
Numeracy
Advancing Education in Quantitative Literacy

Volume 11
Issue 1 Winter 2018 Article 5

2018

Using the Quantitative Literacy and Reasoning
Assessment (QLRA) for Early Detection of
Students in Need of Academic Support in
Introductory Courses in a Quantitative Discipline:
A Case Study
Nathan D. Grawe
Carleton College, ngrawe@carleton.edu
Kristin O'Connell
Carleton College, koconnell@carleton.edu

Follow this and additional works at: http://scholarcommons.usf.edu/numeracy

Part of the Curriculum and Instruction Commons, Economics Commons, and the Educational
Assessment, Evaluation, and Research Commons

Authors retain copyright of their material under a Creative Commons Non-Commercial Attribution 4.0 License.

Recommended Citation
Grawe, Nathan D., and Kristin O'Connell. "Using the Quantitative Literacy and Reasoning Assessment (QLRA) for Early Detection of
Students in Need of Academic Support in Introductory Courses in a Quantitative Discipline: A Case Study." Numeracy 11, Iss. 1
(2018): Article 5. DOI: https://doi.org/10.5038/1936-4660.11.1.5

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fnumeracy%2Fvol11%2Fiss1%2Fart5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fnumeracy%2Fvol11%2Fiss1%2Fart5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/numeracy?utm_source=scholarcommons.usf.edu%2Fnumeracy%2Fvol11%2Fiss1%2Fart5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/numeracy/vol11?utm_source=scholarcommons.usf.edu%2Fnumeracy%2Fvol11%2Fiss1%2Fart5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/numeracy/vol11/iss1?utm_source=scholarcommons.usf.edu%2Fnumeracy%2Fvol11%2Fiss1%2Fart5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/numeracy/vol11/iss1/art5?utm_source=scholarcommons.usf.edu%2Fnumeracy%2Fvol11%2Fiss1%2Fart5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/numeracy?utm_source=scholarcommons.usf.edu%2Fnumeracy%2Fvol11%2Fiss1%2Fart5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/786?utm_source=scholarcommons.usf.edu%2Fnumeracy%2Fvol11%2Fiss1%2Fart5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=scholarcommons.usf.edu%2Fnumeracy%2Fvol11%2Fiss1%2Fart5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/796?utm_source=scholarcommons.usf.edu%2Fnumeracy%2Fvol11%2Fiss1%2Fart5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/796?utm_source=scholarcommons.usf.edu%2Fnumeracy%2Fvol11%2Fiss1%2Fart5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by-nc/4.0/


Using the Quantitative Literacy and Reasoning Assessment (QLRA) for
Early Detection of Students in Need of Academic Support in Introductory
Courses in a Quantitative Discipline: A Case Study

Abstract
As the number of young people attending college has increased, the diversity of college students’ educational
backgrounds has also risen. Some students enter introductory courses with math anxiety or gaps in their
quantitative training that impede their ability to master or even grasp relevant disciplinary content. Too often
professors learn of these anxieties and gaps only during the post mortem of the first midterm. By that time, a
good portion of a student’s grade is determined and successful recovery may be impossible. During the
2016-17 academic year, the Department of Economics at Carleton College ran a pilot project using the
Quantitative Literacy and Reasoning Assessment (QLRA) as a pre-course diagnostic tool. Results show that
the QLRA predicts student grades even after controlling for other SAT/ACT math scores and overall GPA.
This finding suggests that quantitative reasoning is an important input into success in Principles of Economics
(both Macro and Micro). When the QLRA alone is used to predict success in a course (as defined by either a
grade of C- or better, or a grade of B- or better), we find that we could nearly always pick out students who
were on the way to sub-par performance. On the other hand, the tool has a fairly high false positive rate;
almost half of students identified as “at risk” based on QLRA performance went on to earn a successful grade
in the course. In total, we argue that the QLRA may be a useful and inexpensive early-warning device for
introductory courses in economics; it may be worth exploring a similar use of the instrument in other
disciplinary settings where introductory courses require quantitative reasoning.
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Introduction 
 

