12-7-2010

Deglacial Abrupt Climate Change in the Atlantic Warm Pool: A Gulf of Mexico Perspective

Carlie Williams
University of South Florida St. Petersburg

Benjamin P. Flower
University of South Florida, bflower@marine.usf.edu

David W. Hastings
Eckerd College

Thomas P. Guilderson
Lawrence Livermore National Laboratory

Kelly A. Quinn
University of South Florida St. Petersburg

See next page for additional authors

Follow this and additional works at: https://scholarcommons.usf.edu/msc_facpub

Part of the Marine Biology Commons

Scholar Commons Citation
Williams, Carlie; Flower, Benjamin P.; Hastings, David W.; Guilderson, Thomas P.; Quinn, Kelly A.; and Goddard, Ethan A., "Deglacial Abrupt Climate Change in the Atlantic Warm Pool: A Gulf of Mexico Perspective" (2010). Marine Science Faculty Publications. 166.
https://scholarcommons.usf.edu/msc_facpub/166

This Article is brought to you for free and open access by the College of Marine Science at Scholar Commons. It has been accepted for inclusion in Marine Science Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.
Authors
Carlie Williams, Benjamin P. Flower, David W. Hastings, Thomas P. Guilderson, Kelly A. Quinn, and Ethan A. Goddard
Deglacial abrupt climate change in the Atlantic Warm Pool: A Gulf of Mexico perspective

Carlie Williams,1 Benjamin P. Flower,1 David W. Hastings,2 Thomas P. Guilderson,3 Kelly A. Quinn,1 and Ethan A. Goddard1

Received 15 January 2010; revised 5 September 2010; accepted 21 September 2010; published 7 December 2010.

During the last deglaciation, Greenland ice core and North Atlantic sediment records exhibit multiple abrupt climate events including the Younger Dryas cold episode (12.9–11.7 ka). However, evidence for the presence of the Younger Dryas in the Gulf of Mexico (GOM) and the relationship between GOM sea surface temperature (SST) and high-latitude climate change is less clear. We present new Mg/Ca-SST records from two varieties of the planktonic foraminifer *Globigerinoides ruber* (white and pink) to assess northern GOM SST history from approximately 18.4–10.8 ka. Thirty-five accelerator mass spectrometry (AMS) 14C dates from Orca Basin core MD02-2550 provide excellent age control and document high sedimentation rates (~40 cm/kyr). *G. ruber* (white and pink) Mg/Ca-SST data exhibit increases (~4.6 ± 0.6°C and ~2.2 ± 0.5°C, respectively) from at least 17.8–16.6 ka, with nearly decadal resolution that are early relative to the onset of the Bolling–Allerod interstadial. Moreover, *G. ruber* (white) SST decreases at 16.0–14.7 ka (~1.0 ± 0.5°C) and 12.8–11.6 ka (~2.4 ± 0.6°C) correlate to the Oldest and Younger Dryas in Greenland and Cariaco Basin. The *G. ruber* (pink) SST record, which reflects differences in seasonality and/or depth habitat, is often not in phase with *G. ruber* (white) and closely resembles Antarctic air temperature records. Overall, it appears that Orca Basin SST records follow Antarctic air temperature early in the deglacial sequence and exhibit enhanced seasonality during Greenland stadials.

1. Introduction

[2] Greenland ice core records indicate large and abrupt temperature variations of 15–20°C during the last deglaciation, based on δ18OIce and δ15N data. The Oldest Dryas (~16.9–14.7 ka) and Younger Dryas (~12.9–11.7 ka) were stadial events displayed in Greenland ice records with extremely negative δ18OIce values suggesting near glacial temperatures [Björck et al., 1998; Rasmussen et al., 2006]. Following the Oldest Dryas was the abrupt onset of the Bolling–Allerod warm period (~14.7–12.7 ka) marked by a 9 ± 3°C increase in Greenland air temperature at 14.67 ka [Björck et al., 1998; Severinghaus and Brook, 1999; Rasmussen et al., 2006].

[3] The Younger Dryas has also been identified in marine and terrestrial records and is most strongly expressed in the North Atlantic region [Broecker et al., 1988]. For example, North Atlantic SSTs, derived from foraminiferal assemblages off the northern coast of Norway exhibit a 6–8°C decrease, suggesting increased dominance of Arctic Water [Ruddiman, 1977; Ehbesen and Hald, 2004]. Additionally, a sediment core off the Iberian margin at 37°N, 10°W, displays a 5°C cooling based on alkenone temperature reconstructions and an increase in ice rafted debris [Bard et al., 2000]. Northern European lake sediments exhibit changes in pollen assemblages indicating a reduction in pine-birch forests and an expansion of open habitats [Björck et al., 1996; Brauer et al., 1999; Demske et al., 2005]. Sediments from Lake Madtjärn, Sweden display a reduction of tree pollen such as *Betula* (birch) and *Pinus* (pine) pollen and an increase in shrubs and herbs including *Dryas octopetala*, *Juniperus* and *Artemisia* [Björck et al., 1996; Brauer et al., 2008].

[4] Greenland and Antarctic ice core records are not in phase during the last deglacial period [Broecker, 1998; Stocker, 2000; Blunier and Brook, 2001; EPICA Community Members et al., 2006]. While Antarctic records display a warming trend from ~19–14 ka, Greenland remains cold until a marked warming at the onset of the Bolling-Allerod at 14.67 ka. From 14.0–12.0 ka, Antarctic temperatures decrease during the Antarctic Cold Reversal, roughly coinciding with the Bolling-Allerod warm period [Blunier et al., 1997]. Antarctic temperatures increase again during the Younger Dryas at 12.5 ka before stabilizing at the Younger Dryas termination (11.7 ka).
In addition to ice core records, the Antarctic Cold Reversal is expressed in the Southern Hemisphere in SST and glacial advance records. A SST reconstruction off the coast of Chile exhibits a cool interval from 15.0 to 13.0 ka during the Bolling–Allerod/Antarctic Cold Reversal and a rapid increase (∼2.0°C) during the Younger Dryas [Lamy et al., 2004]. Furthermore, new evidence suggests that the Waiho Loop advance of the Franz Josef Glacier in New Zealand occurred during the Antarctic Cold Reversal, before the onset of the Younger Dryas [Barrows et al., 2007].

