5-1-2004

Seagrass and Caulerpa Monitoring in Hillsborough Bay Fifteenth Annual Report

City of Tampa Department of Sanitary Sewers

Follow this and additional works at: http://scholarcommons.usf.edu/basgp_report

Part of the Environmental Indicators and Impact Assessment Commons

Scholar Commons Citation
http://scholarcommons.usf.edu/basgp_report/93

This Statistical Report is brought to you for free and open access by the Tampa Bay Area Study Group Project at Scholar Commons. It has been accepted for inclusion in Reports by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.
SEAGRASS AND CaULERPA MONITORING IN HILLSBOROUGH BAY
FIFTEENTH ANNUAL REPORT

SUBMITTED TO
THE FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION
TAMPA OFFICE
MAY 1, 2004

CITY OF TAMPA
DEPARTMENT OF SANITARY SEWERS
BAY STUDY GROUP
EXECUTIVE SUMMARY

The City of Tampa, Bay Study Group has been monitoring water quality in Hillsborough Bay since 1976 and has documented improvements in several water quality parameters since the early 1980's. The improvements in water quality were followed by the emergence of shoalgrass, *Halodule wrightii*, in many areas of Hillsborough Bay.

The Bay Study Group began a monitoring program in 1986 of the seagrasses *H. wrightii* and *Ruppia maritima*, and the alga, *Caulerpa prolifera*. The purpose of the study was to monitor changes in seagrass coverage, because seagrass may serve as an indicator of water quality. However, the study is not intended to link the discharge from the Howard F. Curren Advanced Wastewater Treatment Plant with changes in the seagrass community.

During the course of the study, *H. wrightii* baywide areal coverage has ranged between nearly 2000m2 in the initial survey in 1986 to a maximum of about 85.5ha in 2001. *H. wrightii* coverage for 2003 was estimated at 53.9ha. Coverage for *R. maritima* fluctuated between 2000m2 in 1986 to 40ha in 1996. Since 1996, *R. maritima* coverage between 2–6ha has been reported. *R. maritima* coverage was estimated at 2.5ha in 2003. *C. prolifera* coverage has varied greatly over the study period. After reaching maximum coverage of 280ha in 1988, *C. prolifera* meadows were reduced nearly an order of magnitude following a "25 year" rainfall event in the fall of 1988 and this alga persisted in Hillsborough Bay through 1996. There was no *C. prolifera* reported in Hillsborough Bay between 1997 and 2001. In 2002, about 4ha of *C. prolifera* was reported in southwestern Hillsborough Bay and this coverage persisted through 2003.

Seagrass recolonization has occurred in the intertidal and shallow subtidal areas of Hillsborough Bay in response to improved water quality. Sizeable *H. wrightii* meadows are now established in southeastern Hillsborough Bay and along the Interbay Peninsula in western Hillsborough Bay.
INTRODUCTION

The City of Tampa, Department of Sanitary Sewers, Bay Study Group (BSG), created in 1976, has monitored the effects of pollution abatement that occurred in Hillsborough Bay when the Howard F. Curren Advanced Wastewater Treatment Plant (formerly Hookers Point Wastewater Treatment Plant) was upgraded to secondary treatment in 1978 and advanced treatment in 1979. During the mid 1980's, water quality improvements and evidence of minor seagrass revegetation in Hillsborough Bay prompted the BSG to initiate a seagrass study to compliment other programs assessing the environmental status of Hillsborough Bay.

Documentation of submerged aquatic vegetation (SAV) in Hillsborough Bay (including McKay Bay) began in April 1986 with a thorough groundtruthing effort that located and estimated the areal coverage of Halodule wrightii (shoalgrass), Ruppia maritima (widgeongrass) and the attached benthic alga, Caulerpa prolifera. Fourteen additional intensive surveys of H. wrightii were completed in the fall of 1989 and 1991-2003. Study sites were established to provide data on seasonal change in canopy height, short shoot density, and areal coverage for H. wrightii, R. maritima and C. prolifera, however, monitoring of R. maritima and C. prolifera at specific study sites has been discontinued. As H. wrightii areal coverage increased beyond the limits of the study sites, coverage assessments shifted from on site measurements to estimates using aerial photography. Generally, study sites were monitored three times a year until 2000 when winter assessments were added.

