Cave Cyanobacteria showing antibacterial activity

Vasiliki Lamprinou1, Kyriaki Tryfinopoulou2, Emmanuel N. Velonakis2,3, Alkiviadis Vatopoulos2,3, Smaragdi Antonopoulou4, Elizabeth Fragopoulou4, Adriani Pantazidou1, and Athena Economou-Amili1*

1University of Athens, Faculty of Biology, Department of Ecology & Systematics, Panepistimiopolis, Athens 15784, Greece
2Central Public Health Laboratory, 34 Al. Fleming, 16672, Vari, Athens, Greece
3Department of Microbiology, National School of Public Health, 196 Alexandras Avenue, Athens 11521, Greece
4Harokopio University, Department of Nutrition & Dietetics, 70 El. Venizelou, Athens 17671, Greece

Abstract: Cave Cyanobacteria - thriving in an ‘extreme’ environment with interesting species biodiversity - are supposed to be a potential source of bioactive compounds. Lipid extracts from pure cultures of two recently established Cyanobacteria from Greek caves, Toxopsis calypsus and Phormidium melanochroun, were used for antibacterial screening against human pathogenic bacteria (reference and clinical isolates). Antimicrobial Susceptibility testing for both taxa was carried out using the disc-diffusion (Kirby Bauer) method, while preliminary data applying the standard broth microdilution method for the determination of the Minimal Inhibitory Concentration (MIC) are given only for T. calypsus. Antibacterial activity was demonstrated against the Gram-positive clinical and reference bacteria, mostly pronounced in enterococci; no activity was observed against the Gram-negative bacteria. The above screening is the first record of antibacterial activity from lipid extracts of cave Cyanobacteria enhancing the importance of cave microbiota and the necessity for cave conservation.

Keywords: cave Cyanobacteria; Toxopsis calypsus; Phormidium melanochroun; antimicrobial susceptibility screening

Citation: Lamprinou V., Tryfinopoulou K., Velonakis E.M., Vatopoulos A., Antonopoulou S., Fragopoulou E., Pantazidou P. & Economou-Amili A., 2015. Cave Cyanobacteria showing antibacterial activity. International Journal of Speleology, 44 (3), 231-238. Tampa, FL (USA) ISSN 0392-6672 http://dx.doi.org/10.5038/1827-806X.44.3.2

INTRODUCTION

Cyanobacteria represent a group of Gram-negative photoautotrophic prokaryotes thriving in almost all aquatic and terrestrial habitats on earth, including extreme environments. This widespread distribution reflects the tolerance of Cyanobacteria towards environmental stress due, inter alia, to a broad spectrum of specific properties in physiology (Uzair et al., 2012). Generally, microorganisms forming microbial mats in extreme environments have been recently identified as a good source of bioactive compounds for different biotechnological applications (Harvey, 2000; Dobretsov et al., 2011). Modern research has focused on a variety of bioactive compounds produced by Cyanobacteria. After analysis of a great number of marine cyanobacterial natural products, lipopeptides seem to prevail followed at much lesser proportions by amino acids, fatty acids, macrolides and amides (Burja et al., 2001; Singh et al., 2011; Engene et al., 2013). These interesting and biochemically active compounds possess biological activity covering a wide range of antibacterial (Mundt et al., 2003; Kaushik & Chauhan, 2008; Ramadan et al., 2008; Asthana et al., 2009; Kaushik et al., 2009; Khairy & El-Kassas, 2010; Suhail et al., 2011), antifungal (MacMillan et al., 2002), antialgal (Papke et al., 1997), antiviral (Hayashi et al., 1996; Zainuddin et al., 2002), anti-thrombotic (Antonopoulou et al., 2002; 2005a,b) and also anticancer effectiveness (Luesh et al., 2001; Simmons et al., 2005).

