7-8-2004

Optimization Of The Two Stage Process For Cu(In,Ga)Se₂ Solar Cells

Shirish Pethe
University of South Florida

Follow this and additional works at: https://scholarcommons.usf.edu/etd
Part of the American Studies Commons

Scholar Commons Citation

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.
Optimization Of The Two Stage Process For Cu(In,Ga)Se₂ Solar Cells

By

Shirish Pethe

A thesis submitted in partial fulfillment of the requirement for the degree of Master of Science in Electrical Engineering Department of Electrical Engineering College of Engineering University of South Florida

Major Professor: Don L. Morel, Ph.D.
Christos Ferekides, Ph.D.
Y.L. Chiou, Ph.D.

Date of Approval:
July 8, 2004

Keywords: cigs, photovoltaics, absorber layer, co-evaporation, cis

© Copyright 2004, Shirish Pethe
ACKNOWLEDGMENTS

I would like to thank my major professor Dr. Don Morel for giving me an opportunity to work on this project and also for his valuable guidance during the course of this research. I would also like to thank Dr. Chris Ferekides for agreeing to be on my committee and helping me in the lab whenever I faced problems. Also like to thank Dr. Chiou for being on my committee and for his guidance.

I am also thankful to Mike and Trunk from the Electrical Engineering department for their timely help in all my problems. I would also like to thank the machine shop guys, Bob and others.

I would like to thank my colleagues, Harish, Venkatesh, and others in the lab that were always there to help me and made working in the lab a wonderful experience. I would also like to thank my friends at USF that were always there to support me and made my stay at USF a memorable one.

Last but not the least I would like to thank my family and friends back in India for their constant encouragement and support without which I would not be here.
TABLE OF CONTENTS

LIST OF TABLES iii
LIST OF FIGURE iv
ABSTRACT vi

CHAPTER 1 INTRODUCTION 1
1.1 Need for Solar Energy 1
1.2 Thin Film Solar Cells 2
1.3 CIS Thin Film Technology 3
1.4 CIGS Thin Film Technology 5

CHAPTER 2 SEMICONDUCTOR AND SOLAR CELL PHYSICS 8
2.1 Introduction 8
2.2 P-N Junctions 10
2.3 Heterojunctions 14
2.4 Solar cells 16

CHAPTER 3 DEVICE FABRICATION AND CHARACTERIZATION 20
3.1 Device Structure 20
3.1.1 Substrate 21
3.1.2 Back Contact 21
3.1.3 Cadmium Sulfide 22
3.1.4 Front Contact 23
3.2 Device Fabrication 24
3.2.1 Back Contact Deposition 24
3.2.2 Absorber Layer Deposition 25
3.2.2.1 Type I Precursors 26
3.2.2.2 Type V Precursors 28
3.2.3 Window Layer Deposition 30
3.2.5 Front Contact Deposition 30
3.3 Device Characterization 30

CHAPTER 4 RESULTS AND DISCUSSION 32
4.1 Effect of Bulk Copper 32
4.2 Effect of Venting on Jsc 34
4.3 Type V Precursors 36
 4.3.1 Effect of Ga Content on Device Performance 37
 4.3.2 Effect of Substrate Temperature 39
 4.3.3 Effect of Selenization on Device Performance 40
 4.3.4 Effect of Venting on Voc 42
4.4 ZnSe Buffer Layer 45
4.5 Effect of Silicon Nitride Layer 45

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 47
REFERENCES 50
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.1</td>
<td>Effect of Cu Thickness on Device Performance</td>
<td>33</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Overall Device Performance</td>
<td>34</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Device Performance With Respect to Run Sequence</td>
<td>40</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Overall Device Performance for Si$_3$N$_4$ Thickness Variation</td>
<td>46</td>
</tr>
</tbody>
</table>
List Of Figures

Figure 1.1 Chronological Evolution of Small Area Solar Efficiencies 2
Figure 1.2 A Ternary Cu-In-Se Phase Diagram 4
Figure 1.3 Chalcopyrite Structure of CIGS 5
Figure 1.4 Change in Bandgap as Function of Ga Content 6
Figure 2.1 Simplified Band Diagram of Semiconductor 10
Figure 2.2 Space Charge Distribution 11
Figure 2.3 Electric Field and Potential Distribution 12
Figure 2.4 Band Bending in P-N Junction 13
Figure 2.5 Energy Band Diagram of Isolated Semiconductor 15
Figure 2.6 Energy Band Diagram of Heterojunction 15
Figure 2.7 Ideal I-V Curve of Solar Cell 16
Figure 2.8 Energy Band Diagram of Solar Cell under Illumination 17
Figure 2.9 Equivalent Circuit of Solar Cell 18
Figure 2.10 Effect of Series and Shunt Resistances 19
Figure 3.1 Basic Structure of CIGS Solar Cell 20
Figure 3.2 Wurtzite Structure of CdS 22
Figure 3.3 Source Arrangement for Type I Precursors 26
Figure 3.4 Temperature Profile of Selenization for Type I Precursors 27
Figure 3.5 Source Arrangement for Type V Precursors 28
Figure 3.6 Temperature Profile of Selenization for Type I Precursors 29
Figure 4.1 Voc Distribution in Run P044, P049, P059 33
Figure 4.2 Spectral Response for P007, P008 and H299 34
Figure 4.3 Voc and Fill Factor Distribution for P056 35
Figure 4.4 I-V Characteristics of Device P056-11 36
Figure 4.5 Spectral Response for P056 and P065 37
Figure 4.6 Voc Distribution for Ga Content 38
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7</td>
<td>Voc Distribution for Sample P071</td>
<td>39</td>
</tr>
<tr>
<td>4.8</td>
<td>Spectral Responses for Samples P068 and P071</td>
<td>40</td>
</tr>
<tr>
<td>4.9</td>
<td>Voc Distribution for Samples P071 and P072</td>
<td>41</td>
</tr>
<tr>
<td>4.10</td>
<td>Voc Distribution for Samples P067 and P069</td>
<td>41</td>
</tr>
<tr>
<td>4.11</td>
<td>Voc Distribution for Samples P065, P066 and P069</td>
<td>43</td>
</tr>
<tr>
<td>4.12</td>
<td>Bandgap Shift for Run Sequence</td>
<td>43</td>
</tr>
<tr>
<td>4.13</td>
<td>I-V Characteristics of Device P072-08</td>
<td>44</td>
</tr>
<tr>
<td>4.14</td>
<td>Voc Distribution for Sample P007</td>
<td>45</td>
</tr>
</tbody>
</table>
OPTIMIZATION OF THE TWO STAGE PROCESS FOR Cu(In,Ga)Se2 SOLAR CELLS

Shirish Pethe

ABSTRACT

Copper Indium Gallium DiSelenide absorber layers are fabricated using a two stage manufacturing friendly process. The first step involves the sequential deposition of Copper and Gallium and co-deposition of indium and selenium at 275°C. This is followed by the second stage where the substrate is annealed in the presence of Selenium and a thin layer of copper is deposited to neutralize the excess Indium and Gallium on the surface to form the CIGS absorber layer. The top copper thickness as well as the time of deposition was varied to study the effect of Copper on the performance of the cells.