This nearly antiphase correlation may be a result of asymmetric poleward heat transport [Broecker, 1998; Stocker, 2000]. Climate modeling studies indicate that the seesaw effect produces a warming in the South Atlantic and western tropical Atlantic during intervals of North Atlantic Deep Water (NADW) reduction. When NADW formation is reduced, models exhibit a decrease in cross-equatorial heat transport, producing tropical and subtropical warming due to excess heat build-up near the equator and in the Southern Hemisphere [Crowley, 1992; Manabe and Stouffer, 1997; Vellinga et al., 2002]. Thus, NADW reduction during cold stadials such as the Oldest Dryas and Younger Dryas may cause warming in the low-latitude western Atlantic Ocean region [Wang and Enfield, 2001].

Proxy SST records from the Caribbean Sea indicate complex regional differences in deglacial SST. Alkenone-derived SSTs from a sediment core in Tobago Basin (Figure 1), exhibit a 1.0°C warming during the Younger Dryas [Rühlemann et al., 1999]. In contrast, Cariaco Basin exhibits synchronous changes in Mg/Ca-SSTs to Greenland ice core records with a 4°C decrease during the Younger Dryas [Lea et al., 2003]. However, Cariaco Basin SST may be decoupled from the regional signal because wind-driven upwelling influences the annual SST cycle [Muller-Karger et al., 2001].

The GOM also appears to have a large degree of heterogeneity during the last deglaciation. The Younger Dryas has previously been identified in the GOM using δ^{18}O_{calcite} (δ^{18}O_C) and faunal assemblage data. Oxygen isotope data on G. ruber from Orca Basin exhibits positive δ^{18}O_C values of approximately 0‰ centered at about 12.0 ka, which are significantly greater than mean Holocene values of approximately −1.5‰ [Leventer et al., 1982; Flower and Kennett, 1990; Flower et al., 2004]. Additionally, foraminiferal assemblage data suggest a SST decrease associated with the Younger Dryas [Kennett et al., 1985; Flower and Kennett, 1990]. However, both δ^{18}O_C and faunal assemblage data are also influenced by factors other than SST.

A Mg/Ca-SST record, based on G. ruber (white) from Orca Basin (core EN32-PC6) exhibits SST increases during Oldest and Younger Dryas (>1°C) plus rapid decrease of ∼1°C during the later part of the Younger Dryas (Figure 2). While warming in the Caribbean and GOM during Oldest Dryas stadial has been attributed to the retention of heat in the low latitudes due to a reduction

Figure 1. Location map of the Atlantic Warm Pool showing Orca Basin, DeSoto Canyon, Tobago Basin, and Cariaco Basin core sites. Source: Online Map Creation (http://aquarius.geomar.de/).

2. Atlantic Warm Pool

Encompassing the Caribbean Sea and GOM, the Atlantic Warm Pool (AWP), is the second largest warm pool in the ocean. Developing during the late boreal spring and reaching SSTs greater than 28.5°C in the late summer, the AWP is an important source of both heat and moisture to the North American continent. Seasonal changes associated with the AWP also influence the North American Monsoon system as well as the development of tropical storms in the low-latitude western Atlantic Ocean region [Wang and Enfield, 2001].

Proxy SST records from the Caribbean Sea indicate complex regional differences in deglacial SST. Alkenone-derived SSTs from a sediment core in Tobago Basin (Figure 1), exhibit a 1.0°C warming during the Younger Dryas [Rühlemann et al., 1999]. In contrast, Cariaco Basin exhibits synchronous changes in Mg/Ca-SSTs to Greenland ice core records with a 4°C decrease during the Younger Dryas [Lea et al., 2003]. However, Cariaco Basin SST may be decoupled from the regional signal because wind-driven upwelling influences the annual SST cycle [Muller-Karger et al., 2001].

The GOM also appears to have a large degree of heterogeneity during the last deglaciation. The Younger Dryas has previously been identified in the GOM using δ^{18}O_{calcite} (δ^{18}O_C) and faunal assemblage data. Oxygen isotope data on G. ruber from Orca Basin exhibits positive δ^{18}O_C values of approximately 0‰ centered at about 12.0 ka, which are significantly greater than mean Holocene values of approximately −1.5‰ [Leventer et al., 1982; Flower and Kennett, 1990; Flower et al., 2004]. Additionally, foraminiferal assemblage data suggest a SST decrease associated with the Younger Dryas [Kennett et al., 1985; Flower and Kennett, 1990]. However, both δ^{18}O_C and faunal assemblage data are also influenced by factors other than SST.

A Mg/Ca-SST record, based on G. ruber (white) from Orca Basin (core EN32-PC6) exhibits SST increases during Oldest and Younger Dryas (>1°C) plus rapid decrease of ∼1°C during the later part of the Younger Dryas (Figure 2). While warming in the Caribbean and GOM during Oldest Dryas stadial has been attributed to the retention of heat in the low latitudes due to a reduction
in thermohaline circulation (THC) [Rühlemann et al., 1999; Flower et al., 2004], the SST pattern during the Younger Dryas is equivocal and raises the possibility of additional forcing mechanisms. Moreover, low sample resolution and insufficient age control may have compromised the EN32-PC6 record.

