, S., Shreve, M., Kramer, K., Hall, L. O., Goldgof, D. B., & Kasturi, Active cleaning of label noise, 463-480 Copyright (2016), with permission from Elsevier. Permission is included in Appendix A.
dataset and the time and effort of the experts. This latter approach forms the basis of the problem for this thesis.

Mislabeled examples in the training data affects the learning algorithm, typically, with negative consequences. It has been theoretically shown that label noise examples (i.e., mislabeled examples) reduces the classifier performance in the works of [2, 3, 4, 5]. Label noise might also increases the required number of training instances or the complexity of the classifier as shown in the works of [6, 7]. Other effects include the change in frequency of the class examples which might be problematic in medical applications, poor estimation of performance of the classifiers, decrease in the importance of some features and poor feature selection and ranking. Several approaches have been proposed in the literature [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] to address this critical problem. Though some of the approaches, for examples the methods proposed in [18, 19, 20, 10], uses support vector machine (SVM) classifiers, none of them focuses solely on the support vectors. The method in [21] showed that the SVM classifier has the property to capture mislabeled examples as its support vectors. The hypothesis is that the mislabeled examples tend to be on the margin and get chosen as support vectors of the SVM classifier. Another novel method which builds on this hypothesis was developed in the work of [22]. These two methods are explained in detail in this thesis and validated with extensive experimental results.

The noise removal performance of both a one-class SVM (OCSVM) and two-class SVM (TCSVM) classifiers are analyzed in Chapter 3. Reviewing just the support vectors of the OCCSVM and TCSVM classifier results in the removal of around 85% and 99% of the label noise examples respectively when the amount of mislabeled examples is 10%. For the OCSVM classifier it requires a review of around 55% of examples and the TCSVM requires between 42% and 46% of examples.
Though both OCSVM and TCSVM remove majority of the label noise examples, the amount of examples to be reviewed is high.

The other method presented in Chapter 4 reduces the number of examples needed for review. This method proposed in [10], shows that reviewing examples in decreasing order of probability of the SVM classifier removes label noise examples and results in reviewing fewer examples. But the method has the following problems: 1) dependency on classifier parameters, 2) the need for the selection of the number of examples to review in each batch, and 3) the need for a threshold to stop the review process. Inspired by this approach and to overcome the above mentioned problems a new method is proposed in Chapter 4. The new method assumes that a relatively noise free classifier can be used to target the label noise examples. The method in Chapter 3 shows that most of the label noise examples are selected as support vectors, so the classifier built with non-support vector examples is relatively noise free. The label noise examples in the support vectors can be targeted with this relatively noise free classifier. This approach leads to a significant reduction in the number of examples to be reviewed to remove the mislabeled examples.

1.2 Contributions

My contributions in this thesis are described below.

1. Experimental validation of the effectiveness of 2-SVM to capture the label noise examples as support vectors.

2. Experimental comparison of 1-class SVM, 2-class SVM and their combination to find the label noise examples.

3. Experimental validation of a novel method that build on SVM to find the label noise examples.
1.3 Thesis Overview

Chapter 2 describes the SVM optimization problem and the prior works in the literature that deal with finding and removing label noise examples in the labeled datasets.

Chapter 3 demonstrates the hypothesis that label noise examples are captured as the support vectors of the SVM by experiments. Three different experiments using 1-class SVM, 2-class SVM and their combination were conducted to evaluate the hypothesis and to compare their performances.

Chapter 4 describes a novel method that builds on SVM and analyzes its performance by experiments. Performance comparison with a more closely related method in the literature is also shown.

Chapter 5 presents the conclusion and potential future works that can be done to improve the performance of the proposed methods and the other methods that could be tried.
CHAPTER 2: BACKGROUND

2.1 Introduction

Support vector machines (SVM) are a class of algorithms that are used for classification and regression tasks. Only SVM classification algorithm is dealt with this thesis. SVM is a discriminative classifier, in which the prediction is done by finding a separating hyperplane between the examples from two classes. The hyperplane is found based on the principle of maximum margin. In a linear classifier the distance between the separating hyperplane and an example is called the margin. In SVM, maximizing this margin involves finding the direction that increases the distance between the two or more closest examples (at least one from each class). A classification based on the maximum margin principle is shown in Figure 2.1.

The hyperplanes in the example shown in Figure 2.1 are described by the following equations:

\[
\vec{w} \cdot \vec{x}_i - b \geq +1, \quad \text{if} \quad \vec{y}_i = +1 \]

and

\[
\vec{w} \cdot \vec{x}_i - b \leq -1, \quad \text{if} \quad \vec{y}_i = -1 \tag{2.1}
\]

where \(\vec{w}\) is the normal vector to the hyperplane, \(\vec{x}_i\) are the training examples, and \(y_i \in [-1, +1]\) are the class labels. The distance between these two hyperplanes is given by \(\frac{2}{\vec{w}}\). In order to increase
the distance between the hyperplanes, $\|\vec{w}\|$ should be reduced.

The equation given in 2.1 for the hyperplanes and the condition on the normal vector can be combined together and written as the following optimization problem:

$$\begin{align*}
\text{minimize} & \quad \|\vec{w}\| \\
\text{subject to} & \quad \vec{y}_i (\vec{w} \cdot \vec{x}_i - b) \geq +1; \quad i = 1, \ldots, N.
\end{align*}$$

(2.2)

where N is the total number of examples in the dataset.

The solution to this optimization problem only involves the examples that satisfy the condition $\vec{w} \cdot \vec{x}_i - b = +1$ when the class label is +1 or $\vec{w} \cdot \vec{x}_i - b = -1$ when the class label is -1. These are the examples that affect the solution are called the support vectors. The solution for the equation 2.2 exists only if the examples from the two classes are linearly separable or all the examples in the dataset satisfy the equation 2.1.

Separation by linear hyperplanes does not exist for all the datasets. For such datasets, equation 2.2 does not have a solution. A method was proposed in [23] to overcome this problem.
In this method a penalty term (ξ) is added to the optimization equation. The examples which are on the wrong side of the hyperplane are penalized by their distance from the hyperplane. The hyperplanes for this formulation are described by the following equations:

\[
\vec{w} \cdot \vec{x}_i - b \geq +1 + \xi_i, \quad \text{if} \quad \vec{y}_i = +1
\]

and

\[
\vec{w} \cdot \vec{x}_i - b \leq -1 + \xi_i, \quad \text{if} \quad \vec{y}_i = -1
\]

where, $\xi_i \geq 0, \forall i$.

where \vec{w} is the normal vector to the hyperplane, \vec{x}_i are the training examples, and $y_i \in [-1, 1]$ are the class labels. The distance between these two hyperplanes is given by $\frac{2}{\|\vec{w}\|}$. In order to increase the distance between the hyperplanes, $\|\vec{w}\|$ should be reduced.

Though the above equations only results in linear hyperplane, it is possible to create a non-linear decision boundary by simply mapping the input data non-linearly in to some high dimensional space using kernel functions. There are two ways to solve the SVM optimization problem: primal and dual. The dual formulation proposed in [24] is efficient for high dimensional features and for applying the “kernel trick” to the features. The SMO-type algorithms described in [25, 26] are an efficient way to compute the support vectors and they solve the dual optimization problem. The dual formulation is

\[
\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j K(x_i, x_j) \alpha_i \alpha_j - \min_{\alpha} \sum_{i=1}^{N} \alpha_i,
\]

where N is the number of training examples, the $y_i \in [-1, 1]$ are the class labels, x is a d dimensional
example, $K(\cdot)$ is the kernel and α_i is a Lagrange multiplier. Equation 2.4 is subject to two constraints

$$\alpha_i \geq 0, \forall i,$$ \hspace{1cm} (2.5)

$$\sum_{i=1}^{N} y_i \alpha_i = 0.$$ \hspace{1cm} (2.6)

The examples for which $\alpha_i > 0$ are selected as support vectors to create the decision boundary. These are the examples that our approach selects as the candidates for relabeling. The next section discusses the commonality and the differences between our approach and the other approaches proposed in the literature.

2.2 Related Work

Many approaches are proposed in the literature to identify and remove mislabeled (label noise) examples. Some of these approaches are compared to the proposed approach in this thesis based on three broad ideas:

1. Weight or confidence based measures

2. Approaches exploiting the classifier’s properties

3. Mitigation of the effects of the label noise examples on to the classifier

4. Outliers detection using OCSVM
2.2.1 Weight or Confidence Based Measures

The method proposed in [8] finds mislabeled examples based on the information gain criteria. An example is considered more informative if it is difficult to predict by the classifier. The prediction is based on the probability of the classification using Shannon’s information gain. The examples which had more information gain were more important for the classifier. So the examples are reviewed based on the decreasing order of their information gain. Our method differs from the method in [8] in the following ways:

- the strict use of a human in the loop
- how the examples are ranked
- how to find the number of rounds
- stopping criteria for the review

The method proposed in Rebbapragada et al. [9] selects the potential examples for relabeling using an SVM classifier in an active learning framework. The unlabeled examples which lie close to the separating hyperplane were selected for labeling. The intuition for our method is similar to this method. The differences are the following:

- All the examples in our method are labeled
- Only support vectors are examined in our method. The examples selected in this method may or may not become support vectors.