Another recipe was developed for the precursor formation, where Gallium was co-evaporated with Indium and Selenium. A large bandgap shift was seen with this recipe and the open circuit voltage was increased.

The performance of CIGS/CdS/ZnO solar cells thus fabricated was characterized using techniques like I-V, C-V, Spectral Response and EDS/SEM. Cells with open circuit voltages of 420-450 mV, short circuit currents of 33-38 mA/cm², fill factors of 58-62% and efficiencies of 9-11% were routinely fabricated.
CHAPTER 1
INTRODUCTION

1.1 Need For Solar Energy

Development of clean energy resources as an alternative to fossil fuels has become one of the important challenges for modern science and technology in the 21st century. Reduction of air pollution and preservation of the ecological systems of earth are the main motivation factors behind these huge efforts.

Some of the major contenders for the alternative clean resources are hydroelectric, tidal, nuclear and solar energy. But of all these renewable energy sources photovoltaic is the most promising one as a future energy technology. The photovoltaic effect is the process of direct conversion of sunlight into electrical energy. This effect was first observed by Henri Becquerel in 1839. The major advantage of these photovoltaic systems is that they tap an almost inexhaustible resource that is free of charge and available everywhere in the world. Even though the photovoltaic effect was first observed in 1839, the first practical cell was developed by Chapin et.al at Bell Labs in 1954. [1]

1.2 Thin Film Solar Cells

The main barrier impeding the expansion of the terrestrial application of photovoltaic is the high price of the solar cell modules. The reasons for these high costs are the high processing and material costs. A recent survey suggests that a further cost
reduction to one fifth of the present level is a must for photovoltaics to match the conventional electricity price. One of the solutions to achieve a reduction in this cost is the development of thin film solar cells. This cost reduction is due to factors like lower material use, fewer and simpler processing steps as compared to a traditional wafer based crystalline silicon solar cell.

The thin film technologies use simpler device processing techniques like evaporation, sputtering, etc. for large area modules and arrays. The designs of most thin film technologies have common processing techniques so the manufacturing costs are very similar. Hence, the choice of any technology is based on the factors like highest achievable conversion efficiency, reliability, availability of materials and environmental concerns. At present, research is done on the alloys of amorphous Silicon, CdTe, and CIS as major contenders for large scale production. Figure 1.1 [2] shows the chronological evolution of small area solar cell efficiencies in these three technologies.

![Figure 1.1 Chronological Evolutions of Small Area Solar Efficiencies](image-url)
1.3 CIS Thin Film Technology

CuInSe₂ (CIS) is a ternary alloy belonging to the I-III-VI₂ compound semiconductor group. Its lattice elements are tetrahedrally coordinated like all adamantite semiconductors. CIS has a bandgap of 1.0 eV and one of the highest reported absorption coefficient of 3.6E5 cm⁻¹[3]. The properties of CIS strongly depend on its composition, and the doping of CIS is controlled by the intrinsic defects. Hence, we have either p-type or n-type CIS if the material is grown Cu-poor and p-type if Cu-rich film is grown. The Cu-rich films are highly conductive due to acceptor defects (copper atoms on indium sites). The n-type In-rich films are highly resistive due to the donor defects (indium on copper sites) and acceptor defects (copper vacancies) occurring at the same time. Some of the recent studies have observed a thin surface layer of CuIn₃Se₅. This is termed as the ordered vacancy compound (OVC), a defect chalcopyrite which is slightly In rich [4]. The OVC has a bandgap of 1.3 eV. As compared to binary compounds the ternary compound CIS is more tolerant to small deviations from stoichiometry. The composition needs to be slightly In rich in order to achieve good device performance. As the metal ratio (I/III) approaches unity the carrier concentration increases which results in better cell performance. This could be attributed to the formation of Cu₂Se grains. This behavior is explained based on the Cu-In-Se ternary phase diagram [5] shown in figure 1.2. In Se rich films, both Cu and In vacancies yield strongly p-type films. Simultaneous formation of oppositely charged defects in the In rich films may lead to a highly compensated, highly resistive n or p-type films.
The first thin film CIS solar cell was produced by the evaporation of CIS as a compound [6]. CIS films can be produced by co-evaporation or sequential evaporation of elemental sources. In co-evaporated CIS films, the composition of the materials with regard to the metal ratios corresponds to the evaporation rates whereas in sequentially evaporated CIS films, it corresponds to the thickness. Co-evaporation of the elemental sources gives better device quality films as compared to sequentially evaporated films. But for commercial purposes sequential evaporation is preferred over co-evaporation because it requires lesser control over the evaporation rates. Some of the other techniques being researched for deposition of CIS films are electro deposition, screen printing, particle deposition, sputtering, MBE, and MOCVD.
1.4 CIGS Thin Film Solar Cells

If the bandgap of the thin film solar cell is increased it increases the band-bending which causes an increase in the open circuit voltage (Voc) but also decreases the short circuit current (Jsc) as fewer photons are absorbed in the long wavelength range and so fewer carriers are generated. Thus there is a current-voltage tradeoff. If the bandgap of the absorber layer is increased, the doping of the window layer which is ZnO can be increased to reduce the resistive losses without the problem of free carrier absorption, as current is no longer generated in the infrared region. This bandgap increase can be caused by alloying a quaternary compound of Cu (In,Ga)Se$_2$ (CIGS). The chalcopyrite structure of the CIGS compound is shown in figure 1.3. This is done by alloying CIS and CGS. As the bandgap of CGS (1.7 eV) is higher than that of CIS (1.0 eV) we get a bandgap increase.

![Figure 1.3 Chalcopyrite Structure of CIGS](image)
The bandgap of the composition Cu In$_{1-x}$Ga$_x$Se$_2$ is given by [7]

$$E_g = 1.0032 + 0.71369x$$ \hfill (1.1)

The variation of bandgap with Gallium content is shown in figure 1.3. Elemental co-evaporation has been used to vary the bandgap of CIGS films by adjusting the Ga content over the full range of composition [8].

One of the other advantages of Gallium incorporation in CIS films is better adhesion of the absorber film to the molybdenum back contact. Also Gallium incorporation can cause a graded bandgap which leads to better collection of charge carriers. Gallium has the tendency to segregate to the back of the device which causes abrupt changes in the carrier concentration near the back contact. This leads to an electric field which acts as minority carrier mirror and reflects all the minority charge carriers. This electric field is called a Back Surface Field (BSF). The BSF also prevents any recombination of electron-hole pairs at the back contact.