In 1996, the BSG established thirteen seagrass transects in anticipation of the Tampa Bay seagrass monitoring program coordinated by the Tampa Bay Estuary Program (TBEP) and the Southwest Florida Water Management District’s Surface Water Improvement Management program (SWIM). The monitoring program, which commenced in the fall of 1998, incorporates many ideas outlined in the Comprehensive Conservation and Management Plan produced by TBEP. This plan aims to restore and protect Tampa Bay seagrass meadows principally through the management of nitrogen discharges to the bay. The BSG is one of several agencies involved in the coordinated seagrass monitoring program. Participation in this program may result in future changes to the BSG seagrass monitoring protocol.

The BSG transplanted H. wrightii into Hillsborough Bay in 1987 and 1989. Monitoring of H. wrightii transplants in Hillsborough Bay has been discontinued due to coalition with naturally occurring coverage. Data for transplants were included in annual reports submitted to the Florida Department of Environmental Protection (FDEP) through 1994. Transplant coverage is now included as part of the baywide H. wrightii areal coverage estimate.

The purpose of the BSG seagrass program is to monitor changes of SAV, excluding drift macroalgae, in Hillsborough Bay because seagrass is an important Tampa Bay habitat that may also serve as an indicator of water quality. However, the seagrass program is not intended to link the discharge from the Howard F. Curren Advanced Wastewater Treatment Plant with changes in the seagrass community.
This is the fifteenth annual report submitted to the FDEP to satisfy the requirements set forth in Reclaimed Water and Effluent Limitations and Monitoring Requirements condition #10 of the Howard F. Curren WWTP operation permit FL0020940-001-DW1P.

METHODS

The BSG seagrass program has been modified several times since 1986. A report by the BSG in 1988, "An Ongoing Survey of Halodule wrightii, Ruppia maritima, and the alga, Caulerpa prolifera in Hillsborough Bay, Florida: Initial Assessment and Design" describes study site locations and monitoring design for the naturally occurring seagrass and C. prolifera projects through the 1991 spring survey. It does not, however, contain seagrass transplant information and project modifications made after the 1991 spring survey. Transplant information and methods used to evaluate SAV during 1991, 1992, and 1993 were discussed in the annual report submitted to DEP in March, 1994.

TBEP Transects:

The BSG established thirteen transects in the fall 1996 in order to follow spatial and temporal seagrass trends. Eleven transects are in Hillsborough Bay and two in Middle Tampa Bay (Figure 1). Four of these transects traverse historical SWIM seagrass study sites. The transects are divided into 100m sections and range between 160-1360m in length.

Each transect is visited annually, during the fall, and the coverage of each seagrass species is estimated using a 1x1 meter square. Along each transect, meter squares are placed at a minimum of 25m intervals except at the 100m section traversing the seaward edge of the seagrass meadow. Meter square placement is at 10m and 25m intervals along this section. Coverage for each seagrass species within each meter square is estimated using the Braun Blanquet rating system. The system incorporates ratings of 0-5 where: a) 0 represents the absence of coverage, b) 0.1 represents a single short shoot c) 0.5 represents less than 1 percent coverage, d) 1 represents 1-5 percent coverage, e) 2 represents 6-25 percent coverage, f) 3 represents 26-50 percent coverage, g) 4 represents 51-75 percent coverage, h) 5 represents 76-100 percent coverage, and I) “reported” represents coverage found along the transect, but did not fall within meter square placements. Generally, the “reported” category is used for noting seagrass in areas that previously have not had coverage.

The water column depth is recorded at the meter square placements along each transect. The data are used to generate a bottom contour for each transect, however, the profile is not related to an elevation datum nor are the data corrected for tidal stage.

Information on seagrass characteristics, hydrographic conditions, and photosynthetic active radiation (when sufficient water column depth allows measurement) is collected where each transect traverses the mid and edge portion of the seagrass bed, and at the two meter water depth contour. In addition, water samples from each collection site are taken at mid depth for chlorophyll a and turbidity
analysis. These data are not included in this report.

Areal Coverage

Photographs taken from high and low altitudes are used to aid in the determination of SAV coverage for each seagrass study area of Hillsborough Bay. Specifically, high altitude aerial photographs (ca. 1000-3000 ft.) are used to estimate areal coverage where SAV is present in a large, continuous meadow. After a scale is determined for each photograph, a grid composed of 1x1 mm squares is placed over the photograph. The number of 1 mm² squares covering a SAV signature in the photograph is counted and the areal extent of the SAV is determined by multiplying the number of squares counted times the scale determined for a square. Further, low altitude (ca. 500 ft.) overflights are generally conducted quarterly and are used to locate and enumerate small *H. wrightii* patches not seen in the high altitude photographs. In addition, the monthly reconnaissance flights assist in tracking the development of SAV during the year.