The method proposed in Rebbapragada [10] and Brodley et al. [27] uses an SVM classifier to find the label noise examples. Both of these methods review the examples in decreasing order
of probability of classification [28] returned by the SVM classifier. The selected examples in these methods are not necessarily support vectors. Depending on the threshold used for selection, examples which are on the wrong side of the boundary may be ignored. A detailed comparison of this method is described in section 2.2.5.

The method proposed in Gamberger et al. [11] assigns a weight for the examples based on the complexity measure of the classifier. The example with the highest weight is selected for review if its weight exceeds the threshold. The number of rounds in this method equals the number of label noise examples expected in the dataset and this method requires a threshold.

A confidence based method was proposed in Rebbapragada and Brodley [16] and Rebbapragada et al. [17]. Examples are clustered pair wise and a confidence is assigned to each example based on the Pair Wise Expectation Maximization (PWEM) method. This method generates confidence measure based on PWEM and our method can generate probabilities based on the distance from the hyperplane.

A distributed rule based method similar to the method in [12] was proposed in Zhu et al. [13]. This method distinguishes between exceptions and mislabeled examples. This method assumes that the mislabeled examples will be classified wrongly by more rules than the exception examples. The distributed dataset was divided into subsets and rules were generated for all the subsets. The examples were classified using all the generated rules. Exceptions are not handled in our method and it can work in a distributed system provided sufficient positive and negative examples are present in each location.
2.2.2 Approaches Exploiting the Classifier’s Properties

Local geometrical structure is used to find the mislabeled examples in the method proposed in Muhlenbach et al. [14]. An example is chosen as a potential mislabeled examples based on its neighborhood in the Relative Neighborhood graph. If an example has more connection with the opposite class than the global proportion of examples belonging to its current class, then it is a candidate for the mislabeled example. The similarity between this method and our method is that both suspects the closest examples from the other classes. The dissimilarity is that our method considers all the examples in the dataset at the same time, whereas this method considers only the local examples.

A weighted k nearest neighbors (kNN) approach was extended to a quadratic optimization problem in the method proposed in Valizadegan and Tan [15]. The optimization expression depends only on the similarity between the examples, so a kernel based solution was proposed. This results in solving the problem easily by projecting the attributes into higher dimensions with the help of a kernel. The suspected mislabeled examples are the ones whose label switching maximizes the optimization expression. Both the methods use an optimization function, but the objective of the optimization function is different.

An automatic noise removal method was proposed in Brodley and Friedl [12]. The primary intention behind this method was to improve the classifier accuracy. So this method removes the good examples and may miss some mislabeled examples. This method might not suitable for classes with a small number of examples.
2.2.3 Mitigation of the Effects of the Label Noise Examples on to the Classifier

Our proposed method applies only for removing the label noise examples in the training data, and though the final noise reduced SVM classifier can be directly used in the application, it is not the focus of our method. The methods discussed in this section both handle noise and create classifiers in a single step.

AdaBoost tends to overfit in the presence of label noise examples as was shown in Ratsch et al. [29] and Dietterich [30]. To reduce the bias due to mislabeled examples, a method was proposed in Cao et al. [31], that reduces the weights of the mislabeled examples using kNN and Expectation Maximization methods.

An SVM based label noise mitigation approach was presented in Biggio et al. [18], Stempfel and Ralaivola [19] and Niaf et al. [20]. The SVM problem formulation was modified to handle the label noise problem. The method proposed in Biggio et al. [18] reduces the effect of any single example on the decision boundary by modifying the kernel matrix of the SVM. The modified kernel matrix will result in more support vectors and hence reduces the influence of the potential label noise examples in the dataset.

The method proposed in [19] estimates the noise free slack variables from the noisy data. The noise-free SVM objective function is the mean of the newly defined non-convex objective function.

Another SVM based approach is proposed in [20]. The noise is controlled using the slack variable in the SVM problem formulation based on the probability of the examples generated using Platt’s scaling algorithm [28].
2.2.4 Outliers Detection Using OCSVM

The method proposed in Schölkopf et al. [32] extends the maximum margin principle to examples from only one class. The method is referred to as a one-class SVM (OCSVM). Similar to clustering, this method finds a small region that encloses the data, and classifies the examples that are in the boundary of the region as outliers. Several works in the literature use this method to find the outliers in a dataset. A few of those methods are:

- A method for cleaning images belonging to different categories namely Snow and Skiing, Family and Friends, Architecture and Buildings and Beach was proposed in Lukashevich et al. [33]

- A method for cleaning satellite images in a distributed framework was proposed in [34]

- A method to find depressed patients using fMRI response was proposed in [35]

In our work the examples which are detected as outliers by the OCSVM are considered as suspected label noise examples.

2.2.5 Comparing to a Probabilistic Approach

A method very close in principle to our method was proposed in [10]. In this work several methods were proposed (SMO, Logistic Regression, Boosting, Bagging, Nearest neighbor and Naive Bayes) for Iterative Correction of Class Noise (ICCN) and their performance was compared for finding the label noise examples. The SMO confidence based method in this work is similar to our method and is one of the best performing methods. The examples were sorted based on their probability of classification and reviewed in batches. Twenty examples with the least probability of
classification were reviewed in each batch. The stopping criteria is decided by the reviewer. In the reported experiments the review was stopped when the total number of reviewed examples equaled the total number of mislabeled examples in the dataset. Some important difference between this method and our approach are as follows:

- This method does not differentiate between the support vector examples and the non-support vector examples, and reviews all the examples based on their probability of classification. Only the subset consisting of support vector examples are reviewed in our method.

- Examples are selected based on a two stage process in our method

- Our method does not have a threshold parameter for the number of examples to be reviewed in a batch

- Our method has a clear stopping point, but this method does not. Stopping criteria is useful when the amount of label noise in the data is unknown. In data undergoing a real-time labeling process, it is highly likely that the amount of mislabels will be unknown.

2.3 Conclusions

The general principle behind the SVM classifier was introduced in this chapter. The works in the literature which are close in principle to the proposed method were briefly described. The differences between the methods in the literature and the proposed method were also described. A detailed comparison of a very similar SMO based method proposed in [10] was done in this chapter.
CHAPTER 3 : LABEL NOISE REDUCTION USING SVM

3.1 Introduction

This chapter describes the algorithm to find and remove the label noise examples in the labeled datasets. The method is based on the assumption that the large margin and soft margin principles of the SVM have the property of selecting the label noise examples as its support vectors. The label noise examples are more likely to be the border line examples due to the confusion they create for the labeler. It is intuitive to think that the border line examples of the two classes lie close together. The large margin principle is to increase the distance between the two classes, which results in selecting the examples from the two classes that are close together as support vectors. Hence it is more likely that these border line examples are selected as Support vectors. These are the borderline examples which are selected by our algorithm for review. The algorithm is described in Table 3.1.

3.2 Experimental Setup

3.2.1 Datasets

The potential of this method was tested with two datasets widely used in the machine learning community:

3 Portions of this chapter were reprinted from Pattern Recognition, 51, Ekambaram, R., Fefilatyev, S., Shreve, M., Kramer, K., Hall, L. O., Goldgof, D. B., & Kasturi, Active cleaning of label noise, 463-480 Copyright (2016), with permission from Elsevier. Permission is included in Appendix A.
Table 3.1: Algorithm to verify the hypothesis that the label noise examples are captured in the support vectors.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mark all the training examples as not verified</td>
</tr>
<tr>
<td>2.</td>
<td>Train an SVM classifier using the training examples</td>
</tr>
<tr>
<td>3.</td>
<td>Have an expert validate all the support vectors marked as not verified:</td>
</tr>
<tr>
<td></td>
<td>(a) Change the labels of the mislabeled examples in the support vectors</td>
</tr>
<tr>
<td></td>
<td>(b) Mark all the support vector examples as verified</td>
</tr>
<tr>
<td>4.</td>
<td>Repeat steps 2 and 3 until no label error is found</td>
</tr>
</tbody>
</table>

1. UCI Letter recognition dataset

2. MNIST digit dataset

UCI letter recognition dataset was obtained from the UCI Machine learning repository (http://archive.ics.uci.edu/ml) and the MNIST digits dataset was obtained from http://yann.lecun.com/exdb/mnist/. The UCI letter recognition dataset consists of images of 26 printed letters in the English language alphabet. The dataset has around 700 examples for each letter based on 20 different fonts. The MNIST digit recognition dataset consists of images of 10 handwritten digits. The dataset has around 6000 examples for each digit.