![Figure 1.3 Change in Bandgap as Function of Ga Content](image-url)
It has been observed that too much Gallium has adverse affects as there are some other changes in the material properties like electron and hole affinities, carrier concentration, defects, etc. which hinder cell performance. The best device efficiencies have been achieved for a bandgap of around 1.1 eV and it has been found out that the device efficiencies start falling for bandgap greater than 1.3 eV and \(x \) greater than 0.5 because of the reducing fill factors and Jsc’s [9]. This could be due to the problems with the hetero-interface resulting in an increase in the interface recombination. The highest reported efficiency for CIGS solar cells is 18.8% by NREL [10].
CHAPTER 2
SEMICONDUCTOR AND SOLAR CELL PHYSICS

2.1 Introduction

A solar cell can be defined as a p-n junction diode, with incident light being the excitation factor or the one generating the charge carriers. Hence, semiconductor fundamentals are essential to understand the behavior and operation of solar cells.

Any element can be classified into a metal, an insulator, and a semiconductor. A metal is one with a large number of free electrons and so has high conductivity. An insulator has absolutely no free electrons i.e. the valence band is completely filled and the forbidden energy gap is also very large. The conductivity of semiconductors is between these two. They have fully occupied valence band, at T=0, but the forbidden energy gap is not very large, due to this they do not conduct in normal conditions but these valence electrons are loosely bound and so any excitation causes them to break the bond which results in conduction. Semiconductors can be classified as intrinsic and extrinsic semiconductors. An intrinsic semiconductor is extremely pure and has very small amount of impurities. When a semiconductor is doped with donor or acceptor impurities it, forms an extrinsic semiconductor. When a semiconductor is doped with a donor impurity it has an extra electron which makes it an n-type semiconductor. Similarly when an acceptor
impurity is incorporated; it gives rise to an extra hole which makes it a p-type semiconductor.

The energy levels for an atom are discrete but they are so closely spaced that they form continuous energy bands. In any semiconductor there is a forbidden energy region in which allowed states cannot exist. The energy band above this energy gap is called the conduction band and the one below is called the valence band. And the forbidden energy region is called the Energy Bandgap (Eg) which is one of the most important parameters in semiconductors. The simplified energy band diagram of a semiconductor is shown in figure 2.1.

The Fermi level is defined as the energy level below which all states will have at most two electrons of opposite spin according to Pauli’s exclusion principle [11]. It can be also defined as the energy level where the probability of finding an electron is ½. The Fermi distribution function is given by

\[f(E) = \frac{1}{1 + e^{(E-E_F)/kT}} \] \hspace{1cm} (2.1)

where \(k \) is the boltzman’s constant, \(T \) is the absolute temperature, \(E_F \) is the Fermi energy.

For an intrinsic semiconductor the Fermi level lies approximately in the middle of the bandgap. This Fermi level shifts towards the conduction band for n-type and towards the valence band for p-type semiconductors. The Fermi levels can be calculated using the equations given below [11].

For n-type \(E_F - E_C = kT \ln(N_D / N_C) \) \hspace{1cm} (2.2)

For p-type \(E_V - E_F = kT \ln(N_A / N_V) \) \hspace{1cm} (2.3)

where \(k \) is the boltzman’s constant, \(T \) is the absolute temperature, \(E_F \) is the Fermi energy, \(E_C \) is the energy level at the bottom of the conduction band, \(E_V \) is the topmost energy
level of the valence band, N_C and N_V is the effective density of state in the conduction band and valence band respectively. N_D and N_A is the donor and acceptor concentration respectively.

2.2 P-N Junctions

When two isolated p-type and n-type material are electrically connected they form a p-n junction. These p-n junctions are very important in understanding other semiconductor devices. The p-n junctions can be classified as homojunctions and heterojunctions. Homojunctions are the ones which have the same semiconductor with different doping, whereas heterojunctions are junctions of two different semiconductors. The p-n junctions can also be classified as abrupt junctions and graded junctions. When region there is an abrupt change in the impurity concentration across the junction it is an
abrupt junction. In the graded junction, the $N_D - N_A$ varies over a distance across the junction.

Figure 2.2 Space charge

There is an initial flow of free electrons from the n-type region to the p-type region and free holes from the p-type to n-type. This causes the formation of a depletion region which opposes the further flow of charge carriers. This depletion region has immobile charges gives rise to the space charge which is shown in figure 2.2. The resulting electrical field and the potential distribution are shown in the figure 2.3 (a), (b). Under thermal equilibrium the electron and hole current densities are given by

\[
J_n = \mu_n n E_F / \partial x = 0
\]
\[
J_p = \mu_p p E_F / \partial x = 0
\]

(2.4)

where μ_n and μ_p is electron and hole mobility respectively, E_F is the Fermi energy, n and p is the electron and hole concentration respectively.
Figure 2.3 (a) Electric field distribution, (b) Potential distribution.
Hence for zero net electron and hole current densities we require that the Fermi level should be a constant throughout the sample. This causes a bending of the bands of the semiconductor resulting in the potential being developed. Figure 2.4 shows the band bending of the semiconductor. This potential is called the built in voltage (V_{bi}). This potential is given by

$$V_{bi} = kT \ln\left(\frac{N_A N_D}{n_i^2}\right)$$

(2.5)

where k is the boltzman’s constant, T is the absolute temperature, N_A and N_D is the acceptor and donor concentration respectively, n_i is the intrinsic concentration.

![Vacuum Level](image)

Figure 2.4 Band Bending in P-N Junction

Again considering the thermal equilibrium conditions, the electric field in the neutral region should be zero, which means the total negative charge on the p side, should cancel the total positive charge on the n side. Thus we get the equation [11]

$$N_A x_p = N_D x_n$$

(2.6)

where N_A and N_D is the acceptor and donor concentration respectively, x_p and x_n are widths of the depletion region on the p and n side of the junction respectively.
The total space charge region width is given by [11]

\[W = \sqrt{\frac{2\varepsilon_s (N_A + N_D)(V_{bi} - V)}{qN_A N_D}} \]

(2.7)

For an one sided abrupt junction (one side more heavily doped than the other) the above simplifies to

\[W = \sqrt{\frac{2\varepsilon_s (V_{bi} - V)}{qN_B}} \]

(2.8)

where \(N_B \) is the impurity concentration of the lightly doped side.