Intertidal and shallow subtidal flats that have the potential for SAV coverage are visited on foot in the fall. During each visit, SAV seen in the low and high altitude photographs is groundtruthed. In addition, any SAV not seen on the photographs is documented. Small patches of *H. wrightii* are enumerated and measured and the area of each patch determined using the formula for an ellipse. There may be occasions where SAV, although widespread, is too patchy to determine the areal coverage from photographs. If the SAV coverage cannot be determined from photographs or groundtruth efforts, the areal coverage is estimated by calculating the percent cover of each species in an area of known acreage.

In the fall of 1997, the BSG began using global positioning systems (GPS) to accurately delineate large areas. The GPS instruments are composed of a Trimble Pro XR differential receiver and are capable of recording positions with sub-meter accuracy. The BSG employs the instrument by following the perimeter of an area to be measured and automatically recording positions every five seconds. Subsequently, the data are downloaded into a PC using the Trimble Pathfinder Office software. In this software, the delineated areas are mapped on a Tampa Bay base map (ARC/INFO Mapping Data, Southwest Florida Water Management District, 1996). Areal coverage calculations can then be performed.

The terms patchy and continuous are subjective terms used in this report to describe seagrass coverage. Patchy coverage may be defined as less than twenty-five percent coverage within a given area with none of the patches exceeding 2000 m². Seagrass areas exceeding either or both of these parameters would be defined as continuous.

Study Sites

Halodule wrightii:

The intertidal and shallow subtidal flats around the perimeter of Hillsborough Bay were divided into twelve seagrass study areas (Figure 2). An additional seagrass study area was added in 1994 to include the northern spoil disposal island, 2-D. Within each of the thirteen seagrass study areas, at
least one patch of *H. wrightii*, if present, was chosen as a seagrass study site. Each study site is evaluated on a seasonal basis. During each visit to a study site, short shoot density, blades per short shoot, and blade length are measured. Short shoot density is determined using a 100cm2 (10cmx10cm) or 625cm2 (25cmx25cm) square. Blade length (emergence from the short shoot basal stalk to tip of the blade) is measured to the nearest centimeter. Subjective evaluations concerning epiphytes and seagrass health are recorded. Epiphytic cover is rated as clean, light, moderate, or heavy. Seagrass appearance is rated as poor, fair, good, or very good. Salinity, water temperature, dissolved oxygen, pH, and water depth are recorded. However, only the short shoot density and blade length data are presented as the purpose of this report is to present changes in SAV excluding macroalgae.

Ruppia maritima:

One *R. maritima* transect was established in western Hillsborough Bay in 1987 and discontinued in 1992. Species verification and observations on inflorescence are made during the seasonal visits to the thirteen seagrass study areas.

Caulerpa prolifera:

C. prolifera in Hillsborough Bay was documented seasonally using transects through the fall of 1994. However, due to the paucity of *C. prolifera* in Hillsborough Bay in 1995, the BSG discontinued these transects. Results for transect coverage through 1994 may be found in the 1995 annual report.

Currently, *C. prolifera* abundance is estimated within the eleven TBEP transects established in Hillsborough Bay. Areal coverage is estimated from vertical aerial photography and measured using the Trimble GPS system.

RESULTS AND DISCUSSION

Two species of seagrass, *H. wrightii* and *R. maritima*, and the attached alga, *Caulerpa prolifera*, have been documented in Hillsborough Bay during the course of the seagrass monitoring program. *H. wrightii* and *R. maritima* has been present in the bay each year. In contrast, *C. prolifera* has exemplified an ephemeral presence and, in 2002, was noted in Hillsborough Bay for the first time since 1997.