Figure 2. Comparison of previous AWP climate reconstructions including (a) Cariaco Basin *G. ruber* (white) Mg/Ca-SST [Lea et al., 2003]; (b) Tobago Basin alkenone-SST [Rühlemann et al., 1999]; (c) Orca Basin, GOM *G. ruber* (white) Mg/Ca-SST [Flower et al., 2004]; (d) DeSoto Canyon *G. ruber* (white) Mg/Ca-SST [Nürnberg et al., 2008; Ziegler et al., 2008]; (e) Orca Basin *G. ruber* (pink) Mg/Ca-SST (this study); (f) Orca Basin *G. ruber* (white) Mg/Ca-SST (this study); (g) *G. ruber* (white) δ¹⁸O_C (this study); and (h) *G. ruber* (white) δ¹⁸O_SW (this study).
In contrast, *G. ruber* (white) Mg/Ca–SST reconstructions from the DeSoto Canyon (core MD50-2575) in the northeastern GOM show modest SST variability during the Oldest and Younger Dryas [Nürnberg et al., 2008; Ziegler et al., 2008] (Figure 2). Indeed, the data suggest a monotonic increase of ∼3°C from approximately 19–11 ka. Nürnberg et al. [2008] attribute the modest SST change in DeSoto Canyon to the continued presence of a well-developed Loop Current in the northeastern GOM during the deglacial interval that warmed the northeastern GOM. Ziegler et al. [2008] use the Mg/Ca–SST record to support changes in the intertropical convergence zone (ITCZ) and the subsequent expansion of the northern front of the AWP, which yielded persistent summer conditions during Greenland stadials and enhanced seasonality during these events.

Here we compare new and published data to help clarify the regional differences in GOM SST history. Resolving GOM SST will help differentiate potential forcing functions including solar insolation and ocean circulation changes. We present two new high-resolution Mg/Ca–SST records spanning the last deglaciation (18.4–10.8 ka) from Orca Basin in the northern GOM. With excellent radiocarbon age control, we evaluate the timing and magnitude of SST changes relative to known abrupt climate events, as well as the complications in interpreting climate reconstructions from the northern GOM.

3. Core Location and Methods

Located in the northern GOM approximately 300 km from the Mississippi River delta, Orca Basin currently has an anoxic brine pool (salinity > 250 psu) that provides a laminated, nonbioturbated record of GOM paleoceanography (Figure 1). High sedimentation rates (approximately 40 cm/kyr) allow for high-resolution sampling at nearly decadal resolution and abundant aragonite pteropod tests suggest negligible carbonate dissolution throughout the core.

Core MD02-2550 (9.09 m giant 25 cm² Calypso gravity core), recovered from 2248 m water depth (26°56.78’N, 91°20.75’W) by the R/V Marion Dufresne in 2002, was sampled every half centimeter from 311 to 466 cm and every 1 cm to 622 cm. All samples were freeze-dried, wet sieved and washed over a 63 µm mesh with deionized water. When available, approximately 30–40 individuals of the planktonic foraminiferal species *G. ruber* (white and pink varieties, separately) were picked from the specimen. Once picked, samples were sonicated in methanol for determination of acquired isotopes, integration times, repetitions, peristaltic pump program, and optimal tuning parameters. A fully quantitative, isotope analysis acquisition mode was used, for which three central peak points were measured for each mass. Acquired isotopes and respective integration times are shown in Table 1. Five repetitions per sample were acquired to ensure reproducibility. Due to small sample volume, peristaltic pump conditions (timing and speed) were optimized to handle volumes ranging from 4.0 mL to 0.5 mL. A 55 s rinse with 2% HNO₃ was used to reduce any sample-to-

4. Mg/Ca Data Generation

Mg/Ca method development on the Agilent Technologies 7500cx ICP-MS, equipped with an ASX-500 autosampler, MicroMist concentric nebulizer and double-pass (Scott-type) quartz spray chamber, Peltier cooled to 2°C, included determination of acquired isotopes, integration times, repetitions, peristaltic pump program, and optimal tuning parameters. A fully quantitative, isotope analysis acquisition mode was used, for which three central peak points were measured for each mass. Acquired isotopes and respective integration times are shown in Table 1. Five repetitions per sample were acquired to ensure reproducibility. Due to small sample volume, peristaltic pump conditions (timing and speed) were optimized to handle volumes ranging from 4.0 mL to 0.5 mL. A 55 s rinse with 2% HNO₃ was used to reduce any sample-to-
standard contamination. Prior to each run, a 100 ppb Ca solution was run for 30 min for cone conditioning. The ICP-MS was then tuned for low (<2%) oxides and doubly charged ions as well as low relative standard deviations (RSDs).

Multiple gravimetric standards were used to ensure optimal accuracy and precision. As high Ca concentrations may cause instrument drift and affect Mg/Ca ratios, a series of experimental runs was performed to establish the potential calcium concentration effect on Mg/Ca ratios and determine an ideal Ca concentration range for sample dilution. Ten dilutions of four individual solutions with varying Mg/Ca values, ranging from 2.1 to 8.2 mmol/mol were analyzed to determine an ideal Ca concentration range for which there was no change in Mg/Ca. Similar runs were repeated to ensure consistency. Although experimental run results showed insignificant differences between varying Ca concentrations and Mg/Ca ratios, five serial dilutions of three Mg/Ca ratio standards were analyzed before and after all sample analyses during each run.

The serial dilutions and a powdered CaCO₃ standard (ECRM-751) were analyzed multiple times per run to monitor the calcium concentration effect and allow for inter-laboratory comparison in accordance with [Greaves et al., 2008]. A reference solution with an ECRM-751 corrected Mg/Ca ratio was alternated with all standards and samples to further calibrate and correct for instrumental drift [Schrag, 1999]. Five calibration standards for Mg and Ca and five for Mn and Al were analyzed in the beginning of each run to calibrate samples from count per second measurements to concentration.