2.3 Heterojunctions

A heterojunction is a junction formed between two dissimilar semiconductor materials. Heterojunctions are of two types, isotype and anisotype heterojunctions. Isotype heterojunctions are the one formed with materials of same conductivity and anisotype are formed with materials of different conductivities. The band bending of heterojunctions is not as smooth as the homojunctions because of difference in electron affinities, work functions, etc. These cause interface states or band discontinuities which form the recombination centers. The energy band diagram of two semiconductor materials prior to forming a junction is shown in figure 2.4. The two semiconductors have different bandgaps \(E_{g1} \) and \(E_{g2} \), different work functions \(\Phi_{m1} \) and \(\Phi_{m2} \), different electron affinities \(\chi_1 \) and \(\chi_2 \) and different permittivities \(\varepsilon_1 \) and \(\varepsilon_2 \). The energy band diagram of a heterojunction is shown in figure 2.5. The band discontinuities are given by

\[\Delta E_c = \chi_1 - \chi_2 \]

(2.7)

\[\Delta E_v = (E_{g2} - E_{g1} - \Delta E_c) \]

(2.8)
Figure 2.5 Energy Band Diagrams of Isolated Semiconductors

The total built in potential, V_d, is equal to the sum of partial built in voltages V_{d1} and V_{d2}, where V_{d1} and V_{d2} are the electrostatic potentials of the two semiconductors. Most of the thin film solar cells are heterojunction based.

Figure 2.6 Energy Band Diagram of Heterojunction
2.4 Solar Cells

When a solar cell is exposed to a solar spectrum, the photons with energy greater than E_g are absorbed and the material transmits those with energy less than E_g. Hence if we know the energy bandgap of the semiconductor then we can know the wavelength range of light that will be absorbed by the semiconductor using the equation

$$\lambda = \frac{1.24}{E_g}$$

(2.9)

where E_g is in eV and λ is in microns.

These absorbed photons result in the generation of electron-hole pairs (EHP); these charge carriers diffuse to the space charge region and are then swept across the junction if not recombined. These diffused carriers give rise to photocurrent. The ideal I-V curves of a solar cell under dark and illuminated conditions are shown in figure 2.6.

![Figure 2.7 Ideal I-V Curve of a Solar Cell](image)
In the dark the solar cell is a simple p-n junction diode and can be given by the diode equation [11]

\[I = I_0 \left(e^{V/kT} - 1 \right) \tag{2.10} \]

Where \(I_0 \) is the diode saturation current, \(V \) is the applied bias, \(k \) is the boltzman’s constant, \(T \) is the absolute temperature.

Under illuminated conditions there is an extra current due to the photo generated current; therefore the above equation changes to [11]

\[I = I_0 \left(e^{V/kT} - 1 \right) - I_L \tag{2.11} \]

where \(I_L \) is the photo generated current.

As can be seen in the figure 2.7, the built in voltage of the p-n junction changes when light is incident on the solar cell. This is due to excess carriers being generated which result in net charges on the n and p side.

![Energy Band Diagram of Solar Cell under Illumination](image)

Figure 2.8 Energy Band Diagram of Solar Cell under Illumination

This gives us the open circuit voltage \((V_{oc}) \) which appears at the contacts and can be found from the above current equation [11]
\[V_{oc} = \frac{kT}{q} \ln\left[\frac{I_L}{I_o} + 1 \right] \approx \frac{kT}{q} \ln\left[\frac{I_L}{I_o} \right] \quad \text{For } I=0 \]

The equivalent circuit of an ideal solar cell as well as in the presence of series and shunt resistances acting on the cell under illumination is shown in the figure 2.8. Here the current source is equal to \(I_L \) which is the photo generated current.

The series resistance, \(R_s \), is the combination of the bulk resistance of the semiconductor, the bulk resistance of the metallic contacts and the contact resistance between the contacts and the probe. The shunt resistance, \(R_{sh} \), reduces with the leakage current in the p-n junction. The series resistance is given by the reciprocal of the slope of the I-V curve when the solar cell is forward biased. The shunt resistance is found out by taking the reciprocal of the slope of the I-V curve when the solar cell is reverse biased.

![Equivalent Circuit of Solar Cell](image)

(a) (b)

Figure 2.9 Equivalent Circuit of Solar Cell (a) Ideal, (b) with Series and Shunt Resistance
The effect of the series and shunt resistance is shown in figure 2.9. The I-V characteristics are given by [11]

\[
\ln[(I + \frac{I_L}{I_O}) - \frac{V - IR}{I_oR_{sh}} + 1] = \frac{q(V - IR)}{kT}
\] \hspace{1cm} (2.13)

The short circuit current, \(I_{sc}\) is defined as the current flowing through the junction at zero bias. The fill factor is the measure of the squareness of the I-V curve at the maximum power point and is given by [11]

\[
FF = \frac{V_mI_m}{V_{oc}I_{sc}}
\] \hspace{1cm} (2.14)

where \(V_m\) and \(I_m\) is the voltage and current of the maximum power rectangle.

The conversion efficiency of the solar cell is given by

\[
\eta = \frac{P_m}{P_{in}} = \frac{(FF.I_{sc}.V_{oc})}{P_{in}}
\] \hspace{1cm} (2.15)

where \(P_m\) is the maximum power and \(P_{in}\) is the incident power.
CHAPTER 3
DEVICE FABRICATION AND CHARACTERIZATION

3.1 Device Structure

The CIGS solar cell fabricated for this research has the structure Soda lime glass/CIGS/CdS/ZnO. This structure is shown in figure 3.1. The substrate and the fabrication processes used here are those which make the solar cells cost effective. The general process temperatures are around 550-600 °C.

Figure 3.1 Basic Structure of the CIGS Solar Cell
3.1.1 Substrate

The substrate used in this research is soda lime glass (SLG) for the main reason that it is cheap and easily available. Glass is corrosion resistant and another reason that SLG is used is the hypothesis that the diffusion of sodium from the glass seems to improve the cell performance. It improves the fill factors and the Voc. But this incorporation of sodium adds an uncontrollable factor in determining the reproducibility of the cell performance. The other issue with the soda lime glass substrates is that, at high temperatures glass softens and finally warps.

3.1.2 Back Contact

The most widely used back contact in CIGS solar cells is molybdenum (Mo). Mo forms a good ohmic contact and offers high resistance to selenium corrosion. The thickness of the Mo layer is around 1 micron and is deposited using DC magnetron sputtering. The sputtering pressures determine the resistivity and adhesion of the films [12]. Films deposited at high pressures have poor resistivity due to a rougher surface which results in the growth of rougher absorber layers. But they adhere to the glass much better. Films deposited at lower pressures have a smoother surface which results in lower resistivity but they suffer from adhesion problem due to compressive stresses. Due to these reasons, a bilayer process is used in the deposition of the Mo film. The first layer is deposited at higher pressures for better adhesion of the film to the glass and the second layer is deposited at lower pressures for better electrical resistivity. The absorber layer is grown on the Mo film. The properties of the absorber layer which is CIGS are discussed in chapter 1.
3.1.3 Cadmium Sulfide (CdS)

CdS forms the n-type partner for the p-type CIGS absorber layer in forming a p-n junction. Polycrystalline CdS has a wurtzite structure as shown in figure 3.2. CdS is a direct bandgap semiconductor with a bandgap of 2.4 eV. Due to this high bandgap, it absorbs the high energy photons of the visible spectrum. Basically the CdS acts as a window layer for the low energy photons for the absorber layer to absorb them.