Many Cyanobacteria from various biotopes have been tested for antibacterial activity, e.g. marine (Luesh et al., 2001; Simmons et al., 2005; Mathew et al., 2008; Vijaya Baskara Sethubathi & Ashok Prabu, 2012), freshwater (Østensvik et al., 1998; Mian et al., 2003; Madhumathi et al., 2011) and terrestrial (Mian et al., 2003; Abdel-Raouf & Ibraheem, 2008; Ramamurthy et al., 2012). Considering cave ecosystems as an extreme environment (due to the insufficient light
and nutrient limitation), antibiotic effectiveness by
cave bacteria has recently been recorded (Montano
& Henderson, 2013); however, no studies have yet
identified the antibacterial potential of cyanobacterial
isolates from caves.

Exploitation of new natural products as antibacterial
agents against resistant pathogens is very important
for clinical medicine and public health, and a limited
number of new antimicrobial classes have been
developed by the international pharmaceutical industry
in the last 20 years (Infectious Diseases Society of
America, 2007). The aim of the present study is to
assess the potential antibacterial activity of extracts
from two recently established Cyanobacteria from
Greek caves, i.e. Toxopsis calypsus and Phormidium
melanochroun (Lamprinou et al., 2012, 2013). It
is noted that cave environments are still relatively
underexploited, and may prove to be a rich source
of novel biodiversity possessing bioactive compounds
potentially useful in biotechnology.

MATERIAL AND METHODS

Sampling
Fresh material, as scrapped mats and pieces of
rocks of ≤5 g, was collected from ‘Franchi’ Cave
(37°25′21.01″N, 22°17′51.18″; altitude 12.5 m
a.s.l.), an exposed, non typical cave, with partly
collapsed roof, located in Argolida (Peloponnesse,
Greece). Sampling was conducted seasonally at seven
selected sites from the entrance inwards. Temperature
(average 18.26°C, min 11.53°C, max 25.94°C), Relative
Humidity (average 66.20%, min 50.73%, max 93.51%)
and photosynthetically active radiation (average
3.09 μmol·s⁻¹·m⁻², min 0.08 μmol·s⁻¹·m⁻², max 26.70
μmol·s⁻¹·m⁻²) were measured at each sampling site
and sampling date by a LI-1400 data logger (LI-COR
Biosciences, USA). Four subsamples were collected
from each sampling site. Two of them were incubated
in situ into sterile transparent vials and, the other
two were partly fixed with formaldehyde solution at
7%.

Enrichment cultures were obtained in flasks
containing cell suspensions of athenosporite mats
and petri dishes with culture media (BG11
2.5%. Enrichment cultures were obtained in flasks
in which rocks of ≤5 g, was collected from ‘Francthi’ Cave
(3 mm Chr Whatman) paper disks (6 mm diameter)
were applied to the surface of the inoculated agar
and were loaded with a total amount of 10 μl and
20 μl of each extract solution. The antibiotic disks
(BIORAD, UK) gentamicin 10 μg (GEN), ampicillin
10 μg (AMP), cefoxitin 30 μg (FOX), tetracycline
30μg(TET), ciprofloxacin 5 μg (CIP) and co-trimoxazole
1.25 / 23.75 μg (SXT) were used as positive controls
depending of the bacterial species. Methanol alone
was used as a negative control since a volume of
V ≥5 μl pure methanol was inhibitory to bacterial
growth. The plates were left to dry for 15 min and
were incubated for 18 h at 35º ± 2ºC. For all agents
the diameters of zones of inhibition were measured
according to CLSI guidelines. Dried extracts were
used. After exposure of the TLC plate to I₂ vapor, the
fractions of PLs were scraped off separately,
centrifuged, and the organic solvents were phased
by adding appropriate volumes of chloroform, methanol
and water at a ratio of 1:2:0.8 (v/v/v/v). All reagents
and chemicals were of analytical grade and supplied by
Merck (Darmstadt, Germany). The chromatographic
material used for TLC was silica gel H-60 (Merck,
Darmstadt, Germany).