Table 1. Acquired Isotopes and Respective Dwell Times for Analysis on the ICP-MS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Detection Mode</th>
<th>Integration Time Per Point* (s)</th>
<th>Mean Blank (counts per second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>²⁶Mg</td>
<td>Analog</td>
<td>0.1</td>
<td>20,556</td>
</tr>
<tr>
<td>²⁶Al</td>
<td>Analog</td>
<td>0.4</td>
<td>22,028</td>
</tr>
<tr>
<td>⁴⁰Ca</td>
<td>Analog</td>
<td>0.1</td>
<td>36,638</td>
</tr>
<tr>
<td>⁵⁵Mn</td>
<td>Analog</td>
<td>0.1</td>
<td>24,653</td>
</tr>
</tbody>
</table>

*Each of the five replicates includes 1000 scans through all acquired masses. Dwell time equals integration time/1000.

6. Age Model

Thirty-five accelerator mass spectrometry (AMS) ¹⁴C dates, between 308 and 650 cm, from monospecific *G. ruber* (white and pink varieties) provide excellent chronological control (Table S1). Raw radiocarbon ages were calibrated to calendar years using Calib 6.0, which applies the most recent radiocarbon to calendar age calibration (Marine09), and uses an assumed constant reservoir age correction of 405 years [Reimer et al., 2009].

Although German pine chronologies and radiocarbon dated foraminifera from Cariaco Basin suggest that the low-latitude western Atlantic surface ocean reservoir age decreased at the onset of the Younger Dryas [Kromer et al., 2004; Muscheler et al., 2008] and possibly the during the conservative interpretation of the Mg/Ca–SST record, data with Al/Ca ratios greater than 200 µmol/mol were eliminated (approximately 7% and 13% of *G. ruber* samples (white and pink, respectively)) from the plots as their Mg/Ca values might be influenced by excess Mg from insufficient clay removal. Mean relative standard deviations (RSDs) for Al/Ca and Mn/Ca data based on analyses of 84 ECRM-752 standards are 6% and 0.3%. There is no correlation between Al/Ca and Mg/Ca ratios (*G. ruber* (white): $r^2 = 0.06$; *G. ruber* (pink): $r^2 = 0.02$) (Figures S1 and S2) or between Mn/Ca and Mg/Ca ratios (*G. ruber* (white): $r^2 = 0.02$; *G. ruber* (pink): $r^2 = 0.06$) (Figures S3 and S4). Weight per foraminifer values are relatively constant downcore at 13.49 ± 2.1 µg and do not correlate with Mg/Ca data (*G. ruber* (white): $r^2 = 0.05$; *G. ruber* (pink): $r^2 = 0.04$) (Figure S5).

Figure 3. The age model for core MD02-2550 is based on 35 radiocarbon dates from monospecific planktonic foraminifera (*G. ruber*). Error bars represent a 2 standard deviation error in calibration from radiocarbon to calendar years. Larger error bars from ∼16.5–14.5 ka reflect a plateau in the radiocarbon to calendar year calibration.
Oldest Dryas, varying reservoir age corrections are currently unavailable. However, we note that a reservoir age decrease to less than 200 years at the onset of the Younger Dryas would increase calendar ages by a similar amount from approximately 12.9–12.5 ka [Kromer et al., 2004].

[24] Core depth was converted to calendar age by applying a weighted curve fit with a 15% smoothing factor (Figure 3). Error bars represent 2-sigma error in calibration from radiocarbon to calendar years. Mean accumulation rate is 40 cm/kyr. Half centimeter sample resolution between 311 cm and 466 cm yields a mean temporal resolution of ~14 years/sample, while 1 cm sample resolution from 466 to 621 cm is ~24 years/sample.

[25] Additionally, new age models based on the Marine09 calibration data set were created for all other records compared in this study including a 231Pa/232Th record from the Bermuda Rise [McManus et al., 2004], and SST records from Cariaco Basin [Lea et al., 2003], Tobago Basin [Rühlmann et al., 1999], and previously published Gulf of Mexico studies [Flower et al., 2004; Nürnberg et al., 2008; Ziegler et al., 2008] to ensure a consistent age comparison to the new GOM records. Published 14C ages were recalibrated and best fit lines were used to interpolate calendar age throughout each record (Figures S8, S9, S10, S11, and S12 and Tables S2, S3, S4, S5, and S6).

7. Effects of Salinity on GOM SST

[26] Mg/Ca-SST in the northern GOM may have been affected by several factors. Previous research based on foraminifera from laboratory culturing and sediment trap studies suggests that large changes in salinity may affect Mg/Ca-SST calibrations. Culturing studies of Globigerinoides sacculifer showed that SST dominated the Mg/Ca signal except during large changes in salinity (>10 psu) [Nürnberg et al., 1996]. A 10 psu increase in salinity also increased Mg concentrations by 110%, equivalent to a ~8°C change. Minor salinity changes (<3 psu) showed no change in foraminiferal Mg concentrations. Another study using cultured Globigerina bulloides and Orbulina universa displayed elevated Mg/Ca ratios with increasing salinity. Specifically, a Mg/Ca ratio increase of 4% is seen for a 1 psu increase which is equivalent to a ~0.5°C change [Lea et al., 1999].

[27] Recent Mediterranean Sea sediment trap data show large increases in Mg/Ca values only when foraminifera are living in high-salinity environments (>36.5 psu). However, there is no evidence that Mg/Ca ratios are affected in salinities lower than 36.5 psu [Ferguson et al., 2008]. As modern annual mean GOM salinity is 35.5 psu [Levitus, 2003], the salinity affect on Mg/Ca-SST is likely minimal.