Hillsborough Bay Seagrass Coverage 2003

H. wrightii and *R. maritima*, have been observed during the 2003 Hillsborough Bay seagrass survey. *H. wrightii* coverage in Hillsborough Bay increased about 24 percent from about 68.8ha in 2000 to 85.5ha in 2001. *H. wrightii* coverage changed little from 2001 to 2002, however, in 2003 coverage decreased 36 percent to about 53.9ha (Figure 3). The maximum *R. maritima* coverage was about 40ha in 1996. *R. maritima* coverage was reduced to ca. 6ha in 1997 and has since remained between 2-6ha. *R. maritima* coverage was estimated to be ca. 2.5ha in 2003.
H. wrightii coverage was present in each seagrass study area except Area 6 (McKay Bay) (Figure 2). In contrast, R. maritima coverage was found only on the east side of Hillsborough Bay (Areas 2, 4, 5, and 6). H. wrightii areal coverage is summarized in Table 1.

H. wrightii coverage for the southeastern, northeastern, northwestern, and southwestern portions of Hillsborough Bay is illustrated in Figures 4, 5, 6, and 7, respectively. These figures are intended to present the general areal extent for H. wrightii and do not illustrate precise areal coverage or geographic location.

Seagrass Study Areas and Transects

Results for seagrass distribution and abundance for each transect are reviewed concurrent with a discussion of seagrass areal coverage for each of the thirteen seagrass study areas of Hillsborough Bay (including McKay Bay). In addition, a general topographic profile of each transect is illustrated. There are no transects currently established in Areas 1, 7, and 13. Transects S3T12 and S3T13 are outside the boundaries of Hillsborough Bay and the results for these transects will be presented without a discussion of areal coverage.

Seagrass Study Area 1:

Seagrass coverage in Area 1, near the Tampa Electric Company Big Bend power generating plant, has fluctuated since 1997, when about 5600m2 of H. wrightii was reported (Figure 8). H. wrightii coverage declined over 70 percent between 2002 and 2003 to a ten year low of 1000m2. There was no R. maritima reported in this area.

Seagrass Study Area 2:

Both H. wrightii and R. maritima have been documented in Area 2, which includes the Kitchen in southeastern Hillsborough Bay (Figure 4). H. wrightii coverage in this area did not change appreciably between 2000-2003 (Figure 9). The bulk of the meadow has been situated between Green Key and Hog and Hominy peninsula. Also, a band of H. wrightii has persisted approximately one kilometer west of Green Key since 1999. Further, a small area that developed in 2002 along Adamsville peninsula (just north of Port Redwing) remained stable in 2003.

R. maritima has been found predominantly along the shoreline in the eastern portion of the Kitchen. Generally, sparse coverage has been noted in this area although, in 1996, 29ha was documented. R. maritima coverage was reduce over an order of magnitude by the following year. About 5000m2 of R. maritima was reported for 2003.

Figure 10 illustrates the distribution and Braun Blanquet coverage rating of seagrass along Transect S2T2. Along this transect, H. wrightii presence has been recorded each year, however, R. maritima was seen only in 1997. Through 2001, H. wrightii coverage had been stable with the exception of
some minor recolonization between 600-850m in 1999. This coverage was not present in 2000. In 2003, the seaward edge of the *H. wrightii* meadow was similar to the location found in 2002 but there was some loss of the shoreward edge this year. Further, *H. wrightii* abundance appears to decrease from that found in 1999-2002. Similar to 1999, there was some minor recolonization between 700-850m in 2003.

Seagrass Study Area 3:

In Area 3 (Figure 4), between the Kitchen and the Alafia River, *H. wrightii* coverage has vacillated since reaching peak coverage of 5.4ha in 1998 (Figure 11). *H. wrightii* coverage, the only seagrass species noted in this area, has nearly doubled from 2002 reaching to nearly 4.9ha in 2003. Braun Blanquet data from Transect S2T3 (Figure 12), which runs west from the mouth of Bullfrog Creek, illustrates the patchiness of *H. wrightii* in this area. Although several *H. wrightii* patches were reported along the transect each year, only a few of the meter square placements consistently contained any seagrass between each survey. The *H. wrightii* reported near the 300m site from 1999 persisted and coalesced in 2003.

Seagrass Study Area 4:

After reaching 9000m2 in 1997, *H. wrightii* coverage between the Alafia River and Archie Creek (Figure 5) declined to 200m2 in 1999 (Figure 13). However, *H. wrightii* coverage has since recovered and was estimated at 5000m2 in 2003. Generally, *R. maritima* coverage in Area 4 fluctuates from 1ha to 2ha near the mouth of Archie Creek. However, similar to Area 2, *R. maritima* coverage expanded in 1996 to nearly 30ha and subsequently waned in 1997-98. About 0.5ha of *R. maritima* was present in Area 4 during 2003. Transect S2T4 has been devoid of seagrass (Figure 14), however, this transect is located to the south of most of the *H. wrightii* and *R. maritima* found in this area.