In its LEAP campaign, the Association of American Colleges & Universities 

(2007) lists quantitative literacy/reasoning among its “Essential Learning 

Outcomes” which support students’ success in the 21
st
 century.  As Vacher (2011) 

notes, the LEAP conception of quantitative reasoning can take many forms as 

colleges seek to prepare a numerate generation. At our institution, we see the 

commitment to quantitative reasoning playing out in at least two ways.  First, 

students will encounter and have need for quantitative arguments in personal and 

public life and should be empowered to engage those issues.  Second, quantitative 

fluency is essential for many potential career paths, some of which begin within 

college majors.   We hope that all of our students have the quantitative foundation 

required to complete whatever major is appropriate for them. However, it stands 

to reason that any discipline involving quantitative modeling and argument may 

appear closed to students with weaker quantitative reasoning skills despite being 

interested and otherwise qualified.  

With such questions in mind, some members of the Economics Department at 

Carleton College have been studying the success of students in our introductory 

course sequence.  We suspect that experiences in these gateway courses are the 

primary impediments to many students’ pursuit of the major.  Of course, the vast 

majority of students do just fine in these courses and so can freely contemplate 

continuing on into the major.  For example, in 2016-17 only 3 percent of our 

students earned a grade below C-, only 18 percent fell short of B- work, and only 

30 percent earned less than a B. With so many students achieving strong grades, 

we do not struggle to generate sizeable numbers of majors.  Still, when one-fifth 

of students arrive at grades that might discourage them from even contemplating a 

major in the discipline, we wonder if there are ways we might address barriers 

that lead to unsatisfactory outcomes. 

We hypothesize that many students who do poorly in introductory economics 

courses struggle because they lack foundational quantitative skills.  While other 

students are learning economic models, these students are simultaneously 

backfilling mathematics while attempting to acquire economics.  Often we 

identify at-risk students at the time of the first midterm.  They perform poorly 

and, through examination of the paper along with conversations with the students, 

we suspect that weak quantitative foundations explain much of the struggle.  At 

that point, with one-third or more of the term already gone and a good portion of 

the course grade already locked in at a low level, it seems unlikely that any 

intervention could succeed.  Indeed, any hope of success in mitigating weak 

quantitative foundations developed over more than a decade in the K-12 system 

relies on early detection.   
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In this study we examine whether the free-to-use Quantitative Literacy and 

Reasoning Assessment (QLRA) developed by Gaze et al. (2014) can be used to 

identify students at risk for low performance in introductory economics courses.
1
 

We asked all students taking either Principles of Macroeconomics or Principles of 

Microeconomics during the 2016-17 academic year to complete the QLRA, and 

we then tracked subsequent course performance to see how well the instrument 

might serve as an early warning for poor final grades.  We found that the QLRA 

does predict course performance.  Moreover, it has predictive power even after 

controlling for math ACT and SAT scores and cumulative GPA. Apparently, 

quantitative reasoning as measured by the QLRA is meaningfully connected with 

performance in our introductory economics curriculum. We conclude by 

discussing how we plan to use this information to design interventions that 

mitigate quantitative reasoning skills gaps.  While our context differs from that at 

many institutions, we hope many will find our process of using the QLRA to be 

useful as a model. 

    

Quantitative Literacy and Inclusion 
 
Quantitative skills play a uniquely strong role in determining the insiders and 

outsiders of higher education.  Bailey, Jeong, and Cho (2010) and Hacker (2012) 

note how performance in formal mathematics limits high school graduation, 

college matriculation, and college completion.  Moreover, Wang, Degol, and Ye 

(2015) note that math achievement also serves as a filter that limits entry by 

underrepresented groups like women into STEM fields.  While it may be tempting 

to view these findings as evidence of the importance of simple math and/or 

computational literacy, Wang et al. find that math task value—the propensity to 

enjoy math and see it as “useful in everyday problems”—is of at least as much 

importance as raw math aptitude.  Of course, to readers of this journal, this 

important math task value has significant overlap with broader notions of 

quantitative reasoning. 

These quantitative barriers are of growing importance as higher education 

expands its reach into underserved communities.  According to the National 

Center for Education Statistics (NCES), over the last four decades we have 

witnessed the share of high school completers attending college increase from 

about half to nearly three-quarters (NCES 2016, Table 302.1).  While the share of 

the increase attributable to growth in enrollments at two-year schools is greater 

than their enrollment share, matriculation rates to four-year institutions are up 

more than 25 percent.  This growth in attendance at institutions of higher 

education reflects expansions into previously less-recruited communities. 