Antibacterial activity determination
The potential antibacterial activity was tested in
both Cyanobacteria strains by the disk diffusion
method with Mueller-Hinton II agar (OXOID, UK)
according to CLSI guidelines. Dried extracts were
dissolved in methanol. The plates were inoculated
with a suspension of each strain adjusted to
a turbidity of 0.5 McFarland. Sterilized blank
(3 mm Chr Whatman) paper disks (6 mm diameter)
were applied to the surface of the inoculated agar
and were loaded with a total amount of 10 μl and
20 μl of each extract solution. The antibiotic disks
were incubated for 18 h at 35º ± 2ºC. For all agents
the diameters of zones of inhibition were measured
according to CLSI guidelines. Dried extracts were
used. After exposure of the TLC plate to I₂ vapor, the
fractions of PLs were scraped off separately,
centrifuged, and the organic solvents were phased
by adding appropriate volumes of chloroform, methanol
and water at a ratio of 1:2:0.8 (v/v/v/v). All reagents
and chemicals were of analytical grade and supplied by
Merck (Darmstadt, Germany). The chromatographic
material used for TLC was silica gel H-60 (Merck,
Darmstadt, Germany).

Lipids Extraction and Thin Layer Chromatography (TLC)
Total lipids were extracted from cell suspensions of
cultures using the Bligh Dyer method (Bligh & Dyer,
1959). Total lipids (TLs) were then separated into
polar (PLs) and neutral lipids (NLs) by countercurrent
distributions in a binary system formed by mixing
three volumes of pre-equilibrated petroleum ether and

one volume of pre-equilibrated 87% ethanol (Galanos &
Kapoulas, 1962). The PLs were further fractioned
by Thin Layer Chromatography (TLC) on ten (10)
TLC plates using chloroform/acetone/methanol/
acetic acid/water at a ratio of 100:40:34:10:10
(v/v/v/v/v) as developing system. Appropriate
standards of phospho- and glycol-lipids were also
used. After exposure of the TLC plate to I₂ vapor, the
fractions of PLs were scraped off separately,
centrifuged, and the organic solvents were phased
by adding appropriate volumes of chloroform, methanol
and water at a ratio of 1:2:0.8 (v/v/v/v). All reagents
and chemicals were of analytical grade and supplied by
Merck (Darmstadt, Germany). The chromatographic
material used for TLC was silica gel H-60 (Merck,
Darmstadt, Germany).
Table 1a. Results obtained by applying the Kirby-Bauer method on 10 μl and 20 μl of methanol extract solution of *Toxopsis calypsus* showing the inhibition zones (in mm) of each fraction (T1-T12) of Polar Lipids, of Polar Lipids (PL), Neutral Lipids (NL), and Total Lipids (TL) in relation to the inhibition zones of the negative control (Meth = methanol) and the positive controls (Gen = gentamicin, Amp = ampicillin, Fox = cefoxitin, Tet = tetracycline, Cip = ciprofloxacin) when tested against eight (8) reference or clinical isolates.

<table>
<thead>
<tr>
<th>T. calypsus 10μl</th>
<th>Fractions (T1-T12) of Polar Lipids (PL)</th>
<th>Lipids</th>
<th>Controls (-) and (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1</td>
<td>T2</td>
<td>T3</td>
</tr>
<tr>
<td>S. aureus NTCC 6571</td>
<td>11</td>
<td>14</td>
<td>10/13</td>
</tr>
<tr>
<td>S. aureus MRSA 1629</td>
<td>14/16</td>
<td>11/13</td>
<td>14/13</td>
</tr>
<tr>
<td>S. aureus 1646</td>
<td>14/16</td>
<td>13</td>
<td>12</td>
</tr>
</tbody>
</table>

| E. faecalis ATCC 29212 | 12 | 12 | 12 | 14 | 12 | 12 | 13 | 13 | 13 | 13 | 8 | 8/9 | 11/12 | 13 | 7/11 | 9 |
| E. faecalis 880 | 12/13 | 13 | 13 | 13/14 | 11 | 12 | 12 | 13 | 13 | 12 | 7 | 9 | 12 | 9 | 9 | 6 | 27 |

| E. faecium 1291 | 14 | 13 | 14 | 13 | 14 | 14 | 14 | 13 | 13 | 9 | 9 | 13 | 13 | 9 | 9 |

| E. coli ATCC 25922 | 9 | 9 | 10 | 9 | 9 | 10 | 11 | 10 | 11 | 8 | 9 | 10 | 9 | 9 | 20 |
| P. aeruginosa ATCC 27853 | 9/10 | 10 | 10 | 9 | 8/9 | 9 | 9 | 9 | 10 | 9 | 9 | 9 | 10 | 9 | 9/10 | 9 | 20 |