3.2.2 Features

Each example in the UCI Letter recognition dataset is represented by a 16 dimensional feature vector. The features capture the statistical moments and edge counts in the images. The features are scaled into integer values between 0 and 15. Each example in the MNIST digit dataset
is represented by a 784 dimensional feature vector. The features are the gray scale pixel values of the digit images.

3.2.3 Experimental Protocol

Performing experiments with all the classes (letters and digits) in both the datasets is tedious. Random selection of the classes might result in selecting classes that are easily separable. So some exploratory experiments were performed for the UCI letter recognition dataset and three letters (H, B and R) which are the most likely to be confused were selected. For the MNIST digits recognition dataset the three digits 4, 7 and 9 were selected. These three digits had the most confusion among them as stated in [36].

All the experiments were performed using the scikit-learn python machine learning library ([37]). scikit-learn uses the LIBSVM library [38] which implements the SMO-type optimization algorithm for SVM classification.

3.2.3.1 OCSVM Example Selection

For the OCSVM experiments with the UCI Letter dataset the training examples for a sample experiment were selected as follows: 450 examples were randomly selected from one of the three letters and 50 examples were randomly selected from the other two letters (25 examples each). The procedure described in Table 3.2 was followed to evaluate the performance of the OCSVM classifier using these training examples. The experiment was repeated 90 times with a different random selection of examples. The number of experiments was distributed evenly between all the letters. A similar procedure was followed for the MNIST digit dataset. The MNIST dataset contains more examples for each digit, so more examples are used in each experiment. For each experiment
900 examples were randomly selected from one of the three digits and 100 examples were randomly selected from the other two digits (50 examples each). Figure 3.1 shows how the digits were sampled. Only the examples from Class X as shown in the Figure 3.1 were used with the OCSVM classifier.

Table 3.2: Algorithm to find the label noise examples with One-class SVM classifier.

1. Train an OCSVM classifier using the training examples
2. Have an expert validate all the outliers marked as not verified:
 (a) Remove the mislabeled examples in the outliers
3. Repeat steps 2 and 3 until no label error is found

Figure 3.1: The sampling process of examples for an experiment

3.2.3.2 TCSVM Example Selection

For TCSVM experiments with the UCI Letter dataset the training examples for a sample experiment were selected as follows: 1000 examples were randomly selected from two of the three
Table 3.3: The number of examples used in each of the experiments at 10% the noise level. CLE - correctly labeled examples, MLE - mislabeled examples, TE - test examples. The number of examples correspond to the letter or digit or wine type in the same row under the same class. The mislabeled examples in Class X are labeled as Class Y and vice-versa.

<table>
<thead>
<tr>
<th>Experiment #</th>
<th>Class X</th>
<th></th>
<th></th>
<th></th>
<th>Class Y</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Letter</td>
<td># CLE</td>
<td># MLE</td>
<td># TE</td>
<td>Letter</td>
<td># CLE</td>
<td># MLE</td>
<td># TE</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>450</td>
<td>50</td>
<td>100</td>
<td>B</td>
<td>225</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>225</td>
<td>25</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>450</td>
<td>50</td>
<td>100</td>
<td>R</td>
<td>225</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>225</td>
<td>25</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>R</td>
<td>450</td>
<td>50</td>
<td>100</td>
<td>H</td>
<td>225</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>225</td>
<td>25</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

letters, 500 examples each. Out of the 500 selected examples from each letter 50 of them were randomly selected and mislabeled. Then the procedure described in Table 3.1 was followed to evaluate the performance of the TCSVM classifier using these training examples. Similar to the OCSVM experiments, 90 runs of this experiment each with a different sampled examples was repeated, evenly distributing the number of experiments between all three letters. A similar procedure was followed for the MNIST digit dataset. For each MNIST experiment 2000 examples were randomly selected from two of the three letters, 1000 examples each. Out of the 1000 selected examples from each letter 100 of them were randomly selected and mislabeled.
3.2.3.3 SVM Classifier Parameter Selection

The feature values were scaled into the range of values between -1 and 1. Linear and RBF kernels were explored. The parameters “C” and “γ” were chosen using a 5-fold cross validation method. The SVM cost parameter “C” was varied between 1 and 25 in steps of 3. The RBF kernel parameter “γ” was varied in multiples of 5 from 0.1/(number of features) to 10/(number of features). In addition, two other “γ” values 0.01/(number of features) and 0.05/(number of features) were tested.

3.3 Results

All the experiments were carried out with 10% label noise examples. To avoid bias all the experiments were repeated 30 times with different random sampling of examples and the average of the results are reported. The detailed sample results of one run of the experiments with OCSVM are shown in Table 3.4 and with TCSVM are shown in Table 3.5. The overall performance is shown in Table 3.6. OCSVM with linear and RBF kernel captured 85.75% and 85.79% of label noise examples respectively as outliers. TCSVM captured 99.55% of label noise examples as its support vectors with both the linear and RBF kernel.

From Tables 3.4 and 3.5 it can be observed that the majority of the noise examples were removed in the 1st round of iterations. Very few noise examples were removed in the subsequent rounds in all the experiments. Though Tables 3.4 and 3.5 show the results for one run of the experiments, similar results were observed in all the experiments. From Table 3.6 it can be observed that up-to 45% of the examples can be support vectors when 10% of the examples have incorrect noisy labels. The incorrect noisy labels might result in complex boundaries which, in general, results in more
Table 3.4: The result of a single run of experiment 4 with an OCSVM classifier on the MNIST data at the 10% noise level. This table shows the iteration number, the cumulative number of support vectors to be reviewed until that iteration, the cumulative number of label noise examples selected as support vectors until that iteration, the kernel parameters used for that iteration and the number of support vectors selected in that iteration by the OCSVM classifier. The parameter “µ” was set to 0.5.

<table>
<thead>
<tr>
<th>Iteration #</th>
<th>Cumulative # SV reviewed</th>
<th>Cumulative # Label noise examples removed</th>
<th>RBF Kernel parameter (γ)</th>
<th># SV in the iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>503</td>
<td>79</td>
<td>0.0014</td>
<td>503</td>
</tr>
<tr>
<td>2</td>
<td>546</td>
<td>87</td>
<td>0.0005</td>
<td>465</td>
</tr>
<tr>
<td>3</td>
<td>550</td>
<td>89</td>
<td>0.0005</td>
<td>460</td>
</tr>
<tr>
<td>4</td>
<td>552</td>
<td>90</td>
<td>0.0005</td>
<td>460</td>
</tr>
<tr>
<td>5</td>
<td>553</td>
<td>90</td>
<td>0.001</td>
<td>458</td>
</tr>
</tbody>
</table>

Table 3.5: The result of a single run of experiment 4 with a TCSVM classifier on the MNIST data at 10% noise level. This table shows the iteration number, the cumulative number of support vectors to be reviewed after that iteration, the cumulative number of label noise examples selected as support vectors until that iteration, the kernel parameters used for that iteration and the training accuracy of the classifier using that kernel parameter in that iteration. In this case all noise examples were removed.

<table>
<thead>
<tr>
<th># Iteration</th>
<th>Cumulative # SV reviewed</th>
<th>Cumulative # Label noise examples removed</th>
<th>Parameter “C”</th>
<th>RBF Kernel parameter (γ)</th>
<th>Training accuracy in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>841</td>
<td>199</td>
<td>25</td>
<td>0.001</td>
<td>88.8</td>
</tr>
<tr>
<td>2</td>
<td>848</td>
<td>200</td>
<td>22</td>
<td>0.005</td>
<td>98.95</td>
</tr>
<tr>
<td>3</td>
<td>849</td>
<td>200</td>
<td>25</td>
<td>0.005</td>
<td>98.75</td>
</tr>
</tbody>
</table>
support vectors. The number to be looked at may not scale well as the training set becomes large in some cases.

Table 3.6: The average performance over 180 experiments on both the MNIST and UCI data sets and the overall performance at the 10% noise level. For OCSVM these results were obtained when using the value 0.5 for parameter “µ”

| Dataset | Linear Kernel | | | | | | |
|---------|--------------|--------------|--------------|--------------|--------------|--------------|
| | OCSVM | TCSVM | Combined | OCSVM | TCSVM | Combined |
| | % outliers | % noise removed | % support vectors | % noise removed | % support vectors | % noise removed |
| MNIST | 55.05 | 89.46 | 42.91 | 98.23 | 68.18 | 99.67 |
| UCI | 55.02 | 78.33 | 48.80 | 97.92 | 69.52 | 99.31 |
| Overall | 55.04 | 85.75 | 44.87 | 98.13 | 68.63 | 99.55 |

| Dataset | RBF Kernel | | | | | | |
|---------|------------|--------------|--------------|--------------|--------------|--------------|
| | OCSVM | TCSVM | Combined | OCSVM | TCSVM | Combined |
| | % outliers | % noise removed | % support vectors | % noise removed | % support vectors | % noise removed |
| MNIST | 55.23 | 91.21 | 45.56 | 99.85 | 69.11 | 99.95 |
| UCI | 54.93 | 74.95 | 42.80 | 99.78 | 68.13 | 99.95 |
| Overall | 55.13 | 85.79 | 44.64 | 99.83 | 68.78 | 99.95 |

The parameter “µ” was varied between 0.3 and 0.8 to check its effect on the performance of OCSVM. It can be observed from the Table 3.7 that large number of examples need to be reviewed to find the label noise examples. The result is not desirable for large datasets.