CdS can be deposited using different processing techniques like chemical bath deposition (CBD), closed space sublimation (CSS), and RF sputtering. CBD is the most widely used technique for CdS deposition as the films grown by CBD are much more uniform and smoother as compared to the other techniques. The CBD process uses cadmium acetate as the cadmium source, thiourea as the sulphur source, and ammonium hydroxide as a complexing agent. The deposition temperature and the pH of the solution determine the growth rate of the film [13]. Heterogeneous nucleation gives uniform films whereas homogeneous nucleation gives powdery deposits.
As some of the light is absorbed in the CdS, a current loss of approximately 6 mA/cm² is estimated [14]. Cd is a toxic material causing environmental concerns which has led to the investigation of other materials to replace CdS as a window layer. The other materials considered are ZnSe, ZnInₓSeᵧ and InₓSeᵧ [15]. Also ZnO has been tried as a window layer [16].

3.1.4 Front Contact

The main requirements for a front contact are high conductivity and good transparency. ZnO is the most widely used material for front contact in CIGS solar cells as it has very high bandgap of 3.3 eV and has good optical and electrical properties. It is typically n-type and can be deposited by different processing techniques like sputtering, CVD, etc.

The bilayer ZnO is deposited using RF sputtering using a ceramic target. The first layer is an intrinsic ZnO of about 500Å thickness deposited in Ar/O₂ ambient. The second layer is doped ZnO deposited in Ar ambient from a ZnO:Al₂O₃ target. The amount of doping is a tradeoff between the electrical and optical properties. The transmission drops off at higher wavelengths due to the free carrier absorption which is a function of doping concentration. A transmission of 90% in the wavelength range of 400-1000 nm with electrical resistivity of 9E-4 has been achieved [17]. Anti-reflecting coating can be applied over the front contact to reduce reflection losses and aid in better trapping of light.
3.2 Device Fabrication

The sequential steps followed in device fabrication are briefly discussed in this section. A thin layer of Mo is deposited on a glass substrate using DC sputtering followed by the CIGS absorber layer using a two stage process. A thin layer of CBD CdS is grown over this absorber layer followed by a bilayer ZnO using RF sputtering.

3.2.1 Back Contact Deposition

The cleaning of the substrate is a very critical step in device fabrication to ensure the removal of contaminants. Defects like scratches and contaminants find their way into the device thereby hurting the device performance. The substrate is soaked in a detergent-DI (deionized) water bath for about 3 hours and scrubbed to remove any particulates. This is followed by several rinses in DI water followed by an ultrasonic treatment using 2Propanol. Several other solutions were tried but 2Propanol seems to give the best results. Soaking of the glass substrates in a hot water bath for around 20 minutes follows this ultrasonic treatment. The glass substrates are then stored in a DI water bath.

A 1 micron thick layer of Mo is deposited using DC magnetron sputtering. The glass is heated to 150°C under vacuum before deposition to remove any moisture. The glass substrate is heated in the load-lock and the deposition is done in the main deposition chamber. The chamber is then pumped to a pressure of around 5 µtorr. The first layer of 3000Å is deposited at an argon pressure of 5 mT and the second layer of 7500Å at an argon pressure of 1.5 mT. The resultant Mo film has a smooth surface and resistivities of the order of 5E-5 ohm-cm.
3.2.2 Absorber Layer Deposition

Co-evaporation of metals from elemental sources is the most widely used processing technique for high efficiency cells. NREL has developed a complex three stage process for their high efficiency devices [18]. A high degree of control is required in this process as it has a direct effect on the device performance. Hence a more suitable process for commercial production is a two stage process.

This process involves the sequential deposition of the metal layers followed by the high temperature anneal step in Se vapor. This process requires a small degree of control because only one metal has to be controlled at a time and because of the self controlling nature of Se flux at high temperatures. The two stage process consists of the first stage of precursor formation followed by selenization at high temperature of about 550ºC. In the first stage, precursors are formed by sequential deposition of metals Cu, Ga, In with or without Se. In the selenization step, these metals are reacted with Se at high temperatures to form the CIGS compound. Any excess In and Ga if deposited is removed from the surface during the selenization step which otherwise might precipitate around the grain boundaries and hurt the device performance. The other technique to compensate for the excess In and Ga is addition of extra Cu during the selenization step to form the CIGS compound.

Shields were introduced between the metal sources to minimize the cross contamination of sources during deposition. The precursor was formed using two different configurations and they were named as Type I and Type V precursors. The selenization step was also modified for some of the devices that were fabricated using the Type V precursors.
3.2.2.1 Type I Precursors

The absorber layer was deposited in a new vacuum system which is a two chamber load-locked system. In the type I precursor, Cu and Ga are deposited in the first chamber and In and Se are deposited in the second chamber. The reason for building this new system was to do the Cu and Ga depositions in a Se free atmosphere as compared to the old system in which all the metal depositions were done in a Se background. The Se flux during the absorber layer formation is high and once the system temperatures come down the extra Se in the atmosphere sticks to the walls of the system. So during the sequential deposition of the metals, this Se gets free and hence the metals are deposited in Se background. In the new system the two chambers are isolated from each other using an isolation valve and care is taken that none of the free Se enters the first chamber. The metals are deposited at relatively low temperature of 275°C to complete the precursor formation. A constant and high Se flux is maintained during the In$_2$Se$_3$ deposition. The substrate temperature ensures that no excess Se sits on the surface. The source arrangement and the thickness gradient for the metals are shown in figure 3.3.

Figure 3.3 Source Arrangement for Type I Precursor
A constant rate of 0.6 Å/sec is maintained during the copper deposition. The thickness on the thickness monitor corresponds to around one-third that on the substrate. A constant rate of 0.7 Å/sec is maintained during Ga deposition and the thickness on the substrate is one and half times that on the thickness monitor. During In$_2$Se$_3$ deposition the In rate is maintained at 5.3 Å/sec and the Se flux is maintained at around 9.0 Å/sec. The In thickness on the substrate is about half that on the thickness monitor, this is because the source is placed at an angle to the substrate and so all the material that the crystal sees does not reach the substrate. The Se flux varies from 19 Å/sec near the source to 16 Å/sec away from the source. The Se flux is maintained at least three times that needed for stoichiometric formation. This is necessary for good films [19].

The precursor formation is followed by the selenization step in which the substrate temperature is ramped up to 450°C in about 4 minutes which is then maintained
for about 7 minutes. The substrate temperature is again raised to 550°C in another 4 minutes remaining there for about 7 minutes. The substrate temperature is then turned off but the substrate is exposed to Se flux till the substrate temperature comes down to about 400°C. The Se flux is maintained at about 9.0Å/sec during the whole of the selenization process. A thin layer of copper is deposited to convert any excess In, Ga into CIGS compound. The temperature profile is shown in figure 3.4.

