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38).  The reactor was operated in three eight-hour cycles each day.  Each cycle had six 

continuous hours of UV radiation. 

 
Table 4 Water Analysis 

  pH Alkalinity DO 
    (mg/L) (mg/L) 
Groundwater 7.6 146 7.2 
Fish Culture 
Tank 6.5 94 10.1 
Denitrification 6.5 175 2.8 
Nitrification 6.6 78 7.3 

 
 

 
 

Figure 37 Placement of Bench Scale Reactor at MOTE MAP 
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Figure 38 MOTE MAP Bench Scale Reactor System 
 

 A five-day continuous operation trial was performed with the MOTE MAP system.  

Samples were taken from two cycles each day at the end of the 6 h irradiation period.  Samples 

were stored in sealed 40 mL amber vials and refrigerated.  At the end of each day, samples were 

placed in ice in insulated containers and transported to the laboratory for GC-MS analysis. 

5.2 Results and Discussion 

 GC-MS analysis proceeded as previously reported.  A number of compounds in addition 

to geosmin and MIB were present in the water samples collected from MOTE MAP.  However, 
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no significant interference was observed with the elution of IBMP, MIB, or geosmin.  The 

chromatograms are shown in Figures 39 and 40. 

 

   

Figure 39 SIM Mode GC Chromatogram Displaying IBMP and MIB with Inset Figure of MIB 
Mass Spectrum. 
 
 

  

Figure 40 SIM Mode GC Chromatogram Displaying Geosmin with Mass Spectrum Inset Figure. 
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 MIB and geosmin concentrations for the five day trial are reported in Table 5 and 

compared to the laboratory trial run with MOTE water at the 6 hour point.  Generally, the in situ 

trials resulted in higher degradation rates than the laboratory experiment.  This can be explained 

by the difference in pH.  The laboratory experiment had an unbuffered pH of 7.2, whereas pH 

during the trials varied from 6.6 to 6.7.  The slightly more acidic conditions improve catalytic 

performance. 

 
Table 5 MIB and Geosmin Reduction (Concentration in ppt) 

  MIB Geosmin 
    Initial Treated Reduction Initial Treated Reduction 

Lab   64 27 58% 25 11 56% 
In situ 1 43 17 62% 36 9 75% 
  trials 2 41 13 68% 37 8 78% 

3 43 14 67% 39 9 77% 
4 55 20 64% 37 11 70% 
5 43 19 57% 27 10 63% 

Avg   45 16 64% 35 9 73% 
 
 

 To understand the daily variance in reduction, a review of other system parameters is 

required.  Dissolved oxygen averaged 7.2 mg/L with a standard deviation of 0.3.  Conductivity 

averaged 1.4 mS/cm with a standard deviation of 0.3.  However, alkalinity varied from 49 to 96 

mg/L.  Carbonate species (the primary constituents of alkalinity) have a significant impact on 

photocatalytic efficiency and are the probable cause of the daily variance in MIB and geosmin 

reduction. 

Alkalinity is a dynamic parameter in aquaculture systems.  In the denitrification reactor, a 

carbon source (eg. molasses) is oxidized into CO2 and alkalinity is increased.  During 

nitrification, carbonate species are consumed during the conversion of ammonia into nitrite and 
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nitrate.  The net effect of the combined processes is the reduction of alkalinity.  For a continuous 

operation, sodium bicarbonate is added to the system to balance the net loss from the nitrification 

/denitrification process.  Addition of excess molasses or sodium bicarbonate can cause an 

imbalance in the carbonate levels.  Further, pH and temperature can affect the metabolic rates of 

the bacteria, also leading to a carbonate imbalance. 

 Ideally, reduction of geosmin and MIB would result in concentrations below the human 

detection threshold (4 ppt for geosmin and 15 ppt for MIB).  The system as currently designed 

nearly reaches this goal at 9 ppt and 16 ppt, respectively. 
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CHAPTER 6:  CONCLUSIONS AND FUTURE WORK 
 

6.1 Conclusions 

As presented in Chapter 1, the specific goals of this work included: 

1. Development of a novel synthesis method, which allows the independent variance of 

dopant material and titania crystal phase. 

2. Elucidation of the correlation between crystalline phase and dopant effects. 

3. Demonstration of the reduction of target, trace level concentration contaminants in a 

complex water matrix. 

Relative to the first goal, Chapter 3 presented a novel synthesis method for the creation of 

semiconductor composites using InVO4 and TiO2.  This method is envisioned to be a platform 

for the synthesis of other composite catalysts. It affords moderate tailoring of the dopant and 

crystal phase ratio parameters. 