Another experiment in which viewing the combination of the support vectors of both OCSVM and TCSVM was explored. The support vectors of the OCSVM (with “µ” = 0.5) and TCSVM classifiers (only the support vectors of the class used in OCSVM) at each iteration were added together and examined for the presence of label noise examples. The combination experiment improved the performance in finding the number of label noise examples for the linear and RBF kernel by around 1.5% and 0.1% respectively. The number of examples to be reviewed is 24% more.
than TCSVM for both the linear and RBF kernel respectively. The results of this experiment are shown in Table 3.6.

Table 3.7: The average performance of OCSVM with RBF kernel for different “µ” values over 180 experiments on both the MNIST and UCI data set at the 10% noise level.

<table>
<thead>
<tr>
<th>“µ”</th>
<th>MNIST % outliers</th>
<th>% noise removed</th>
<th>UCI % outliers</th>
<th>% noise removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>36.19</td>
<td>77.17</td>
<td>34.69</td>
<td>53.86</td>
</tr>
<tr>
<td>0.4</td>
<td>45.80</td>
<td>85.4</td>
<td>44.88</td>
<td>64.15</td>
</tr>
<tr>
<td>0.5</td>
<td>55.23</td>
<td>91.21</td>
<td>54.93</td>
<td>74.95</td>
</tr>
<tr>
<td>0.6</td>
<td>64.44</td>
<td>94.92</td>
<td>64.14</td>
<td>80.95</td>
</tr>
<tr>
<td>0.7</td>
<td>73.43</td>
<td>97.51</td>
<td>73.29</td>
<td>87.15</td>
</tr>
<tr>
<td>0.8</td>
<td>82.44</td>
<td>99.17</td>
<td>82.39</td>
<td>93.11</td>
</tr>
</tbody>
</table>

Figure 3.2: Example misclassification results. The images on the left and right are labeled as 4 and 9 respectively in the dataset. The image on the left is correctly identified as a mislabeled example, whereas the image on the right is incorrectly identified as a correctly labeled example.

15 label noise examples were missed by the TCSVM with RBF kernel in total over 90 (3 experiments * 30 repetitions) MNIST dataset experiments. Figure 3.2 shows two examples missed by the RBF kernel. The image on the left is mislabeled as a 4 in the dataset and its correct label is 9. The digit in the image is a bit ambiguous and hence it seems to be a reasonable miss by our method. The image on the right is mislabeled as 9 in the dataset and its correct label is 4. The digit 4 appears clear in the image, but our method failed to identify it as a label noise example.

3.4 Conclusions

The experiments described in this chapter show promising results to support the hypothesis that the SVM has the property to capture label noise examples as its support vectors. Both
OCSVM and TCSVM capture around the 85% and 99% of the label noise examples as its outliers and support vectors respectively by reviewing around 55% and 45% of the examples in the dataset. TCSVM outperforms OCSVM in both the amount of label noise examples removed and the number of examples to be reviewed. Though the computation involved in the combination experiment is high, it shows some improvement in performance.
CHAPTER 4 : ACTIVE LABEL NOISE CLEANING

4.1 Introduction

The effectiveness of reviewing only the support vectors to find the label noise examples was demonstrated in Chapter 3. Though the method is effective in finding over 90% of label noise examples the number of examples to be reviewed is around 55% for OCSVM and 44% for TCSVM. Reviewing all these support vector examples for large datasets is a tedious process. This Chapter describes a method that overcomes this problem by reducing the number of examples that need to be reviewed. The method builds on the SVM classifier and is based on the following two assumptions:

1. majority of the label noise examples are selected as support vectors by the SVM classifier.

2. noise free SVM classifier can be used to target the label noise examples.

The first assumption is supported by the results shown in the Chapter 3. The second assumption is supported by the experimental results that are shown later in this chapter. The method is described in Table 4.1. The intuition is that the noiseless model will act as a good candidate for finding the mislabeled examples. The experimental results support this intuition.

Portions of this chapter were reprinted from Pattern Recognition, 51, Ekambaram, R., Fefilatyev, S., Shreve, M., Kramer, K., Hall, L. O., Goldgof, D. B., & Kasturi, Active cleaning of label noise, 463-480 Copyright (2016), with permission from Elsevier. Permission is included in Appendix A.
Table 4.1: The proposed algorithm to efficiently target the label noise examples in the support vectors.

1. Create classifier using all the examples in the dataset
2. Separate all the support vector examples from the dataset
3. Create a new classifier using the non-support vector examples
4. Test all the support vectors with this new classifier, and rank the mis-classified support vector examples based on their probability of classification
5. Have an expert validate the unseen support vectors based on their ranking, starting with low probability examples, and change the labels of the mislabeled examples
6. Repeat all the above steps until no mislabeled example is found in Step 5

4.2 Experimental Setup

The experimental results reported in this chapter show the performance and the parameter independence of the method in selecting the subset of label noise examples in the support vectors. The experiments were performed as shown in the algorithm in Table 4.1. A detailed comparison of the proposed method with the closely related method in [10] is reported. The proposed method is referred as ALNR (Active Label Noise Removal) and the method in [10] as ICCN_SMO.

4.2.1 Datasets

The potential of this novel method was tested with four datasets widely used in the machine learning community:

1. UCI Letter recognition dataset
2. MNIST digit dataset
3. Wine quality dataset

4. Wisconsin Breast cancer dataset

Two datasets not previously used were obtained from UCI Machine learning repository (http://archive.ics.uci.edu/ml). Remember the UCI Letter recognition and the MNIST digit are image datasets; whereas the Wine Quality and the Wisconsin Breast Cancer dataset are non-image datasets. Please refer to the experimental setup described in Chapter 3 for the details of the UCI letter recognition and MNIST digit recognition datasets. The wine quality dataset consists of physicochemical properties of the red and white wines. The dataset has around 1100 examples for the red wine class and 3150 examples for the white wine class. The Wisconsin Breast cancer dataset consists of images of fine needle aspirates of the breast mass. The dataset has around 212 examples for the malignant class and 357 examples for the benign class.

4.2.2 Features

Each example in the wine quality dataset is represented by an 11 dimensional feature vector of real numbers. The features capture the physicochemical properties of the wines. The wine quality dataset has 12 features, the 12th feature is the quality score computed using the 11 physicochemical properties. So the 12th feature is ignored in our experiments. Each example in the breast cancer dataset is represented by a 30 dimensional feature vector of real numbers. The features capture the 10 properties of the nuclei in the image. The mean value, largest value and the standard error of all the nuclei for each of the 10 properties are computed for each image.
4.2.3 Experimental Protocol

Only the TCSVM was explored for the proposed method. Similar to the experiments in Chapter 3, only the most confusing letters (H, B and R) were used from the UCI letter recognition dataset, and the most confusing digits (4, 7 and 9) were used from the MNIST digits recognition dataset. The wine quality and the breast cancer datasets have only two classes, and both of the classes were used.

All the experiments were performed using scikit-learn python machine learning library ([37]). scikit-learn uses the LIBSVM library [38] which implements the SMO-type optimization algorithm for SVM classification.

4.2.3.1 Example Selection

Training examples for the UCI Letter and the MNIST digit datasets were randomly selected following a similar procedure as described in Chapter 3. For the wine quality dataset 1000 examples were randomly selected from two classes, 500 examples each. For the breast cancer dataset 200 examples were randomly selected from two classes, 100 examples each. The amount of label noise in the dataset was varied from 10% to 50% in steps of 10. The number of label noise examples, for example, in the wine quality dataset at 30% label noise is 150 examples each for the red and white wine classes. Testing examples were also randomly selected from the dataset to estimate the performance of the classifier after the removal of the label noise examples. The number of testing examples for all experiments at different noise levels was kept constant and was mutually exclusive of all the training examples. The number of examples for each of the classes at 20% label noise is shown in Table 4.2. Example selection for a random experiment is shown in Figure 4.1.
4.2.3.2 SVM Classifier Parameter Selection

Parameter selection and feature scaling were done similarly to the experiment setup in Chapter 3.2.3.