                                                           
1
 The instrument is available by emailing Eric Gaze at egaze@bowdoin.edu.  
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In these communities, students often face an opportunity gap with respect to 

rigorous K-12 preparation. This gap disproportionally affects low-income (LI) 

and first-generation-in-college (FG) students (see Warburton et al. 2001; Kuh et 

al. 2006; Engstrom and Tinto 2008.)  In our sample (described below), LIFG 

students at Carleton had lower course grades, SAT math, and QLRA scores.  

Early detection of gaps in foundational quantitative reasoning skills coupled with 

early intervention is thus a matter of inclusion; lack of opportunity prior to college 

should not close the door to a major.  Many disciplines and funding agencies have 

called for this type of reflective institutional accountability (Asai and Bauerle 

2016) to ensure that all students accepted to our institutions have pathways to 

succeed.  

 

Institutional Context 
 

While we believe our experience can provide a useful example for a wide range of 

institutions, we recognize that differences in campus context may necessitate 

adaptations.  For that reason, we begin with a short description of Carleton 

College, its students, and its economics curriculum. 

Carleton is a highly selective liberal arts college located about one hour south 

of the metropolitan centers of Minneapolis and St. Paul.  The institution is well-

resourced with an average class size of 16 and a student-to-faculty ratio of 9:1.  

Of the roughly 2,000 students enrolled, approximately three-quarters graduated in 

the top decile of their high school class.
2
  Another approximately 20 percent 

graduated in the top quintile.  Students appear similarly strong when measured by 

board scores with about one-third earning SAT composite math + verbal scores of 

1,500 or greater, while less than one-tenth earn scores below 1,200.
3
  The student 

body is diverse along many dimensions. We draw essentially equal numbers of 

men and women and from almost every state in the union plus two dozen foreign 

countries.  About one-quarter of students identify as students of color and one-

eighth are among the first generation of their family to go to college. Just over 

half of Carleton students qualify for need-based Carleton grants. 

The college offers no graduate degrees and steers clear of pre-professional 

programs.  This institutional orientation is particularly relevant to the department 

of economics, because we offer no business degree.  The economics major begins 

with the two-course sequence of Principles of Microeconomics and Principles of 

Macroeconomics.  So, the two “Principles” courses play a foundational role in the 

department’s curriculum.  Still, despite strong numbers of economics majors (just 

                                                           
2
 This statistic and those which follow are taken from the Class of 2020 Profile reported by 

Carleton’s admissions office: https://apps.carleton.edu/admissions/apply/requirements/profile. 

 
3
 This statistic applies only to those students who chose to take the SAT. 
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under 10 percent of graduating seniors have completed a major in economics), the 

majority of students in any given section of Principles are destined to be non-

majors and enroll in these courses to earn credit toward distribution requirements. 

 

Data  
 

During the 2016-17 academic year, professors in all 16 sections of Principles of 

Microeconomics and Principles of Macroeconomics assigned students to 

complete the QLRA as an ungraded assessment.  These courses drew a total of 

374 student enrollments over three trimesters.  Of these, 65 students enrolled in 

both a section of Microeconomic and Macroeconomic Principles and took the 

assessment twice.  One re-enrolled in Principles of Microeconomics after a poor 

initial performance. 

None of the teachers gave credit for either completion of or performance on 

the assessment.  Students were told that their professors would review student 

scores in an effort to provide additional and better support to students whose 

quantitative reasoning background may be a bit weaker.  Students were also given 

their own score and encouraged to use the information to inform their early use of 

academic support services.  Because the assignment was not attached to any 

grading in the course, we were not surprised to see that some students chose not to 

complete the assessment.  In all, of the 308 unique enrolled students, 219 (or 71 

percent) completed the QLRA at least once.
4
  Our unit of analysis is a student-

course experience.  Counting those who took both Principles courses and 

completed the QLRA, we have a total of 241 student observations in our sample. 