[28] Foraminiferal δ18O_C and δ18O_SW data from G. ruber (white) from Orca Basin (Figure 2) suggest meltwater from the Laurentide Ice Sheet (LIS) for the majority of the last deglaciation. A previous study based on GOM δ18O_SW and estimated LIS meltwater end-member compositions (~25 to ~35%) produced a 2–4 psu salinity change [Flower et al., 2004], which could have increased SSTs by up to 2°C, according to the relationship found by Lea et al. [1999]. Results from Nürnberg et al. [1996] and Ferguson et al. [2008] would imply little to no SST change. However, published and new data from Orca Basin exhibit no correlation between Mg/Ca values and salinity. For example, millennial-scale δ18O_SW minima do not correspond to SST minima. Finally, our largest and sharpest increase in δ18O_SW (~2‰) at approximately 12.9–11.7 ka is not accompanied by a SST warming in either G. ruber (white or pink).

[29] Orca Basin SST reconstructions may also have been influenced by LIS meltwater. We examine the potential effect of meltwater on SST using an inferred 2–4 psu salinity change, calculated with a δ18OIce LIS end-member value of ~25 to ~35‰ [Flower et al., 2004]. A simple box model indicates that a 2–4 psu salinity decrease requires a 5.6–11.3% increase in Mississippi River water to the northern GOM. Modern Mississippi River temperatures (at Baton Rouge, LA) range annually from approximately 32°C in summer months to ~7°C during the winter [Shiller, 1997]; however, the temperature of deglacial LIS meltwater is unknown. As maximum melting likely occurred during summer and spring months, it is possible that ambient air temperatures warmed Mississippi River waters as they flowed south. If deglacial Mississippi River input increased by 11.3%, water temperatures must have decreased to at least 7.5°C to cool the GOM by 1°C. However, a more moderate increase of 5.6% requires a temperature change of ~16.5°C to decrease GOM SST by 1°C. Because we have no accurate means to correct the Mg/Ca-SST for a possible direct meltwater cooling, we present our data with the caveat that Orca Basin SSTs may be affected by cold meltwater during episodes of meltwater input to the GOM (ca. 16–13 ka).

[30] In addition to a direct effect from LIS meltwater, it is possible that surface dwelling foraminifera such as G. ruber may have shifted to a greater depth or different season to avoid a low-salinity mixed layer and subsequently calcified in cooler waters not representative of surface conditions. An interval lacking foraminifers in core MD02-2550 may be due to a faunal response to a change in environmental conditions such as enhanced meltwater input. However, salinity estimates suggest GOM surface conditions were still habitable for G. ruber; given its wide salinity tolerances [Bé, 1959; Bijma et al., 1990]. Furthermore, migration to greater depths would produce cooler temperatures during large meltwater episodes, which is not seen in our data (Figure 2).

[31] Foraminiferal faunal data provide some support for a significant response to deglacial meltwater input. A distinct increase in percent G. ruber is recorded during the main meltwater spike based on δ18O_C from Orca Basin core EN32-PC6, which is interpreted as a response to lower salinities [Kennett et al., 1985]. However, there is no faunal evidence for direct cooling by LIS meltwater. Globorotalia inflata, a cold-water species in the GOM, exhibits higher-percent frequency and flux during the glacial interval than the meltwater spike [Kennett et al., 1985; Flower and Kennett, 1990]. Conversely, the warm-water species Neogloboquadrina dutertrei exhibits increasing frequency and flux across the meltwater spike. Similarly, factor analysis of the foraminiferal assemblages over time indicate cool conditions prior to the meltwater spike, warmer SSTs during the meltwater
spike, and a brief return to near-glacial conditions near the
beginning of the Younger Dryas [Kennett et al., 1985]. These
trends are inconsistent with a significant direct effect of LIS
meltwater on SST. However, an indirect effect in which
foraminifera altered their preferred depth and/or seasonal
habitat is still possible. Changes in depth or seasonal pre-
ferences over time may also affect the G. ruber SST records,
but are very difficult to test down core.

8. Interpretation of G. ruber (white and pink) Mg/
Ca–SST

[32] G. ruber (white and pink) are tropical to subtropical
surface dwelling spinose foraminifera that are constrained to
the surface mixed layer by photosynthetic dinoflagellate symbionts.
Modern depth preferences of planktic foraminifera such as G. ruber have been studied extensively in the
Sargasso Sea, although little work has focused on the GOM.
Monthly plankton tows from the Sargasso Sea showed that
white and pink varieties were most abundant in the top 10 m
[Tolderlund and Bé, 1971]. A single tow in the western
GOM revealed that the white variety is present from 0 to
50 m water depth, while the less abundant G. ruber (pink)
is found slightly deeper (25–50 m) [Bé, 1982].

[33] Sediment trap data from twenty global sites illustrate the
large surface temperature range of G. ruber (white) of
∼10–31°C, with optimum SSTs at 22–31°C. The pink variety
has a much smaller range of 16–30°C with ideal SSTs at
23–30°C [Zarić et al., 2005]. Plankton tow data from the
Sargasso Sea reveal that G. ruber (white and pink) are commonly found in SSTs ranging from 18 to 26°C, with
highest concentrations seen at 23–27°C. The pink variety
is also found at warmer temperatures up to 28°C [Bé and
Hamlin, 1967].

[34] Seasonal preferences of G. ruber (white and pink) also appear to be different. Although both varieties exhibit
their highest abundances during the summer months in the
Sargasso Sea, G. ruber (pink) is rare and often absent in
winter months (January–March) [Bé, 1960; Tolderlund and
Bé, 1971; Williams et al., 1981]. A recent sediment trap
study supports this finding in the GOM (January–December
2008) [Tedesco et al., 2009]. Indeed, G. ruber (pink) ex-
hibits low flux in winter months. However, G. ruber (white)
fluxes are lower throughout the year than expected based on
core top and late Holocene sediments (2% versus 20–30%)
[Bé and Hamlin, 1967; Kennett et al., 1985; LoDico et al.,
2006; Tedesco et al., 2009]. Possible explanations for low
G. ruber (white) flux contributions may include the near
proximity of the sediment trap to the Mississippi River
outflow region (<150 miles). Additionally, surface salinity
values as low as 31.3 psu may force G. ruber to change its
preferred depth or season.