<table>
<thead>
<tr>
<th>T. calypsus 20μl</th>
<th>Fractions (T1-T12) of Polar Lipids (PL) in mm</th>
<th>Lipids</th>
<th>Controls (-) and (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1</td>
<td>T2</td>
<td>T3</td>
</tr>
<tr>
<td>S. aureus NTCC 6571</td>
<td>16</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>S. aureus MRSA 1629</td>
<td>17/18</td>
<td>16/18</td>
<td>17/18</td>
</tr>
<tr>
<td>S. aureus 1646</td>
<td>15/17</td>
<td>16/17</td>
<td>18</td>
</tr>
</tbody>
</table>

| E. faecalis ATCC 29212 | 17 | 18 | 17/18 | 17 | 17 | 16/19 | 18 | 18 | 18 | 20 | 11 | 11/12 | 16/17 | 20 | 10/16 | 12 |
| E. faecalis 880 | 18/20 | 17/19 | 15/17 | 18 | 15/17 | 18 | 18 | 18 | 18 | 11 | 12/13 | 16/17 | 12 | 12/13 | 12 | 6 | 27 |

E. faecium 1291	19	19/20	19	19	19	19	20	19	18/19	18/19	10	13	18/19	18/19	12	12	6
E. coli ATCC 25922	13	12/13	14	12/13	14	14	14	13/14	13/15	14/15	13	12	11	14	12	14	20
P. aeruginosa ATCC 27853	13/14	13/14	13	13	13	14	12/13	13	13	12	13	12/13	13	12/13	13	12	20
Table 1b. Results obtained by applying the Kirby-Bauer method on 10 μl and 20 μl of methanol extract solution *Phormidium melanochroun* showing the inhibition zones (in mm) of each fraction (P1-P10) of Polar Lipids, Neutral Lipids (NL), and Total lipids (TL) in relation to the inhibition zones of the negative control (Meth=methanol) and the positive controls (Gen = gentamicin, Amp = ampicillin, Fox = cefoxitin, Tet = tetracycline, Cip = ciprofloxacin) when tested against eight reference or clinical isolates.

Table 1b. Results obtained by applying the Kirby-Bauer method on 10 μl and 20 μl of methanol extract solution *Phormidium melanochroun* showing the inhibition zones (in mm) of each fraction (P1-P10) of Polar Lipids, Neutral Lipids (NL), and Total lipids (TL) in relation to the inhibition zones of the negative control (Meth=methanol) and the positive controls (Gen = gentamicin, Amp = ampicillin, Fox = cefoxitin, Tet = tetracycline, Cip = ciprofloxacin) when tested against eight reference or clinical isolates.