3.2.2.2 Type V Precursor

![Figure 3.5 Source Arrangement for Type V Precursor](image)

In the type V precursor the Ga source is transferred from the first chamber to the second chamber. With this new configuration co-evaporation of In, Ga and Se is possible. This was also done to see whether the deposition of Ga in a Se background improves the device performance. The source arrangement changes from the type I precursor and is shown in figure 3.5 along with the thickness gradient. It was observed that the metal ratios, which are maintained near unity, were more uniform over the sample. The Cu was deposited as in the type I precursor. Some fraction of the total Ga was deposited first at
about 0.7Å/sec for better adhesion of the films. The remaining Ga was co-evaporated with In and Se where a constant Ga rate of 0.3Å/sec was maintained. The actual thickness on the substrate for Ga is again one and half times that on the thickness monitor. The In and Se rates were the same as in the type I precursor. Some experiments with the substrate temperature were also carried out.

The selenization profile for the type V precursor was altered from the type I precursor. The 450°C step in the original selenization was removed and the substrate temperature was maintained at 550°C for about 16 minutes before turning the substrate temperature off. The temperature profile for the altered selenization step is shown in figure 3.6. Different temperature profiles were tried for the type V precursors and will be discussed in the following chapter.

![Figure 3.6 Temperature Profile for Selenization for Type V Precursor](image)

Figure 3.6 Temperature Profile for Selenization for Type V Precursor
3.2.3 Window Layer Deposition

A thin layer of CdS of about 300-500Å is grown on the absorber layer by chemical bath deposition (CBD). The solution consists of a 0.015 molar cadmium acetate solution, 0.15 molar solution of thiourea, 0.15 molar of ammonium hydroxide and DI water. The substrate is immersed in the solution when the water bath temperature is around 80°C with constant stirring of the solution. The deposition takes place for around 5-7 minutes approximately. If the substrate is kept immersed in the solution for a longer time, then homogeneous nucleation of CdS is formed on the surface which is undesirable.

3.2.4 Front Contact Deposition

After the CdS deposition the substrate is blow dried using dry nitrogen gas. It is then loaded in a vacuum chamber for the RF sputtering from the ZnO target. The substrate is heated to around 125°C to remove any moisture absorbed during the CdS deposition. The substrate is maintained at this temperature during the full front contact deposition. A thin first layer of intrinsic ZnO is deposited in an Ar-O₂ ambient followed by the doped layer ZnO in Ar ambient. The substrate is masked using a stainless steel mask, to form small dots of area 0.1 cm², to understand the effect of thickness gradients on the device performance.

3.3 Device Characterization

After the devices were fabricated, I-V measurements were done on them. The I-V measurements were done using the Kiethley 2410 source meter. This source meter was interfaced to the computer using a Labview program which also determines the V_{oc}, the
FF and the I_{sc}. The AM 1.5 global spectrum conditions are simulated using a lamp with the intensity of one sun. A four-probe measurement is done on the 25 dots (masked during the ZnO deposition). Before the measurements are done the absorber layer is scrapped off to make contact with the Mo layer. Two probes are placed on the Mo back contact and two probes are placed on the ZnO front contact. The solar cell is biased over a range of -0.2 to 0.5 V. Spectral response was done on these devices to know the current density of the devices over the wavelength range of 400-1400 nm. The instrument used for these measurements was an Oriel Spectrometer. This was also interfaced to the computer using a Labview program. Silicon and germanium standards were used to compare with the sample. The silicon standard was used over the wavelength range of 400-900 nm. The germanium standard was used over the wavelength range of 900-1400 nm. The quantum efficiency (QE) of the device was calculated and the QE vs. wavelength graph was plotted.
CHAPTER 4
RESULTS AND DISCUSSIONS

The performance of CIGS solar cells, fabricated by the process discussed in the earlier chapter is analyzed in this chapter. The main aim of this work is to optimize the performance of these solar cells with regards to the parameters like V_{oc}, J_{sc} and fill factor. To do so a new process recipe will be developed to utilize the capabilities of the in-line processing unit. The devices were analyzed using the I-V measurements and spectral response. The main parameter used for analyzing the influence of process details on the performance of the solar cell is the open circuit voltage. The short circuit current and the fill factor are the additional parameters considered.

4.1 Effect of Bulk Copper

Because of new insights regarding fabrication in the in-line processing unit we start by first re-optimizing the standard recipe. The bulk copper thickness was varied to see its effect on device performance. Sample P044 had copper thickness of 594Å, P049 had 523 Å and P059 had 550 Å. Figure 4.1 shows the Voc distribution for the three samples. Due the thickness gradient of all the metals the metal ratios are not same throughout the sample. We can see that the Voc distribution is much more uniform in sample P059 which can be attributed to the fact that the metal ratios are nearer to unity, in the range of 1.0 to 0.94, throughout the sample. Some of the bad spots in these samples
could be due to the basic smudges and defects on the glass substrate. Table 4.1 shows the effect of bulk copper thickness on the overall performance of the solar cells. As can be seen from the table, the average Voc is better for sample P059 and so is the Isc. The fill factors are also better for P059. The sample P044 has the worst device performance because the metal ratios are greater than unity, in the range 1.1 to 1.03. As can be seen, good Voc’s are attained in the lower left corner where the metal ratio is close to unity. For sample P044 the metal ratios are in the range 0.97 to 0.91 and so the device performance is not uniform.

Table 4.1 Effect of Cu Thickness on Device Performance

<table>
<thead>
<tr>
<th>Sample</th>
<th>Cu thickness (Å)</th>
<th>Avg. Voc (mV)</th>
<th>Avg. Isc (mA)</th>
<th>Avg. F.F (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P044</td>
<td>594</td>
<td>350</td>
<td>2.8</td>
<td>45</td>
</tr>
<tr>
<td>P049</td>
<td>523</td>
<td>390</td>
<td>2.9</td>
<td>48</td>
</tr>
<tr>
<td>P059</td>
<td>550</td>
<td>420</td>
<td>2.7</td>
<td>50</td>
</tr>
</tbody>
</table>

Figure 4.1 Voc distributions for P044 (594 Å), P049 (523 Å) and P059 (550 Å)
4.2 Effect of Venting on Jsc

Selenium is used in large quantities for each run so the source has to be filled for every five runs. The system earlier had the problem that to open chamber 2, chamber 1 had to be vented first. It was observed that the Jsc of the device fabricated after the system was vented was affected, and the Jsc improved with the run sequence. As can be seen from table 4.2 the current density increases with the run sequence. It was speculated that this could be due to Gallium oxidation or due to presence of water vapor. Figure 4.2 shows the spectral response for the two devices P007 and P008. The 3rd device is fabricated by my colleague. The Voc’s are lower in these series or runs because the bulk copper thickness was not optimized till then.

