International Journal of Speleology

Volume 7 Nummer 3 December 1975

Editor-in-Chief: R. Husson, Dijon
Book and News Editor: Brother G. Nicholas, Philadelphia

Advisory Board:

V. Aellen, Genève
J. de Almeida Fernandes, Lisboa
K. Anagnostides, Thessaloniki
E. Albéa, Barcelona
Th. C. Barr, Lexington, Ky.
J. A. Birstein, Moskva
L. Blaha, Trnava
J. Buresch, Sofia
A. Burger, Neuchâtel
V. Caumartin, Dijon
A. Cavallé, Montauban
B. J. Cholnoky, Grahamstown
G. Claus, Brookville, N.Y.
E. Dudich, Budapest
T. Farkas, Barbespan
I. Friedman, Tallahassee, Fla.
F. Habe, Postojna
P. J. Halicki, Tallahassee, Fla.
H. Kessler, Budapest
R. W. Mitchell Lubbock, Texas
G. W. Moore, La Jolla, Calif.
C. Motas, Bucuresti
C. N. Nath, Maundsaur
P. Palik, Budapest
Th. L. Poulson, Chicago, Ill.
E. Pretner, Postojna
S. Ruffo, Verona
H. J. Stammer, Erlangen
H. Strouhal, Wien
G. T. Warwick, Birmingham

PUBLISHED BY

SWETS & ZEITLINGER B.V. - AMSTERDAM
INTERNATIONAL JOURNAL OF SPELEOLOGY

is issued in volumes of 4 numbers not more than one volume being published annually.

All correspondence regarding subscriptions should be sent to the publishers

SWETS & ZEITLINGER B.V.
Publishing Department
347B, Heereweg
LISSE, The Netherlands

Manuscripts, illustrations and all communications relative to them should be addressed to the
Editor-in-Chief, Professor Dr. R. Husson, Biologie Animale et Generale, Faculte des Sciences,
Universite de Dijon, 6 Boulevard Gabriel, 21 Dijon, France. All matter relating to the section on
Abstracts and News should be sent to: Brother G. Nicholas, F. S. C., Department of Biology,
La Salle College, Philadelphia, Pa. 19141, USA. For instructions to authors with regard to the
manuscript see below and inside of back cover.

Printed in The Netherlands

© Copyright 1975 by Swets & Zeitlinger B.V., Amsterdam

NOTICE TO CONTRIBUTORS

1 Two copies of the complete text of each article should be submitted. Submission of a
paper will be taken to imply that it is unpublished and is not being considered for pu-
blication elsewhere. Papers published in the International Journal of Speleology may not
be reprinted or published in translation without permission. Reproduction of illustrations
requires similar permission.

2 Papers should be written in English, French, German, Italian or Spanish. Authors using
a language not their own are urgently requested to have their manuscripts checked for
linguistic correctness before submission. All papers should finish (in addition) with an
English summary, giving a synopsis of the paper with sufficient detailed information
concerning the methods used and the results obtained.

3 Papers should be typed in double spacing, on one side of the paper, quarto size,
leaving top and left hand margin at least 2.5 cm (one inch) wide.

4 Papers should be headed by a title, the initials(s) and name(s) of author(s) and an exact
description of the post held and business address of the author(s). Dates should be in the
form "5 February 1959".

Continuation see inside of back cover.
Interaction between Competition and Predation in Cave Stream Communities

by

David C. CULVER*

In most cave streams in the Appalachians, competition is a more important interaction than predation. This observation is justified because in most caves in the Appalachians potential predator populations consist of only an occasional salamander or crayfish near the cave entrance (see Barr 1961; Franz and Slifer 1971; and Holsinger 1964). However, there are a few caves in the Powell Valley of Virginia and Tennessee that have a large, permanent population of the salamander *Gyrinophilus porphyriticus*. The gilled larvae of *porphyriticus* live in cave streams several years before transforming into adults. During the larval period, they subsist, at least in cave streams, almost entirely on the invertebrates they capture in the cave stream. The appetite of *porphyriticus* in the laboratory can be quite large: one larva ate 27 of 30 isopods offered to it in a five day period. Since the natural density of isopods and amphipods is usually less than 30 per m2, the potential effect of *porphyriticus* in cave streams is very great, especially since reproductive rates of the prey are low.

The purpose of this study is twofold. The first is the determination of the effect of predation by *G. porphyriticus* larvae on their prey species (the isopod *Asellus recurvatus* and the amphipod *Crangonyx antennatus*), which are themselves competing. Since the work of Paine (1966) showing that predators can increase species diversity, there has been considerable interest in determining whether predation generally increases diversity in a community. Counterexamples have been found (see Addicott 1974), and May (1973a) has provided a theoretical basis for understanding the role of the interaction of competition and predation in affecting species diversity. One of the important points he makes is that there is no general rule about the effect predators will have on the diversity of prey species. The present study shows that the effect of predation depends on environmental heterogeneity, and that diversity of prey is increased by predation in complex habitats, but not in simple ones. I will attempt to assess not just predation by the salamander (Culver 1973a) or the competitive interactions of the crustacean prey (Culver 1973b), but rather I will emphasize the interaction of the two.

The second purpose of this study is to put forward some explanations for the rarity of *porphyriticus* in caves. *Porphyriticus* may be missing from many caves because of the island-like nature of caves (Culver 1970, 1971), but this does not explain why most populations of this salamander in caves consist of only a few

* Department of Biological Sciences, Northwestern University, Evanston, Illinois 60201, U.S.A.
Table 1. Densities of *Asellus recurvatus* and *Crangonyx antennatus* in different habitats in McClure's Cave, both when a *Gyrinophilus porphyriticus* larva was within one meter and when one was not. The number in parentheses after prey densities is the number of square foot samples taken. The average density was calculated by weighting each habitat equally. Habitat niche breadth was calculated using the formula $B_i = 1/\sum P_{ih}^2$ where P_{ih} is the frequency of species i in habitat h.

A. *Crangonyx antennatus* with *G. porphyriticus* larvae nearby

<table>
<thead>
<tr>
<th>Date</th>
<th>No. of Larvae</th>
<th>Riffle Density</th>
<th>Mud Pool Density</th>
<th>Flowstone Density</th>
<th>Gravel Pool Density</th>
<th>Av. Abun.</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>XII/73</td>
<td>5</td>
<td>0.4 (7)</td>
<td>0.3 (2)</td>
<td>0.4 (6)</td>
<td>0.4 (9)</td>
<td>0.38</td>
<td>3.9</td>
</tr>
<tr>
<td>V/74</td>
<td>10</td>
<td>0.5 (15)</td>
<td>0.0 (5)</td>
<td>0.8 (6)</td>
<td>0.2 (6)</td>
<td>0.38</td>
<td>2.5</td>
</tr>
<tr>
<td>VII/74</td>
<td>9</td>
<td>1.0 (1)</td>
<td>0.5 (1)</td>
<td>1.5 (12)</td>
<td>0.4 (9)</td>
<td>0.85</td>
<td>3.2</td>
</tr>
</tbody>
</table>

B. *Crangonyx antennatus* without *G. porphyriticus* larvae nearby

<table>
<thead>
<tr>
<th>Date</th>
<th>Riffle Density</th>
<th>Mud Pool Density</th>
<th>Flowstone Density</th>
<th>Gravel Pool Density</th>
<th>Av. Abun.</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV/73</td>
<td>0.5 (12)</td>
<td>0.0 (7)</td>
<td>0.2 (5)</td>
<td>0.7 (7)</td>
<td>0.35</td>
<td>2.5</td>
</tr>
<tr>
<td>XII/73</td>
<td>0.3 (9)</td>
<td>0.3 (3)</td>
<td>0.0 (9)</td>
<td>0.2 (8)</td>
<td>0.20</td>
<td>2.8</td>
</tr>
<tr>
<td>V/74</td>
<td>0.3 (16)</td>
<td>0.0 (7)</td>
<td>0.0 (9)</td>
<td>0.2 (9)</td>
<td>0.12</td>
<td>1.9</td>
</tr>
<tr>
<td>VII/74</td>
<td>0.0 (1)</td>
<td>0.0 (9)</td>
<td>0.2 (9)</td>
<td>0.2 (9)</td>
<td>0.10</td>
<td>2.0</td>
</tr>
</tbody>
</table>
C. *Asellus recurvatus* with *G. porphyriticus* larvae nearby

<table>
<thead>
<tr>
<th>Date</th>
<th>No. of Larvae</th>
<th>Riffle Density</th>
<th>Mud Pool Density</th>
<th>Flowstone</th>
<th>Gravel Pool</th>
<th>Av. Abun.</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>XII/73</td>
<td>5</td>
<td>3.6</td>
<td>0.0</td>
<td>1.0</td>
<td>0.6</td>
<td>1.30</td>
<td>1.9</td>
</tr>
<tr>
<td>V/74</td>
<td>10</td>
<td>0.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.28</td>
<td>1.4</td>
</tr>
<tr>
<td>VII/74</td>
<td>9</td>
<td>3.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.80</td>
<td>1.1</td>
</tr>
</tbody>
</table>

D. *Asellus recurvatus* without *G. porphyriticus* larvae nearby

<table>
<thead>
<tr>
<th>Date</th>
<th>Riffle Density</th>
<th>Mud Pool Density</th>
<th>Flowstone Density</th>
<th>Gravel Pool Density</th>
<th>Av. Abun.</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV/73*</td>
<td>4.1</td>
<td>0.1</td>
<td>1.6</td>
<td>1.6</td>
<td>1.82</td>
<td>2.5</td>
</tr>
<tr>
<td>XII/73</td>
<td>6.4</td>
<td>0.3</td>
<td>0.0</td>
<td>0.8</td>
<td>1.88</td>
<td>1.4</td>
</tr>
<tr>
<td>V/74</td>
<td>4.5</td>
<td>0.0</td>
<td>0.3</td>
<td>1.8</td>
<td>1.65</td>
<td>1.9</td>
</tr>
<tr>
<td>VII/74</td>
<td>10.0</td>
<td>0.4</td>
<td>1.2</td>
<td>1.4</td>
<td>3.25</td>
<td>1.6</td>
</tr>
</tbody>
</table>

*16 larvae were present in April 1973, but no sampling was done in their immediate vicinity.
scattered individuals. As will be seen, this appears to be a consequence of the ease of invasibility by the predator and the difficulty in reaching a stable equilibrium with the prey, which results from changes in prey availability.

METHODS AND MATERIALS

Most of the data reported here were collected in McClure's Cave in Lee County, Virginia. McClure's Cave is a small stream passage cave at the end of a small blind valley. The small stream in the cave, which enters the cave from an inaccessible side passage, flows over mud, gravel, and rocks and can be followed for 300 m before the cave passage gets too low to follow. Four main habitats occur in the cave: riffles, mud-bottomed pools, gravel-bottomed pools, and water flowing over travertine and flowstone. The riffle-pool structure typical of many small streams (Lepold et al. 1964) is incompletely developed, perhaps because of the presence of considerable amounts of travertine and flowstone. The cave was sampled at four times--20 April 1973, 17 December 1973, 14 May 1974, and 30 July 1974. On each trip the number of salamander larvae in the stream was recorded and the position of each larvae was marked by a pile of rocks. Salamanders were counted while walking and crawling downstream because they often hide under rocks when the water is disturbed. Between 23 and 32 random square foot (0.09 m\(^2\)) samples were taken of the prey in each of the four habitats on the trip out of the cave (Table 1). In addition, on the last three trips one to four square foot samples were taken within one meter of each salamander larva. These samples were taken to assess local prey depletion by a larva. In each sample, loose rocks and gravels were individually checked, and a tea strainer placed immediately downstream collected any animals that were dislodged. There was generally not sufficient water flow to use a Surber sampler. The entire stream down to a low water crawl was sampled. In July 1974, the upstream 50 meters of the stream was nearly dry with only isolated pools remaining. Few predators or prey were present and the section was not sampled.

Data were also taken in Sweet Potato Cave, a small cave in Lee County, where there is a series of cascading rimstone pools (gours) which disappears into a passage too low to follow. The pools were sampled on 21 April 1973 and 8 August 1973. All censusing was done visually.

RESULTS AND DISCUSSION

Table 1 lists the mean densities of *Asellus recurvatus* and *Crangonyx antennatus* in the four habitats both with and without nearby *porphyriticus* larvae. *G. porphyriticus* and its two crustacean prey are the only species known from the cave stream except for several lumbriculid oligochaetes collected by David Cook in May 1974, and occasional dense concentrations of the flatworm *Sphallopiana virginiana*. Cave flatworms are supposedly predators of amphipods and isopods (Mohr and Poulson 1966), and salamanders may eat flatworms. However, over 90 percent of
the flatworms that I have seen in the cave were on the surface film of isolated pools with no salamanders, isopods, or amphipods. These concentrations of flatworms were probably recently hatched from cocoons, and seemed to be feeding on the microbial scum on the surface of the pools. The role of flatworms in cave stream communities will be the subject of a later paper.

The best available estimate of the relative frequency of riffles, mud pools, gravel pools, and flowstone is the total number of times each habitat was sampled in areas not near salamander larvae (Table 1B) on the four trips to McClure’s Cave. The relative frequencies of the four habitats are not significantly different from equality ($\chi^2(3) = 2.57$, $P < 0.90$) and so when overall densities are calculated, the habitats are assumed to be in equal proportions.

The density of *A. recurvatus* is reduced markedly in the immediate vicinity of a salamander larva for each sampling period (Table 1C, D). The reduction in density was 31 percent in December 1973, 83 percent in May 1974, and 75 percent in July 1974 all of which are significant decreases (t - test, $P > 0.95$). On the other hand, the abundance of *C. antennatus* increased when salamander larvae are nearby (Table 1A,B). The increase in density was 90 percent in December 1973, 220 percent in May 1974, and 750 percent in July 1974. The July increase was significantly different ($P > 0.95$), the other two were not. This increase is not because *P. porphyriticus* does not eat *C. antennatus*. *Porphyriticus* readily eats *C. antennatus* (although *A. recurvatus* is preferred) in the laboratory (Culver 1973a), and it is found in the guts of larvae taken from the cave (Table 2). Rather, the increase occurs because *C. antennatus* experiences intense competition from *A. recurvatus* (Culver 1973b), and predation on *A. recurvatus* reduces its effect on *C. antennatus*. On the other hand, *recurvatus* is less affected by competition with *antennatus*.

Table 2. Gut contents of four *Gyrinophilus porphyriticus* larvae from McClure’s Cave.

<table>
<thead>
<tr>
<th>No. of C. antennatus in gut</th>
<th>No. of A. recurvatus in gut</th>
<th>Relative frequency of C. antennatus in nearby accessible habitats</th>
</tr>
</thead>
<tbody>
<tr>
<td>I *</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>II</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>III</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>IV</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Average</td>
<td>0.5</td>
<td>0.75</td>
</tr>
</tbody>
</table>

* A portion of one lumbricid was also in the gut.
Table 3. Distribution of *Asellus recurvatus* and *Crangonyx antennatus* in rimstone pools in Sweet Potato Cave. Pools are classified according to whether or not a *porphyriticus* larva was present.

<table>
<thead>
<tr>
<th>Predator Absent</th>
<th>Crangonyx</th>
<th>antennatus</th>
<th>Absent</th>
<th>Asellus</th>
<th>recurvatus</th>
<th>Present</th>
<th>Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predator Present</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Abundance of C. antennatus ranged from 10 to more than 40 in a pool.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>** Abundance of C. antennatus was 10 or less in a pool.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Culver 1973b). The amount of decrease of *A. recurvatus* and the amount of increase of *C. antennatus* vary greatly, but the amount of change is large in all cases. There is also a hint of reciprocity between the decrease of *A. recurvatus* and the increase of *C. antennatus*. The smallest decrease in *recurvatus* occurs at the same time (December 1973) as the smallest increase in *C. antennatus*. This is also consistent with the idea that the two species compete.

The populations in Sweet Potato Cave provide an interesting contrast with those in McClure’s Cave. The only available habitat is rimstone pools (gours), the rough equivalent of mud pools in McClure’s Cave. In those pools where larvae are present, no *recurvatus* are present, and the density of *antennatus* is reduced by over x50 percent (Table 3). In McClure’s Cave, that part of the prey population living in riffles and on flowstone is inaccessible to the salamander predators because the larvae apparently require still water in order to detect prey (Cooper and Cooper 1968, Culver 1973a), and consequently, the salamander larvae rarely occur in these habitats (Fig. 1). Thus there is a refugium for prey that will in general act to stabilize the predator-prey interaction (Rosenzweig and MacArthur 1963). In Sweet Potato Cave there is no refugium.

Even though only two prey species are involved, the changes in density can be translated into changes in diversity. The point diversity (see Sklododkin and Fishelson 1974) in McClure's Cave increases when salamander larvae are nearby because the densities of the two prey become similar, i.e., equitability increases. The point diversity in Sweet Potato Cave decreases because *A. recurvatus* is not present when salamander larvae are nearby.