Students completed the assessment online, outside of class time, and in an 

environment of their own choosing.  We neither encouraged nor discouraged use 

of calculators.  The instructions noted that Carleton students have completed the 

20-item assessment “in about 30 minutes, though some take a bit more or less 

time.” No time limit was enforced.  The mean completion time in our sample was 

122 minutes with a median of 33 minutes.  The large magnitude of the mean 

relative to the median reflects the behavior of a handful of students (18 in total) 

with durations longer than 3 hours.  These students almost surely began the 

assessment and then left their browsers open to come back and complete the 

assignment at a later time.  When these 18 students are excluded, the mean 

duration falls to 38 minutes, much closer to the median. 

                                                           
4
 We very intentionally decided not to assign explicit credit to completion of the assessment.  

Some of the professors involved were concerned that requiring a graded quantitative reasoning 

assessment early in the term might evoke math anxiety particularly among weaker students.  These 

colleagues argued that our attempt to assess and support students could backfire by framing our 

courses in the context of mathematics performance anxiety.  So, in an effort to “first do no harm,” 

as a group we agreed to a low-stakes administration. 
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While some students may have opted out by skipping the assignment 

altogether, we were also concerned that the low stakes might lead some to 

essentially opt out by clicking through the items without any real effort.  The 

measure of duration suggests that this possibility was not a serious problem.  Only 

six students spent less than 15 minutes completing the QLRA assessment.  The 

mean score of these quick test-takers was 14.2 (out of a total of 20) as compared 

to a mean of 15.7 found among all others.  This difference is not statistically 

significant (p = 0.30) and so we assume that all students who completed the 

assessment did so with meaningful effort. 

In light of the information above, we did not feel the need to discard any 

observations due to low effort.  However, we were concerned about selection 

issues caused by the 29 percent of enrolled students who opted not to complete 

the assessment.  To correct for selection, we stratified our sample by gender, class 

year, and grade earned in the course.  (For the latter, we divided the data by full 

letter grades—those who earned A’s, B’s, C’s, D’s, and F’s.)  We then created 

probability weights equal to the inverse of the observed probability of response 

for each gender-class year-grade combination.  For example, if only one-half of 

students of a particular type completed the QLRA, then each student who did 

complete the assessment is given a weight of 2 (i.e., the inverse of one-half) 

because each student observed by us represents two students in the population.  

Except where noted, all analyses below use these probability weights.  

All of the other variables used in this study were drawn from institutional 

records. One complication arose in using ACT and SAT scores. While all students 

in our sample report either the ACT, the SAT, or both, we have neither ACT nor 

SAT scores for all students. For students without an SAT math score, we 

converted the ACT math score into an SAT math equivalent score utilizing 

reported percentile scores on both exams.
5
 So, one can interpret the “SAT math” 

variable as a non-linear measure of the percentile score on available standardized 

tests.  

Two final complications arose concerning our treatment of course grades.  

First, one student did not receive a grade by the time we collected our data.  This 

student was removed from the analysis leaving us with 240 observations. Two 

other students dropped the course after the official drop-add deadline had passed.  

Such drops are published on the transcript and usually indicate that the student 

was headed toward a poor grade (or set of grades) and chose to drop one course to 

focus on others.  Often students who late drop are headed toward grades in the 

dropped course in the D or F range. We did not want to eliminate these 

                                                           
5
 Percentile scores were retrieved from 

https://www.act.org/content/dam/act/unsecured/documents/NormsChartMCandComposite-

Web2015-16.pdf and https://collegereadiness.collegeboard.org/pdf/understanding-sat-scores-

2016.pdf on August 9, 2017.  Exact crosswalk available from authors upon request. 
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observations, because they represent important forms of unsuccessful course 

completion.  We coded these students’ grades as 0.1 GPA points—something 

between an F+ (were there such a thing) and a D-.  While our choice of this value 

will affect measures like ordinary least squares regression, our primary analyses 

are ordinal: so long as we are correct in coding these students’ experiences as 

“unsuccessful,” the exact value we assign won’t matter.  

Table 1 provides descriptive statistics for the variables used in our analysis.  

Columns 1 and 2 note means and standard deviations using the probability 

weights while columns 3 and 4 report un-weighted counterparts.  Note that the 

weighted and unweighted means are very similar.  This observation suggests that 

students who opted out of the assessment did not have systematically high or low 

values for any of the variables.  The weighted QLRA score might be slightly 

higher than the unweighted average, which suggests student groups with high 

QLRA scores are, on average, somewhat less likely to complete the assessment.  