9. GOM Climate Based on G. ruber (white)
Mg/Ca–SST

[35] Because of its upper mixed layer habitat, G. ruber
(white) is widely used as an SST proxy in the low-latitude
Atlantic [Keigwin, 1996; Lea et al., 2003; Flower et al.,
2004; Schmidt et al., 2004; LoDico et al., 2006; Lund and
Curry, 2006; Richey et al., 2007; Nürnberg et al., 2008; Ziegler et al., 2008; Richey et al., 2009]. A separate data set
that includes core top G. ruber (white and pink) stable
isotope and Mg/Ca data from different size fractions
demonstrates that the two species–specific equations for
G. ruber (white and pink) (with fixed exponential con-
stants) [Anand et al., 2003] represent an internally consist-
tent set of calibration equations appropriate for the GOM
[Richey et al., 2008]. GOM zero age core top material yields
a G. ruber (white) Mg/Ca value of 4.43 mmol/mol which is
equivalent to a modern mean annual temperature of 25.4°C
[Richey et al., 2007, 2009].

[36] During the last deglaciation, G. ruber (white) Mg/Ca-
derived SST exhibits an early deglacial warming of 5.6 ± 0.6°C (mean = 18.4°C from 18.4 to 17.8 ka; mean = 24.0°C from 10.8 to 11.5 ka) (Figure 4). A stepwise SST increase (4.6 ± 0.6°C) is seen from approxi-
17.8–16.6 ka, followed by a sustained 1.0 ± 0.5°C cooling from 16.0 to 14.7 ka (based on mean SST difference
between 16.7 and 16.4 ka and 16.0–14.7 ka intervals).
From 14.7 to 12.9 ka, warm SSTs dominate with an increase in SST (2.7 ± 0.6°C), peaking at 13.9 ka. Addi-
tionally, multiple short cool periods are superimposed
(>1.0°C SST decreases; < 200 years). Last, from 12.8 to
11.6 ka, SSTs decrease by approximately 2.4 ± 0.6°C
(based on a mean SST difference between 14.0 and 13.8
ka and 12.2–11.7 ka), followed by an increase to approximately 24.0°C.

[37] In contrast to a previous Orca Basin study (core
EN32-PC6) [Flower et al., 2004], our new higher-resolution
SST record exhibits a larger early deglacial warming (nearly
5°C, compared to 3°C in core EN32-PC6) (Figure 2).
However, this interval is only constrained by six data points
in the EN32-PC6 record and consequently may have under-
estimated SST changes. Differences between the G. ruber
(white) Mg/Ca–SST records from Orca Basin are likely due to
low-resolution sampling bias in both Mg/Ca and 14C records
of the EN32-PC6 core.

[38] The new G. ruber (white) Mg/Ca–SST record ex-
hibits similarities to DeSoto Canyon and Tobago Basin SST
during the early deglacial period (18.4–16.6 ka) (Figure 2).
When compared on a common calibrated age scale, each
record shows an early temperature increase from 17.8 to
16.6 ka; although DeSoto Canyon Mg/Ca–SST and Tobago
Basin alkenone-SST exhibit smaller SST increases
[Rühlemann et al., 1999; Nürnberg et al., 2008].

[39] Similarities between the Gulf of Mexico and Tobago
Basin SST [Rühlemann et al., 1999], local insolation
[Laskar et al., 2004], the 231Pa/230Th proxy for THC
strength [McManus et al., 2004] and Antarctic EDML
δ18Oice [EPICA Community Members et al., 2006] records
suggest that early deglacial warming may be caused by a
combination of local insolation increase and reduction in
cross-equatorial heat transport (Figures 2 and 4). As climate
modeling studies indicate [Crowley, 1992; Manabe and
Stouffer, 1997; Vellinga et al., 2002], a reduction in
NADW should produce low-latitude and Southern
Hemisphere SST increases. The 231Pa/230Th ratio, de-
pendent on the rate of removal from the water column (Pa has
a much longer residence time in the North Atlantic) can be

used as a proxy for thermohaline circulation (THC) strength and exhibits two intervals of decreased NADW formation during the last deglaciation. While the Younger Dryas coincides with a decrease in NADW strength, an earlier interval may have been a complete shutdown in THC [McManus et al., 2004]. However, several studies suggest elevated Pa/Th values may also be due to enhanced Pa scavenging by biogenic silica and that the relationship between Pa/Th values may not be linearly correlated to NADW strength [Keigwin and Boyle, 2008]. Nevertheless, early warming in Orca Basin, DeSoto Canyon, and Tobago Basin suggests that a decrease THC strength, amplified by a local insolation increase is responsible for a low-latitude heat buildup.