4.2.3.3 ICCN_SMO

ICCN_SMO is one of the methods proposed in [10] and is closely related to our proposed method. The differences between the actual implementation of ICCN_SMO and our implementation is described here. In ICCN_SMO the examples are reviewed in batches of 20 examples. The review is stopped when the number of reviewed examples equals or exceeds the total number of label noise examples in the dataset. The choice of 20 examples to review in a batch was arbitrary. The number of examples in each of the datasets in our experiments is different. Reviewing only 20 examples in a large dataset like MNIST will result in a large number of batches while small datasets like breast
Table 4.2: The number of examples used in each of the experiments at 10% noise level. CLE - correctly labeled examples, MLE - mislabeled examples, TE - test examples. The number of examples correspond to the letter or digit or wine type in the same row under the same class. The mislabeled examples in Class X are labeled as Class Y and vice-versa.

<table>
<thead>
<tr>
<th>Experiment #</th>
<th>Class X</th>
<th>Class Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>450</td>
<td>50</td>
</tr>
<tr>
<td>B</td>
<td>225</td>
<td>25</td>
</tr>
<tr>
<td>R</td>
<td>225</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experiment #</th>
<th>Class X</th>
<th>Class Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>450</td>
<td>50</td>
</tr>
<tr>
<td>R</td>
<td>225</td>
<td>25</td>
</tr>
<tr>
<td>H</td>
<td>225</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experiment #</th>
<th>Class X</th>
<th>Class Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>450</td>
<td>50</td>
</tr>
<tr>
<td>H</td>
<td>225</td>
<td>25</td>
</tr>
<tr>
<td>B</td>
<td>225</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experiment #</th>
<th>Class X</th>
<th>Class Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digit</td>
<td>4</td>
<td>900</td>
</tr>
<tr>
<td>7</td>
<td>450</td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td>450</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experiment #</th>
<th>Class X</th>
<th>Class Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digit</td>
<td>7</td>
<td>900</td>
</tr>
<tr>
<td>9</td>
<td>450</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>450</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experiment #</th>
<th>Class X</th>
<th>Class Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wine Type</td>
<td>Red</td>
<td>450</td>
</tr>
<tr>
<td>White</td>
<td>450</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experiment #</th>
<th>Class X</th>
<th>Class Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Malignant</td>
<td>90</td>
</tr>
<tr>
<td>Benign</td>
<td>90</td>
<td>10</td>
</tr>
</tbody>
</table>

cancer will result in a small number of batches. The number of examples to review was set to 30, 50, 30 and 20 for the UCI letter, MNIST digit, wine quality and breast cancer respectively. These numbers were chosen in proportion to the number of examples in the dataset. Also, the stopping criteria for the review process was extended to between 20 and 25% more examples than the amount of noise in the dataset.
4.3 Results

Three experiments were carried out to evaluate the parameter dependence of the proposed method:

1. extensive parameter selection
2. default parameter selection
3. random parameter selection

For all the parameter selection methods both the linear and RBF kernels were explored. For the extensive parameter selection method the parameters of the SVM classifiers were selected following a similar approach described in Chapter 3.2.3. For default parameter selection method the linear kernel parameter “C” was set to 1, and for the RBF kernel the parameters “C”, and “gamma” were set to 1 and 1/(number of features). For the random parameter selection method the parameters were uniformly selected from the range of parameter values described in Chapter 3.2.3. The extensive parameter selection method is referred as “Regular”, the random parameter selection method is referred as “Random” and the default parameter selection method is referred as “Default” in all tables and figures.

All the reported results are the average of the 240 experiments (30 experiments with different random sampling for the eight experiments listed in Table 4.2). The method involves creating intermediate classifiers when examples are reviewed and re-labeled. The accuracy of these intermediate classifiers are also reported in addition to the label noise removal performance. The parameter selection for these intermediate classifiers was done following the procedure explained in Chapter 3.2.3. Performance estimation for all the intermediate classifiers was done using the same test
examples in all 30 repetitions of each experiment and the average performance is reported. RBF
kernel with its “C”, and “gamma” set to 1 and 1/(number of features) respectively was used to
estimate the classification performance. The classification performance is reported at an interval of
about 10% of the total label noise examples in the experiment. For example, for the Wine quality
dataset with 30% label noise examples, the classification performance was estimated accuracy after
reviewing every 30 examples, whereas for the MNIST dataset with 30% label noise examples, the
classification performance was estimated after reviewing every 60 examples. The cumulative results
of all the parameter selection methods over all the datasets at different noise levels is shown in Table
4.3.

The detailed results of each experiment are shown in Tables 4.4 and 4.5 and in Figures 4.2
to 4.9.

4.3.1 Computation of Performance Values in the Tables and Graphs

The reported values in the Tables 4.3, 4.4 and 4.5 were the average of the final results
of all the experiments. Ideally the computation of all the results shown in both the graphs and
the tables should follow the same protocol. Each point in the graph should be the average of all
the experiments, for example, 90 experiments for UCI and MNIST with linear and RBF kernels.
The averages were based on the number of examples reviewed in each experiment. It can easily
be understood that in each experiment there would be reviewed a different number of examples.
Due to the experimental setting, it is not possible for all the experiment to contribute values for
all the points in the graph. If only a few experimental results were available for some portion of
the graph, this will result in bias from these experiments. In order to overcome this bias, if an
experiment was completed early, its final result was used to get the contribution of that experiment.
Table 4.3: The average performance of ALNR in selecting the label noise examples for labeling over 240 experiments on all the data sets for the Random and Default parameter selection experiments.

<table>
<thead>
<tr>
<th>% Noise level</th>
<th>Linear Kernel</th>
<th></th>
<th>RBF Kernel</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% examples</td>
<td>% noise removed</td>
<td>% examples</td>
<td>% noise removed</td>
</tr>
<tr>
<td>10</td>
<td>16.40</td>
<td>93.56</td>
<td>13.34</td>
<td>95.84</td>
</tr>
<tr>
<td>20</td>
<td>26.40</td>
<td>93.92</td>
<td>23.47</td>
<td>96.01</td>
</tr>
<tr>
<td>30</td>
<td>37.26</td>
<td>93.99</td>
<td>34.08</td>
<td>95.69</td>
</tr>
<tr>
<td>40</td>
<td>50.64</td>
<td>94.32</td>
<td>48.20</td>
<td>95.72</td>
</tr>
<tr>
<td>50</td>
<td>70.03</td>
<td>94.89</td>
<td>71.11</td>
<td>96.22</td>
</tr>
</tbody>
</table>

Random parameter selection experiment

<table>
<thead>
<tr>
<th>% Noise level</th>
<th>Linear Kernel</th>
<th></th>
<th>RBF Kernel</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% examples</td>
<td>% noise removed</td>
<td>% examples</td>
<td>% noise removed</td>
</tr>
<tr>
<td>10</td>
<td>16.94</td>
<td>93.76</td>
<td>18.84</td>
<td>96.06</td>
</tr>
<tr>
<td>20</td>
<td>27.15</td>
<td>94.21</td>
<td>29.35</td>
<td>96.30</td>
</tr>
<tr>
<td>30</td>
<td>38.12</td>
<td>94.10</td>
<td>40.09</td>
<td>96.30</td>
</tr>
<tr>
<td>40</td>
<td>51.16</td>
<td>94.31</td>
<td>51.89</td>
<td>96.35</td>
</tr>
<tr>
<td>50</td>
<td>70.21</td>
<td>95.03</td>
<td>73.78</td>
<td>96.67</td>
</tr>
</tbody>
</table>

Default parameter selection experiment

<table>
<thead>
<tr>
<th>% Noise level</th>
<th>Linear Kernel</th>
<th></th>
<th>RBF Kernel</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% examples</td>
<td>% noise removed</td>
<td>% examples</td>
<td>% noise removed</td>
</tr>
<tr>
<td>10</td>
<td>16.40</td>
<td>93.41</td>
<td>16.37</td>
<td>92.76</td>
</tr>
<tr>
<td>20</td>
<td>26.34</td>
<td>93.81</td>
<td>25.82</td>
<td>92.85</td>
</tr>
<tr>
<td>30</td>
<td>37.11</td>
<td>93.90</td>
<td>35.36</td>
<td>92.74</td>
</tr>
<tr>
<td>40</td>
<td>50.28</td>
<td>94.23</td>
<td>46.70</td>
<td>92.67</td>
</tr>
<tr>
<td>50</td>
<td>70.05</td>
<td>94.85</td>
<td>70.17</td>
<td>91.46</td>
</tr>
</tbody>
</table>
Table 4.4: Average noise removal performance of ALNR and ICCN_SMO on all the datasets. The performance is the average over 90 experiments on the UCI Letter and MNIST Digits datasets, and 30 experiments on the Wine Quality and Breast cancer datasets. Regular, Random and Default refer to the extensive, random and default parameter selection experiments respectively. All the results are in percentage of noise examples reviewed versus all examples reviewed.