<table>
<thead>
<tr>
<th></th>
<th>Fractions (P1-P10) of Polar Lipids (PL) in mm</th>
<th>Lipids</th>
<th>Controls (-) and (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. melanochroun 10μl</td>
<td>PL</td>
<td>NL</td>
<td>TL</td>
</tr>
<tr>
<td>S. aureus NTCC 6571</td>
<td>8</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>S. aureus MRSA 1629</td>
<td>12/13</td>
<td>12</td>
<td>10/13</td>
</tr>
<tr>
<td>S. aureus 1646</td>
<td>11</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>E. faecalis ATCC 29212</td>
<td>12</td>
<td>12</td>
<td>13/14</td>
</tr>
<tr>
<td>E. faecalis 880</td>
<td>12/13</td>
<td>12/13</td>
<td>9</td>
</tr>
<tr>
<td>E. faecium 1291</td>
<td>14</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>E. coli ATCC 25922</td>
<td>9</td>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td>P. melanochroun 20μl</td>
<td>PL</td>
<td>NL</td>
<td>TL</td>
</tr>
<tr>
<td>S. aureus NTCC 6571</td>
<td>17</td>
<td>17/18</td>
<td>18</td>
</tr>
<tr>
<td>S. aureus MRSA 1629</td>
<td>14/15</td>
<td>16</td>
<td>17/18</td>
</tr>
<tr>
<td>S. aureus 1646</td>
<td>17</td>
<td>15/16</td>
<td>15/18</td>
</tr>
<tr>
<td>E. faecalis ATCC 29212</td>
<td>16/19</td>
<td>17/19</td>
<td>18/19</td>
</tr>
<tr>
<td>E. faecalis 880</td>
<td>15</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>E. faecium 1291</td>
<td>18</td>
<td>21</td>
<td>19/20</td>
</tr>
</tbody>
</table>
RESULTS

Extraction of lipids from the Cyanobacteria *T. calypsus* and *P. melanochroun* yielded about 31 mg and 51 mg of total lipids (TLs), respectively. Polar lipids (PLs) were further fractioned by TLC, and after exposure in \(\mathrm{I}_2 \) vapor a total of 12 and 10 bands were revealed for *T. calypsus* and *P. melanochroun*, respectively. The retention factors (RFs) for each band of polar lipids compared to that of standards are shown in Table 2. As examined by the Kirby Bauer Method, each fraction of PLs from both Cyanobacteria species, as well as TLs, PLs and NLs as a whole, yielded an inhibition halo against the examined Gram-positive bacteria, whereas none of the examined lipids was effective against the Gram-negative bacteria (Tables 1a,b).

Among the Gram-positive bacteria, the reference and clinical isolates of enterococci were mostly affected since a greater number of fractions of PLs (including NLs and PLs as a whole) showed zones of inhibition. The highest zones of inhibition (20 mm) were observed:

(i) against *Enterococcus faecium* (VRE) by the fractions T2 and T7 of *T. calypsus*, and by the fraction P3 of *P. melanochroun*, at a total volume of 20 μl, and (ii) against *Enterococcus faecalis* (ATCC) by the fraction T9 of *T. calypsus* also at a total volume of 20 μl. One fraction of polar lipids (P7) from *P. melanochroun* showed no zone of inhibition eliminating the expected halo of pure methanol (see Table 1a,b).

The results obtained by the broth microdilution method (MICs) for *T. calypsus* confirm those of the disk diffusion method (Table 3). Antibacterial activity of the 12 fractions of PLs (including NLs and PLs as a whole) extracted from *T. calypsus* was recorded against staphylococci and enterococci in MIC values 0.256 μg/ml and 0.512 μg/ml. Seven (7) fractions of PLs (T1-T3, T7-T10) showed the greatest MIC values against staphylococci and enterococci in MIC values 0.256 μg/ml. Moreover, one of the above fractions (T10) showed antibacterial activity against *S. aureus* (MRSA) at MIC value of 0.256 μg/ml. The fractions T11 and T12 indicated no antibacterial activity at MIC ≥ 0.512 μg/ml.

Table 2. Retention factors (average ± standard deviation) for each fraction (T1–T12) of Polar Lipids of *Toxopsis calypsus* and for each fraction (P1–P10) of Polar Lipids of *Phormidium melanochroun* compared to the retention factors given for the following standards: LPC = lysophosphatidyl-choline; SM = sphingomyelin; PC = phosphatidyl-choline; PE = phosphatidyl-ethanolamine; SULF = sulfatides; DGDG = digalactosyl-diglycerides; GALCER = galactosyl-cerebrosides; CERA = ceramides.