[40] There is some evidence for tropical heat buildup during a second interval of THC reduction, the Younger Dryas (12.9–11.7 ka) [Rühlemann et al., 1999]. While our new G. ruber (pink) SST record (discussed later) exhibits an increase of about 1.4°C, the G. ruber (white) SST record reveals a large decrease of approximately 2.4°C. Moreover, a rejuvenation of NADW should have the opposite effect on SSTs, causing an increase in heat transport out of the

Figure 4. Comparison of (a) Greenland (NGRIP) \(\delta^{18}O_{\text{ice}} \) [Rasmussen et al., 2006], (b) G. ruber (white) Mg/Ca-SST (this study), (c) G. ruber (pink) Mg/Ca-SST (this study), (d) \(^{231}\text{Pa}^{232}\text{Th} \) THC [McManus et al., 2004], (e) Antarctic (EDML) \(\delta^{18}O_{\text{ice}} \) [EPICA Community Members et al., 2006], and (f) local summer insolation (26°N) [Laskar et al., 2004]. Shaded bars denote the Oldest Dryas (OD), Bolling-Allerod (B/A), Antarctic Cold Reversal (ACR), and Younger Dryas (YD).
Southern Hemisphere and low-latitude Atlantic Ocean. However, at the onset of the Bolling (~14.7 ka) when THC strengthens, there is no SST decrease in the *G. ruber* (white), but rather a large increase of ~2.7°C. It is possible that the response of the low-latitude Atlantic to NADW variability is driven by the magnitude of THC change. If the NADW decrease during the Younger Dryas was smaller than previous NADW changes as indicated by Pa/Th values, the low-latitude heat buildup may not have extended as far north as the GOM.

[41] During the late deglacial interval (16.6–10.8 ka), *G. ruber* (white) Mg/Ca-SST records from Cariaco Basin and the Orca Basin exhibit similar patterns that correspond to the Oldest Dryas, Bolling-Allerod and Younger Dryas inferred from Greenland ice core records. While Cariaco Basin SST displays a 1.5°C SST reduction from 16.6 to 14.7 ka [Lea et al., 2003] during the Oldest Dryas, Orca Basin SST exhibits a similar cooling of 1.0°C at 16.0–14.7 ka (Figure 2). Both records exhibit a SST increase at the onset of the Bolling-Allerod warm period (~14.7 ka). After the initial rapid increase, Cariaco Basin maintains a relatively constant temperature until the Younger Dryas while Orca Basin *G. ruber* (white) SST peaks at the onset of the Bolling-Allerod and slowly cools until the rapid cooling during the Younger Dryas, similar to Greenland δ18O

[42] Higher-frequency cool periods are evident in the Orca Basin SST record, but radiocarbon measurement error and calibration prevent such short intervals to be precisely correlated. However, three prominent SST decreases during the Bolling-Allerod interval (14.0–13.9, 13.8–13.5, and 13.4–13.1 ka) may coincide with events seen in the Greenland ice core records such as the Older Dryas, (14.1–13.9 ka), an unnamed event (13.8–13.5 ka), and the IntraAllerod Cold Period (13.4–12.8 ka), which would suggest that centennial-scale climate change seen in Greenland ice core records is not limited to the North Atlantic region but also is manifested in low-latitude SST. However, 14C calibration error of approximately 100–200 years likely prohibits the identification of such rapid SST changes.

[43] The Younger Dryas event is also manifested in Cariaco Basin and Orca Basin as a *G. ruber* (white) SST decrease (~4.0°C and ~2.4°C, respectively) from approximately 12.8–11.6 ka. The SST change in Cariaco Basin is nearly double that of Orca Basin at the onset of the Younger Dryas and significantly greater than the Older Dryas in the same core [Lea et al., 2003]. In contrast, *G. ruber* (white) Orca Basin SST exhibits a similar magnitude cooling for both events. While the onset is very abrupt (transition < 300 years) in Cariaco Basin, the low numbers of *G. ruber* individuals and consequent low temporal resolution in core MD02-2550 prevent us from accurately determining the rapidity of initial Orca Basin cooling during the Younger Dryas. The lack of SST change in DeSoto Canyon is attributed to the presence of a well-developed Loop Current during the deglacial sequence [Nürnberg et al., 2008], which likely created a distinct climate region in the eastern GOM controlled by Loop Current dynamics and masked abrupt climate events such as the Younger Dryas that are seen in the Orca Basin record.

10. Comparison to *G. ruber* (pink) Mg/Ca-SST

[44] Orca Basin *G. ruber* (pink) Mg/Ca-SST also exhibits millennial-scale variability during the last deglaciation (Figure 4). The *G. ruber* (pink) record displays a 3.0 ± 0.6°C increase in SST from the early deglacial period (mean = 23.0°C from 18.4 to 17.8 ka) to the early Holocene (mean = 26.1°C from 11.5 to 10.8 ka). An early SST increase is seen at ~17.8–16.3 ka (~2.2 ± 0.5°C) followed by a plateau from 16.3 to 14.7 ka with mean values of 25.3°C. At ~14.8 ka SSTs increase slightly to maximum values of ~26.4°C. From approximately 14.7–14.2 ka *G. ruber* (pink) SST decreases 1.4 ± 0.7°C (based on the difference in mean values from 14.8 to 14.7 ka and 14.2–14.0 ka). SSTs then increase from 14.1 to 13.7 ka and plateau to ~25.3°C from 13.7 to 12.9 ka with a one rapid excursion from ~13.5–13.35 ka to lower values (24.0°C).

[45] When compared to the *G. ruber* (white) SST record, the pink variety records warmer SSTs; however the offset is not constant throughout the entire deglacial sequence. Indeed, the two SST reconstructions appear to be anticorrelated for the majority of the deglacial interval with the exception of the 3.0°C increase during early deglacial period that coincides with a 4.6°C warming in the *G. ruber* (white) record. For example, during the Oldest Dryas interval, *G. ruber* (white) SST exhibits a sustained cooling while the *G. ruber* (pink) SST plateau at warmer temperatures.