The habitat niches of both *C. antennatus* and *A. recurvatus* show changes when *porphyriticus* larvae are nearby (Fig. 1). To calculate habitat frequencies, the average frequency of each species for each habitat for the three sampling dates was...
Fig. 1. Habitat niches of Crangonyx antennatus, Asellus recurvatus, and Gyrinophilus porphyriticus in McClure's Cave. The solid bars represent habitat niches of the prey when a porphyriticus larva is nearby. The open bars represent habitat niches of the prey when a porphyriticus larva is not nearby. The frequencies displayed in the figure are the average frequencies of occurrence for all sampling dates. Niche breadths are as follows:

<table>
<thead>
<tr>
<th>Predator</th>
<th>Nearby</th>
<th>Not Nearby</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. antennatus</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>A. recurvatus</td>
<td>1.5</td>
<td>1.6</td>
</tr>
<tr>
<td>G. porphyriticus</td>
<td>1.8</td>
<td>-</td>
</tr>
</tbody>
</table>
used. Niche breadths were calculated according to the following formula (Levins 1968):

\[
B_i = \frac{1}{\sum_h p_{ih}^2}
\]

where \(p_{ih} \) is the frequency of species \(i \) in habitat \(h \). The preferred habitat of *recurvatus* is clearly riffles, and it has a narrow niche whether or not a predator is present. This is in accord with the general principle that aquatic cave organisms prefer riffles (Culver 1973b). When salamander larvae are nearby, the frequency of isopods in the two habitats where salamanders occur (mud pools and gravel pools) decreases and causes a small reduction in niche breadth (from 1.6 to 1.5). The situation with *antennatus* is more complex. Unlike *recurvatus antennatus* has a broad habitat niche (3.3 when larvae are nearby, and 3.3 when they are not) (Fig. 1). However, like *recurvatus*, the preferred habitat of *antennatus* is probably riffles (Culver 1973b). In areas not near a larva *antennatus* is common in non-riffle habitats. This is because of the high density of the isopod competitor in riffles. When larvae are nearby, we would expect an increase in frequency in riffles and on flowstone, but in fact only the frequency on flowstone increases. Few salamanders are on flowstone, and perhaps flowstone is preferred by *antennatus*. Surprisingly, the frequency in gravel pools, but not in mud pools, decreases—both frequencies were expected to decrease. *C. antennatus* may avoid predators by burrowing in the mud (Holsinger and Holsinger 1971).

The difference between the total niche breadth and average niche breadth was used by Levins et al. (1973) to measure niche plasticity. The average niche breadth is simply the average of niche breadths for each sampling date (see Table 1), and total niche breadth is computed by using the average habitat frequency over all sampling dates (Fig. 1). If niches are different at different times, total niche breadth will be greater than average niche breadth. If niches do not change, the two will be equal. The only case where niche plasticity was found was for *antennatus* when predators were not nearby. In this case, plasticity seems to measure niche uncertainty brought about by exclusion by *recurvatus* of *antennatus* from a preferred habitat.

Since that part of the prey population in McClure’s Cave that occurs on flowstone and in riffles is inaccessible to salamander larvae, relative predation rates depend not only on prey preferences, but also on that proportion of the prey population that is accessible to salamander larvae. From laboratory experiments on feeding preference, it was found that *porphyriticus* larvae take *recurvatus* three times as frequently as it takes *antennatus* (Culver 1973a). To obtain relative predation rates, these frequencies (0.75 and 0.25) must be multiplied by accessible proportion of the population, i.e., the proportion in mud pools and in gravel pools. This calculation is shown in Table 4 for two situations—for a predator invading a previously unexploited area and for a predator present in an area. For both situations, there is no significant difference between the predation rates on *antennatus* and *recurvatus*. However, the potential predation rate on *antennatus* by a larvae
invading a previously unexploited area is significantly greater than the potential predation rate on *antennatus* by a resident (t = 2.26, P > 0.95). The difference between the two rates for *A. recurvatus* is significant only at the 90 percent level (t = 1.76).

DISCUSSION

Invasibility

In a general way, there is a clear distinction between a species invading a community, and the stability of a community with all species at their equilibrium population sizes. This distinction carries over into theoretical models of species interactions as well. In order for species i to invade a community, dNj/dt (the rate of change of population size) must be positive when Nj is small, or at least the invading individuals in the propagule must obtain sufficient food to maintain themselves but without sufficient food for reproduction. In order for a community to

Table 4. Relative predation rates by *Gyrinophilus porphyriticus* on *Asellus recurvatus* and *Grangonyx antennatus*. The accessible proportion of the population is the proportion in mud pools and gravel pools. These proportions are multiplied by 0.25 in the case of *C. antennatus* and by 0.75 in the case of *A. recurvatus* to correct for prey preferences. This number is the relative predation rate. Invasion refers to the situation when a predator invades an unexploited area; resident refers to the situation when a predator has been in the area for some time.

<table>
<thead>
<tr>
<th></th>
<th>C. antennatus</th>
<th>A. recurvatus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Invader</td>
<td>Resident</td>
</tr>
<tr>
<td>April 1973</td>
<td>0.125</td>
<td>—</td>
</tr>
<tr>
<td>December 1973</td>
<td>0.155</td>
<td>0.117</td>
</tr>
<tr>
<td>May 1974</td>
<td>0.100</td>
<td>0.035</td>
</tr>
<tr>
<td>July 1974</td>
<td>0.125</td>
<td>0.065</td>
</tr>
<tr>
<td>Mean</td>
<td>0.126</td>
<td>0.072</td>
</tr>
<tr>
<td>Variance</td>
<td>0.0005</td>
<td>0.0017</td>
</tr>
<tr>
<td>Standard error</td>
<td>0.011</td>
<td>0.023</td>
</tr>
</tbody>
</table>
have a stable equilibrium point, population sizes must return to this equilibrium point following small perturbations. However, for most of the models clustered around the 'community matrix' concept (Levins 1968; May 1973a), the formal criteria for invasibility and stability are identical (Strobeck 1973) because of the strong linearity assumptions in these models. The data on predation rates (Table 4) suggest, although the formal criteria for invasibility and stability may be identical, the parameters (the predation rates) themselves change. That is, potential predation rates are greater at the time of invasion than at equilibrium. This in turn suggests that, in the field, most porphyriticus populations should consist of only a few individuals (successful invasions) and only a few populations should consist of more than a few individuals (roughly equivalent to equilibrium populations). This is in fact the case (Fig. 2). This is also consistent with the small number of prey items in salamander guts (Table 2).

This phenomenon of invasion being easy compared to establishing a stable equilibrium may be a general characteristic of predators that eat prey occurring in a heterogeneous environment where habitats differ in their accessibility to predators. Consider the situation prior to invasion by a predator. Even if a community does not have the maximum stable number of competing prey species, those species that are present are likely to expand their habitat niches so that most available habitats are used by one or more species. This is the well documented phenomenon of habitat release (Diamond 1970; MacArthur 1972). By assumption, some of the habitats are inaccessible to a predator that invades, and some are vulnerable. When a predator invades, there will be a relatively abundant food supply. As the predator

![Fig. 2. Distribution of population sizes of Gyrinophilus poprphyriticus larvae and adults in Powell Valley Caves.](image)
population grows, the available food supply contracts since a greater proportion of prey will be in refugia. This process may result in the extinction of some prey populations, but from the point of view of the predator, the total amount of food available decreases as its population grows. This may lead to instability in two ways. First, there may not be enough food available for the predators to reproduce, or second, time lags in predator population response may cause the predator population to overshoot and then crash (May 1973b).

The situation with competitors is likely to be quite different. Once again consider an unsaturated community. Habitat release will act to fill most available habitats. When a competitor invades, it is likely to face intense competition, or at least greater habitat niche overlap. If the initial invasion is successful, population increase may become progressively easier as the habitat niches of the resident species contrast, which would cause a reduction in interspecific competition. As the population increases, intraspecific competition increases and slows growth rates. However, intraspecific competition does not cause a negative growth rate when population size is below the carrying capacity, whereas interspecific competition can, especially (as is argued above) when population size is small. Since niche release is much less frequent for species that eat different foods in the same habitat than for species eating the same food in different habitats (MacArthur and Wilson 1967), we would not expect extra difficulty for invasion when niche separation is primarily by diet. However, for guilds of species for which habitat separation is important, such as prey species discussed in this paper (see Culver 1973b), one would expect that most populations would be close to equilibrium rather than in the early stages of invasion. Of the 19 prey populations in the 11 caves with salamander populations, only one \(\text{C. antennatus} \) in Surgeners Cave is small enough that it is possible that it is in the early stages of invasion, in contrast to the salamander populations (Fig. 2).

Stability

In this section the stability of the predator-prey system and the prey system alone will be analyzed. To do this I will start with the following equations (Cramer and May 1971):

\[
\frac{dH_1}{dt} = r_1 H_1 \left(1 - \frac{H_1}{K_1} - \frac{\alpha_{12} H_2}{K_1}\right) - \beta H_1 P_3
\] \hspace{1cm} (1)

\[
\frac{dH_2}{dt} = r_2 H_2 \left(1 - \frac{H_2}{K_2} - \frac{\alpha_{21} H_1}{K_2}\right) - \beta H_2 P_3
\] \hspace{1cm} (2)

\[
\frac{dP_3}{dt} = P_3 \left(-d + \gamma H_2 + \gamma H_3\right)
\] \hspace{1cm} (3)

where \(H_1 \) is the population size of \(\text{C. antennatus} \), \(H_2 \) the population size of \(\text{A. recurvatus} \), \(P_3 \) the population size of \(\text{G. porphyriticus} \), \(r_1 \) the rate of increase of
species i, K_i the carrying capacity of species i, α_{ij} the effect of competitor j on species i, the predation rate of *porphyriticus*, d the death rate of the predator, and the rate of increase in the predator population brought about by eating a prey organism. The assumptions involved with using such simplified equations have been discussed extensively (see Gilpin and Justice 1973; MacArthur 1972; May 1973; Maynard Smith 1974; Neill 1974). One assumption should be especially noted—the equations are assumed to hold near equilibrium, therefore the community is assumed to be near equilibrium. The linearity of predation (H_1P_3) seems to be a reasonable assumption. In the laboratory, the functional response curve (Holling 1965) of *porphyriticus* is linear when only one prey species is present (Culver unpublished). While switching may occur (Lawton et al. 1974; Murdoch and Marks 1973), the failure of conditioning experiments to produce changes in prey preference of *porphyriticus* (Culver 1973a) indicates that switching is unlikely. The most obvious inaccuracy is in equation (3). Since the adult stage of *porphyriticus* does not live in the stream, there should be, at a minimum, time lags in some of the terms in equation (3). Bishop (1941) believes that the larval period of *porphyriticus* in springs lasts three years, and one year as an adult before sexual maturity is reached, and it is likely that cave populations have an even longer life history (see Brandon 1971).

The effect of using equation (3) without time lags will be to overestimate the stability of the predator-prey system (see May 1973b).

The data in Table 4 indicate that the predation rates on the two prey are not significantly different, and it also appears that the carrying capacities of *C. antennatus* and A. recurvatus (K_1 and K_2) are very similar, according to two independent estimates. First, in a previous paper (Culver 1973b), I claimed that the carrying capacity for the prey species is directly proportional to the inverse of the washout rate of individuals from a riffle in an artificial stream. The ratio of the carrying capacities in this case is 0.96. Second, by combining a direct count of individuals (N_i) in a section of stream in Gollahan’s No. 1 Cave with competition coefficients determined in the laboratory, the ratio of K_1 and K_2 was found to be 1.01. Finally, the competition coefficients (α_{ij}) were calculated in Culver (1973b)—$\alpha_{12} = 1.0$, $\alpha_{21} = 0.3$.

At equilibrium, equation (1) to (3) are, in matrix form:

$$
\begin{bmatrix}
K_1 \\
K_2 \\
-d
\end{bmatrix}
=
\begin{bmatrix}
1 & \alpha_{12} & \frac{\beta K_1}{r_1} \\
\alpha_{21} & 1 & \frac{\beta K_2}{r_2} \\
-\gamma & -\gamma & 0
\end{bmatrix}
\begin{bmatrix}
\hat{H}_1 \\
\hat{H}_2 \\
\hat{P}_3
\end{bmatrix}
$$

(4)
May and his colleagues (May 1971, 1973a; Cramer and May 1971) have done a complete stability analysis of systems described by equations like the ones discussed above, and their results will be followed closely.

The stable coexistence of a system of competitors is subject to two constraints. First, the equilibrium must be stable to small perturbations, and second, the equilibrium must lie in that part of the phase space where all population sizes are positive. This second constraint has been called feasibility by Roberts (1974). This distinction can be made clearer by a brief consideration of two-species competition models. In terms of the standard isocline graphs of two-species competition (e.g., Krebs 1972, p. 216), stability requires that the slope of the isocline for species 1 (\(\frac{dN_1}{dt} = 0 \)) be less than the slope of the isocline for species 2 (\(\frac{dN_2}{dt} = 0 \)). Feasibility requires that the intersection of the two isoclines must be in the upper right quarter of the phase plane. The standard graphical treatment of two species competition partially blurs this distinction (Vandermeer pers. comm.). None-feasible systems are not mathematical artifacts without ecological importance (Roberts 1974), because non-equilibrium states can occur with all population sizes positive (Ricklefs 1973, p. 515). Recent theoretical work has emphasized stability rather than feasibility (Levins 1970; May 1972) in part because stability analysis indicates complexity generally decreases stability, counter to the usual biological intuition (Hutchinson 1959). Feasibility may be important in real communities as well, because most randomly constructed unstable communities are not feasible as well (Roberts 1974). In the paragraphs below, both feasibility and stability of the McClure’s Cave community will be examined.

Translating May’s stability criteria in terms of equation (5) the predator-prey system will be stable if

\[
0.7 \left(\frac{r_2 \hat{H}_2}{K} \right) > 0
\]

which will be positive if \(H_2 \) is positive. In terms of the interaction coefficients, the system is always stable. The prey system will be stable if

\[
0.7 \left(\frac{r_1 r_2 \hat{H}_1 \hat{H}_2}{K^2} \right) > 0
\]
Table 5. Equilibrium population sizes calculated from equation (5).
See text for details.

<table>
<thead>
<tr>
<th>Species</th>
<th>Salamanders Present</th>
<th>Salamanders Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crangonyx antennatus</td>
<td>$\frac{(-\delta K + d)(\frac{1}{r_1} - \frac{1}{r_2})}{0.7 \gamma/r_1}$</td>
<td>0</td>
</tr>
<tr>
<td>Asellus recurvatus</td>
<td>$\frac{(-\delta K - d) + (\delta K - 0.3d)}{r_2/r_1}$</td>
<td>$\frac{0.7 \gamma}{d}$</td>
</tr>
<tr>
<td>Gyrinophilus porphyriticus</td>
<td>$\frac{\gamma K - d}{\gamma \beta K/r_1}$</td>
<td></td>
</tr>
</tbody>
</table>

which will also always be stable if population sizes are positive. It is the equilibrium population sizes, i.e., the feasibility, that set real constraints on the system (Table 5). These constraints operate either by making a positive population size impossible, or by reducing population size to the point where chance fluctuation are likely to cause extinction. For the predator-prey system, the equilibrium population size of any of the species may be zero, depending on the particular value of the parameters (Table 5). For the prey system alone, the equilibrium population size of *C. antennatus* is calculated to be zero, when in fact it is small but positive (Table 1). This indicates that either α_{12} is slightly less than one, or K_1 is slightly greater than K_2. If the population sizes calculated in Table 5 are taken to be completely accurate, the predator-prey system is more stable. A more general point, and a more robust conclusion is that the reduction in population size is more likely to cause extinction than the instability of the equilibrium.

Patchiness

The major environmental difference between McClure’s Cave and Sweet Potato Cave is that the habitat in Sweet Potato Cave consists of a series of highly homogeneous patches (rimstone pools, or gours) whereas the habitat in McClure’s Cave is heterogeneous (riffles, flowstone, etc.) and patchy (e.g., different pools are separated from each other). In other caves similar to McClure’s, *recurvatus* and *antennatus* persist in the absence of *porphyriticus*. Thus it seems that the habitat heterogeneity of these streams allows for continued persistence of both the prey
system and the predator-prey system. In Sweet Potato Cave, it is likely that the combination of the two prey species or the complete predator-prey system is unstable if one pool is considered in isolation. Consider the two prey species without the predator. The pools are very homogeneous, and we would expect competitive exclusion on theoretical grounds, especially since there is interference competition between the two prey species (Culver 1973b). However, the time to exclusion may be very long (Miller 1967). In any case, there will be migrants both from water seeping into the cave and from other pools. Theoretically, migration can result in the regional coexistence of species that cannot coexist indefinitely in a single patch (Levins and Culver 1971; Slatkin 1973; Levin 1974). This seems to be happening in Sweet Potato Cave. That is, the expected time to extinction is greater than the expected time between migrations. When a predator is present, population sizes are decreased (especially for *recurvatus*) and extinction times become less than the times between migrations.

Finally, the role of competition and predation in both communities can be compared. In both caves, competition decreases population sizes—*antennatus* is more affected in McClure’s Cave while *recurvatus* seems to be most affected in Sweet Potato Cave. If reduced population size increases the chance of extinction (MacArthur and Wilson 1967), then competition destabilizes the community. Predation in McClure’s Cave tends to equalize population sizes of the two species, and thus reduces the chance of extinction. It is a stabilizing force (Paine 1971). In Sweet Potato Cave, it reduces both prey populations and this is a destabilizing force (Addicott 1974).

SUMMARY

Predation by salamander larvae (*Gyrinophilus porphyriticus*) reduces the density of one of its prey (the isopod *Asellus recurvatus*) but increases the density of the other (the amphipod *Crangonyx antennatus*) in a Virginia cave stream. This happens because predation on the isopod reduces its competitive effect on the amphipod. Both prey populations tend to occur more frequently in refugia when predators are present. In another cave where there are no prey refugia, the predator reduces the density of both species. It appears that it is easier for a predator to invade a community than to reach a stable equilibrium with the prey, if the prey have refugia. Persistence of the prey system and the predator-prey system is constrained more by low population sizes than by the instability of the interaction coefficients.