Given that our purpose is to identify students who need extra support, this 

selection isn’t terribly problematic for our purposes.  Even this exception proves 

the rule: the weighted mean is only 0.17 higher, a magnitude that is just 0.05 

standard deviations.  Weighted and unweighted standard deviations are similarly 

alike.  Columns 5 and 6 report minimum and maximum values for each variable. 

 
Table 1 

Descriptive Statistics of Independent and Dependent Variables 

Variable Weighted Unweighted Minimum Maximum 

  Mean St. Dev. Mean St. Dev.     

QLRA Score 15.82 3.44 15.67 3.51 2 20 

SAT Math 721.22 61.85 719.92 60.84 510 800 

Cumulative GPA* 3.44 0.39 3.44 0.37 1.39 4 

Gender (1=male) 0.60 0.49 0.58 0.49 0 1 

Class Year 1.40 0.81 1.41 0.81 1 4 

Course Grade 3.16 0.77 3.13 0.76 0.1 4 

Notes: Sample size = 240 

*Cumulative GPA was measured at the end of the 2016-17 academic year.   

 

The sample is skewed toward men and first- and second-year students.  This 

skew is expected in a gateway economics course.  The means and standard 

deviations of the SAT math score and cumulative GPA are very representative of 

the Carleton population as a whole.  Similarly, the course grade (averaging 

between a B and B+) is almost exactly average for our department in recent years. 

Figure 1 presents the distribution of QLRA scores with significant evidence 

of a ceiling effect: 11 percent of all students scored a perfect 20 out of 20 and 

another 11 percent correctly answered 19 questions.  For some of the research 

questions explored below, this limitation biases the study against finding value in 

the QLRA. In particular, we want to know whether the QLRA provides any 

information not already embedded within ACT and SAT math board scores.  To 

the extent that the signal of quantitative reasoning is muted at the top of the 
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QLRA distribution, we are less likely to find added value in the QLRA.  

However, our primary concern is with students at the bottom of the distribution 

where top-coding is not an issue. 

 

Analysis of Data 
 

As we begin data analysis, we would again underscore the purpose of our study: 

to learn if and how the QLRA might be a useful formative assessment tool 

guiding student support in quantitative disciplines.  Given that all of our data 

come from only one institution, and an outlier at that, we do not expect that the 

findings we present here will necessarily generalize to other contexts.  Rather, we 

hope to share our process of thinking to show how others might similarly employ 

the QLRA for their own purposes in their own contexts. 

 
Figure 1. Distribution of QLRA scores.  Probability weights accountfor non-response. 

The first question we explore is whether the QLRA adds anything in terms of 

our ability to predict course outcomes in Principles of Economics.  After all, 

nearly all of our students have already taken the SAT or ACT.  While it might be 

cumbersome to get that information out of institutional databases, if the QLRA 

added no new predictive power, then it may be preferable to spare our students 

the additional work of taking the QLRA.  It may be particularly desirable to avoid 

additional work of taking the screening test with students who may, as a result of 

the assessment, associate economics with the negative feelings of math anxiety. 

To assess the QLRA’s “value added,” we first ran an ordinary least squares 

regression predicting course grade measured on a four-point scale with half-

grades (e.g., A- versus A) worth 0.33 grade points.  In addition to scores from the 

QLRA and the SAT math exam, we included variables a professor might have 
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readily on hand: gender, class year, and overall academic performance in college 

as measured by the cumulative GPA.
6
  The first column of Table 2 presents 

results.  Not surprisingly, scores on the QLRA and SAT math along with general  

 
Table 2 

Estimating Course Performance Using Full Set of Independent Variables 

Outcome Course Grade Course Grade B or Better C or Better 

Analysis  OLS Tobit Logit Logit 

 (1) (2) (3) (4) 

QLRA Score 0.065 0.081 0.014 0.015 

 (0.016) (0.019) (0.007) (0.005) 

     

SAT Math 0.003 0.003 0.001 0.000 

 (0.001) (0.001) (0.004) (0.000) 
     