<table>
<thead>
<tr>
<th>Retention Factors (RF)</th>
<th>Toxopsis calypsus</th>
<th>Phormidium melanochroun</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 0.153 ± 0.009</td>
<td>P1 0.151 ± 0.024</td>
<td>LPC = 0.08</td>
<td></td>
</tr>
<tr>
<td>T2 0.202 ± 0.027</td>
<td>P2 0.196 ± 0.018</td>
<td>PC = 0.28</td>
<td></td>
</tr>
<tr>
<td>T3 0.256 ± 0.020</td>
<td>P3 0.268 ± 0.015</td>
<td>PE = 0.57</td>
<td></td>
</tr>
<tr>
<td>T4 0.304 ± 0.017</td>
<td>P4 0.355 ± 0.050</td>
<td>SULF = 0.61</td>
<td></td>
</tr>
<tr>
<td>T5 0.394 ± 0.033</td>
<td>P5 0.422 ± 0.040</td>
<td>DGDG = 0.71</td>
<td></td>
</tr>
<tr>
<td>T6 0.450 ± 0.037</td>
<td>P6 0.514 ± 0.017</td>
<td>GALCER = 0.78</td>
<td></td>
</tr>
<tr>
<td>T7 0.517 ± 0.034</td>
<td>P7 0.690 ± 0.032</td>
<td>CERA = 0.93</td>
<td></td>
</tr>
<tr>
<td>T8 2.217 ± 0.801</td>
<td>P8 0.844 ± 0.049</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T9 0.712 ± 0.035</td>
<td>P9 0.922 ± 0.038</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T10 0.804 ± 0.038</td>
<td>P10 0.959 ± 0.031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T11 0.875 ± 0.031</td>
<td>0.918 ± 0.037</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Minimum Inhibitory Concentration (MIC) values (in μg/ml) determined for each methanol fraction (T1-T12) of Polar Lipids, as well as of Polar Lipids (PL), Neutral Lipids (NL) and Total Lipids (TL) of *Toxopsis calypsus* when tested against eight reference or clinical isolates.

<table>
<thead>
<tr>
<th>S. aureus ATCC 6571</th>
<th>S. aureus MRSA 1629</th>
<th>S. aureus MSSA 1646</th>
<th>E. faecalis ATCC 29212</th>
<th>E. faecalis VRE 880</th>
<th>E. faecium VRE 1291</th>
<th>E. coli ATCC 25922</th>
<th>P. aeruginosa ATCC 27853</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 0.512</td>
<td>0.512</td>
<td>-</td>
<td>0.256</td>
<td>0.256</td>
<td>0.256</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T2 0.512</td>
<td>0.512</td>
<td>0.512</td>
<td>0.256</td>
<td>0.256</td>
<td>0.256</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T3 0.512</td>
<td>0.512</td>
<td>0.512</td>
<td>0.256</td>
<td>0.256</td>
<td>0.256</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T4 0.512</td>
<td>0.512</td>
<td>0.512</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T5 0.512</td>
<td>0.512</td>
<td>0.512</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T6 -</td>
<td>0.512</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T7 0.512</td>
<td>0.512</td>
<td>0.512</td>
<td>0.256</td>
<td>0.256</td>
<td>0.256</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T8 0.512</td>
<td>0.512</td>
<td>0.512</td>
<td>0.256</td>
<td>0.256</td>
<td>0.256</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T9 0.512</td>
<td>0.512</td>
<td>0.512</td>
<td>0.256</td>
<td>0.256</td>
<td>0.256</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T10 0.512</td>
<td>0.512</td>
<td>0.256</td>
<td>0.256</td>
<td>0.256</td>
<td>0.256</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T11 -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T12 -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PL -</td>
<td>-</td>
<td>-</td>
<td>0.512</td>
<td>0.512</td>
<td>0.512</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NL -</td>
<td>-</td>
<td>-</td>
<td>0.512</td>
<td>0.512</td>
<td>0.512</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TL -</td>
<td>-</td>
<td>-</td>
<td>0.512</td>
<td>0.512</td>
<td>0.512</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
DISCUSSION

Natural products have been attributed to a few genera within Cyanobacteria, given that some of them were proved to be polyphyletic groups, e.g. genus *Lyngbya* was shown to be composed of several phylogenetically distant and unrelated lineages (Sharp et al., 2009; Engene et al., 2010, 2012, 2013; Komárek et al., 2013). Moreover, phylogenetic inferences of marine cyanobacterial strains responsible for over 100 bioactive secondary metabolites revealed an uneven taxonomic distribution, with a few groups being responsible for the vast majority of these molecules (Engene et al., 2013). These data suggest a high degree of novel biodiversity among natural product-producing strains that was previously overlooked by traditional morphology-based taxonomic approaches.