[46] Furthermore, the *G. ruber* (pink) Mg/Ca-SST record exhibits some similarities to Antarctic air temperature reconstructions (Figure 4). At the onset of the Bolling-Allerod, the pink variety displays an initial cooling of 1.4 ± 0.7°C as Antarctica temperatures plateau. However, *G. ruber* (pink) SSTs display an increase during the Bolling-Allerod at approximately 14.1–13.6 ka, which is not seen in the Antarctic record. During the Younger Dryas, the *G. ruber* (pink) SST record exhibits a two-part interval. While *G. ruber* (white) SSTs decrease by ~2.4°C, *G. ruber* (pink) SSTs decrease initially by 0.8 ± 0.4°C from 12.9 to 12.4 ka but are followed by a 1.4 ± 0.5°C SST warming throughout the remaining interval which is also seen in Antarctic air temperatures.

[47] The correlation of *G. ruber* (white) SST to Greenland air temperatures and *G. ruber* (pink) SST to Antarctica, respectively, suggests that Orca Basin climate may be linked to both Northern and Southern Hemisphere climate change during the last deglaciation. One hypothesis is that Greenland stadials, which most strongly affect North Atlantic winter conditions, are also being recorded in the *G. ruber* (white) SST. As this variety is likely present year-round in the GOM, its signal may be more strongly recording winter conditions than the *G. ruber* (pink). If the pink variety is not present in the GOM during stadial winters, its SST signal would represent a summer-weighted record. Therefore, divergences between the two records might be used to infer changes in seasonality. Alternatively, if the *G. ruber* (pink) represents a slightly deeper SST signal than the *G. ruber* (white), then SST divergences may reflect...
changes in the position and strength of the seasonal thermocline. However, because the *G. ruber* (pink) SST record records warmer temperatures than the *G. ruber* (white), it is unlikely that it is living at deeper depths. [46] As previous research suggests, Greenland stadials may have been intervals of enhanced seasonality (within the northern North Atlantic region) marked by extremely cold boreal winter conditions related to extensive winter sea-ice formation [Denton et al., 2005; Broecker, 2006]. With the working hypothesis that variations between *G. ruber* (white and pink) SST are due to different seasonal preferences, we suggest that enhanced seasonality during the last deglaciation sequence also extended into the northern GOM. Because *G. ruber* (white and pink) SST trends diverge during the Oldest Dryas, and the Younger Dryas intervals, seasonality appears to be enhanced at these times and decreased during the Bolling-Allerod (Figure 4). Our new *G. ruber* Mg/Ca-SST results also provide support for Ziegler et al.’s [2008] suggestion of enhanced seasonality during the Oldest and Younger Dryas in the AWP based on the DeSoto Canyon core.

11. Conclusions

[49] *G. ruber* (white) Mg/Ca-SST data from the Orca Basin with excellent 14C age control, exhibit a 5.6 ± 0.6°C early deglaciation to early Holocene SST increase with distinct coolings at 16.0–14.7 ka (1.0 ± 0.5°C) and 12.8–11.6 ka (2.4 ± 0.6°C) during the Oldest and Younger Dryas. The onset of the Bolling-Allerod warm period displays a 2.7 ± 0.6°C SST increase. Our results are the first to confirm the Oldest Dryas, Bolling-Allerod and Younger Dryas in the GOM based on Mg/Ca-SST, indicating rapid climate changes affecting the North Atlantic region also influence subtropical climate. These large temperature changes are not seen in a DeSoto Canyon core due to the inferred presence of the Loop Current which created a distinctly separate climate region in the northeastern GOM [Nürnberg et al., 2008].

References

Ebbesen, H., and M. Hald (2004), Unstable
Denton, G. H., R. B. Alley, G. C. Comer, and
Keigwin, L. D. (1996), The Little Ice Age
Greaves, M., et al. (2008), Interlaboratory com-
Demske, D., G. Heumann, W. Granoszewski,
Broecker, W. S. (1998), Palaeocene circulation
during the last deglaciation: A bipolar seasaw?, Paleogeography, 13, 119–121,
Broecker, W. S., M. Andrei, W. Wolff, H.
Oeschger, G. Bonani, J. Kennett, and D. Peete
(1976), Implications to the cause of the Younger Dyas, Paleoceanography, 3, 1–19,
doi:10.1029/PA003I0100001.
Crowley, T. J. (1992), North Atlantic Deep Water circulation during the last glacial
cessation, Global Planet. Change, 56, 211–215,
doi:10.1016/j.globalp.2006.06.019.
Broecker, W. S., M. Andrei, W. Wolff, H.
Oeschger, G. Bonani, J. Kennett, and D. Peete
(1976), Implications to the cause of the Younger Dyah, Paleoceanography, 3, 1–19,
doi:10.1029/PA003I0100001.
Crowley, T. J. (1992), North Atlantic Deep Water circulation during the last glacial
cessation, Global Planet. Change, 56, 211–215,
doi:10.1016/j.globalp.2006.06.019.
Broecker, W. S., M. Andrei, W. Wolff, H.
Oeschger, G. Bonani, J. Kennett, and D. Peete
(1976), Implications to the cause of the Younger Dyaes, Paleoceanography, 3, 1–19,
doi:10.1029/PA003I0100001.
Crowley, T. J. (1992), North Atlantic Deep Water circulation during the last glacial
cessation, Global Planet. Change, 56, 211–215,
doi:10.1016/j.globalp.2006.06.019.
Broecker, W. S., M. Andrei, W. Wolff, H.
Oeschger, G. Bonani, J. Kennett, and D. Peete
(1976), Implications to the cause of the Younger Dyas, Paleoceanography, 3, 1–19,
doi:10.1029/PA003I0100001.
Crowley, T. J. (1992), North Atlantic Deep Water circulation during the last glacial
cessation, Global Planet. Change, 56, 211–215,
doi:10.1016/j.globalp.2006.06.019.
Broecker, W. S., M. Andrei, W. Wolff, H.
Oeschger, G. Bonani, J. Kennett, and D. Peete
(1976), Implications to the cause of the Younger Dyaes, Paleoceanography, 3, 1–19,
doi:10.1029/PA003I0100001.