Cumulative GPA 0.774 0.973 0.311 0.067 

 (0.089) (0.122) (0.0592) (0.033) 
     

Gender (1=male) 0.063 0.071 0.103 0.008 

 
(0.078) (0.101) (0.046) (0.031) 

     

Class Year 0.015 0.034 0.017 -0.004 

 (0.038) (0.054) (0.028) (0.012) 
     

Constant -2.610 -3.670   

 (0.485) (0.629)   

Observations 240 240 240 240 

Notes: Standard errors are reported in parentheses.  In models 1 and 2, the dependent variable is the grade earned in the 
course.  The reported coefficients can be interpreted at the average change in grade predicted due to a one-unit change in 

the independent variable (other variables held constant).  In models 3 and 4, the dependent variable takes on a value of 1 

or 0 depending on whether the student achieves or fails to achieve the relevant level of success.  Reported coefficients 
reflect the estimated change in probability of success due to a one-unit change in the independent variable (other variables 

held constant) estimated at mean values. 

 

academic performance all positively predict the ultimate course grade.  Important 

for our purposes, the QLRA has predictive power independent of the SAT and 

other course grades.  Controlling for all other independent variables, a one-

standard deviation increase in QLRA (about 3.44 points on the 20-point 

instrument) predicts a course grade that is higher by 0.21 grade points—not quite 

one-half letter grade.  This is a slightly larger impact than that of a one-standard 

deviation increase in SAT Math score.  After controlling for these performance  

measures, demographic markers of gender and class year show no predictive 

power.
7
 

                                                           
6
 Technically, the professor would not have our measure of cumulative GPA because it was 

captured at the end of the 2016-17 academic year.  Indeed, many of our fall term students were in 

their first term and so a professor could have no prior information on academic performance. 
 
7
 We repeated the analysis here including an indicator variable noting whether the student was 

from a low-income family and/or was among the first generation of her family to attend a 4-year 

college (LIFG).  In no model was this variable statistically significant—either in its level or when 

interacted with the QLRA score.    Having controlled for performance in the form of SAT math, 
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While ordinary least squares is a common starting point, it is inappropriate 

for our purposes due to censoring at the top of the grade distribution.  In our 

sample, 46 of 240 grades recorded were the maximum grade of A (a numerical 

value of 4.0).  Though we might expect that some of these students might be 

stronger than others, variation in performance cannot be reflected in variation in 

course grade once the maximum is reached.  In statistical terms, we have censored 

data with a reported grade of A meaning that a student performed at a level that is 

“at least” a 4.0.  It is easy to visualize the consequences of this censoring in the 

data.  We begin with a cloud of data with an upward slope.  The censoring then 

pushes the top-most observations down to some pre-determined maximum score.  

Because there is a positive correlation between our two imagined variables, the 

top-most data are also the right-most data.  Thus, the censoring affects the right 

side of the scatter plot more than the left and the estimated slope is biased toward 

zero. 

Column 2 of Table 2 reports the results of a Tobit regression that accounts for 

the censoring of grades at the upper level of 4.0.  Correcting for censoring does 

not change any of the qualitative results.  However, the magnitude of the QLRA 

coefficient is about one-third larger.  Following the Tobit correction, a one-

standard deviation change in QLRA performance is associated with a grade 

improvement of 0.28 grade points, notably larger than the effect of a similar one-

standard deviation change in SAT Math score. 

While these results are encouraging, they are not particularly focused on our 

purpose.  Our primary goal is early identification of students who are headed 

toward an unsuccessful experience so that we can provide targeted intervention.  

This question is more concerned with the bottom of the grade distribution than the 

top.  Columns 3 and 4 of Table 2 analyze dichotomous metrics of success defined 

by earning a B or better (column 3) or a C or better (column 4).  Using logistic 

regression (or “logit”) analysis we can estimate the change in probability of 

clearing a given threshold conditional on other independent variables. 

Results in the two logit models continue to point to important, independent 

predictive power of the QLRA.  Controlling for the other factors, at mean levels 

of variables, a one-standard deviation increase in the QLRA is associated with a 

5-percentage point increase in the probability of success at either the B or C level.  