RESUME

La prédation exercée par les larves de Salamandre (*Gyrinophilus porphyriticus*) fait décroître la densité d’une de ses proies (l’Isopode *Asellus recurvatus*), mais fait s’accroître celle d’une autre (l’Amphipode *Crangonyx antennatus*) dans un cours d’eau souterrain de Virginie. Ceci est dû à ce que la prédation sur l’Isopode diminue...
sa compétitivité vis à vis de l'Amphipode. Les deux populations de proies tendent à se rencontrer plus fréquemment dans des zones refuges lorsque les prédateurs sont présents. Dans une autre grotte où n'existent pas de refuges pour les proies, le prédateur fait diminuer la densité des deux espèces. Il apparaît qu'il est plus facile pour un prédateur, si la proie dispose de zone de refuge, d'envahir une communauté que d'arriver à un équilibre stable avec la proie. La persistence du système des proies et du système prédateur-proies est maintenue plus par les faibles effectifs des populations que par l'instabilité des coefficients d'interaction.

ACKNOWLEDGEMENTS

This work was partially funded by Biomedical Sciences Support Grant FR7-28-05 (NIH) to Northwestern University. D. Cook, N. Culver, J. Holsinger, T. Kane, J. Keith, and T. Van Zant assisted with field work. Residents of Lee County, Virginia extended various courtesies, especially permission to enter privately owned caves.

LITERATURE CITED

Chronologie du développement et évolution du stockage de calcium et des cellules à urates chez Niphargus schellenbergi Karaman.*

par

François GRAF et Philippe MICHAUT**

SUMMARY

Developmental chronology and evolution of calcium storage and urate containing cells in Niphargus schellenbergi Karaman.

The intra-marsupial development of Niphargus schellenbergi is divided into three phases: within the chorion, embryonic intermoult and juvenile intermoult. The disappearance of the chorion divides the first phase from the second. A double exuviation exists between the last two. The chronology of the embryonic development and of the beginning of post-embryonic development is established. On hatching the juvenile N. schellenbergi has one pair of hepatopancreatic caeca. During the first post-embryonic intermoultls are formed the ventral hepatopancreatic caeca, posterior caeca and anterior caecum. The relation between posterior caeca and the aorta is described.

The study of calcium storage before moultng showed that calcareous concretions located in posterior caeca and midgut have the typical form, volume, quantity and distribution of the species. This calcium accumulation process occurs in the midgut following the first post-embryonic exuviation. It is only when the sixth exuviation is attained that storage in the posterior caeca is similar to the one in adults.

The urate containing cells located at the lower face of the pericardial septum begin to accumulate urate spherules 15 days before hatching. They vary in form, volume, localization and composition, and so may be considered as storage sites for urate, pigments and various ions (P, K, Ca, S, Cl, Na, Mg) which are returned to circulation.

Il est désormais bien établi qu’avant la mue le Crustacé hypogé Niphargus stocke dans son intestin moyen et dans ses caecums postérieurs des concrétions calcaires qui seront utilisées après l’exuviation pour la consolidation de la nouvelle cuticule. Ce processus de stockage de calcium avant la mue, qui s’observe également chez le Talitridé aérien Orchestia (Graf, 1962, 1969) et le Mysidacé Spelaeomysis longipes (Nath, 1972), est en rapport avec le mode de vie du Crustacé. Chez Orchestia ce phénomène de stockage de calcium apparaît au cours de la vie embryonnaire (Graf, 1972); la présente étude a pour but de rechercher à quel stade embryonnaire ou

* Une partie de cette étude a fait l’objet d’une communication lors du 3ème colloque international sur les genres Gammarus et Niphargus et du 2ème symposium international sur l’écologie des eaux souterraines (Schlitz, 22 - 26 sept. 1975).
** Laboratoire de Biologie animale et générale, Faculté des Sciences de la Vie et de l’Environnement, 6, Boulevard Gabriel, 21000 - Dijon, France.
post-embryonnaire ce stockage intervient chez Niphargus, ce qui nécessite d'établir la chronologie du développement de cet Amphipode hypogé. Par ailleurs, ayant montré la présence de cellules à urates chez ce Crustacé (Graf, 1971), il apparaissait particulièrement intéressant de conduire cette étude sur des individus d'une population de Niphargus schellenbergi chez lesquels ces cellules sont particulièrement nombreuses.

Après avoir établi les grandes étapes du développement de ce Niphargus, nous envisagerons d'une part le développement des dérivés de l'intestin moyen et le stockage de calcium et d'autre part l'apparition et l'évolution des cellules à urates.

I. LES GRANDES ETAPES DU DÉVELOPPEMENT.

A – Travaux antérieurs sur Niphargus virei

Si l'embryologie des Amphipodes épièges a fait l'objet d'assez nombreux travaux (cf. biblio. in Weygolt, 1958; Ginet, 1960, Bregazzi, 1973), les données concernant le développement de Niphargus sont relativement restreintes. Husson (1949) fait état du ralentissement du développement des Amphipodes hypogés comparativement à celui des épièges et précise (1959) que, chez N. virei, il faut compter environ 4 mois de vie marsupiale (de la ponte à la mise-bas) alors que chez une plus petite espèce (N.aquilex Schiodte) il faut une cinquantaine de jours pour obtenir l'écllosion. Chez N.virei la première mue se fait en moyenne un mois environ après la mise-bas, les mues suivantes n'ayant lieu que tous les 2 ou 3 mois (Husson, 1953). Selon Ginet (1960), la gestation de N.virei se subdivise en 2 phases séparées par l'écllosion : l'incubation dure de 70 à 90 jours et la vie marsupiale jusqu'à 40 jours, ce qui fait un total de 4 mois. Les intermues sont en moyenne de 70 jours pendant la première année et de 110 jours pendant la seconde.

Les travaux de Ginet (1960) et Turquin (1967, 1969) précisent la chronologie de la morphogenèse de N.virei, la période d'incubation étant scindée en 4 phases d'une vingtaine de jours :

– 0 à 25 jours : de la ponte à l'image nauplienne (segmentation, édification de la bande germinative et de l'organe dorsal).
– 25 à 50 jours : du stade nauplien à la fin de la mise en place des appendices. Cette période voit notamment la mue nauplienne, le stade métanauplien, la courbure ventrale, l'apparition d'une coque albumineuse.

Si ces diverses étapes se retrouvent pour l'essentiel chez N.schellenbergi, nos observations divergent cependant, d'une part sur la présence d'une nouvelle mue entre la mue nauplienne et l'écllosion, et, d'autre part, sur la persistance du chorion jusqu'à l'écllosion.
CALCIUM ET CELLULES D'URATE CHEZ NIPHARGUS

B – Observations sur Niphargus schellenbergi.

Cette étude est menée sur des *N. schellenbergi* [espèce considérée par Straskraba (1972) comme indépendante de *N.aquilex* Schiödt] récoltés dans une source très intermittente de la commune d’Avot (Côte-d’Or) en contre-bas d’un verger cadastré A 328.

Les œufs de *N. schellenbergi*, espèce de taille moyenne, sont semblables à ceux de *N.virei* décrits par Ginet (1960) quant à leur coloration jaune pâle et à leurs dimensions (0,7 mm x 0,6 mm en début d’incubation; 0,8 x 0,65 avant l’éclosion). Comme chez les autres Gammaridés, le nombre des œufs est fonction de la taille de la femelle, il est en moyenne d’une douzaine pour les femelles dont la taille voisine 9 mm, ce qui est légèrement supérieur au cas de femelles de *N. longicaudatus* de 10 à 11 mm chez lesquelles il y a en moyenne 9 œufs (Ginet, 1960).

L’observation du développement est effectuée, d’une part sur des œufs prélevés périodiquement dans le marsupium de plusieurs femelles (récoltées gestantes ou ayant pondu en élevage) et, d’autre part, sur des œufs placés en incubation artificielle dans des salières dont l’eau est renouvelée tous les 2 jours; si cette dernière méthode est particulièrement satisfaisante, il est cependant délicat d’éviter diverses infections de l’œuf au cours d’un développement complet, ce qui oblige à considérer que le rôle du marsupium ne doit pas être limité à celui d’un simple support.

Notons le comportement original d’une femelle qui a très rapidement reintroduit dans son marsupium un œuf qui venait d’en être extirpé à l’aide d’un pinceau fin.

La vie marsupiale de *N. schellenbergi*, d’une durée moyenne de 100 jours (élevage à 10 – 12° C), peut, comme pour le Talitridé *Orchestia cavimana*, être scindée dans le marsupium

- phase du chorion
- intermue embryonnaire
- intermue juvénile
- éclosion 1
- éclosion 2
- exuviation 1
- marsupium

Fig. 1. Chronologie, en jours, du développement de *N. schellenbergi* fondée sur l’évolution des enveloppes embryonnaires et des formations cuticulaires. Explications dans le texte. ch, chorion; cn, cuticule nauplienne; ci, cuticule intermédiaire; o, s, cj, ongles, soies, cuticule juvénile; od, organe dorsal.
en 3 étapes (Graf, 1972). Les deux premières étapes, nommées phase du chorion et intermue embryonnaire, correspondent au développement embryonnaire proprement dit (35 jours chacune) et sont séparées par la rupture et la disparition du chorion. La troisième étape, d'environ 30 jours, correspond à la plus grande partie de la première intermue post-embryonnaire (nommée intermue juvénile), les pulli étant libres dans le marsupium (fig. 1)

- 0 à 12 j.: phase de segmentation de l’œuf à l’intérieur du chorion.
- 13 j.: édification de la bande germinative.
- 16 j.: édification de l’organe dorsal qui n’adhère pas au chorion.
- 20 j.: stade nauplien qui sera rapidement entouré d’une mince enveloppe, la cuticule nauplienne.
- 25 j.: stade métanauplien caractérisé par l’allongement et l’ébauche de la métamérisation du futur mésosome.
- 27 j.: début de la courbure ventrale entre mésosome et pléon; antennes et mandibules sont nettement visibles.
- 32 j.: alors que la courbure ventrale est maximalé et que les ébauches des appendices du mésosome apparaissent, la cuticule nauplienne se décolle de l’embryon sauf au niveau de l’organe dorsal (fig. 1).
- 35 j.: le chorion se rompt et disparaît. Cet instant peut être considéré comme une éclosion primaire car l’embryon n’est alors enfermé que dans une enveloppe, la cuticule nauplienne, qu’il a lui-même sécrétée. Sous la cuticule nauplienne l’ectoderme embryonnaire élabore une nouvelle enveloppe nommée cuticule intermédiaire (Graf, 1972). La rupture du chorion est attestée, d’une part par la constatation du rejet de cette membrane sur des œufs placés en incubation artificielle et, d’autre part, du fait que, dès cet instant l’organe dorsal débouche à l’extérieur et qu’il est alors possible de voir des extrusions par le centre de cet organe, extrusions peut-être dues aux conditions d’observation, à l’influence de la chaleur ou de la lumière. Observé en premier chez le Talitridé Orchestia (Graf, 1972) et confirmé chez des Lysianassidés (Bregazzi, 1973), ce processus d’éclatement du chorion constaté chez le Gammaridé hypogé N. schellenbergi pourrait être général aux Amphipodes, à moins qu’il ne soit en relation avec le mode de vie assez particulier des espèces considérées: mode de vie aérien pour Orchestia, 6 mois d’incubation à 10 C pour les Lysianassidés des eaux de l’Antarctique, longue incubation aussi pour Niphargus.

2. Deuxième étape: intermue embryonnaire (35 jours).
Cette phase d’organogenèse se déroule entre deux exuviations particulières (d’où l’emploi du terme d’intermue), d’une part après le décollement de la cuticule nauplienne et la disparition du chorion (éclosion 1) et, d’autre part, avant le rejet des cuticules nauplienne et intermédiaire correspondant à la seconde éclosion, à la suite de laquelle le jeune sera libre dans le marsupium (fig. 1).
- 37 j.: les antennes sont segmentées, les ébauches de tous les appendices sont présentes.
CALCIUM ET CELLULES D'URATE CHEZ NIPHARGUS

- 45 j.: le corps et les appendices sont segmentés, l'intestin moyen provisoire délimite entièrement le vitellus (planche I, 1).
- 50 j.: édification du cœur et d'une paire de caecums hépatopancréatiques qui s'isolent de l'intestin provisoir par étranglement de ses parois latéro-ventrales. Les branches et les plaques coxales s'individualisent.
- 55 j.: la cuticule intermédiaire se décolle de l'épiderme (stade D O de l'intermue embryonnaire). Début d'accumulation d'urates dans les futures cellules à urates.
- 59 j.: contractions cardiaques régulières mais intermittentes.
- 60 j.: différenciation du matériel fibrillaire des matrices des soies des ongles (stade D 1’ de l'intermue embryonnaire). Les matrices trichogènes sont reliées à la cuticule intermédiaire par une fibre nerveuse, comme pour Orchestia (Graf, 1972). Début d'édification des caecums postérieurs par évagination de la région dorsale de l'extrémité postérieure de l'intestin moyen (planche I, 2).
- 66 j.: début de sécrétion de la couche préexuviale du futur squelette, la cuticule juvénile (stade D 2 de l'intermue embryonnaire; planche I, 3).
- 68 j.: mouvements du corps assez vifs.
- 70 j.: éclosion secondaire et libération du jeune dans le marsupium par rupture et rejet des cuticules nauplienne et intermédiaire. A l'éclosion 2, le jeune N. schellenbergi mesure environ 1,9 mm (de la base des antennes au telson), le flagelle principal des antennes 1 comporte 6 articles, celui des antennes (A 2) 4 articles. Il n'est pourvu que d'une seule paire de caecums hépatopancréatiques (dorsaux) qui renferment des réserves vitellines, comme la région médiane de l'intestin moyen (planche I, 4). Les caecums postérieurs sont au tout début de leur développement.

Après l'éclosion 2, le jeune N. schellenbergi demeure environ 30 jours dans le marsupium. Il en sortira lorsqu'il sera à l'étape D 0 de cette intermue post-embryonnaire qui se terminera 10 jours après par la première exuviation extra-marsupiale. En fait la sortie du marsupium des jeunes d'une même portée peut être très échelonnée et varier de 18 à 35 jours après l'éclosion 2, mais, dans ces divers cas, la durée de la première intermue post-embryonnaire sera cependant d'environ 40 jours. Les puli qui sortent du marsupium, alors qu'ils sont parvenus à un stade d'intermue entre C et D 1”, s'alimentent dès leur sortie; ceux qui ne sortent qu'en D 1” ne s'alimentent pas avant la première exuviation extra-marsupiale, les concrétions calcaires apparaissant dès ce stade d'intermue dans leur intestin moyen. Les réserves de vitellus de l'intestin moyen sont utilisées dans les jours qui suivent l'éclosion, alors que celles contenues dans les caecums hépatopancréatiques peuvent, dans certains cas, persister partiellement jusque durant l'intermue 2. Cette troisième phase du développement voit l'organogenèse se poursuivre.
4. Étapes suivantes.

Après leur sortie du marsupium, les jeunes sont élevés, soit en présence d’argile (dans laquelle ils creusent très rapidement des terriers), soit en présence de feuilles mortes d’Orme et reçoivent dans ces deux cas une alimentation carnée. Contrairement à ce qui a été observé chez N. virei par Ginét (1955) et Gounot (1960), les individus élevés en l’absence de limon argileux se développent aussi bien que ceux qui disposent de ce sédiment : l’argile ne conditionne donc pas la survie ou le développement des individus de cette population de N. schellenbergi.

Durant la première année, les intermues sont en moyenne de 70 à 90 jours (fig. 2). Les durées relatives des diverses étapes et stades d’intermue sont semblables à celles de l’adulte et identiques à celles de N. virei (Graf, 1968), à savoir que la période D correspond à environ 20% de l’intermue totale.

L’accroissement de taille est relativement faible au cours des premières intermues : 1,9 mm à l’intermue 1, 2,4 mm à l’interm. 2, 2,8 mm à l’interm. 3, 3,25 mm à l’interm. 4, 3,7 mm à l’interm. 5, les plus grands mâles récoltés mesurant 14 mm, les plus grandes femelles 11 mm.

Afin de rechercher un critère permettant de définir à quelle intermue est parvenu un individu, il convenait de savoir comment s’effectue l’augmentation du nombre des articles du flagelle principal des antennes et de celui des antennules. Chez N. virei, le flagelle principal des antennes possède 6 articles à l’éclosion, 10 à la mue suivante et en acquiert régulièrement 2 à chaque mue, mais à partir de 18 articles la régularité est perturbée (Ginet, 1960). Chez les jeunes N. schellenbergi, le nombre des articles étant aussi souvent impair que pair, nous avons suivi la croissance des flagelles antennaires pendant 5 intermues sur une quarantaine d’individus provenant de 6 portées. Ces jeunes sont élevés par portée et sont observés périodiquement au microscope pour déterminer leur stade d’intermue. A l’approche de la mue, les individus sont isolés ; l’observation des flagelles antennaires permet de reconnaître l’article qui se divise, ce qui est vérifié, après l’exuviation, par la comparaison de l’exuvie et de la nouvelle antenne. Chez N. schellenbergi, le nombre d’articles des...
flagelles antennaires est, à l'écllosion, de 6 pour les A 1 et de 4 pour les A 2; il est de 25 et 11 chez les plus grands mâles observés (14 mm) et de 23 et 10 chez les femelles (11 mm). En ce qui concerne les A 1, la numérotation des articles est faite de l'extrémité proximale (base) vers l'extrémité distale. Lors de l'exuviation 1 (entre les intermues 1 et 2) le nombre des articles passe de 6 à 8 chez les 3/4 des individus par subdivision des articles 3 et 4, et de 6 à 9 chez les autres par subdivision des articles 2, 3 et 4. Lors des exuviations suivants, seuls les articles proximaux (basaux) 1 et (ou) 2 se subdiviseront. La figure 3 montre les diverses modalités de l'accroissement du nombre de ces articles: ou bien aucun article ne se divise, ou bien la division affecte un seul article (le 1 ou le 2) ou 2 articles (le 1 et le 2). Lors de l'intermue 5, les individus sont répartis en 4 lots subégaux à 11, 12, 13 ou 14 articles. Ces irrégularités dans l'accroissement du nombre des articles s'observent non seulement à l'intérieur d'une même portée mais encore sur un même individu, chacun des deux flagelles passant par exemple de 10 à 11 par subdivision de l'article 1 d'un flagelle et subdivision de l'article 2 de l'autre flagelle. Il est de même fréquent que les deux flagelles n'aient pas le même nombre d'articles, ceci indépen- damment d'une éventuelle amputation. En ce qui concerne le flagelle des A 2, il présente 4 articles à l'écllosion et durant les intermues 1 et 2, 5 articles durant les intermues 3 et 4 (l'article proximal s'étant divisé); au cours des intermues suivants, l'accroissement devient irrégulier du fait de la division de 0, de 1 ou de 2 articles. Afin de déterminer à quelle intermue est parvenu un jeune N. schellenbergi il conviendra
donc de considérer à la fois la taille de l’individu et le nombre des articles flagellaires des A 1 et des A 2 (fig. 2).