 Using InVO4-TiO2 composites of varying titania crystallinity, the degradation of methyl 

orange and 2-chlorophenol were observed.  The dopant enhancement (or retardation) was 

dependent upon crystal phase and the reaction under consideration.  Further work is 

recommended to confirm hypotheses associated with this correlation. 

 Finally, Chapters 4 and 5 demonstrated the laboratory and in situ degradation of MIB and 

geosmin from recirculating aquaculture systems.  Chapter 4 documented the ability to 

immobilize TiO2 for the treatment of flowing streams.  Moreover, the effect of key parameters, 

including pH and dissolved oxygen, on the degradation of geosmin and MIB were analyzed.  

Chapter 5 detailed the efficacy of this system applied in a recirculating aquaculture system.  
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Ultimately, catalyst photoinitiation by solar radiation would be desirable and preliminary 

investigation is presented in the proposed future work below. 

6.2 Future Work 

6.2.1 Pure and Mixed Phase Titania 

 The visible light photocatalytic degradation of methyl orange was analyzed for 

composites with varying TiO2 crystallinity.  While modest improvements to methyl orange 

degradation were seen with the mixed phase composite, the degradation of 2-chlorophenol 

showed significant enhancement. 

An unexpected result of this work was the retardation of the methyl orange degradation 

rate when InVO4 was added to anatase TiO2.  It has been suggested that methyl orange 

degradation can proceed via direct reduction by surface electrons (݁
ି ), as well as oxidation by 

hydroxyl radicals or surface holes (݄௩
ା ) [11].  InVO4 is an n-type semiconductor [79] that may 

transport electrons away from the titania surface.  If methyl orange degradation occurs via direct 

reduction by the surface electron, doping with InVO4 would retard the degradation.  This theory 

could be tested by introduction of another electron scavenger (e.g. dissolved oxygen) at high 

concentrations into the system. 

6.2.2 Visible Light Photoinitiation for MIB and Geosmin Reduction 

Feasibility of an immobilized InVO4-TiO2 composite was examined for the visible light 

initiated photodegradation of geosmin and MIB.  Initial trials indicate that the visible light 

initiated composite has similar degradation rates to the UV initiated TiO2 process (Fig. 41) for 

distilled water samples spiked with geosmin and MIB. 
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Figure 41 Comparison of UV Initiated TiO2 and Visible Light Initiated TiO2-InVO4 Composite 
for the Photocatalytic Degradation of Geosmin and MIB 
 

 Repetition of the trials with naturally tainted water is suggested with visible light and the  

InVO4-TiO2 composite.  The pHpzc of the composite is 5.8 (as determined by KAU).  Although 

this is at the lower limit of the typical range for TiO2, the interfacial chemistry between the two 

semiconductors may affect analyte adsorption and reaction sites. 
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Appendix B Instrumentation 

 
 
 

 
 

Figure B-1 Bio Rad Excalibur FTS 3000 FTIR – External and Internal Views 
 
 
 

 
 

Figure B-2 PIKE ATR Sample Holder 
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 (a) 
 

 (b) 
 
 

Figure B-3 Perkin Elmer Lambda 35 UV-Vis Spectrometer (a) with Dual Beam Detection (b) 
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Figure B-4 Eppendorf Centrifuge 
 
 

 
 

Figure B-5 Perkin Elmer Clarus GC-MS 
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Appendix C Supplemental Data 

 
 

   (a) 
 
 

   (b) 
 
 

   (c) 
 
 

Figure C-1 5% InVO4–TiO2 SEM Images and EDS Elemental Maps with Progressive 
Magnification.  Ti Kα emission (center) is mapped in green and In Lα emission (right) in red. 
Magnification increases from 490 in (a) series to 2000 in (b) series to 10,000 in (c) series.  Scale 
bar in (c) series is 1 m. 
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Figure C-2 Typical Time Lapsed Methyl Orange Absorbance.  Aliquots were taken every 15 min 
from slurry solution containing 5% InVO4-TiO2 (P-25). 
 
 
 

 
 

Figure C-3 Effect of Catalyst Dosing Rate on Methyl Orange Degradation.  Dosing study 
performed with 5% InVO4-TiO2 (P-25).  
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Figure C-4 Effect of Mixing Rate on Methyl Orange Degradation.  Study performed with 5% 
InVO4-TiO2 (P-25). 
 

 

 

 
Figure C-5 Effect of InVO4 Dopant Concentration on Methyl Orange Degradation.  Study 
performed with InVO4-TiO2 (P-25) composites. 
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