Given that over 70 percent of students currently earn a B or better and more than 

                                                                                                                                                               
QLRA, and cumulative GPA, LIFG students showed no difference in performance.  Of course, 

this does not mean that LIFG students don’t need disproportionate support. As discussed above, in 

our sample, LIFG students had lower SAT math scores, QLRA scores, and cumulative GPAs. As 

representation of LIFG students increases as campuses diversify, it becomes more important that 

our teaching practices and pathways to majors are inclusive of students that have had less rigorous 

coursework prior to college. For, as Engstrom and Tinto put it so aptly, “access without support is 

not opportunity” (2008).   
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90 percent achieve at least a C, a 5-point increase in the probability would 

represent a substantial portion of students who fall short of these targets.  

Moreover, it is notable that a one-unit increase in QLRA score predicts the same 

increase in probability of success at the C level as at the B level.  This result is in 

contrast with SAT Math and cumulative GPA which are less associated with 

success at lower levels of performance.  This finding is important because we are 

particularly interested in targeting those who are headed toward low grades. 

Because the logit model is non-linear, the effect of a one-unit change in an 

independent variable does not produce the same effect size at all values of the 

variable.  If the QLRA score were to increase from 5 to 6 correct answers, the 

resulting change in probability of earning at least a B increases by 2 percentage 

points.
8
  This is twice the change in probability associated with an increase in 

QLRA score from 19 to 20.  When success is measured at the C level, the impact 

of a QLRA increase from 5 to 6 is four times as large as that resulting from a 

QLRA increase from 19 to 20.  In other words, the QLRA is particularly 

predictive at low levels.  This bodes well for using it as a mechanism for targeting 

academic support. 

The results in Table 2 show that the QLRA provides information above and 

beyond that already known to the institution.  Of course, if a professor or 

department were interested in using the QLRA to target support, it might be more 

realistic to expect limited access to institutional data like SAT scores or 

cumulative GPAs.  So, we next consider using the QLRA alone to screen students 

for additional academic support.  In such diagnostic work, we worry about two 

types of errors.  A “false positive” occurs when the QLRA singles out a student 

for additional support even though that student would succeed even in the absence 

of such assistance.  In this case, intervention ties up resources that might have 

been devoted to other students with greater need and may waste the student’s 

time.  A “false negative” occurs when a student scores well on the QLRA and yet 

is headed toward an unsuccessful outcome.  In such a case, even though the 

student has sufficient quantitative reasoning skill, other skill gaps may inhibit 

success.  An ideal metric would direct support to all students headed toward an 

academic road bump and only to such students. 

Of course, the rates of false positive depend on both our definition of course 

success and the cutoff in QLRA scores used to identify students in need of 

additional support.  Raising the grade threshold for success results in more and 

more true positives because more and more students would fall below the bar.  On 

the other hand, if the QLRA cutoff is increased we would miss fewer failing 

                                                           
8
 This and the other results reported in this paragraph must be computed using the non-linear 

probit model and are not directly computable from the results presented here.  They were reported 

by the statistical package (Stata 11.0) used to estimate the model. 
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students but end up intervening with more and more students who would have 

been fine without our assistance.   

Figures 2 and 3 plot the rates of false negatives and false positives, 

respectively, that would have resulted from every possible definition of success 

from C- to A and every cutoff for academic support from a QLRA score of 2 to 

20.  By construction, we face a tradeoff between the two error types.  In addition 

to this balance between statistical errors we are cognizant of resource constraints 

that limit our ability to intervene meaningfully with large numbers of students.   

In Figure 2, two patterns speak positively to the value of the QLRA as a 

screening device for our courses.  First, the false negative rate is relatively low: in 

our context, a student who is headed toward a weak grade in Principles of 

Economics nearly always posts a low QLRA score.  For example, if we define B- 

or better as a successful experience in the gateway course, even a very low cutoff 

in the QLRA would miss only one-in-seven students on a path toward a sub-par 

grade.  Second, the rate of false negatives doesn’t change much across reasonable 

cutoffs in the QLRA.  This characteristic allows us to pay more attention to the 

false positive rate when setting the cutoff. 

 
 

Figure 2.  False negative rate as a function of QLRA cutoff for definitions of success 

ranging from a course grade of C to B.  A false negative occurs when the QLRA score 

indicates that a student will succeed without assistance even though the student will in fact 

fail to reach the desired level of success.  For example, if we provide assistance only to 

students scoring 10 or lower on the QLRA and “success” is defined as a B- or better, then 

approximately 15 percent of students heading toward “low” grade will not be offered 

additional help. 