![Diagram](image)

Fig. 3. Diverses modalités de l’accroissement du nombre des articles du flagelle principal des antennes 1 de *N. schellenbergi* au cours des trois premières intermues. La numérotation des articles est faite de l’extrémité proximale (base) vers l’extrémité distale.

II. **E VOLUTION DE L’INTESTIN MOYEN ET DU STOCKAGE DE CALCIUM.**

Nous allons d’abord préciser les grandes étapes de l’organogenèse des dérivés de l’intestin moyen, puis nous envisagerons quelle est la relation anatomique des caecums postérieurs avec l’aorte et comment évolue le processus de stockage de calcium avant la mue.

A - Les dérivés de l’intestin moyen

Chez les Gammaridés, trois formations glandulaires sont en relation directe avec l’intestin moyen dont elles dérivent:

- **deux paires de caecums hépatopancreatiques** débouchant ventralement à la limite antérieure de l’intestin moyen. Une paire est ventrale par rapport au tube digestif, elle s’étend jusque dans l’urosome; l’autre paire dite dorsale, en fait latérale par rapport au tube digestif, est légèrement plus courte que la précédente (planché II, 2).

- **un caecum antérieur impair** débouchant dorsalement à la limite antérieure de l’intestin moyen.

- **une paire de caecums postérieurs** débouchant dorsalement à la limite postérieure de l’intestin moyen et s’étendant dans le métasome.

Chez *N. schellenbergi*, l’organogenèse du tube digestif et de ses dérivés débute au cours de l’intermue embryonnaire et se poursuit longtemps après l’éclosion. Vers 45 jours, l’endoderme enveloppe le vitellus pour constituer un intestin moyen provisoire (planché I, 1) qui sera à l’origine de l’intestin moyen définitif, des caecums
hépatopancreatiques, des caecums postérieurs et du caecum antérieur. Vers 50 jours, le tube endodermique se subdivise longitudinalement en trois compartiments, un compartiment médi-o-dorsal correspondant à l’intestin moyen définitif et deux compartiments latéro-ventraux plus volumineux qui contiennent la plus grande partie du vitellus et correspondent aux caecums hépatopancreatiques (future paire dorsale) (planches 1, 2). L’édification des caecums postérieurs débute vers 60 jours selon deux évaginations dorsales de l’extrémité postérieure de l’intestin. Quant au caecum antérieur, il commence à s’organiser, juste avant l’élosion, à partir d’une évagination médi-o-dorsale de l’extrémité antérieure de l’intestin. Ainsi, lors de l’élosion 2, le jeune _N. schellenbergi_ n’est pourvu que d’une seule paire de caecums hépatopancreatiques et les caecums antérieur et postérieur sont à peine ébauchés. La présence d’une seule paire de caecums hépatopancreatiques à l’élosion a déjà été signalée chez _N. virei_ par Turquin (1967, cet auteur parlant en fait d’une paire de caecums antérieurs) et chez _Orchestia_ par Graf (1972), alors que chez _Gammaraeus_ les deux paires sont présentes à la naissance.

L’évolution des caecums, relativement lente, est schématisée sur la figure 4. Les caecums hépatopancreatiques ventraux commencent à s’organiser, au cours de l’intermue juvénile 1, à partir de la région antéro-interne des caecums dorsaux; ils s’allongent progressivement vers l’arrière et deviendront plus longs que les caecums dorsaux lors de l’intermue 5 (12 mois environ). Le vitellus contenu dans l’intestin moyen disparaît au début de l’intermue juvénile 1, celui contenu dans les caecums hépatopancreatiques sera résorbé beaucoup plus lentement tout au long de cette intermue (planches 1, 4). L’allongement des caecums postérieurs vers l’avant s’effectue pour l’essentiel en 4 mois (exuviation 2), mais ne sera maximal qu’au cours de l’intermue 5.

PLANCHE II.

1 – Coupe transversale au niveau du cœur d’un _N. schellenbergi_ adulte montrant la localisation des cellules à urates (cu) sous le septum péricardique (s) subdivisé en 2 lames au niveau du cœur (co); _im_, intestin moyen; _lsd_, lame septale dorsale; _lsv_, lame septale ventrale; _tm_, tunique musculaire cardiaque.

2 – Coupe transversale au niveau du 7ème mésosomite d’un _N. schellenbergi_ adulte montrant la localisation des cellules à urates (cu) au milieu de cellules adipeuses sous le septum péricardique (s); _Cchd_, caecum hépatopancreatique dorsal; _chv_, caecum hépatopancreatique ventral; _im_, intestin moyen; _vs_, vésicules séminales. Les caecums postérieurs (cp) ne sont pas localisés dans la lumière de l’aorte postérieure (ap) mais, comme le montre la photographie 3 (agrandissement d’un caecum de la photo 2), entre la lame septale dorsale (_lsd_) et la paroi de l’aorte.

4 – Coupes séries réalisées dans la région distale des caecums postérieurs montrant que les caecums sont localisés entre la lame septale dorsale (_lsd_) et la paroi de l’aorte (pa) et non dans la lumière de l’aorte (ap).

5 – De même chez _N. virei_ les caecums postérieurs (cp) qui semblent être logés dans la lumière de l’aorte postérieure (ap) sont en fait localisés entre la lame septale dorsale (_lsd_) et la paroi de l’aorte (pa); _cm_, connexion mésodermique; _im_, intestin moyen; _lsv_, lame septale ventrale; _s_, septum péricardique.

6 – Chez _N. foreili_ les caecums postérieurs (cp) renferment lors de l’exuviation de volumineux sphéroolithes et les cellules à urates sont le plus souvent, au niveau du métasome, alignées le long des caecums.
Fig. 4. Représentation schématique de l'état de développement des dérivés de l'intestin moyen lors de l'écllosion 2 (Ec 2), de l'exuviation 1 (Ex 1), de l'exuviation 2 (Ex 2) et chez l'adulte (Ad), par rapport aux segments du mésosome (mésos), du métasome (méta) et de l'urosome (uro). Les échelles (L) précisent la longueur des individus aux stades considérés. Chez les jeunes le diamètre des caecums hépatopancréatiques est proportionnellement plus grand que chez les adultes. *ca*, caecum antérieur; *chd*, caecum hépatopancréatique dorsal; *chv*, caecum hépatopancréatique ventral; *cp*, caecum postérieur; *im*, intestin moyen; *ip*, intestin postérieur.

B — Relation des caecums postérieurs avec l'aorte
La position des caecums postérieurs a intrigué la plupart des auteurs qui les ont observés chez divers Gammaridés (cf. biblio. in Graf, 1969), d'une part du fait de leur position dorsale par rapport au septum péricardique alors que la totalité de l'appareil digestif est localisé dans le compartiment ventral (planché II) et, d'autre part, parce qu'ils paraissent *a priori* logés dans la lumière de l'aorte postérieure: selon Cussans (1904) et Graf (1969) "les caecums postérieurs sont en contact étroit avec la paroi de l'aorte mais ne sont pas placés dans sa lumière", alors que pour Gibert (1971) "l'aorte postérieure enveloppe complètement ces deux caeca qui sont donc entièrement contenus dans sa lumière interne". Il convenait donc d'étudier la relation des caecums avec l'aorte postérieure non seulement chez des adultes, ce qui a été fait par Klovekorn (1934), mais aussi chez des individus sur le point d'éclorer, c'est-à-dire au moment où les caecums se développent (fig. 5).
L'aorte postérieure est étroitement associée au septum péricardique, elle est en fait localisée dans le septum qui est constitué par l'accolement de deux lames: comme le coeur (planches I, 4 et 5; planche II, 1), l'aorte postérieure s'est vraisemblablement constituée selon le mode de formation du vaisseau dorsal des Annélides, l'espace virtuel compris entre les deux lames septales correspondant à un reliquat de cavité coelomique (?) et la lumière du vaisseau à une cavité blastocoélienne (Weygolt, 1958; Siewing, 1969, p. 231, 322, 326). La lame ventrale du septum est en continuité avec le mésoderme intestinal par l'intermédiaire d'une ou deux connexions mésodermiques (planches I, 4 et 5) qui sont, chez l'adulte, parfois bien visible (planches II, 5) ou le plus souvent noyées dans un tissu adipeux; ces connexions ne sont, bien entendu, pas homologues des mésentères des Annélides ou des Vertébrés. L'aorte postérieure est bien délimitée par une paroi propre de l'extrémité du tube cardiaque jusqu'au niveau de la région antérieure du proctodeum, mais sa localisa-

Fig. 5. Relation des caecums postérieurs avec l'aorte et le septum péricardique chez un *N. schellenbergi* venant d'éclore. *ap*, aorte postérieure; *cm*, connexion mésodermique; *cp*, caecum postérieur; *im*, intestin moyen; *ip*, intestin postérieur; *lsd*, lame septale dorsale; *lsv*, lame septale ventrale; *mi*, mésoderme intestinal; *pa*, paroi de l'aorte; *s*, septum péricardique. En réalité les lames du septum sont intimement accolées entre elles et avec la paroi de l'aorte.
tion par rapport au septum paraît se modifier au cours de son trajet: en avant de la région distale des caecums, l’aorte est localisée dans le plan du septum (fig. 5 A), à l’approche et au niveau des caecums elle apparaît placée au-dessus du septum (fig. 5, B à D), alors qu’au niveau de l’intestin postérieur elle est située en dessous (fig. 5, F et G). En réalité, comme nous l’avons dit, l’aorte est localisée entre les deux lames septales et au niveau de la zone d’évagination des caecums postérieurs, la lame septale ventrale n’est plus présente alors que la lame septale dorsale persiste sur la plus grande longueur de l’urosome. Lors de leur évagination, les caecums postérieurs dépriment la lame septale dorsale pour s’accoller latéralement ou même dorsalement à l’aorte (fig. 5, E). Ils migrent ensuite vers l’avant entre la paroi de l’aorte et la lame septale dorsale (planche II, 2 à 5), ils ne sont jamais dans la lumière interne de l’aorte, mais présentent cependant un contact très net avec le flot sanguin.

C — Stockage du calcium avant la mue

1. Chez l’adulte

Chez *N. schellenbergi* adulte le stockage de calcium avant la mue est essentiellement localisé dans l’intestin moyen, du mésozome 5 à l’urozome 1, sous forme de rhomboèdres de calcite ou de complexes rhomboédriques (planche III, 3) qui mesurent en moyenne 175 μ de long pour 150 μ d’épaisseur (un complexe de 400 μ x 175 μ a cependant été observé chez un individu de 10,5 mm). Dans les caecums postérieurs le stockage calcique n’est jamais très important, il est généralement constitué par trois sphéroolithes localisés dans la région proximale de chaque caecum (région antérieure de l’urozome 1 et parfois région postérieure du métozome 3), ce qui signifie que les 3/4 antérieurs ne stockent pas de calcium. S’ils ne sont pas nombreux, ces sphéroolithes sont cependant relativement gros et peuvent atteindre 175 μ de long et 120 μ d’épaisseur. Il arrive fréquemment d’observer un complexe rhomboédrique arqué, engagé dans la région proximale d’un caecum et dans l’intestin (planche IV, 3). Plus rarement un chapelet de sphéroolithes peut être observé dans l’intestin, au milieu des rhomboèdres. Ces deux observations laissent à penser que du calcium sécrété par les caecums pourrait être acheminé dans l’intestin, soit sous forme soluble, soit sous forme de sphéroolithes qui évolueraient en forme rhomboédrique par cristallisation secondaire. De cette hypothèse très vraisemblable, déjà envisagée dans le cas de *N. virei* (Graf, 1969), il résulte que l’absence d’un stock calcique important dans les caecums ne signifie pas que ces organes n’ont pas participé à l’élaboration des concrétions intestinales.

PLANCHE III.

Concrétions calcaires sous forme sphéroolithique (*sph*) dans les caecums postérieurs (*cp*) et rhomboédrique (*rh*) dans l’intestin moyen (*im*) lors de l’exuviation.

1 — Chez un *N. virei* de 19 mm
2 — Chez un *N. virei* de 9 mm
3 — Chez un *N. schellenbergi* de 13 mm

Ces trois photographies étant reproduites au même grossissement, il est clair que le stockage de calcium est beaucoup moins important chez *N. schellenbergi* et, dans ce cas, quelques sphéroolithes seulement sont localisés dans la région proximale des caecums postérieurs.
En fait, le stock calcique total de \textit{N. virei} apparaît proportionnellement plus important que celui de \textit{N. schellenbergi}, ce qui est lié au fait que le squelette de \textit{N. virei} est plus calcifié que celui de \textit{N. schellenbergi}. Chez \textit{N. virei}, le stock calcique dilate l’intestin et occupe plus des 3/4 de la longueur des caécums (planche III, 1 et 2), alors que chez \textit{N. schellenbergi} l’intestin n’est pas déformé et seulement le 1/4 de la longueur des caécums est susceptible de renfermer des sphériolithes (planche III, 3). Ces constatations sont valables pour des populations diverses vivant dans des eaux dont la teneur en calcium est différente (de 90 à 135 mg/l) et sont indépendantes de la présence ou de l’absence de cellules à urates. Il ne semble pas que l’absence de stockage important dans les caécums postérieurs de \textit{N. schellenbergi} puisse être mise en relation avec le fait que le corps de cette espèce est plus grêle et plus aplati que celui de \textit{N. virei}, ce qui pourrait entraîner une compression plus forte de l’aorte postérieure; en effet, le corps de \textit{Niphargus foreli} Humbert n’est pas beaucoup plus trapu et, chez cette espèce, les caécums postérieurs sont dilatés par de gros sphériolithes (planche II, 6). Chez \textit{Niphargus kochianus}, les sphériolithes occupent les 3/4 des caécums et sont minuscules (5µ) comparativement à ceux des \textit{foreli} de même taille. Sans entrer dans le détail, il convient de préciser que la forme, le volume, la quantité et la répartition des concrétions calcaires sont caractéristiques de chacune des quatre espèces observées jusqu’à présent, à savoir \textit{virei, schellenbergi, foreli} et \textit{kochianus}.

Chez \textit{N. schellenbergi}, la mise en réserve de calcium débute au cours de l’étape D 2, soit une dizaine de jours avant l’exuviation pour des individus de 10 à 13 mm dont l’intermue totale est de 6 à 9 mois. La dissolution des concrétions commence aussitôt après l’exuviation, elle est généralement totale dans les 48 h suivantes; l’animal s’alimente dans les 24 h qui suivent l’exuviation, c’est-à-dire avant que les concrétions soient entièrement solubilisées. Notons que chez certains individus, il apparaît dans les caécums de petits sphériolithes de 10 µ maximum, nouvellement formés, alors que la dissolution des autres concrétions est presque terminée, ce qui pourrait être le fait d’une calcémie momentanément trop élevée.

L’élimination de concrétions observée dans certains cas chez \textit{N. virei} (Husson, 1950 b; Graf, 1969) n’a jamais été constatée chez \textit{N. schellenbergi}.

\textit{2. Au cours du développement}

Contrairement à ce qui a été observé chez \textit{Orchestia} chez laquelle le stockage de

\textit{PLANCHE IV.}

\textit{Niphargus schellenbergi} au cours des premières mues.

1 – A l’étape D 2 avant la première exuviation, soit quelques jours après la sortie du marsupium. On note la présence de concrétions calcaires rhomboédriques (\textit{rh}) dans l’intestin moyen et de cellules à urates (\textit{cu}) au niveau du septum péridocardique du mésosome.

2 – En cours de 3ème exuviation, alors que l’intestin moyen renferme des rhomboédres de calcite (\textit{rh}), les caécums postérieurs (\textit{cp}) ne présentent pas de concrétions; \textit{ac}, ancienne cuticule; \textit{ip}, intestin postérieur; \textit{nc}, nouvelle cuticule.

3 – Individu de 5,3 mm aussitôt après la 6ème exuviation. A ce stade de développement la répartition des concrétions calcaires est semblable à celle de l’adult; \textit{cp}, caécums postérieurs; \textit{im}, intestin moyen; \textit{ip}, intestin postérieur; \textit{lACP}, limite antérieure des caécums postérieurs; \textit{sph}, sphériolithes.
calcium débute au cours de l’intermue embryonnaire (Graf, 1972), il n’y a pas de mise en réserve de calcium lors de l’éclosion 2 de N. schellenbergi; à ce moment l’intestin renferme encore du vitellus et les caecums postérieurs n’en sont qu’au début de leur développement. La jeune Orchestia sera libérée dans le milieu “aérien” dans les 4 jours qui suivent cette éclosion, alors que le jeune Niphargus demeurera encore 30 jours à l’abri du marsupium et aura la possibilité de prélever le calcium nécessaire à la calcification de son squelette dans l’eau ambiante. L’absence de stockage de calcium durant la deuxième phase embryonnaire de Niphargus oblige à considérer que la dénomination de cette période comme “intermue embryonnaire” n’est pas aussi justifiée que chez Orchestia, mais mérite cependant d’être conservée pour Niphargus, du fait qu’elle correspond à l’intervalle de temps séparant deux exuviations particulières. Lors de l’exuviation 1 (soit 10 jours après la libération du marsupium), il existe un stock calcique dans l’intestin moyen: une quinzaine de rhomboèdres (70 μ x 50 μ pour les plus développés) répartis du mésosomite 7 au milieu de l’urosomite 1 (planches IV, 1). Ces concrétions sont élaborées dans les 48 h qui précèdent l’exuviation et sont dissoutes dans les 12 h qui la suivent. Il n’y a aucune concrétion dans les caecums postérieurs qui ne sont qu’à demi développés.