<table>
<thead>
<tr>
<th>Noise Level %</th>
<th>UCI Letter Recognition Dataset</th>
<th>MNIST Digit Recognition Dataset</th>
<th>Wine Quality Dataset</th>
<th>Wisconsin Breast cancer Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>90.48 / 78.18 / 90.91 / 78.01 / 90.04 / 71.84 / 90.04 / 71.84 / 90.04 / 71.84</td>
<td>90.77 / 86.92 / 91.44 / 86.88 / 90.50 / 86.79 / 90.50 / 86.79 / 90.50 / 86.79</td>
<td>90.80 / 90.98 / 91.40 / 91.02 / 90.53 / 90.97 / 90.53 / 90.97 / 90.53 / 90.97</td>
<td>91.02 / 93.20 / 90.94 / 93.24 / 90.74 / 93.25 / 90.74 / 93.25 / 90.74 / 93.25</td>
</tr>
<tr>
<td>20</td>
<td>90.77 / 86.92 / 91.44 / 86.88 / 90.50 / 86.79 / 90.50 / 86.79 / 90.50 / 86.79</td>
<td>90.77 / 86.92 / 91.44 / 86.88 / 90.50 / 86.79 / 90.50 / 86.79 / 90.50 / 86.79</td>
<td>90.80 / 90.98 / 91.40 / 91.02 / 90.53 / 90.97 / 90.53 / 90.97 / 90.53 / 90.97</td>
<td>91.02 / 93.20 / 90.94 / 93.24 / 90.74 / 93.25 / 90.74 / 93.25 / 90.74 / 93.25</td>
</tr>
<tr>
<td>30</td>
<td>90.80 / 90.98 / 91.40 / 91.02 / 90.53 / 90.97 / 90.53 / 90.97 / 90.53 / 90.97</td>
<td>90.80 / 90.98 / 91.40 / 91.02 / 90.53 / 90.97 / 90.53 / 90.97 / 90.53 / 90.97</td>
<td>90.80 / 90.98 / 91.40 / 91.02 / 90.53 / 90.97 / 90.53 / 90.97 / 90.53 / 90.97</td>
<td>91.02 / 93.20 / 90.94 / 93.24 / 90.74 / 93.25 / 90.74 / 93.25 / 90.74 / 93.25</td>
</tr>
<tr>
<td>40</td>
<td>91.02 / 93.20 / 90.94 / 93.24 / 90.74 / 93.25 / 90.74 / 93.25 / 90.74 / 93.25</td>
<td>91.02 / 93.20 / 90.94 / 93.24 / 90.74 / 93.25 / 90.74 / 93.25 / 90.74 / 93.25</td>
<td>91.02 / 93.20 / 90.94 / 93.24 / 90.74 / 93.25 / 90.74 / 93.25 / 90.74 / 93.25</td>
<td>91.02 / 93.20 / 90.94 / 93.24 / 90.74 / 93.25 / 90.74 / 93.25 / 90.74 / 93.25</td>
</tr>
<tr>
<td>50</td>
<td>92.09 / 79.42 / 92.25 / 38.17 / 91.98 / 35.48 / 91.98 / 35.48 / 91.98 / 35.48</td>
<td>92.09 / 79.42 / 92.25 / 38.17 / 91.98 / 35.48 / 91.98 / 35.48 / 91.98 / 35.48</td>
<td>92.09 / 79.42 / 92.25 / 38.17 / 91.98 / 35.48 / 91.98 / 35.48 / 91.98 / 35.48</td>
<td>92.09 / 79.42 / 92.25 / 38.17 / 91.98 / 35.48 / 91.98 / 35.48 / 91.98 / 35.48</td>
</tr>
</tbody>
</table>
Table 4.5: Average examples reviewed for ALNR and ICCN_SMO on all the datasets. The numbers shown are the average over 90 experiments on the UCI Letter and MNIST Digits datasets and 30 experiments on the Wine Quality and Breast cancer datasets. Regular, Random and Default refer to the extensive, random and default parameter selection experiments respectively. All the numbers are in percentage of the total number of examples reviewed versus the total number of examples in the dataset.

<table>
<thead>
<tr>
<th>Noise Level %</th>
<th>Kernel: Linear</th>
<th>Kernel: RBF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALNR</td>
<td>ICCN_SMO</td>
</tr>
<tr>
<td>10</td>
<td>19.58</td>
<td>12.00</td>
</tr>
<tr>
<td>20</td>
<td>28.83</td>
<td>24.00</td>
</tr>
<tr>
<td>30</td>
<td>37.62</td>
<td>36.00</td>
</tr>
<tr>
<td>40</td>
<td>48.56</td>
<td>48.00</td>
</tr>
<tr>
<td>50</td>
<td>71.20</td>
<td>39.93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Noise Level %</th>
<th>Kernel: Linear</th>
<th>Kernel: RBF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALNR</td>
<td>ICCN_SMO</td>
</tr>
<tr>
<td>10</td>
<td>15.82</td>
<td>12.50</td>
</tr>
<tr>
<td>20</td>
<td>26.20</td>
<td>25.00</td>
</tr>
<tr>
<td>30</td>
<td>38.28</td>
<td>37.50</td>
</tr>
<tr>
<td>40</td>
<td>53.44</td>
<td>54.27</td>
</tr>
<tr>
<td>50</td>
<td>69.10</td>
<td>56.50</td>
</tr>
</tbody>
</table>

Table 4.6: Average number of batches required for reviewing the datasets by ALNR and ICCN_SMO. The numbers shown are the average over all the experiments at all the noise levels for each dataset.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Kernel: Linear</th>
<th>Kernel: RBF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALNR</td>
<td>ICCN_SMO</td>
</tr>
<tr>
<td>UCI-Letters</td>
<td>7.25</td>
<td>12.00</td>
</tr>
<tr>
<td>MNIST-Digits</td>
<td>11.76</td>
<td>17.89</td>
</tr>
<tr>
<td>Wine Quality</td>
<td>34.43</td>
<td>37.50</td>
</tr>
<tr>
<td>Breast Cancer</td>
<td>46.43</td>
<td>47.67</td>
</tr>
<tr>
<td></td>
<td>7.02</td>
<td>54.24</td>
</tr>
</tbody>
</table>

35
For example, on the MNIST dataset with 30% label noise examples, most of the ALNR regular parameter selection experiment was completed after reviewing 42% of the examples. One of the experiments was completed after reviewing 36.9% of the examples. 95.8% of the label noise examples were removed in this experiment. So to calculate the average noise removal performance after reviewing 39% and 42% of examples, the value 95.8% was used for this experiment. A similar procedure was followed for computing the average accuracy of the classifiers.

Due to this difference in calculation, the performance values between the last point in each of the graphs in the Figures 4.2 to 4.7 and the values in the Table 4.3 might differ. This difference is unavoidable due to the experimental setup. At 50% noise level, there is a large difference between the ALNR and ICCN_SMO experiments. For ALNR in 96% of experiments had up to 60% of examples reviewed, but only around 55% of the ICCN_SMO experiments had up to 60% of examples reviewed. So the average results of ICCN_SMO beyond 60% of reviewed examples might be biased by the results of a few experiments. For this reason the performance of these two methods at the 50% noise level is not compared, but the results and graphs are included for completeness.

4.3.2 Noise Removal Performance of ALNR

The average noise removal performance of ALNR at different noise levels is shown in Table 4.3. The extensive parameter selection method with the RBF kernel removes around 95% of noise examples by reviewing just around 8% more examples than the amount of noise in the dataset. Whereas the linear kernel results in the removal of around 92% noise examples by reviewing just around 11% more examples than the amount of noise in the dataset. From these experimental results it appears that the performance using the RBF kernel is better than the linear kernel for removing the label noise examples. The extensive parameter selection method with RBF kernel also performs
better than the random and default parameter selection methods. The noise removal performance of the extensive and random parameter selection methods with RBF kernel experiments are similar, but the extensive parameter selection experiments requires around 5% fewer examples to be reviewed. The default parameter selection method removes around 1% and 3% less noise examples than the extensive parameter selection experiments with the linear and RBF kernels respectively.