The two species selected for this study are new Cyanobacteria from Greek caves established by both the traditional and the molecular (polyphasic) approach (Lamprinou et al., 2012, 2013): a) *Phormidium melanochroun* is an oscillatorialean species characterized by a blackish thick mucilaginous sheath (autapomorphic character), and b) *Toxopsis calypsus* is a nostocalean species characterized by both isopolar and heteropolar life cycle (autapomorphic character). The observed out-competing behaviour of the former species towards other Cyanobacteria in our cultures and the fact that previous studies were focused on different antibacterial compounds extracted from genus *Phormidium* (e.g. Madhumathi et al., 2011; Vijaya Baskara Sethubathi & Prabu, 2012) making this genus a target in the search for a potential lipid antibacterial activity. On the other hand, the taxonomic position of the latter species (*T. calypsus*) among Nostocales has been crucial in the search for a similar activity of lipids, since the order Nostocales is known for intense antibacterial and antifungal activity and has been the focus of many relevant investigations with *Nostoc* and *Anabaena* being the most well studied genera (Mundt et al., 2001; Abdel-Raouf & Ibraheem, 2008; Asthana et al., 2009; Kausik et al., 2009).

Lipids and some free fatty acids from microalgae and Cyanobacteria are known to display antibacterial properties (Borowitzka, 1995; Desbois & Smith, 2010; Plaza et al., 2010; Najdenski et al., 2013). In our study, most of the lipids extracted from *P. melanochroun* and *T. calypsus* demonstrated potential activity against the Gram-positive clinical and reference bacteria with pronounced effectiveness against the enterococci; on the contrary, no activity was observed against the Gram-negative bacteria (cf. Ramadan et al., 2008). Although the exact mechanism is rather unknown, lipids are supposed to be the responsible disrupting agents of the bacterial cellular membranes by penetrating into the thick peptidoglycan wall layer of the Gram-positive bacteria, but not affecting the thin peptidoglycan wall layer of the Gram-negative bacteria (Najdenski et al., 2013). The MIC values of lipids from *Toxopsis calypsus* (0.256 μg/ml) were highly active against all tested enterococci in comparison with previously reported MIC values from crude extracts of other cyanobacterial strains (ranging from 0.5 mg/ml to 512 mg/ml; e.g., Kaushik & Chauhan, 2008; Asthana et al., 2009; Kumar et al., 2012). These data and future similar research on *Phormidium melanochroun*, accompanied by precise composition and characterization of these active compounds, are highly promising steps for developing effective antibiotics from cave Cyanobacteria in pharmaceutical industry.

Extreme habitats experiencing steady or fluctuating exposure to one or more environmental factors, i.e. salinity, osmolality, desiccation, solar irradiance, barometric pressure, pH, temperature, nutrient limitation (Seufferheld et al., 2008; Dapkevicius, 2013) are considered as one of the most promising sources of biotechnologically useful compounds. As a result, several studies have been devoted to screening secondary metabolites produced by microorganisms inhabiting such environments (e.g., Harvey, 2000; Nicolaus et al., 2010; Chang et al., 2011; Singh & Gabani, 2011). Caves are considered as extreme environments in terms of nutrient limitation and insufficient light with rather understudied microorganisms; thus, caves are promising sources for successful natural product research, justifying their conservation and our effort of screening the isolated Cyanobacteria.

REFERENCES

Cave Cyanobacteria showing antibacterial activity