Au cours des exuviations suivantes, le nombre des rhomboèdres augmente et le stockage progresse vers la région antérieure de l’intestin, jusque dans le mésosomite 5 (planches IV, 2). Dans les caecums postérieurs, quelques microsphéroolithes (d’environ 5 μ) sont présents dans la région proximale lors de l’exuviation 2 (individus d’environ 3 mm et 6 mois). Ce n’est que au cours de la deuxième année (individus de 5 mm) que le stockage sera semblable à celui des adultes: il faut en effet attendre la sixième ou la septième intermue pour que quelques gros sphéroolithes apparaissent dans la région proximale des caecums (planches IV, 3).

Ainsi, comparativement à Orchestia où la mise en réserve de calcium dans les caecums postérieurs débute dès l’intermue embryonnaire et est d’emblée semblable à celle de l’adulte, chez N. schellenbergi ce processus ne débute qu’en vue de l’exuviation 1 et s’établit progressivement au cours de la première année; cette différence est vraisemblablement due au fait que chez le Talitridé les caecums se développent totalement au cours de l’intermue embryonnaire, alors que leur développement chez N. schellenbergi ne commence qu’au moment de l’éclosion et qu’il est relativement lent. D’après quelques observations fragmentaires effectuées chez N. virei, les caecums postérieurs se développent aussi lentement que chez schellenbergi, mais nous ignorons à quel moment ils commencent à stocker des sphéroolithes calcaires.

III. EVOLUTION DES CELLULES À URATES.

La présence de cellules à urates chez un Amphipode semble avoir été reconnue en premier chez N. schellenbergi (Graf, 1971). Ce sont des cellules jaunâtres qui sont le plus souvent localisées au niveau de la tête et du mésosomé (planches V). Observées en grand nombre chez des N. schellenbergi d’une même
population, ces cellules ont été recherchées dans d'autres populations de la même espèce et d'espèces différentes: il résulte de cette étude que des populations de la même espèce en sont dépourvues, alors que des espèces différentes en possèdent. C'est ainsi que N. virei en présente généralement au niveau de la tête et que dans une population de N. foreli (thienemannii?) (récoltée par J.P. HENRY dans le sous-écoulement de la rivière la Loue, Jura) ces cellules à urates sont très nombreuses et réparties tout le long du corps (planches II, 6).

En fait ces cellules avaient déjà été observées. C'est ainsi que dans les généralités sur le genre Niphargus, Schellenberg (1942, p. 51) note l'absence d'yeux et de pigments du corps, si ce n'est parfois une coloration rose pâle ou jaune et la présence d'un endroit jaune ou orange à l'emplacement des yeux ("und einem gelben oder orange Flecken in der Augengegend"). Ces cellules jaune citron ou jaune soufle ont d'ailleurs été interprétées comme des yeux par C.Sp.Bate (in Vejdovsky, 1896) ou comme des reliquats de pigments oculaires (Vejdovsky, 1896, 1905). Cet auteur note que le pigment est jaune mais peut apparaître blanc, brun ou noir selon le mode d'éclairage, et décrit des cas de réductions oculaires où il retrouve ces cellules pigmentaires au milieu des cônes cristallins dispersés et plus ou moins nombreux au niveau de la tache oculaire. Il s'interroge cependant quant à la fonction de ces cellules pigmentaires dont la présence, la quantité ou l'aspect ne sont pas identiques des deux côtés.

Chez les Isopodes, les organes de Zenker d'Aschaff et les organes jaunes de Caecosphacroma sont constitués de cellules homologues des cellules à urates de Niphargus (cf.biblio.in Graf, 1971).

A – Localisation
Les cellules à urates sont accolées à la face inférieure du septum péricardique (planches III, 1 et 2) et font, de ce fait, saillie dans le compartiment médian, entre le tube digestif et les caecums hépatopancréatiques. Elles peuvent aussi être disposées au niveau des membranes intersegmentaires des premiers méso somites et des vaisseaux péricardiques (planches V, 1 et 5) qu'elles longent parfois jusque dans les basipodites des périopodes. Chez N. foreli, elles peuvent s'étendre jusqu'au niveau de l'urosome, de part et d'autre des caecums postérieurs et plus précisément de l'aorte (planches II, 6). Ces cellules diffèrent des néphrocytes péricardiaux décrits chez divers Amphipodes (Bruntz, 1903) mais non retrouvés chez Niphargus (Husson, 1951) et qui sont des athrocytes localisés autour du cœur.

Sur l'animal vivant ces cellules sont opaques, leur teinte pouvant varier d'un blanc légèrement jaunâtre à un jaune vif. Chez l'animal fixé, elles apparaissent sombres par transparence (planches V, 7) et d'un blanc brillant en observation en fond noir (planches V, 2 à 6). Les concrétions qu'elles renferment étant solubilisées par les fixateurs aqueux (y compris les alcool 70° ou 90°), il convient, pour les conserver, d'utiliser un fixateur anhydre, tel que l'alcool-chloroforme (2–1) et d'entreposer les échantillons dans un congélateur. Pour une étude histologique, il est nécessaire, d'une part d'employer le même fixateur ou le liquide de Carnoy et, d'autre part, d'insolubiliser les sphéroolithes avant d'utiliser des colorants aqueux, soit par le complexe d'argent-méthénamine, soit par la méthode de von Kossa.
B – Constitution
Les cellules à urates sont très irrégulières (planché V, 6), elles présentent des prolongements ramifiés parfois ténus qui s'insinuent entre les cellules adipeuses (planché V, 7). Elles mesurent de 50 à 150 μ (noyau de 10 μ environ) et sont chargées de microsphéro lithes de 0,5 à 3 μ dont la structure est à la fois radiaire et concentrique. Ces sphéroolithes sont plus réfringents que le baume de Canada et polarisent dans les teintes de premier ordre en présentant une croix noire très nette. L’étude microchimique de ces concrétions (Graf, 1971) a permis de préciser qu’elles sont constituées d’urates; l’analyse ionique par spectrographie des rayons X, effectuée à la microsonde Cameca grâce à l’obligeance de Pr. R. Martoja, a révélé la présence de phosphore, potassium, calcium, soufre, chlorure, sodium et magnésium, ions généralement associés aux urates du corps gras de certains Insectes (Ballan-Dufra nais et Martoja, 1971; Martoja, 1971). Quant aux pigments jaunes, qui colorent parfois intensément les cellules à urates, il est vraisemblable qu’ils appartiennent au groupe des ptérines qui ont été mises en évidence dans les organes jaunes de Caecosphae roma (Descimon et Marvillet, 1966).

C – Evolution
Les divers auteurs (cf. biblio. in Husson et Henry, 1963) qui ont étudié les organes de Zenker ou les organes jaunes des Isopodes, leur attribuent une fonction d’excrétion azotée, en considérant ces “organes” comme des reins d’accumulation de déchets puriques provenant du catabolisme protéique. Il convient en fait de savoir si ces cellules sont des sites d’accumulation définitive de déchets puriques ou des lieux de stockage temporaire d’urates, phosphates, pigments et ions divers. Pour tenter de répondre à cette question, nous avons cherché à préciser, d’une part à quel moment apparaissent ces cellules et, d’autre part, si elles se caractérisent ou non par une stabilité de leur structure ou de leur composition.

Chez N. schellenbergi, les cellules à urates commencent à se charger de sphéroles au cours du développement embryonnaire, 15 jours avant l’éclosion, c’est-à-dire

PLANCHE V.
1 – Répartition des cellules à urates chez un N. schellenbergi mâle de 14 mm.
2 – Embryon de N. schellenbergi une dizaine de jours avant l’éclosion 2; les cellules à urates (flèches) sont bien visibles en éclairage en fond noir (échelle: 100 μ).
3 – Détail des cellules à urates de la photographie précédente. Dix jours avant l’éclosion, ces cellules renferment de nombreuses sphéroles d’urates (échelle: 100 μ).
4 – N. schellenbergi en intermue 1 dans le marsupium, soit une vingtaine de jours après l’éclosion. Les cellules à urates sont plus nombreuses qu’au stade précédent (échelle: 100 μ).
5 – Répartition des cellules à urates dans le péridion d’un mâle de 14 mm au niveau du septum péricardique (s), des vaisseaux péricardiques (flèches), des membranes intersegmentaires (astérismes) (échelle: 500 μ).
6 – Cellules à urates dans le septum péricardique vu à plat; les flèches indiquent l’axe du cœur (échelle: 100 μ).
7 – Cellule à urates dans laquelle on distingue l’emplacement du noyau (n) et la présence de sphéroles d’urates dans les prolongements (flèches) qui s’insinuent entre les cellules adipeuses (échelle: 50 μ).
CALCIUM ET CELLULES D'URATE CHEZ NIPHARGUS
quelques jours avant que ne soit établie la circulation sanguine. Ces cellules, au nombre d’une trentaine environ, se localisent tout d’abord au niveau du septum péricardique des 4 premiers segments du mésolemone (plaque V, 2); elles sont généralement étirées et mesurent en moyenne 60 μ, taille déjà importante. Les sphéro-lithes apparaissent progressivement dans le cytoplasme de ces cellules (plaque V, 3) et il est net que le volume définitif de la cellule chargée de sphèrulates n’est pas conditionné par la quantité accumulée mais qu’il correspond au volume initial. Il faut donc considérer que le volume important de ces cellules est une prédisposition au stockage et non une conséquence de l’accumulation. Avec la croissance de l’animal, le nombre et le volume des cellules peuvent augmenter (plaque V, 4 et 6), mais cette augmentation se fait proportionnellement au développement du corps entier et les variations de quantité d’urates que l’on peut observer chez les adultes s’observent également à tous les stades du développement. L’accumulation d’urates chez *N. schellenbergi* n’est donc pas évidente, elle serait plus apparente chez *Asellus*, mais Dresel et Moyle (1950) indiquent que, pour des individus de poids différents, la proportion d’acide urique est assez constante.

En fait, au sein d’une même population de *N. schellenbergi*, la quantité de cellules à urates est extrêmement variable suivant les individus et la question qui se pose est de savoir s’il existe de telles variations au cours de la vie d’un même individu. L’observation régulière pendant 10 mois d’une trentaine d’individus élevés en présence ou en absence d’argile, dans de l’eau provenant de la station de récolte, soit naturelle, soit plus ou moins diluée à l’eau distillée ou concentrée à l’eau de mer, abondamment nourris ou, au contraire, en état de jeûne, montre que la quantité totale d’urates varie très lentement ; elle diminue chez certains, augmente chez d’autres, sans qu’il soit possible d’établir une corrélation entre le mode d’élevage et ces variations, qui se manifestent essentiellement par des rétractions ou des extensions des cellules et des modifications dans la teinte plus ou moins jaune des pigments. L’observation plus précise d’un petit groupe de cellules d’un individu élevé dans des conditions normales est plus instructive. On constate en effet, comme le montre la figure 6, que non seulement les contours cellulaires se déforment sans cesse, mais encore que ces cellules changent de position. En général, chaque cellule passe alternativement par des phases d’extension, des prolongements cytoplasmiques chargés de sphèrulates s’insinuant alors entre les cellules adipeuses (plaque V, 7) et par des phases de rétraction. Dans les conditions normales d’élevage, l’animal présente généralement autant de cellules rétractées que de cellules en extension et, de ce fait, la quantité totale d’urates semble ne pas varier, alors que, dans des conditions expérimentales, c’est la majorité des cellules qui sont dans un état ou l’autre, ce qui entraîne des variations perceptibles de la quantité d’urates. Ainsi, chez *N. schellenbergi*, les variations de volume de chaque cellule à urates démontrent qu’une reprise des urates stockés est possible et les modifications importantes et relativement rapides de la surface cellulaire sont un des signes d’un métabolisme cellulaire actif.

Quant à la constitution de la charge des cellules à urates, la seule observation de variations dans la teinte des pigments est déjà une preuve d’une modification de leur composition ou de leur teneur. Il convient de signaler à ce sujet que, dans une
population de *N. foreli* récoltée en mars, les cellules à urates étaient jaune franc chez les mâles et très peu pigmentées chez les femelles. De plus, après une dessiccation prolongée, les cellules à urates apparaissent claires, brunes ou noires ce qui correspond vraisemblablement à des *états successifs de l'évolution de leur composition*. Afin de rechercher d'éventuelles variations dans la teneur ionique, l'analyse par spectrographie des rayons X a été conduite sur des cellules claires, brunes et noires de trois *N. schellenbergi*, un mâle, une femelle et un mâle élevé durant un mois dans une solution de NaCl à 6/1000. Les résultats de cette analyse (fig. 7) montrent qu'il existe des variations dans la teneur ionique entre les cellules d'un même individu et celles d'individus différents. Si ces données quantitatives, du fait qu'elles ne portent que sur 3 individus, ne sont pas suffisantes pour autoriser des hypothèses quant au rôle de ces cellules, elles permettent cependant d'affirmer que le *stock des cellules à urates est susceptible de variations quantitatives et qualitatives* : c'est ainsi que phosphore et calcium présentent des variations inverses et que chez l'individu élevé dans une solution de NaCl, la perte de phosphore et de potassium est évidente.

Fig. 6. Modifications de la forme de quatre cellules à urates observées durant 30 jours au niveau du mésosomite 5 d'un *N. schellenbergi*. La droite en pointillé correspond à la limite supérieure de la plaque coxale. Les contours cellulaires représentés en pointillé indiquent qu'ils sont localisés dans un plan sous-jacent au plan d'origine.
Ainsi, chez *N. schellenbergi*, les cellules à urates peuvent être considérées non pas comme des reins d’accumulation des déchets du catabolisme protéique, mais comme des sites de stockage d’urates, de pigments et de divers ions qui pourraient être remis en circulation. On sait en effet, d’une part que chez les Insectes l’acide urique peut constituer une réserve azotée réutilisable et participer à la synthèse d’acides nucléiques et d’acides aminés (Mitlin et Wiygul, 1973), et, d’autre part, que des pigments jaunes possédant le noyau pteridine peuvent avoir une grande importance comme coenzymes d’oxydation (Viscontini et Schmidt, 1965).

Fig. 7. Teneur en ions P, K, Ca, S, Cl, Na et Mg des cellules à urates de trois *N. schellenbergi*: un mâle (1), une femelle (2) et un mâle élevé durant un mois dans une solution NaCl à 6/1.000. (3). Pour chaque individu l’analyse a été faite sur des cellules claires (a), brunes (b) et noires (c). Les nombres portés en ordonnées correspondent à l’intensité exprimée en nombre de chocs/seconde. Les teneurs diverses ne sont comparables quantitativement que pour un même ion.

RESUME

Le développement intra-marsupial de *Niphargus schellenbergi* peut être subdivisé en trois phases: la phase du chorion, l’intermue embryonnaire et l’intermue juvénile. Les deux premières phases sont séparées par la disparition du chorion, les deux dernières par une double exuviation. La chronologie du développement embryonnaire et du début du développement post-embryonnaire est établie. Lors de l’élosion le jeune *N. schellenbergi* n’est pourvu que d’une seule paire de caecums hépato-
pancréatiques; c'est durant les premières intermues post-embryonnaires que seront édifiés les caecums hépatopancréatiques ventraux, les caecums postérieurs et le caecum antérieur. La relation des caecums postérieurs avec l'aorte est décrite.

L'étude du stockage de calcium avant la mue montre que la forme, le volume, la quantité et la répartition des concrétions calcaires dans les caecums postérieurs et l'intestin moyen sont caractéristiques de l'espèce. Ce processus de mise en réserve de calcium survient dès la première exuviation post-embryonnaire dans l'intestin moyen, mais ce n'est que lors de la sixième exuviation que le stockage dans les caecums postérieurs sera semblable à celui des adultes.

Les cellules à urates, localisées à la face inférieure du septum péricardique, commencent à se charger de sphères d'urates 15 jours avant l'éclosion. Elles présentent des variations de forme, de volume, de position et de constitution et, de ce fait, peuvent être considérées comme des sites de stockage d'urates, de pigments et de divers ions (P, K, Ca, S, Cl, Na, Mg) qui pourraient être remis en circulation.

BIBLIOGRAPHIE

Distribution of Indiana Cavernicolous Crayfishes
and their Ecto-Commensal Ostracods

by

H. H. HOBBS III*

The first report of crayfishes inhabiting Indiana caves appeared in The Indianapolis Journal in 1871 when Cope listed Astacus pellucidus (= Oroconectes inermis Cope, 1872) from Wyandotte Cave, Crawford County. The description of the cave however indicates that this was not Wyandotte Cave but was in all probability Sibert's Well Cave, a small cave located approximately 300 meters SW of the entrance to Wyandotte Cave. Ostracods were not known from caves until 1931 when Klie described an entocytherid, Entocythere donnaldsonensis (= Donnaldsoncythere donnaldsonensis), from Donaldson's Cave, Lawrence County. Although he made no reference to this ostracod being associated with a crayfish host, it is probable that an ecto-commensal-host relationship existed with the crayfishes Cambarus (Erebicambarus) laevis Faxon, 1914 and Orconectes inermis inermis. Thus, error and incomplete sampling seem to have played a hand in the beginnings of our knowledge of these two groups of spelean crustaceans in Indiana.