4.3.3 Performance Comparison of ALNR and ICCN_SMO

4.3.3.1 Noise Removal Performance

Tables 4.4 and 4.5 show the noise removal performance and average examples reviewed for ALNR and ICCN_SMO. For the UCI and Breast cancer datasets, ALNR removes more noise (varies between 1% and 12%) than ICCN_SMO at the 10% and 20% noise levels. The performance difference diminishes at the 30% and 40% noise levels and for some parameter selection methods ICCN_SMO performs slightly better than ALNR. The number of examples to be reviewed for ICCN_SMO is less (varies between 1% and 9%) than ALNR at the 10% and 20% noise levels. The difference in number of examples to be reviewed also diminishes (around 2%) at the 30% and 40% noise levels. For the MNIST dataset ALNR performs better (around 20% for most of the experiments) than ICCN_SMO for all parameter selection methods and at all noise levels except for the default parameter selection with RBF kernel at the 30% and 40% noise levels. MNIST is a high dimensional dataset compared to the UCI Letter recognition, Wine Quality and the Breast cancer datasets. The difference in the number of examples to be reviewed is smaller (maximum of 7%) compared to the difference in the number of noise examples removed. For the wine quality dataset, the performance of ICCN_SMO is slightly better (less than 1%) than ALNR, but ALNR requires fewer examples (varies between 1% and 7%) to be reviewed.
4.3.3.2 Classifier Performance

The classifier performance of ALNR and ICCN_SMO with the UCI and Breast cancer datasets shown in the Figures 4.2 to 4.9 at the 10%, 20% and 30% noise levels is similar. But at the 40% noise level ICCN_SMO generally appears to target examples that improve the performance of the algorithm better than the examples targeted by ALNR. In contrast ALNR targets noise examples in the Wine Quality dataset that improves the performance of the algorithm better than the noise examples targeted by ICCN_SMO at the 40% noise level.

4.3.3.3 Parameter Selection

The ALNR noise removal performance difference between Regular, Random and Default parameter selection methods is around 2% for all the experiments except for the UCI dataset with the RBF kernel and for the Breast cancer dataset with the RBF kernel at 40% noise for which the performance difference is around 10%. In comparison, the performance of ICCN_SMO varies around 5% for the Breast cancer dataset with RBF kernel, around 10% for the UCI dataset with the RBF kernel and around 10% for the MNIST dataset with both the linear and RBF kernel. This variation in performance between different datasets shows that ALNR is robust to parameter selection, a criteria useful for large datasets. Another parameter in ICCN_SMO is the number of examples to be reviewed in batches, which was arbitrarily set in [10]. This parameter is not required for ALNR.

4.3.4 Computational Complexity

The average number of batches required for reviewing the datasets is shown in Table 4.6. On average in all datasets, except one, ALNR requires fewer batches to be reviewed. In the Breast
cancer dataset with a linear kernel ICCN_SMO requires fewer batches, but the difference is less than one. Both methods invoke the SVM solver iteratively to find the examples for review. In each round of the iteration ALNR invokes the SVM solver twice whereas ICCN_SMO invokes it only once. The LIBSVM implementation of the SVM solver was used in all the experiments reported in this thesis. The worst case computational complexity of this SVM solver is $O(n^3)$ [39], where n is the number of examples. If “k” is the number of rounds to review the dataset, then $O(kn^3)$ is the computational complexity of both ALNR and our implementation of ICCN_SMO. The results in Table 4.6 shows that $k \ll n$.

4.4 Conclusions

In this chapter a novel label noise removal method (ALNR) was proposed and its performance was validated through experimental results. Supports the claim that the proposed method reduces the number of examples that need to be reviewed to remove a majority of the label noise examples can be observed from the results shown in the Tables 4.3, 4.4 and 4.5. The performance of the method in the literature similar to the ALNR proposed in [10] (ICCN_SMO) was compared. For some experiments the performance of ALNR is better than ICCN_SMO and for other experiments ICCN_SMO outperforms ALNR. The performance of ICCN_SMO depends on the parameters used, whereas ALNR appears to be parameter independent, which is advantageous on large datasets.
Figure 4.2: Performance comparison of ALNR and ICCN_SMO with the Linear Kernel SVM for different parameter selection methods on the UCI Letter recognition dataset. The figures on the left show the noise removal performance at different noise levels and the figures on the right show the accuracy of the classifier on the specified test data after reviewing a fraction of the dataset.
Figure 4.3: Performance comparison of ALNR and ICCN_SMO with the RBF Kernel SVM for different parameter selection methods on the UCI Letter recognition dataset. The figures on the left show the noise removal performance at different noise levels and the figures on the right show the accuracy of the classifier on the specified test data after reviewing a fraction of the dataset.
Figure 4.4: Performance comparison of ALNR and ICCN_SMO with the Linear Kernel SVM for different parameter selection methods on the MNIST Digit recognition dataset. The figures on the left show the noise removal performance at different noise levels and the figures on the right show the accuracy of the classifier on the specified test data after reviewing a fraction of the dataset.
Figure 4.5: Performance comparison of ALNR and ICCN_SMO with the RBF Kernel SVM for different parameter selection methods on the MNIST Digit dataset. The figures on the left show the noise removal performance at different noise levels and the figures on the right show the accuracy of the classifier on the specified test data after reviewing a fraction of the dataset.
Figure 4.6: Performance comparison of ALNR and ICCN_SMO with the Linear Kernel SVM for different parameter selection methods on the Wine Quality dataset. The figures on the left show the noise removal performance at different noise levels and the figures on the right show the accuracy of the classifier on the specified test data after reviewing a fraction of the dataset.
Figure 4.7: Performance comparison of ALNR and ICCN_SMO with the RBF Kernel SVM for different parameter selection methods on the Wine Quality dataset. The figures on the left show the noise removal performance at different noise levels and the figures on the right show the accuracy of the classifier on the specified test data after reviewing a fraction of the dataset.
Figure 4.8: Performance comparison of ALNR and ICCN_SMO with the linear kernel SVM for different parameter selection methods on the Breast cancer dataset. The figures on the left show the noise removal performance at different noise levels and the figures on the right show the accuracy of the classifier on the specified test data after reviewing a fraction of the dataset.
Figure 4.9: Performance comparison of ALNR and ICCN_SMO with the RBF Kernel SVM for different parameter selection methods on the Breast cancer dataset. The figures on the left show the noise removal performance at different noise levels and the figures on the right show the accuracy of the classifier on the specified test data after reviewing a fraction of the dataset.
CHAPTER 5: CONCLUSIONS

Two hypotheses were proposed in this thesis for removing label noise from training data and were validated with extensive experiments. The experimental results confirm that the SVM classifier selects label noise examples as its support vectors. Chapter 3 showed that both the OCSVM and the TCSVM classifier possesses this characteristic and removes around 85% and 99% of the label noise examples respectively at 10% label noise. But the number of examples that need to be reviewed to remove the label noise examples is large and is about 55% and 45% for the OCSVM and TCSVM respectively.

The method proposed in Chapter 4 overcomes this problem. This new method removes around 95% of the label noise examples by reviewing around 14% of examples when the amount of label noise in the dataset is 10%. At other noise levels up to 40%, the number of examples that need to be reviewed is around 10% more than the amount of noise in the data. The average performance difference of this method between the parameters selected using extensive cross validation method and the default parameter is within 1% for the linear kernel and 3% for the RBF kernel. The robustness of this method to parameters is advantageous for large datasets.

Future work that extends this method should consider the following:

1. The proposed approach was validated only with 4 datasets of which 3 are based on images.

Portions of this chapter were reprinted from Pattern Recognition, 51, Ekambaram, R., Fefilatyev, S., Shreve, M., Kramer, K., Hall, L. O., Goldgof, D. B., & Kasturi, Active cleaning of label noise, 463-480 Copyright (2016), with permission from Elsevier.

Permission is included in Appendix A.
Extensive testing can be done with more datasets from different domains.

2. The performance of the proposed method was compared only with the more closely related method. Extensive comparison with other methods in the literature that differ significantly in the approach can be done.

3. The proposed method assumes that the noise exists only in two classes in the datasets. Extension to the datasets with label noise in multiple classes can be explored.
REFERENCES

[3] P. A. Lachenbruch. Discriminant analysis when the initial samples are misclassified. Technometrics, 8(4), .

APPENDIX A: COPYRIGHT CLEARANCE FORMS

Below is the permission for Abstract and Chapters 1, 2, 3, 4, 5 and Tables 3.1 to 3.7, 4.1 to 4.6, and Figures 2.1, 3.1, 3.2, 4.1 to 4.9 and Equations 2.4 to 2.6.
<table>
<thead>
<tr>
<th>Expected completion date</th>
<th>May 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated size (number of pages)</td>
<td></td>
</tr>
<tr>
<td>Elsevier VAT number</td>
<td>GB 494 6272 12</td>
</tr>
<tr>
<td>Permissions price</td>
<td>0.00 USD</td>
</tr>
<tr>
<td>VAT/Local Sales Tax</td>
<td>0.00 USD / 0.00 GBP</td>
</tr>
<tr>
<td>Total</td>
<td>0.00 USD</td>
</tr>
</tbody>
</table>

Terms and Conditions

INTRODUCTION

1. The publisher for this copyrighted material is Elsevier. By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the Billing and Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account and that are available at any time at http://myaccount.copyright.com).