![Figure 4.2 Spectral Response for Samples P007, P008, and H299](image)
Table 4.2 Overall Device Performance

<table>
<thead>
<tr>
<th>Sample</th>
<th>Run No.</th>
<th>Best Jsc (mA/cm²)</th>
<th>Best Voc (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P007</td>
<td>2nd</td>
<td>30.6</td>
<td>370</td>
</tr>
<tr>
<td>H299</td>
<td>3rd</td>
<td>31.6</td>
<td>380</td>
</tr>
<tr>
<td>P008</td>
<td>5th</td>
<td>38.3</td>
<td>370</td>
</tr>
</tbody>
</table>

The highest current density obtained was for the device P008-13 and was 38.3 mA/cm². The highest average Voc and fill factor was for sample P056. P056 was fabricated with bulk copper thickness of 550 Å and top copper thickness of 33 Å. This resulted in the metal ratios in the range 1.0 to 0.94. Figure 4.3 shows the Voc distribution for the sample P056. The light I-V curve for P056-11 is shown in figure 4.4. From these results it was concluded that performance was a function of the vacuum environment. Thus this must be taken into consideration in ongoing optimization efforts.

Figure 4.3 (a) Voc Distribution (b) Fill Factor Distribution for sample P056
4.2 Type V Precursors

In the type V precursor the Gallium is deposited in the second chamber. Here the idea was to do co-evaporation of In, Ga and Se, but it was realized that the films were having an adhesion problem if Ga was co-evaporated with In and Se. This could be because, when co-evaporated enough Gallium does not segregate to the back of the device, thus causing adhesion problems. Therefore around 25% of the total Ga to be deposited was deposited by itself before the co-evaporation. Now the films were adhering to the Mo back contact. In type V precursors copper was deposited first in chamber 1. The substrate was then transferred to the 2nd chamber where about 25% of the total Gallium was deposited first followed by the co-evaporation of In, Ga, and Se. The

Figure 4.4 I-V Characteristics of Device P056-11
bandgap shift for Type V device P066 when compared to a Type I device P056 is evident in the figure 4.4. Since for our type I process we are not able to shift the bandgap unless Cu is deposited in the 2nd chamber, this indicates a new controlling mechanism. This could be cause because Gallium requires a Cu\textsubscript{x}Se\textsubscript{y} species to form CIGS.

![Figure 4.5 Spectral Response for Samples P056 And P066](image)

4.2.1 Effect of Ga Content on Device Performance

Sample P064 had about 12\% and sample P066 has the Ga content of 20\% of total group III content. All other processing details were kept the same. We can see from figure 4.5 that the overall Voc has improved for the sample P066. The device performance of P064 is poor because when Gallium is co-evaporated with In and Se then enough Gallium does not segregate to the back of the device. Thus when the Gallium
content is increased to 20 % we see the improvement in the open circuit voltages as Gallium can segregate to the back of the device with enough Gallium left to bond in the space charge region. The other reason for the poor performance of P064 could be that it was fabricated immediately after the system was vented. However, Voc would normally not be affected this dramatically. It was seen that the short circuit current reduced as compared to the type I devices; this could in part be attributed to the bandgap shift in the type V devices. The bandgap shift results in fewer photons being absorbed and so fewer electron-hole pairs generated. But the drop in Jsc is much greater than expected from the bandgap shift, so other loss mechanisms are operative. This is not unlike the losses we observe in Jsc when extra Ga is used in the type I process. In those case we attribute the losses to improper bonded Ga, and that is likely the case here.

\[
\begin{array}{cccccc}
 \times & 260 & 260 & 190 & 220 \\
 \times & 190 & 190 & 120 & 130 \\
 280 & 170 & 130 & 140 & 170 \\
 250 & \times & 230 & 200 & 190 \\
 130 & 150 & \times & 140 & \times \\
\end{array}
\begin{array}{cccccc}
 420 & \times & 480 & 400 & 470 \\
 460 & 470 & 470 & 380 & 490 \\
 460 & 480 & 460 & 470 & 440 \\
 430 & \times & 460 & 480 & 410 \\
 400 & 420 & 150 & 380 & 270 \\
\end{array}
\]

P064 P066

Figure 4.6 Voc Distribution for Ga Content
4.2.2 Effect of Substrate temperature

The substrate temperature during the precursor formation was changed from 275°C to 350°C for sample P071 keeping all other parameters the same. All the samples had 20% Ga content of the total group III content. The Voc distribution for sample P071 is shown in figure 4.6. The Voc for this sample has gone down and it is speculated that it could be due to the fact that the bonding of Gallium in the bulk of the film was not good and there could be some Gallium present in the film in the form of Ga_xSe_y. The bandgap shift for the samples P071 and P068 are comparable as can be seen from figure 4.7. So we can say that enough Gallium is staying in the space charge region.

<table>
<thead>
<tr>
<th>340</th>
<th>390</th>
<th>390</th>
<th>380</th>
<th>370</th>
</tr>
</thead>
<tbody>
<tr>
<td>360</td>
<td>380</td>
<td>260</td>
<td>360</td>
<td>180</td>
</tr>
<tr>
<td>350</td>
<td>340</td>
<td>290</td>
<td>310</td>
<td>380</td>
</tr>
<tr>
<td>300</td>
<td>X</td>
<td>330</td>
<td>340</td>
<td>360</td>
</tr>
<tr>
<td>310</td>
<td>250</td>
<td>X</td>
<td>300</td>
<td>290</td>
</tr>
</tbody>
</table>

Figure 4.6 Voc distribution for sample P071
4.2.3 Effect of Selenization Profile on Device Performance

The selenization profile was changed for samples made under different conditions. We will be considering two sets of samples here one with the substrate temperature of 275°C and one with 350°C. The change in the selenization profile was that the 450°C step was eliminated. Samples P067 and P072 had the new selenization profile. Samples P071 and P072 have the substrate temperature of 350°C and samples P067 and P069 have the substrate temperature of 275°C. The Voc distribution for samples P071 and P072 is shown in the figure 4.8.

Figure 4.8 Spectral Response of Samples P068 And P071
The open circuit voltage for sample P072 has improved and is one of the highest for the new configuration indicating a better surface as compared to sample P071. The Voc distribution of samples P067 and P069 is shown in figure 4.9. We can see that the device performance of P067 is poor. It is speculated that the phases formed with the substrate temperature of 275°C need the 450°C step during selenization for proper bonding of CIGS.
4.3.3 Effect of Venting on Voc

It was observed that with the type V precursors the Voc is affected with the chamber conditions. The Voc decreases when the second chamber is vented and it increases with the run sequence. The table 4.3 shows the overall performance of the three devices P065, P066 and P069. As the Gallium source is in the second chamber, it can now be stated that the oxidation of Gallium source seems to be affecting the device performance as it did for Ga deposited in chamber 1 for the type I process. Figure 4.11 shows the Voc distribution for the three devices. The same effect was observed when copper was deposited in the second chamber for the type I device by my colleague. This suggests that Gallium is not getting incorporated in the front of the device thus affecting the bandgap shift as can be seen from figure 4.12 [19]. We can speculate the same reason for the type V devices.