Investigators of the late 1800's and the early years of the 20th century visited numerous caves within the State, compiling lists of cavernicolous organisms (Hobbs III and Krantz, in preparation). These important studies added greatly to our knowledge of not only what kinds of creatures inhabit the stygian corridors but also provided observations concerning their behavior, habits, physical and physiological adaptations to the environment and theories of the evolution of troglobites.

Recent efforts to obtain a better understanding of the distribution of cave crayfishes and their ecto-commensals began in September 1969. This work has continued to the present with trips to over 100 caves in the southern part of the State and also includes extensive population studies in two caves (fig. 1): Mayfield's Cave, Monroe County [Orconectes inermis testii (Hay, 1891)] and Pless Cave, Lawrence County (Orconectes inermis inermis). Results of investigations in these two caves will be reported in a subsequent paper. From this work and from pre-existing efforts (see Hobbs and Barr, 1972) a better understanding is attained of the species composition of crayfishes and ostracods and their distribution in Indiana caves.

* Department of Biology, Christopher Newport College of the College of William and Mary, P.O. Box 6070, Newport News, Virginia 23606. Present address: Department of Biology, George Mason University, Fairfax, Virginia 22030, U.S.A.
METHODS AND MATERIALS

Cave streams were carefully searched for organisms. Often crayfishes and other crustaceans were observed in pools along the streams' length. Commonly, however, tedious examination of rocks, leaf litter or other materials which could be used for cover was required.

Crayfishes, as collected, were individually placed in plastic bags containing a small amount of cave-stream water. Immediately after removal from the cave, each specimen was placed in a separate jar containing a 5% formalin-70% ethyl alcohol solution (25-75% respectively). This procedure allowed for precise determinations of host-commensal associations. The crayfishes were then removed and thoroughly washed to detach any symbionts, passing the wash water through two sieves (nos. 20, 140). Then the solution in which they were killed was poured through the same sieves. The jars were rinsed and the rinse water likewise passed through the sieves which were then rinsed, and the debris trapped in the larger meshed sieve, discarded. Sediments from the smaller sieve were transferred to a small Stender dish, from which the ostracods were removed with forceps and the aid of a stereomicroscope. The ostracods were dehydrated in two rinses of glacial acetic acid and cleared with methyl salicylate. Using "PermoutR" as the mounting medium, they were transferred to microscope slides. The animals were examined and identification was made with the aid of a compound microscope.

CAVES OF INDIANA

Two distinct karst areas occur in the State of Indiana (fig. 1). The smaller lies in the southeastern part of the State and occupies parts of Clark, Decatur, Jefferson, Jennings and Ripley Counties, where at least 80 caves are known to be present in these upper Silurian and lower Devonian limestone deposits.

The larger and more notable cave region lies in the south-central portion of the State between Putnam County and the Ohio River. More than 1300 caves have been discovered in this Mississippian limestone belt. Within the streams in them, crayfishes constitute a more conspicuous element of the fauna than in the subterranean waters of the eastern karst zone.

Many of the caves visited during this study were traversed by stream(s), which coursed through the lower levels. Not all of the caves with streams, however, harbored crayfishes, and in some instances no living aquatic animals were observed.

THE CRAYFISHES

Evolution: Hobbs (1967, 1969) and Hobbs and Barr (1972) have postulated that the extant crayfishes of North America east of the Continental Divide (except for one member of the genus *Pacifastacus* Bott, 1950, which occurs in the headwaters of the Missouri River) were probably derived from a *Procambarus*-like ancestor,
which is believed to have occupied the coastal region of Alabama and Georgia. It then moved northward to the Cumberland Plateau, where, in the mid-Tertiary, ancestors of two major stocks of the subfamily Cambarinae probably became differentiated. In this region, much of the primary divergence between the two genera *Orconectes* Cope, 1872 and *Cambarus* Erichson, 1846 occurred, with stocks radiating from the center. *Orconectes* dispersed principally to the north and west and *Cambarus* to the east and south (with several stocks moving westward). It was postulated that some of the stream dwelling ancestors of *Orconectes* in the karst region moved into spelean habitats long ago (Eberly 1960, and Hobbs 1948). The troglobitic *Orconectes* do not appear to be closely related to any extant surface form. Either the epigean stock from which they originated has become further
Cave Crayfishes of North America: Currently, there are 287 recognized species and subspecies of crayfishes representing 9 genera (Cambaridae) within North and Middle America (Hobbs 1974a, b). Only 24 of these are classified as troglobites, inhabiting the streams of numerous caves located in nine of the United States, Mexico and Cuba. The taxonomic outline presented below indicates the known troglobitic crayfishes, their distribution and relationships (modified from Hobbs and Barr 1972).

Cambarus Erichson, 1846 – United States east of the Rocky Mountains (Midwest and South east)

C. \((Avicambarus)\) hamulatus (Cope, 1881) – Alabama and Tennessee

C. \((Avicambarus)\) jonesi Hobbs and Barr, 1960 – Alabama

C. \((Erebicambarus)\) habrichi Hobbs, 1952 – Missouri

C. \((Jugicambarus)\) cryptodytes Hobbs, 1941 – Florida and Georgia

C. \((Jugicambarus)\) setosus Faxon, 1889 – Missouri

C. \((Jugicambarus)\) tartanus Hobbs and Cooper, 1972 – Oklahoma

C. \((Jugicambarus)\) zophonastes Hobbs and Bedinger, 1964 – Arkansas

Oreonectes Cope, 1872 – United States east of the Rocky Mountains (Midwest and Southeast)

O. australis australis (Rhoades, 1941) – Alabama and Tennessee

O. australis packardi (Rhoades, 1944) – Kentucky

O. incomptus Hobbs and Barr, 1972 – Tennessee

O. inermis inermis Cope, 1872 – Indiana and Kentucky

O. inermis testii (Hay, 1891) – Indiana

O. pellicidus (Tellkampf, 1844) – Kentucky and Tennessee

Procambarus Ortmann, 1905 – Mexico, Cuba and the southeastern United States

P. \((Austrocambarus)\) niveus Hobbs and Villalobos, 1964 – Cuba

P. \((Austrocambarus)\) rodriguezi Hobbs, 1943 – Veracruz, Mexico

P. \((Leonticambarus)\) miller Hobbs, 1971b – Florida

P. \((Lonnbergius)\) acherontis (Lonnberg, 1895) – Florida

P. \((Ortmannius)\) horsti Hobbs and Means, 1972 – Florida

P. \((Ortmannius)\) lucifugas lucifugas (Hobbs, 1940) – Florida

P. \((Ortmannius)\) lucifugas alachua (Hobbs, 1940) – Florida

P. \((Ortmannius)\) orcinus Hobbs and Means, 1972 – Florida

P. \((Ortmannius)\) pallidus (Hobbs, 1940) – Florida

P. \((Remoticambarus)\) pecki Hobbs, 1967 – Alabama
Indiana Cave Crayfishes: The troglobitic species of the genus *Orconectes* are found within caves of northeastern Alabama, central Tennessee and Kentucky, and southcentral Indiana (see fig. 2 for geographic distribution). Two subspecies of *Orconectes inermis* including intergrade populations, are found within the cave systems of northern Kentucky and southern Indiana. The nominal subspecies inhabits caves in the southern part of the range, *Orconectes inermis testii*, the northernmost part of the range in Monroe County, and intergrading populations occur between the extremes. *O. i. testii* has been observed in 18 caves from Monroe County (fig. 3). Two
locality records appear in the literature that perhaps should be verified: Porter's Cave, Owen County (Cox, 1973) and Ray's Cave, Greene County (Moore, 1967). The author has visited both caves on several occasions and was unable to find crayfish of this species. However, his failure to locate these crayfish does not dictate that these reports are incorrect, only that the caves need further examination in order to determine whether or not this crayfish still frequents them. Fifty-six caves from eight counties support populations of *O. i. inermis* (fig. 3).

Numerous studies of the troglobitic *Orconectes* "complex" have contributed to the knowledge of these crayfishes (see Hobbs and Barr 1972 for discussion); however, many facets of their biology are still completely unknown or inadequately understood. Considerably less is known about the troglophilic associate *C. (E.) laevis*, which is found in the streams of epigean and cavernous habitats in southern Indiana and Ohio. Although originally described from an epigean environment, several investigators have noted its occurrence in caves (Hay 1896; Banta 1907; Eberly 1960;
Hobbs 1969; and Hobbs 1974b). Apparently a stenothermal species, it occurs in both subterranean and spring-fed surface streams having temperatures not exceeding 20° C. It has the largest range of any of the cave-dwelling crayfishes in the State, being known from the streams of 58 caves in 10 counties (fig. 4). This species is more "ubiquitous" than *O. inermis* in that substrate types do not appear to limit its occurrence and/or abundance within or among caves. In contrast, *O. inermis* is not likely to be found in streams with bedrock or compact gravel bottoms but is usually observed in deeper, more slowly moving water, with mud or silt substrates. Both species are commonly found near debris clusters (often the debris is concentrated into "mats" which may be trapped under flat rocks or situated on the silt substrate of pools characterized by slowly moving water) or in areas where organic matter may accumulate following spates (i.e., eddies at the junction of the two streams).

A third species, *Orconectes immunis* (Hagen, 1870), is only an occasional inhabitant of caves. Typically, it is an inhabitant of lenitic or sluggish lotic epigean environments.

Fig. 4. Distribution map of *Cambarus (Erebicambarus) laevis* in southern Indiana caves (location for Down's Cave in Lawrence County is unknown).
environments (see Tack 1941 and Hobbs and Marchand 1943). This species, like *C. laevis*, is pigmented and possesses fully developed eyes. *O. immuns* has been observed only in Blue Spring and Pless Caves, where it is probably an “accidental” (although it may prove to be a trogloxene) in both localities. A sinkhole pond overlies a section of the south passages of Pless Cave and apparently feeds a small tributary into it. Possibly *O. immuns* enters the cave system at the source of this tributary.

Orconectes sloanii (Bundy, 1876) is found commonly in surface streams in southern Indiana and southwestern Ohio. A single specimen was collected within Pless Cave near the entrance, the only record of the occurrence of this species in a spelean habitat.

A fifth species, *O. propinquus* (Girard, 1852), which has not been reported from caves previously, has been observed in Pless Cave. It is also present in the surface effluent waters exiting the cave. The highest density -- twenty-seven individuals -- was observed within 160 m of the entrance, and very few individuals were noted in the farther recesses of the cave.

Most literature concerning cave crayfishes has dealt with taxonomic problems and the distribution and evolution of the various species. As early as 1877, however, Putnam published an article concerning the habits and replacements of lost appendages of *Cambarus pellucidus* (= *Orconectes pellucidus*) and Banta (1907), in his classical study of the fauna of Mayfield’s Cave, described in detail his observations of the activity of both *Cambarus pellucidus* (= *O. i. testii*) and *C. bartonii* (= *C. (E.) Laevis*) found within that cave. Emphasis on the classification of these organisms continued, but some individuals also began to investigate aspects of the biology of the cavernicoles. For additional information concerning previous work, refer to Hobbs and Barr 1972.

THE OSTRACODS

Marshall (1903), in describing the first known entocytherid ostracod, erroneously called them parasites and haemophages. Since that time, several other workers have concerned themselves with the taxonomy and ecology of these animals. In 1962, Hart revised the family Entocytheridae Hoff, 1942, and Hart and Hart (1974) presented a monograph of the family. Currently, five subfamilies are recognized: Entocytherinae (Hoff, 1942 -- North America), Sphaeromicolinae (Hart, 1962 -- North America and Europe), Notocytherinae (Hart and Hart, 1967 -- Australia, Tasmania, New Zealand and New Guinea), Microsysistrinae (Hart, Nair and Hart, 1967 -- Asia) and the Hartiellinae (Danielopol, 1971 -- Italy and France). All know species of these subfamilies are found in a commensal association with other crustaceans: Entocytherinae -- freshwater crabs, crayfishes; Sphaeromicolinae -- freshwater isopods, marine amphipods; Notocytherinae -- crayfishes, freshwater isopods; Microsysistrinae -- wood-boring marine isopods; Hartiellinae -- marine amphipods.
Evolution: The evolutionary history of entocytherid ostracods is not so well established as that of the crayfishes. Hart and Hart (1969) postulated that the known freshwater entocytherids in Australia, North America and Europa represent at least three separate invasions from the sea. The representatives in New Zealand and New Guinea also probably represent separate invasions. The ostracods were at the mercy of their hosts and were carried along the dispersal paths of the latter.

Cave Entocytherid Ostracods of North America: All Entocytherinae are ectocommensal on freshwater crayfishes except a single species found on freshwater crabs of the family Pseudothelphusidae in Mexico (Hobbs and Villalobos 1958 and Hobbs 1971a). There are now 146 recognized species representing 20 genera of entocytherines within North America. Of these, only 19 species have been observed in association with crayfishes inhabiting caves. Too little is known about the relationship of the ostracods with their hosts (and in some instances even too little is known concerning the host) to determine accurately if the species is a troglobite, a troglophile, a trogloxene or an “accidental”. The taxonomic outline presented below indicates the ostracod species reported from caves and their distribution.

Entocytherinae Hoff, 1942 – North America

Ankylocythere Hart, 1962 – United States east of Rocky Mountains, Mexico, Cuba

A. sinuosa (Rioja, 1942) – Mexico,
A. toltecae Hobbs, 1971a – Mexico

Dactylocythere Hart, 1962 – United States east of Rocky Mountains (Midwest and Mideast)

Dt. arcuata (Hart and Hobbs, 1961) – Alabama,
Dt. prionata (Hart and Hobbs, 1961) – Kentucky
Dt. stevesi (Hart nd Hobbs, 1961) – Alabama, Tennessee,
Dt. susanae Hobbs III, 1971 – Indiana, Kentucky,
Dt. ungulata (Hart and Hobbs, 1961) – Tennessee

Donnaldsoncythere Rioja, 1942 – United States east of Rocky Mountains (Midwest, Southeast, Northeast)

Dn. donnaldsonensis (Klie, 1931) – Indiana,
Dn. tuberosa (Hart and Hobbs, 1961) – Tennessee

Phymocythere Hobbs and Hart, 1966 – United States east of Rocky Mountains (East)

Ph. phyma Hobbs and Hart, 1966 – Virginia and West Virginia

Entocythere Marshall, 1903 – United States east of Rocky Mountains (North-central, South, Southeast), Mexico

E. claytonhoffi Rioja, 1942 – Mexico,
E. reddelli Hobbs and Walton, 1968 – Texas

Sagittocythere Hart, 1962 – United States east of Rocky Mountains (Midwest, Southeast)
S. barri (Hart and Hobbs, 1961) – Alabama, Tennessee, Kentucky, Indiana,
S. stygia Hart and Hart, 1966 – Kentucky
Uncinocythere Hart, 1962 – United States

Un. ambophora (Walton and Hobbs, 1959) – Florida,
Un. lucifuga (Walton and Hobbs, 1959) – Florida,
Un. pholetera (Hart and Hobbs, 1961) – Missouri,
Un. warreni (Hobbs and Walton, 1968) – Georgia,
Un. xania (Hart and Hobbs, 1961) – Missouri, Indiana

Ostracods Associated with Indiana Cave Crayfishes: Table 1 lists the four species of entocytherid ostracods known to occur in southern Indiana caves, their hosts, entocytherid associates, and names of caves and counties from which collections were made. All except two collections (Thomas Crews Cave, Clark County, and an unnamed cave in Jennings County, both in Silurian limestone) were from caves developed in the Mississippian limestones. Sagittocythere barri was found in 22 caves in seven counties (fig. 5) and is hosted by O. i. inermis, O. i. testii, and C. (E.)

Fig. 5. Distribution map of Sagittocythere barri (closed circles) and Donnalsomsythere donaldsonensis (open circles) in southern Indiana caves. Closed triangles represent caves from which both species were collected.
laevis. Donnaldsonicythere donaldsonensis was collected from 27 caves in eight counties (fig. 5) and was associated with O. i. inermis, O. i. testii and C. (E.) laevis. Uncinocythere xania is known to occur in 22 caves in seven counties (fig. 6) and has been found in association with O. i. inermis, O. i. testii and C. (E.) laevis. These same three species of crayfishes plus O. immunis were hosts to Dactylocythere susanae in 22 caves in six counties (fig. 6).

Few observations have been reported on the ecology of these animals. As mentioned previously, Marshall (1903) erroneously described them as parasites and haemophages. Hobbs, Holt and Walton (1967) stated that the animals apparently feed on small particles of detritus encrusting the exoskeleton of the host. They appear to be limited to those anatomical regions of the crayfish where there are setae to which they cling or grooves in which they can obtain support. The crayfish apparently gains benefit from the association only in having its own "house cleaner". Hobbs III (1968, 1969) discussed host specificity in entocytherines and its

Fig. 6. Distribution map of Uncinocythere xania (closed triangles) and Dactylocythere susanae (open circles) in southern Indiana caves. Closed circles are localities from which both species were collected.
Table 1. List of caves visited during study or caves from which crayfishes and ostracods are reported. Caves supporting populations of crayfishes and ostracods are so indicated: + = crayfish species present based on author's observations or confirmation; * = crayfish species reported but not confirmed by author; 0 = ostracods associated with *O. i. inermis*; T = ostracods associated with *O. i. testii* ; P = ostracods associated with *O. p. propinquus* ; M = ostracods associated with *O. immures*, X = ostracods associated with *C. laevis*. No ostracods were found to exhibit the few species of *O. sloanni* so this species is omitted from the Table. The column headed "Crayfishes" represents reports from the literature where no precise species determinations were made.