GENERAL TERMS

2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to the terms and conditions indicated.
3. Acknowledgement: If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source, permission must also be sought from that source. If such permission is not obtained then that material may not be included in your publication/copies. Suitable acknowledgement to the source must be made, either as a footnote or in a reference list at the end of your publication, as follows: "Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with permission from Elsevier."
4. Reproduction of this material is confined to the purpose and/or media for which permission is hereby given.
5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions and/or any other alterations shall be made only with prior written authorization of Elsevier Ltd. (Please contact Elsevier at permissions@elsevier.com)
6. If the permission fee for the requested use of our material is waived in this instance, please be advised that your future requests for Elsevier materials may attract a fee.
7. Reservation of Rights: Publisher reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.
8. License Contingent Upon Payment: While you may exercise the rights licensed immediately upon issuance of the license at the end of the licensing process for the transaction, provided that you have disclosed complete and accurate details of your proposed use, no license is finally effective unless and until full payment is received from you (either by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions. If full payment is not received on a timely basis, then any license preliminarily granted shall be deemed automatically revoked and shall be void as if never granted. Further, in the event
that you breach any of these terms and conditions or any of CCC's Billing and Payment terms and conditions, the license is automatically revoked and shall be void as if never granted. Use of materials as described in a revoked license, as well as any use of the materials beyond the scope of an unrevoke license, may constitute copyright infringement and publisher reserves the right to take any and all action to protect its copyright in the materials.

9. Warranties: Publisher makes no representations or warranties with respect to the licensed material.

10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and their respective officers, directors, employees and agents, from and against any and all claims arising out of your use of the licensed material other than as specifically authorized pursuant to this license.

11. No Transfer of License: This license is personal to you and may not be sublicensed, assigned, or transferred by you to any other person without publisher's written permission.

12. No Amendment Except in Writing: This license may not be amended except in a writing signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).

13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any purchase order, acknowledgment, check endorsement or other writing prepared by you, which terms are inconsistent with these terms and conditions or CCC's Billing and Payment terms and conditions. These terms and conditions, together with CCC's Billing and Payment terms and conditions (which are incorporated herein), comprise the entire agreement between you and publisher (and CCC) concerning this licensing transaction. In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall control.

14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described in this License at their sole discretion, for any reason or no reason, with a full refund payable to you. Notice of such denial will be made using the contact information provided by you. Failure to receive such notice will not alter or invalidate the denial. In no event will Elsevier or Copyright Clearance Center be responsible or liable for any costs, expenses or damage incurred by you as a result of a denial of your permission request, other than a refund of the amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied permissions.

LIMITED LICENSE

The following terms and conditions apply only to specific license types:

15. Translation: This permission is granted for non-exclusive world English rights only unless your license was granted for translation rights. If you licensed translation rights you may only translate this content into the languages you requested. A professional translator must perform all translations and reproduce the content word for word preserving the integrity of the article.

16. Posting licensed content on any Website: The following terms and conditions apply as follows: Licensing material from an Elsevier journal: All content posted to the web site must maintain the copyright information line on the bottom of each image; A hyper-text must be included to the Homepage of the journal from which you are licensing at http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for books at http://www.elsevier.com. Central Storage: This license does not include permission for a scanned version of the material to be stored in a central repository such as that provided by Heron/XanEdu.

Licensing material from an Elsevier book: A hyper-text link must be included to the Elsevier homepage at http://www.elsevier.com. All content posted to the web site must maintain the
Posting licensed content on Electronic reserve: In addition to the above the following clauses are applicable: The web site must be password-protected and made available only to bona fide students registered on a relevant course. This permission is granted for 1 year only. You may obtain a new license for future website posting.

17. For journal authors: the following clauses are applicable in addition to the above:

Preprints:
A preprint is an author's own write-up of research results and analysis, it has not been peer-reviewed, nor has it had any other value added to it by a publisher (such as formatting, copyright, technical enhancement etc.).

Authors can share their preprints anywhere at any time. Preprints should not be added to or enhanced in any way in order to appear more like, or to substitute for, the final versions of articles however authors can update their preprints on arXiv or RePEc with their Accepted Author Manuscript (see below).

If accepted for publication, we encourage authors to link from the preprint to their formal publication via its DOI. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help users to find, access, cite and use the best available version. Please note that Cell Press, The Lancet and some society-owned have different preprint policies. Information on these policies is available on the journal homepage.

Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an article that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and editor-author communications.

Authors can share their accepted author manuscript:

- immediately
 - via their non-commercial person homepage or blog
 - by updating a preprint in arXiv or RePEc with the accepted manuscript
 - via their research institute or institutional repository for internal institutional uses or as part of an invitation-only research collaboration work-group
 - directly by providing copies to their students or to research collaborators for their personal use
 - for private scholarly sharing as part of an invitation-only work group on commercial sites with which Elsevier has an agreement

- after the embargo period
 - via non-commercial hosting platforms such as their institutional repository
 - via commercial sites with which Elsevier has an agreement

In all cases accepted manuscripts should:

- link to the formal publication via its DOI
- bear a CC-BY-NC-ND license - this is easy to do
- if aggregated with other manuscripts, for example in a repository or other site, be shared in alignment with our hosting policy not be added to or enhanced in any way to appear more like, or to substitute for, the published journal article.

Published journal article (JPA): A published journal article (PJA) is the definitive final record of published research that appears or will appear in the journal and embodies all value-adding publishing activities including peer review co-ordination, copy-editing,
Policies for sharing publishing journal articles differ for subscription and gold open access articles:

Subscription Articles: If you are an author, please share a link to your article rather than the full-text. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help your users to find, access, cite, and use the best available version. Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect. If you are affiliated with a library that subscribes to ScienceDirect you have additional private sharing rights for others’ research accessed under that agreement. This includes use for classroom teaching and internal training at the institution (including use in course packs and courseware programs), and inclusion of the article for grant funding purposes.

Gold Open Access Articles: May be shared according to the author-selected end-user license and should contain a CrossMark logo, the end user license, and a DOI link to the formal publication on ScienceDirect. Please refer to Elsevier's posting policy for further information.

18. For book authors the following clauses are applicable in addition to the above:

Authors are permitted to place a brief summary of their work online only. You are not allowed to download and post the published electronic version of your chapter, nor may you scan the printed edition to create an electronic version. **Posting to a repository:** Authors are permitted to post a summary of their chapter only in their institution's repository.

19. **Thesis/Dissertation:** If your license is for use in a thesis/dissertation your thesis may be submitted to your institution in either print or electronic form. Should your thesis be published commercially, please reapply for permission. These requirements include permission for the Library and Archives of Canada to supply single copies, on demand, of the complete thesis and include permission for Proquest/UMI to supply single copies, on demand, of the complete thesis. Should your thesis be published commercially, please reapply for permission. Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

Elsevier Open Access Terms and Conditions

You can publish open access with Elsevier in hundreds of open access journals or in nearly 2000 established subscription journals that support open access publishing. Permitted third party re-use of these open access articles is defined by the author's choice of Creative Commons user license. See our open access license policy for more information.

Terms & Conditions applicable to all Open access articles published with Elsevier:

Any reuse of the article must not represent the author as endorsing the adaptation of the article nor should the article be modified in such a way as to damage the author's honour or reputation. If any changes have been made, such changes must be clearly indicated. The author(s) must be appropriately credited and we ask that you include the end user license and a DOI link to the formal publication on ScienceDirect.

If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source it is the responsibility of the user to ensure their reuse complies with the terms and conditions determined by the rights holder.

Additional Terms & Conditions applicable to each Creative Commons user license:

CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article and to make commercial use of the Article (including reuse and/or resale of the Article by commercial entities), provided the
user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. The full details of the license are available at http://creativecommons.org/licenses/by/4.0.

CC BY NC SA: The CC BY-NC-SA license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article, provided this is not done for commercial purposes, and that the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. Further, any new works must be made available on the same conditions. The full details of the license are available at http://creativecommons.org/licenses/by-nc-sa/4.0.

CC BY NC ND: The CC BY-NC-ND license allows users to copy and distribute the Article, provided this is not done for commercial purposes and further does not permit distribution of the Article if it is changed or edited in any way, and provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, and that the licensor is not represented as endorsing the use made of the work. The full details of the license are available at http://creativecommons.org/licenses/by-nc-nd/4.0.

Any commercial reuse of Open Access articles published with a CC BY NC SA or CC BY NC ND license requires permission from Elsevier and will be subject to a fee. Commercial reuse includes:

- Associating advertising with the full text of the Article
- Charging fees for document delivery or access
- Article aggregation
- Systematic distribution via e-mail lists or share buttons

Posting or linking by commercial companies for use by customers of those companies.

20. Other Conditions:

v1.8

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.