Table 4.3 Device Performance With Respect To Run Sequence

<table>
<thead>
<tr>
<th>Sample</th>
<th>Run No.</th>
<th>Best Voc (mV)</th>
<th>Avg. Voc (mV)</th>
<th>Best F.F (%)</th>
<th>Avg. F.F (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P065</td>
<td>1<sup>st</sup></td>
<td>410</td>
<td>350</td>
<td>49%</td>
<td>43%</td>
</tr>
<tr>
<td>P069</td>
<td>2<sup>nd</sup></td>
<td>440</td>
<td>410</td>
<td>42%</td>
<td>38%</td>
</tr>
<tr>
<td>P066</td>
<td>3<sup>rd</sup></td>
<td>480</td>
<td>440</td>
<td>51%</td>
<td>45%</td>
</tr>
</tbody>
</table>
Figure 4.11 Voc Distribution of Samples P065, P066 and P069

Figure 4.12 Bandgap Shift with Run Sequence

The best device fabricated using the type V precursor is P072-08 with the highest open circuit voltage of 500 mV, fill factor of 63% and Isc of 2.65 mA. The I-V curve for this
sample is shown in figure 4.13. The sample P072 was type V device with 20% Gallium content and the substrate temperature was maintained at 350°C during precursor formation. The selenization process was altered with the 450°C step being eliminated. The current density for the type V precursor devices was low as compared to type I devices. This again appears to be due to the negative effects of excess Ga that accompany increased Ga incorporation and bonding. Thus co-evaporation of Ga with In and Se has not solved this problem for this device process.

Figure 4.13 I-V Characteristics of Device P072-07
Additional experiments were conducted with the window layer to determine their role in device made with the processes discussed above. ZnSe was tried as a window layer. ZnSe was evaporated on one half of sample P007 and CdS was deposited on the other half. The substrate temperature during ZnSe deposition was maintained at around 200°C. About 300Å of ZnSe buffer layer was deposited. Bilayer ZnO was then deposited on both halves of the device. Voc’s were found to be comparable on both halves, but the current density was very poor for the ZnSe half. Figure 4.14 shows the Voc distribution for sample P007. This result suggests that Jsc’s are not just a function of bulk absorber properties, but also of interface effects. Thus shortcomings in Jsc for the type V process have to be further studied to determine where the Jsc losses are occurring so that the process can be improved.

![Figure 4.14 Voc Distribution for Sample P007](image)

The influence of Sodium on the growth of CIGS films was observed some years ago [20]. The Na from the soda lime glass substrate diffuses into the absorber and it
effects in better film morphology and higher conductivity of the film. But there is no control over the amount of Na that diffuses.

Table 4.4 Overall Device Performance for Si$_3$N$_4$ Thickness Variation

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Si$_3$N$_4$ Thickness</th>
<th>Voc (mV)</th>
<th>Isc (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P015</td>
<td>200 Å</td>
<td>350</td>
<td>6.0</td>
</tr>
<tr>
<td>P016</td>
<td>800 Å</td>
<td>300</td>
<td>2.5</td>
</tr>
<tr>
<td>P017</td>
<td>1600 Å</td>
<td>290</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Hence to better understand the role of Na in the CIGS films, a Si$_3$N$_4$ barrier layer was deposited on the glass substrate before back contact deposition by a colleague who was studying this effect [21]. Table 4.4 shows the overall device performance for type I devices for different thickness of Si$_3$N$_4$ barrier layer. We can see from the table that as the barrier layer thickness increases Voc and Jsc reduces. But Voc reduction is not as dramatic as compared to the devices from the old system. This seems to be due to a reduction in formation of Cu$_x$Se$_y$ in the in-line chamber and is the subject of ongoing studies.
CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

In this study it is demonstrated that good device performance can be obtained for the CIGS films fabricated by the two stage process. But there is still some scope for improvement in the device performance. Type I devices with open circuit voltages of around 450 mV and fill factors of around 60% were fabricated regularly. The highest open circuit voltage obtained was 480 mV. The short-circuit currents of around 35 mA/cm2 with highest of 38mA/cm2 were fabricated.

It was seen that the bulk copper level mattered for the overall performance of the sample. With bulk copper thickness of 550Å the metal ratios were nearer to unity, in the range of 1.0 to 0.94, throughout the sample thus making the open circuit voltages uniform even with the thickness gradient. This was seen even without adding the usual small amount of top copper. If the copper thickness was increased to 594 Å then it adversely affected the device performance, as the Cu/In ratio was greater than unity throughout the sample. It was also observed that the chamber conditions affected the short circuit current densities. The current densities increased as the chamber remained under vacuum for longer time. This was due to a possible oxidation effect with Gallium or the presence of water vapor in the chamber.
In the type I devices, Gallium has the tendency to segregate to the back, and so there is little Gallium present in the space charge region. Hence there is no bandgap shift relative to CIS. The open circuit voltage increases with increase in the bandgap as the band bending increases. But the current density goes down with increasing bandgap. In the voltage-current trade-off higher voltages and lower currents are preferred as the total efficiency is not affected and the I^2R losses are reduced. For this reason the type V precursor was evaluated to see if the open circuit voltage could be increased by forcing the incorporation of additional Gallium in the space charge region.

In the type V precursor it was seen that about 25% of the total Gallium to be deposited had to be evaporated by itself first for better adhesion of the CIGS films to the Mo back contact. Also it was seen that the Gallium content had to be increased as compared to the type I devices for improving the device performance. The open circuit voltages increased as compared to the type I device. This can be attributed to the fact that enough Gallium was bonded in the space charge region to result in a bandgap shift.

Substrate temperature also proved to be an important parameter along with the selenization profile for better device performance. It was observed that the substrate temperature of 350°C and the selenization profile without the 450°C step gave the best results for type V devices. It can be speculated that the 450°C step results in formation of secondary phases which hurt device performance. Also if the substrate temperature is kept at 275°C, then the 450°C step in the selenization profile is necessary as it probably forms the required phases during the 450°C step. With the type V precursor the chamber conditions seem to be affecting the device performance and the open circuit voltages in particular. This could be due to the possible oxidation of the Gallium source when the
chamber is vented. It was observed that the Voc increased with every run from the time it is vented.

Some of the experiments that need to be done to improve the device performance are trying argon annealing of the samples with the type V precursors. Another thing that needs to be tried is fabricating the type I precursor but with Gallium deposited in the second chamber in selenium atmosphere as it is speculated that the Gallium will be incorporated into the bulk of the film better improving the current density without reducing the open circuit voltages too much. This is speculated because it has been observed that when copper is deposited in selenium atmosphere the bandgaps open [20].
REFERENCE