<table>
<thead>
<tr>
<th>CRAYFISHES</th>
<th>OSTRACODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. i. inermis</td>
<td>Sagittocythere barri</td>
</tr>
<tr>
<td>O. i. testii</td>
<td>*Donaldsonocythere</td>
</tr>
<tr>
<td>O. p. propinquus</td>
<td>domaldsonensis</td>
</tr>
<tr>
<td>"Crayfish"</td>
<td>Uncinocythere xania</td>
</tr>
<tr>
<td>Dactylocythere</td>
<td>susanae</td>
</tr>
</tbody>
</table>

CAVES

CLARK CO.
- Thomas Crew’s

CRAWFORD CO.
- Archibald +
- B-B Hole *
- Carter Byrnes *
- Christmas Pit *
- Everton +
- Marengo +
- Sibert’s Well +
- Wildcat +
- Wyandotte +

DECATUR CO.
- Decatur
- Dud
- Hole
<table>
<thead>
<tr>
<th>Location</th>
<th>Crayfishes</th>
<th>Ostracods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horsethief</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penther</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scripture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dubois Co.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vowell</td>
<td>+</td>
<td>X</td>
</tr>
<tr>
<td>Greene Co.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batey’s</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>John’s</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Ray’s</td>
<td>*</td>
<td>X</td>
</tr>
<tr>
<td>Sexton Sp.</td>
<td>+</td>
<td>O</td>
</tr>
<tr>
<td>Harrison Co.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baker Hollow</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Binkley’s</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Boone’s Mill</td>
<td>+</td>
<td>O</td>
</tr>
<tr>
<td>Borden’s Pit</td>
<td>+</td>
<td>X</td>
</tr>
<tr>
<td>Bradford</td>
<td>+</td>
<td>X</td>
</tr>
<tr>
<td>Cave near Mauckport</td>
<td>*</td>
<td>X</td>
</tr>
<tr>
<td>King’s</td>
<td>+</td>
<td>X</td>
</tr>
<tr>
<td>Parker Pit</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Rhoade’s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wallier’s</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Widewater</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jefferson Co.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caves near Madison</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jennings Co.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cave</td>
<td>+</td>
<td>X</td>
</tr>
<tr>
<td>Location</td>
<td>CRAYFISHES</td>
<td>OSTRACODS</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Avoca Sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bedford</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Blue Sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cedar Pit</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Christmas Pit</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Connerly's</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Crying</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Donaldson's</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Donnehue's</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Down's</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Eversole</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>4-H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Pit</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Gollum’s Crypt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gory Hole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gyger Bend I</td>
<td>*</td>
<td>+</td>
</tr>
<tr>
<td>Hamer’s</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Harrison</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hugh’s Christian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ilco</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Indian Pipe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kern’s Pit</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Linden Pit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lost Lamp Pit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitchell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitchell Crushed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stone Co.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Orconectes inermis</td>
<td>Orconectes inermis testii</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Pless</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pless Cave Annex</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Popcorn Sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Post</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ray Sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock Lick</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shiloh</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Siebolt Quarry Pit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storm’s Pit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sullivan</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Sweet Potato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telephone Pit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valley</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cathedral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wagoner</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>MARTIN CO.</td>
<td>Chapman Rizer</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Garbage Dump Pit</td>
<td></td>
</tr>
<tr>
<td>MONROE CO.</td>
<td>Abbott Pit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abbott Pit II</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Anderson Pit</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Bauer’s</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Bone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brinegar’s</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Broken Axe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buckner’s</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRAYFISHES</td>
<td>OSTRACODS</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Orconectes inermis</td>
<td>Sagitticythere barri</td>
<td></td>
</tr>
<tr>
<td>Orconectes inermis</td>
<td>Donaldsicythere donaldsonensis</td>
<td></td>
</tr>
<tr>
<td>Orconectes testi</td>
<td>Unicythere xanita</td>
<td></td>
</tr>
<tr>
<td>Orconectes immunis</td>
<td>Dacunclocythere suzanii</td>
<td></td>
</tr>
<tr>
<td>Orconectes propinquus</td>
<td>“Crayfish”</td>
<td></td>
</tr>
<tr>
<td>Cambarus (E.) laevis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Crayfishes</th>
<th>Ostracods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carmichael</td>
<td>+</td>
<td>T</td>
</tr>
<tr>
<td>Coon's</td>
<td>+</td>
<td>T,X</td>
</tr>
<tr>
<td>Duncan's Pit</td>
<td>+</td>
<td>T,X</td>
</tr>
<tr>
<td>Dupe's Folley</td>
<td>+</td>
<td>T</td>
</tr>
<tr>
<td>Eller's</td>
<td>+</td>
<td>T</td>
</tr>
<tr>
<td>Freeman's Pit</td>
<td>+</td>
<td>X</td>
</tr>
<tr>
<td>Goode's</td>
<td>+</td>
<td>X</td>
</tr>
<tr>
<td>Green Eye I Pit</td>
<td>+</td>
<td>X</td>
</tr>
<tr>
<td>Green Eye II Pit</td>
<td>+</td>
<td>X</td>
</tr>
<tr>
<td>Grotto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hell's Kitchen Pit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hendrick's</td>
<td>+</td>
<td>T</td>
</tr>
<tr>
<td>Hymen Hole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matlock's</td>
<td>*</td>
<td>+</td>
</tr>
<tr>
<td>Mayfield's</td>
<td>+</td>
<td>X</td>
</tr>
<tr>
<td>May's</td>
<td>+</td>
<td>X</td>
</tr>
<tr>
<td>Oliver Pit</td>
<td>+</td>
<td>X</td>
</tr>
<tr>
<td>Oliver Sp.</td>
<td>+</td>
<td>X</td>
</tr>
<tr>
<td>Ord's</td>
<td>+</td>
<td>X</td>
</tr>
<tr>
<td>Parrott Sp.</td>
<td>+</td>
<td>X</td>
</tr>
<tr>
<td>Queen Blair</td>
<td>+</td>
<td>X</td>
</tr>
<tr>
<td>Ranard School</td>
<td>*</td>
<td>X</td>
</tr>
<tr>
<td>Reeve's</td>
<td>+</td>
<td>X</td>
</tr>
<tr>
<td>Reeve's School</td>
<td>+</td>
<td>X</td>
</tr>
<tr>
<td>Rice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richwine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salamander</td>
<td>+</td>
<td>T</td>
</tr>
<tr>
<td>Saltpeter</td>
<td>+</td>
<td>T</td>
</tr>
<tr>
<td>SHAFT</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Shirley Sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith Sp.</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Strong's</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Studebaker Pit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teague Pit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trap Door</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truitt's</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Turtle</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Voorhie's Vat</td>
<td>+</td>
<td>X</td>
</tr>
<tr>
<td>Wayne's</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Weaver's Sp.</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

ORANGE CO.

<table>
<thead>
<tr>
<th>Aldrin</th>
<th></th>
<th>*</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Blackman</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Boiling Sp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elrod</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hudelson</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Murray Sp.</td>
<td>+</td>
<td>+</td>
<td>O</td>
</tr>
<tr>
<td>Orleans</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paoli</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riverside</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Stroud</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Wells</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wesley Chapel</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wildcat</td>
<td>+</td>
<td></td>
<td>O</td>
</tr>
</tbody>
</table>

OWEN CO.

<table>
<thead>
<tr>
<th>Christmore Sp.</th>
<th>+</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lost Boy</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porter's</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
relationship to ecological requirements, Walton and Hobbs (1971) studied the microhabitats of certain species on their crayfish hosts. Young (1971) presented the results of an ecological study conducted on *Ankylocythere sinuosa*, commensal on *Procambarus (Girardiella) simulans simulans* (Faxon, 1884).

Cave-dwelling entocytherines have received no attention beyond the recognition of species and their ranges. The first description of a spelean entocytherine was that of Klie (1931), previously mentioned. Subsequently, Hart and Hobbs (1961) described *Entocythere barri* from Cave Springs Cave, Alabama. In Hart’s revision of the family (1962), this species was placed in the genus *Sagittocythere*. Later, Hart and Hobbs (1961), Hart and Hart (1966), Hobbs and Hart (1966), Hobbs and Walton (1968) and Hobbs III (1971) described ostracods associated with cave-

<table>
<thead>
<tr>
<th>CRAYFISHES</th>
<th>OSTRACODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orconectes inermis inermis</td>
<td>Sagittocythere barri</td>
</tr>
<tr>
<td>Orconectes inermis testii</td>
<td>Donaldsoncythere donnaldsonensis</td>
</tr>
<tr>
<td>Orconectes immittis</td>
<td>Uncinocythere xanxara</td>
</tr>
<tr>
<td>Orconectes propinquus</td>
<td>Dacyrocythere sicanae</td>
</tr>
<tr>
<td>Cambarus (E.) laevis</td>
<td>“Crayfish”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Texas Bear</th>
<th>WASHINGTON CO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wolf</td>
<td>Beck’s Mill</td>
</tr>
<tr>
<td></td>
<td>Endless</td>
</tr>
<tr>
<td></td>
<td>Fredericksburg</td>
</tr>
<tr>
<td></td>
<td>Glen Freed</td>
</tr>
<tr>
<td></td>
<td>Greene</td>
</tr>
<tr>
<td></td>
<td>Joy</td>
</tr>
<tr>
<td></td>
<td>Lamplighter</td>
</tr>
<tr>
<td></td>
<td>Nicholson</td>
</tr>
<tr>
<td></td>
<td>River</td>
</tr>
<tr>
<td></td>
<td>Russel</td>
</tr>
<tr>
<td></td>
<td>Trappers</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
</tr>
<tr>
<td></td>
<td>Sinking Cr. Syst.</td>
</tr>
<tr>
<td></td>
<td>Stillhouse Syst.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>+</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O,X</td>
<td>O,X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>+</th>
<th>+</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
dwelling crayfishes. The only contributions not primarily taxonomic, zoogeographic, morphologic or developmental are those of Hobbs, Holt and Walton (1967), Baker (1969), Young (1971) and Walton and Hobbs (1971). None of these studies treats cave-dwelling organisms.

Table 1 summarizes data obtained from this study. Caves visited but from which no crayfishes or ostracods were observed are also included. Localities and species marked with an asterisk indicate that a particular species of crayfish was reported from the caves indicated. Many of these reports were made by spelunkers having little or no biospeleological training, and others taken from the literature are based on collections no longer available for verification.

Tables 2–4 present data of crayfishes and ostracods from caves within the State (biunguis female = female in penultimate molt stage; triunguis female = female in final molt stage).

DISCUSSION

From the data presented it becomes evident that considerable field work is required before a full understanding of distribution and host-commensal relationships is attained. Of the five species of crayfishes known from Indiana caves, *Cambarus (Erebicambarus) laevis* appears to have the broadest geographic distribution. Surface populations of this species occur sympatrically (syntopically?), thus enabling widespread distribution and genetic exchange of epigean and hypogean populations.

The troglobitic crayfish populations of *Orconectes inermis* are predominately intergrading populations of the two geographic races, *O. inermis inermis* and *O. inermis testii*. The extreme morphological variations exhibited by these troglobitic populations within the State indicate a continuous exchange of genes within the “gene pool” of the species. Perhaps surprisingly, this dictates population interactions across (beneath) the Ohio River into Kentucky. Thus, even though surface populations of crayfishes or other forms may be geographically isolated, this gives credence to the theory that deep lying aquifers exist as pathways for dispersal of the subterranean fauna.

Verbal reports of “blind crayfishes” from the eastern karst area occasionally are received; however these have not been substantiated. This is an area which has received little work and until the faunas of more caves are carefully surveyed, one can only speculate that since this limestone unit is not contiguous with “troglobitic crayfish-bearing” areas, albinistic members of the genus *Orconectes* would not be expected to be present.

The three remaining species of crayfishes (*O. immundis, O. propinquus* and *O. sloanii*) are rarely observed in caves and thus are classified as trogloxenic or accidental cave forms. Since they seem to be restricted to parts of the streams near entrances, they probably have little effect upon cave ecosystems except in these areas.

Observing Table 1, certain relationships between hosts and commensals can be interpreted. Ninety-six percent of the populations of *Sagittocythere barri* examined
<table>
<thead>
<tr>
<th>CAVE</th>
<th>HOST</th>
<th>NUMBER OF OSTRACODS</th>
<th>CARAPACE</th>
<th>S. barri</th>
<th>DIII. donaldsonensis</th>
<th>UN. xania</th>
<th>DT. susanae</th>
<th>UNIDENTIFIED</th>
<th>DATE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10/03/72</td>
<td>526</td>
</tr>
<tr>
<td>Boone's Mill</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10/02/72</td>
<td>526</td>
</tr>
<tr>
<td>Endless Oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10/02/72</td>
<td>526</td>
</tr>
<tr>
<td>Fredericksburg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10/02/72</td>
<td>526</td>
</tr>
<tr>
<td>Murray Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10/02/72</td>
<td>526</td>
</tr>
<tr>
<td>Pless</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10/02/72</td>
<td>526</td>
</tr>
<tr>
<td>Pless Oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10/02/72</td>
<td>526</td>
</tr>
<tr>
<td>Pless</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10/02/72</td>
<td>526</td>
</tr>
<tr>
<td>Pless Oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10/02/72</td>
<td>526</td>
</tr>
<tr>
<td>Pless</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10/02/72</td>
<td>526</td>
</tr>
<tr>
<td>Pless</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10/02/72</td>
<td>526</td>
</tr>
<tr>
<td>Popcorn Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10/02/72</td>
<td>526</td>
</tr>
<tr>
<td>Sexton Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10/02/72</td>
<td>526</td>
</tr>
<tr>
<td>Wildcat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10/02/72</td>
<td>526</td>
</tr>
<tr>
<td>Wildcat Oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10/02/72</td>
<td>526</td>
</tr>
</tbody>
</table>

Legend:
- **Sex**: Male = M, Female = F, Juvenile = J
- **Host**: Donner Spring, Donner Spring = DS, Wildcat = WC
- **Date**: Date format is DD/MM/YY
- **Total**: Total number of ostracods

Notes: All ostracods were collected from subterranean habitats in Southwestern Oregon.
Table 3. Population structure of ostracods infesting 12 individual *Orconectes inermis testii* in southern Indiana caves;
♀B = Biunguis female, ♀T = Triunguis female, J = Juvenile.

<table>
<thead>
<tr>
<th>CAVE</th>
<th>HOST</th>
<th>SEX</th>
<th>Carapace Length (mm)</th>
<th>S. barri</th>
<th>Dn. donnaldsonensis</th>
<th>Un. xania</th>
<th>Dr. susanae</th>
<th>Unidentified juveniles</th>
<th>Date</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buckner's</td>
<td>dII</td>
<td>20.5</td>
<td>6 3 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/04/72</td>
<td>13</td>
</tr>
<tr>
<td>Carmichael</td>
<td>dI</td>
<td>36</td>
<td>3 20 1</td>
<td>2 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4/10/69</td>
<td>83</td>
</tr>
<tr>
<td>Eller's</td>
<td>d1</td>
<td>25.2</td>
<td>4 4 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21/10/69</td>
<td>15</td>
</tr>
<tr>
<td>Eller's</td>
<td>♀</td>
<td>19.2</td>
<td>1 1 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21/10/69</td>
<td>7</td>
</tr>
<tr>
<td>Hendrick's</td>
<td>♀</td>
<td>29.2</td>
<td>6 2 31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02/10/72</td>
<td>41</td>
</tr>
<tr>
<td>Mayfield's</td>
<td>dII</td>
<td>22.9</td>
<td>1 5 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20/09/69</td>
<td>8</td>
</tr>
<tr>
<td>May's</td>
<td>♀</td>
<td>19.5</td>
<td>1 2 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26/09/69</td>
<td>12</td>
</tr>
<tr>
<td>Salamander</td>
<td>dI</td>
<td>25.1</td>
<td>5 4 3</td>
<td>1 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08/10/69</td>
<td>19</td>
</tr>
<tr>
<td>Salamander</td>
<td>♀</td>
<td>18.2</td>
<td>2 2 1</td>
<td>1 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08/10/69</td>
<td>8</td>
</tr>
<tr>
<td>Salt peter</td>
<td>dII</td>
<td>19.8</td>
<td>3 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>03/07/72</td>
<td>6</td>
</tr>
<tr>
<td>Wayne's</td>
<td>♀</td>
<td>18.3</td>
<td>1 7 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>07/02/71</td>
<td>10</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>28 54 25 87 1 2 2 2 4 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>222</td>
</tr>
<tr>
<td>Grand Totals</td>
<td></td>
<td></td>
<td>194 5 2 5 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>222</td>
</tr>
<tr>
<td>% of Grand</td>
<td></td>
<td></td>
<td>87.3% 2.2% 0.9% 2.2% 7.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Population structure of ostracods infesting 36 individual *Cambarus (Erebicambarus) laevis* in Southern Indiana caves; \(\varPhi B = \) Biunguis female, \(\varPhi T = \) Triunguis female, \(J = \) Juvenile.