  

0%

5%

10%

15%

20%

25%

30%

0 5 10 15 20

F
al

se
 N

eg
at

iv
e 

R
at

e 

QLRA Score Cutoff 

C C+ B- B

11

Grawe and O'Connell: Detection of Need for Academic Support: A Case Study in Economics

Published by Scholar Commons, 2018



The false positives reported in Figure 3 are notably higher.  There are two 

reasons why it is not clear that these higher rates of false positives are necessarily 

a significant problem.  First, it may be an artifact of the low-stakes environment 

of our QLRA test.  If students knew that we would expect low QLRA scorers to 

attend some academic support events, then they might put more effort into the 

QRLA and that would result in fewer false positives.  Second, assuming the score 

resulted from reasonable effort, we would not regret providing services in support 

of QR to students who need them even if they would have earned a reasonable 

grade in Principles of Economics without the support.  Still, false positive rates at 

or above 50 percent mean resources diverted away from the subgroup of most 

immediate concern. 

 
Figure 3.  False positive rate as a function of QLRA cutoff for definitions of success 

ranging from a course grade of C to B.  A false positive occurs when the QLRA score 

indicates that a student is at risk for failure and needs assistance even though the student will 

succeed without help.  For example, if we provide assistance to all students scoring 10 or 

lower on the QLRA and “success” is defined as a B or better, then approximately 40 percent 

of students receiving assistance would have succeeded on their own without additional help. 

 

Concluding Discussion 
 

The results presented in the previous section suggest that the QLRA may be a 

low-cost screening tool for an economics gateway course, identifying students 

whose quantitative background may portend poor course performance.  While our 

data speak directly only to the context of economics at our own institution, we 

believe other quantitative disciplines and other institutions might find the QLRA 

useful in similar ways. 
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Of course, the next step is more difficult.  Having found a tool for quickly 

identifying students in need of additional support, next we need to develop 

interventions that help these students achieve success.  Recognizing that the math 

anxieties and skills gaps that underlie the QLRA results have developed over 

more than a decade of full-time education, we must be humble in our approach.  

Realistically, we have about three weeks between identifying a struggling student 

and the first midterm.  So, we do not expect to raise students from the bottom of 

the quantitative reasoning skill distribution to the top.  Still, the findings in the 

previous section suggest that if we can move the needle even a little, we can 

noticeably increase the probability of success. 

Informal discussions have identified several possible paths forward.  First, 

Carleton colleagues in other departments offer sections of gateway courses “with 

problem solving.”  These courses augment typical class meetings three days per 

week with one or two more meetings in which students work in teams to solve 

problem sets.  These sessions might be thought of as “group office hours,” with 

the entire class engaged in active learning with the professor’s intermittent 

intervention.  The additional contact time also allows for some just-in-time 

instruction to refresh relevant high school math concepts.  By forcing group work 

and active-learning strategies, our colleagues report noticeable improvements in 

the performance of students who come into the course with skills gaps.  These 

colleagues underscore that the “with problem solving” sections service the same 

middle-level courses in their majors, and so these sections must end up covering 

the very same content as other versions of the gateway course. 

We have also been in conversation with student support services about 

possible workshops designed to refresh relevant math skills and reduce students’ 

math anxieties.  Given the heavy workload that students already carry, we 

recognize that any add-on of this sort must be modest in size to avoid placing 

counterproductive burdens on student time. 

Finally, in collaboration with the Liberal Arts Consortium for online 

Learning and the Associated Colleges of the Midwest we have been developing a 

suite of online tools (Qbits) designed to provide targeted, just-in-time instruction 

on basic math concepts.  For example, we are building modules around linear 

equations, log functions, and solving linear systems of equations.  Each Qbit will 

contain pre-testing, a brief instructional video, applications drawn from a range of 

disciplines, and post-testing.  Operated through our course management system, 

Qbits can be assigned by professors to weaker students precisely at the time when 

the course will use the mathematical concepts. 

We are sure many more ideas will arise through discussion (and from articles 

published in this journal).   
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