<table>
<thead>
<tr>
<th>CAVE</th>
<th>HOST</th>
<th>Carapace Length (mm)</th>
<th>S. barri</th>
<th>Dn. donaldsonensis</th>
<th>Un. xania</th>
<th>Dt. susanae</th>
<th>Unidentified</th>
<th>Date</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbot Pit II</td>
<td>♀ 31.2</td>
<td>2 1 6 7</td>
<td>1 2 1 1</td>
<td>27</td>
<td>30/10/70</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue Spring</td>
<td>♀ 51.3</td>
<td>1 2 4</td>
<td>1 2 1 1</td>
<td>26</td>
<td>28/02/70</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boone's Mill</td>
<td>♀ 37.3</td>
<td>1 1 1</td>
<td>1 2</td>
<td>14</td>
<td>12/03/72</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buckner's</td>
<td>♀ 38.2</td>
<td>2</td>
<td>3 5</td>
<td>16</td>
<td>21/10/69</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carmichael</td>
<td>♀ 2</td>
<td>4 1 2</td>
<td></td>
<td>3</td>
<td>04/10/69</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cave</td>
<td>♀ 4 1 2</td>
<td></td>
<td></td>
<td>3</td>
<td>29/07/72</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connerly</td>
<td>♀ 2 1</td>
<td>2 2 2</td>
<td></td>
<td>5</td>
<td>25/10/69</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connerly</td>
<td>♀ 2 6 4</td>
<td>1 4</td>
<td>7</td>
<td>25/09/70</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connerly</td>
<td>♀ 33.9</td>
<td>3 3</td>
<td>5 2</td>
<td>19</td>
<td>25/10/69</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endless</td>
<td>♀ 4-Pit</td>
<td>3 3</td>
<td>5 2</td>
<td>13</td>
<td>28/02/70</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Pit</td>
<td>♀ 22.2</td>
<td>3 3</td>
<td>1</td>
<td>9</td>
<td>?/06/71</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fredericksburg</td>
<td>♀ 32.5</td>
<td>2</td>
<td>8 3 2</td>
<td>16</td>
<td>27/08/70</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goode's</td>
<td>♀ 35.4</td>
<td>2 1</td>
<td>1 1 1 3</td>
<td>11</td>
<td>03/10/69</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greene</td>
<td>♀ 28.2</td>
<td>1 1</td>
<td>2 3</td>
<td>9</td>
<td>14/07/72</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>King's</td>
<td>♀ 36.0</td>
<td>2 3 3</td>
<td>1 1 4 8</td>
<td>12</td>
<td>20/09/69</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayfield's</td>
<td>♀ 48.5</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>28/02/70</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May's</td>
<td>♀ 56.5</td>
<td>2</td>
<td>1 7</td>
<td>20</td>
<td>28/02/70</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murray Spring</td>
<td>♀ 25.9</td>
<td>1 1</td>
<td>1 1</td>
<td>16</td>
<td>10/06/70</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pless</td>
<td>♀ 35.8</td>
<td>3 5</td>
<td>4 4</td>
<td>16</td>
<td>10/02/73</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pless</td>
<td>♀ 42.4</td>
<td>6 1</td>
<td>5 1</td>
<td>28</td>
<td>18/10/72</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pless</td>
<td>♀ 41.2</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>18/10/72</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Population</td>
<td>Male</td>
<td>Female</td>
<td>Total</td>
<td>Location</td>
<td>Date</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>------------</td>
<td>------</td>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pless</td>
<td>26.2</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>11</td>
<td>18/10/72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pless</td>
<td>45.2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>18</td>
<td>18/10/72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Popcorn Sp.</td>
<td>44.5</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>53</td>
<td>06/12/70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queen Blair</td>
<td>40.1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>14</td>
<td>18/10/69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ray's</td>
<td>40.1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>04/07/70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reeve's School</td>
<td>32.0</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>22</td>
<td>04/07/70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas Bear</td>
<td>14.5</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>27</td>
<td>11/12/70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voorhie's Vat</td>
<td>29.6</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>15</td>
<td>17/09/72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vowell</td>
<td>?</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>19</td>
<td>04/07/70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buckner's</td>
<td>20.5</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>13</td>
<td>04/07/70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carmichael</td>
<td>?</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>15</td>
<td>04/10/69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eller's</td>
<td>25.2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>21</td>
<td>02/10/72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eller's</td>
<td>19.2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>15</td>
<td>04/10/70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hendrick's</td>
<td>29.2</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>41</td>
<td>02/10/72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayfield's</td>
<td>22.9</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>08/10/69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May's</td>
<td>19.5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>08/10/69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salamander</td>
<td>25.1</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>08/10/69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salamander</td>
<td>18.2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>16</td>
<td>08/10/72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saltpeter</td>
<td>19.8</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>16</td>
<td>07/02/71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wayne's</td>
<td>18.3</td>
<td>1</td>
<td>7</td>
<td>8</td>
<td>16</td>
<td>07/02/71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>28</td>
<td>54</td>
<td>25</td>
<td>87</td>
<td>16</td>
<td>222</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grand Totals</td>
<td>194</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>16</td>
<td>222</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of Grand Totals</td>
<td>87.3%</td>
<td>2.2%</td>
<td>0.9%</td>
<td>2.2%</td>
<td>7.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
was found to infest troglobitic crayfishes (O. i. inermis and O. i. testii) in 22 of the caves sampled, indicating a high degree of preference for these hosts. Only a single specimen of C. (E.) laevis from Blue Spring Cave (Lawrence County) harbored S. barri. These observations suggest that this ostracod has been associated with the troglobitic crayfishes for a long period of time, and that adaptations to the spelean mode of existence could well have progressed in the host and commensal concurrently. In Alabama, Kentucky and Tennessee, S. barri is associated with three additional troglobitic species, O. australis, O. incomptus and O. pellucidus as well as with the troglophile C. (E.) tenebrosus Hay, 1902. Thus if Hobbs and Barr (1972) are correct in their hypothesis of the independent allopatric origin of the four troglobitic crayfishes, one must conclude one of two possibilities. Either the ostracod infesting these crayfishes (except for loss of eyes) has remained virtually unchanged since their hosts introduced them to a spelean existence or that it became differentiated on one of the four troglobites and was transported from one cave system to another either on the troglobites or on the two troglophilic crayfishes.

Donnaldsoncythere donnaldsonensis was associated with C. (E.) laevis in 77% of the crayfish populations examined, again indicating a host preference by ostracods. Using these data, one may postulate something about host interactions. The troglobitic crayfishes are more acutely aware of chemical and physical changes that occur in the water. If an individual of C. (E.) laevis were to die, this would be a ready food source for any cavernicole. The more highly adapted forms would be first to locate the crayfish and begin to feed. The ostracods, in all probability would not die with the dead host, and thus as the troglobitic crayfish fed on the dead animal, ostracods would come in contact with its gnathal appendages, and thus would infest the feeding animal. Not only is the troglobitic Orconectes very sensitive to food but also is highly aware of the presence of other living crayfishes. Hence the spindly cave form avoids contacts with the more robust Cambarus and is not likely often preyed upon by the latter. Thus, its more acute senses allow Orconectes inermis not only to avoid contacts and be eaten (thus transferring ostracods to another host) but also enables it to find food more readily (becoming infested by these ostracods living on the crayfish upon which it feeds). Such possibilities are consistent with the observations that in the Indiana caves few S. barri are found except on Orconectes inermis and they also offer an explanation as to why specimens of Dn. donnaldsonensis are found on the troglobitic crayfishes in so many of the cave samples (23%).

In this survey, Uncinocythere xantha infested only C. (E.) laevis, occurring in 86% of the populations of this host examined; and 82% of the infestations of Dactylocythere susanae were restricted to this troglophilic crayfish. These figures suggest a near-host-specific relationship between these symbionts and C. (E.) laevis.

To substantiate these conclusions, Tables 2 – 4 allow for a more precise evaluation of data. Of the 1674 individual ostracods recovered (slides containing specimens from Donnaldson’s and Cristmore Spring Caves were damaged and thus data are not included in Tables 2 – 4) from cave crayfishes throughout southern Indiana, 670 specimens of S. barri (40%) were found associated with O. i. inermis and O. i. testii and only 7(0.4%) with C. (E.) laevis. Tables 2 – 4 show that 91, 87 and
0.8% of the ostracods on O. i. inermis, O. i. testii and C. (E.) laevis, respectively, are S. barri. These data further support the idea that this ostracod is predominantly restricted to the troglobitic crayfishes O. i. inermis and O. i. testii (and intergrades) in Indiana, Sagittocythere barri has probably been associated with the troglobitic species of Orconectes since their initial advent into caves. Like their crayfish hosts, they lack eyes. This species is relatively rare on other crayfishes and when present, the populations are small.

S. barri has never been recovered from any pigmented crayfish in Indiana other than C. (E.) laevis.

Of the 214 Donnaldsoncythere donnaldsonensis (12.7% of all the ostracods) recovered from C. (E.) laevis, O. i. inermis and O. i. testii, only 23 (10.7%) infested O. i. inermis and 5 (2.4%) O. i. testii. This distribution demonstrates a definite host-preference of Dn. donnaldsonensis for C. (E.) laevis (88%).

Uncinocythere xania was associated with O. i. inermis, O. i. testii and C. (E.) laevis. Of the 114 specimens recovered (6.9% of the total number) 15, 2, and 97, respectively, came from these species, showing a strong preference for C. (E.) laevis. In surface water this species is commonly associated with C. (E.) laevis and O. propinquus. The surface streams from which the crayfishes were collected had predominately gravel or bedrock substrates with relatively steep gradients and were fed by springs. It is believed that the distribution of Un. xania, although certainly controlled by that of its hosts [O. propinquus and C. (E.) laevis in surface waters and the latter within subterranean streams], is also limited, at least to some extent, by ecological specificity (cool, aerated streams).

For Dactylocythere susanae, 123, 1 and 5 specimens, respectively, were recovered from C. (E.) laevis, O. i. inermis and O. i. testii. In addition, 12 specimens were obtained from O. immnnis from Pless Cave. Approximately 95% of the specimens obtained from caves were recovered from C. (E.) laevis, indicating another near-specific relationship there between ostracod and crayfish host. In Indiana, this species also infests C. (E.) laevis in surface streams.

Juvenile ostracods occurring in the subterranean waters of Indiana cannot be identified to species or even to genus, except those of S. barri in which eyes, if present, lack pigment. When the adults of only one species infests a host, presumably the juveniles occurring on it are members of this species, but when more than one species is present, the juveniles of only S. barri can be recognized. Thus, 513 juvenile specimens (31% of those examined) associated with C. (E.) laevis could not be identified. This increases the difficulty of detecting any specific or dominant ostracod-host relationship (Tables 2-4).

The mean numbers of ostracods found in association with individual adult crayfishes (calculated from Tables 2 - 4) demonstrate that C. (E.) laevis is the most heavily infested of the cave crayfishes, 26.46 ± 3.70 (95% confidence limits) ostracods per individual crayfish. O. i. inermis supports a mean number of 18.78 (± 3.59) and O. i. testii 20.18 (± 13.58). Occasional individuals were examined that hosted no ostracods. In all instances they were either very small (less than 15 mm carapace length) or had recently molted.

Walton and Hobbs (1971) reported much larger populations of entocytherids
associated with epigean crayfishes [as large as 119±17.5 individuals per female *Cambarus (Cambarus) bartoni bartonii* (Fabricus, 1798)]. The differences in ostracod population densities between surface and cave crayfishes may be species-specific in nature, or due to host size differences (surface crayfishes generally larger), may be a result of environmental pressures, or may be due to some unknown intrinsic agent(s). Considerable research is required before an understanding of the factors controlling entocytherid population structure and density is attained.

SUMMARY

Six species and subspecies of crayfishes and four species of entocytherid ostracods are known to inhabit the subterranean streams of southern Indiana. *Cambarus (E.) laevis* (troglophile) appears to be the most widely distributed crayfish and occurs in both karst areas within the State. The troglobite, *Orconectes inermis* (2 subspecies), is restricted to the larger karst area in solution cavities of Mississippian carbonate rocks. The remaining crayfishes, *Orconectes immunis*, *Orconectes propinquus* and *Orconectes sloanii*, are not common inhabitants of cave waters and are probably trogloxenes.

All of the crayfishes except *O. sloanii* were found to host at least one species of ostracod. From data presented, *Sagittocythere barri* might be expected to be found commonly in association with *Orconectes inermis*. *Donnaldsoncythere donnaldsonensis*, *Uncinocythere xania* and *Dactylocythere susanae*, however, are more commonly associated with *C. (E.) laevis*, indicating a near host-specific relationship among these taxa. Whether these are host-specific associations or ones imposed by certain ecological parameters will require additional investigations.

Although a fair understanding of the distribution of these crustaceans in the larger, Mississippian limestone belt has been obtained, additional field work on the perimeter of the spelean ranges of the several species will probably prove productive. Furthermore, considerable cave exploration and biospeleological surveys are needed in the Silurian-Devonian limestones of southeast Indiana before our knowledge of these crayfishes, entocytherids and other cave-dwelling species approaches that for the Mississippian karst of the State.

RESUME

Toutes les écrevisses, sauf *O. sloanii*, sont les hôtes d'au moins une espèce d'Ostracode commensal. D'après les données, on pouvait s'attendre à trouver *Sagitocythere barri* généralement associé à *Orconectes inermis*. Toutefois, *Donnadsoncythere donnaldsonensis*, *Uncinocythere xania* et *Dactylocythere susanae* sont souvent associés à *C. (E.) laevis*, ce qui montre une étroite relation hôte-spécifique dans ces groupes. Il faudra faire des recherches supplémentaires pour déterminer si de telles associations sont du type hôte-spécifique, ou si elles sont imposées par certains paramètres écologiques.

Bien que l'on soit arrivé à une bonne compréhension de la répartition de ces crustacés dans la plus grande zone de calcaire Mississipien, un travail de terrain supplémentaire sur les nombreuses espèces du pourtour des régions caverneuses sera probablement fructueux. En outre, l'exploration des grottes et les études biospéleo-logiques des calcaires du Silurien-Dévonien du Sud-Est de l'Indiana s'avèrent nécessaires, avant que notre connaissance de ces écrevisses, entocytherides et autres espèces cavernicoles, n'atteigne celle que nous avons du karst Mississipien de cet Etat.

ACKNOWLEDGMENTS

I wish to thank all of those persons, especially Mssrs. Kenneth M. Burdsall, Charles L. Davis, Paul W. Koeneman, Joseph Lucas, Michael C. Moore and Richard L. Powell, who accompanied me on numerous trips to caves. I am also grateful to Dr. David G. Frey for his continuous support and encouragement during this study. For constructive criticisms and suggestions during the preparation of the manuscript, I am indebted to Dr. Horton H. Hobbs, Jr. and Susan K. Hobbs. This research was supported in part by a Doctoral Student Grant-in-aid of Research Fellowship (Indiana University), Cave Research Foundation Graduate Fellowship, a Sigma Xi Grant-in-aid of Research and funds from George Mason University.

LITERATURE

and Susan C. Krantz. (in prep.). Annotated checklist of the cave fauna of Indiana.

Rioja, E. 1942. Descripción de una especia y una subspecie nuevas del género *Entocythere* Marshall, procedentes de la Cueva Chica (San Luis Potosi, Mexico). Ciencia, 3(7): 201-204.

5 The Editors reserve the right to refuse any manuscript submitted, whether on invitation or otherwise, and to make suggestions and modifications before publication. Submitted papers should be in a final form ready for publication. All corrections in the proofs other than printing errors are at the author's expense.

6 Bibliographical references should be listed in alphabetical order at the end of the paper.

7 References to periodicals should include the following elements: name(s) and initial(s) of author(s); year of publication; title of the periodical; volume number (Arabic numerals); first and last page number. For periodicals the recognized abbreviations laid down in the "World List of Scientific Periodicals 1900-60" (London, 1965) and "World Medical Periodicals" (World Medical Association, New York, 1961) should be used. Example: HALBERG, F., 1963. Periodicity analysis. A potential tool for biometeorology. Int. J. Biometeor., 7 : 167-191.

8 References to books should include: name(s) and initial(s) of author(s); year of publication; exact title; name(s) of publisher; town of publication; page number (where pages are specifically cited). Example: SOLLBERGER, A., 1965. Biological Rhythm Research. Elsevier Publ. Co. Amsterdam.

9 References should be cited in the text in parentheses by the name(s) of author(s) followed by the year of publication, e.g. "(Jones, 1961)" except when the author's name is part of the sentence, e.g. "Jones (1961) has shown that..." If there are more than two authors, it is in order to put "et al." behind the first name, e.g. "Smith et al., 1961".

10 Each table should be typed on a separate sheet of paper. Tables should be numbered consecutively in Arabic numerals, e.g. "Table 1, Table 2, etc.", and attached to the end of the text. Should a table not be an original, the exact reference should be quoted. Tables should be supplied with headings and kept as simple as possible and should be referred to in the text as "Table 2", etc.

11 Figures (including photographic prints, line drawings in black Indian ink on strong white or transparent paper, and maps) should be numbered consecutively in Arabic numerals, e.g. "Fig. 1, etc." and attached to the text behind the tables. Graphs and diagrams should be large enough to permit reduction to a size of 10 x 10 cm (4 x 4 inches). Legends for figures should be listed consecutively on a separate sheet of paper. Photographs can be easily reproduced in offset print but should be unmounted, glossy prints, permitting reduction to a size of 10 x 10 cm without affecting legibility. Authors will be asked to contribute to the cost of excessive illustrations and elaborate tables. The cost of reproducing coloured plates must be met in full. Estimates may be obtained in advance.

12 For further instructions in preparing manuscripts for publication, authors should use the "Style Manual for Biological Journals" (Amer. Inst. Biol. Sci., Washington, D.C. 1964).

13 Articles accepted by the Editor-in-Chief will become the property of Swets & Zeitlinger B.V., Amsterdam. No article or any part thereof may be reproduced in whatever form, without the written permission of the Publisher.

14 The Editors and the Publisher of the International Journal of Speleology are not responsible for the scientific content and statements of the authors of accepted papers.

15 Reprints may be ordered when proof is returned.
CONTENTS

David C. Culver:
Interaction between Competition and Predation in Cave Stream Communities ... 229

François Graf et Philippe Michaut:
Chronologie du développement et évolution du stockage de calcium et des cellules à urates chez Niphargus schellenbergi Karaman ... 247
[Development chronology and evolution of calcium storage and urate containing cells in Niphargus schellenbergi Karaman]

H.H. Hobbs III:
Distribution of Indiana Cavernicolous Crayfishes and their Ecto-Commensal Ostracods 273