Seagrass Study Area 5:

Since 1996, *H. wrightii* coverage between Archie Creek and Pendola Point has varied widely as minor meadows developed and then fragmented into small patches. In 1997, a meadow developed ca. 2km north of Archie Creek, however, this area became fragmented in 1998. Similarly, in 2000, coverage expanded to about 4.4ha as a large meadow developed just north of the Delaney Creek Pop-off Canal (Figure 5). This meadow became very patchy in 2001 that resulted in an overall decrease in coverage for Area 5 to about 1.3ha. Areal coverage did not changed appreciably between 2001-2003 (Figure 15).

A nearly continuous band of *R. maritima* has persisted from north of Archie Creek to the Pendola Point peninsula since the early 1990s. Coverage in Area 5 had been stable at about 2ha from 1999-2002. However, *R. maritima* coverage decreased to about 1ha in 2003.
On Transect S2T5, there was a mixture of *H. wrightii* and *R. maritima* along the first 120m during the first five years of the study (Figure 16). *H. wrightii* coverage did not change significantly between 1998 and 2001 along the transect. In 2003, *H. wrightii* abundance appears to have increased slightly, although the seaward edge of the bed receded about 10m between 2002-2003. *R. maritima* was only present at the start of the transect in 2003.

Seagrass Study Area 6:

Between 1986 and 2001, *H. wrightii* had not been observed in McKay Bay (Figure 5). However, a transplant effort conducted under the guidance of FDEP, introduced about 5m2 of *H. wrightii* into the eastern area of the bay in 2002 (Figure 17). This patch has subsequently disappeared in 2003. Since 1986, there have been scattered ephemeral patches of *R. maritima* in northwest and southeast McKay Bay. *R. maritima* in McKay Bay was estimated at 5000m2 during 2003.

Along Transect S2T6, patchy *R. maritima* coverage has been recorded within the first 50m of the transect in the past four years (Figure 18).

Seagrass Study Area 7:

This study area encompasses the Davis Island shoreline. About 300m2 of *H. wrightii* was discovered in the northeast section of the seaplane basin (Figure 6) in 1997 and has been the only seagrass species noted in Area 7. *H. wrightii* coverage in this area has changed little since 1997 (Figure 19).

Seagrass Study Area 8:

Between 1996 and 1998, patchy *H. wrightii* and *R. maritima* coverage developed on the shallow flats near the intersection of Bayshore Boulevard and Bay to Bay Boulevard (Figure 6). Since 1999, however, *H. wrightii* coverage has been reduced from 200m2 to about 10m2 (Figure 20). Further, small patches of *R. maritima* that were noted during 1997 have been absent from this area since 1998.

Along Transect S2T8, some very sparse *H. wrightii* coverage was documented in 2000 (Figure 21). There was no *H. wrightii* seen on this transect from 2001-2003.

Seagrass Study Area 9:

H. wrightii was the only seagrass species reported in Area 9 since 1998. Coverage in this area remained near 1ha between 1994 and 2001 with a peak of 1.6ha in 2002 (Figure 22). However, in 2003, coverage decreased to about 1.3ha. Most of the *H. wrightii* was found just north of Ballast Point along Bayshore Boulevard (Figure 6). *R. maritima* has not been found in this area since 1997.

Along Transect S2T9, seagrass distribution and abundance has not changed appreciably since 1997. Braun Blanquet data from this transect (Figure 23) indicate a band of continuous to patchy *H. wrightii* coverage beginning approximately 20m from the seawall and ending at 70m.
Seagrass Study Area 10:

H. wrightii coverage in Area 10 increased between 1997 and 2001 (Figure 24). Since 1998, there has been a nearly continuous band of _H. wrightii_ between Ballast Point and the navigation channel on the east side of Macdill Air Force Base (Figure 7) as _H. wrightii_ has begun to recolonize the flats within 300m of the shoreline. Most of the new coverage developed between southern Ballast Point and the northern boundary of Macdill Air Force Base. In 2003, the areal coverage in Area 10 was estimated to be 8.6ha, which is a 21% reduction from 2002 (Figure 24).

Between 1986 and 1999, several areas of _R. maritima_ were documented between Macdill Air Force Base and Ballast Point. _R. maritima_ was not noted in Area 10 between 2000 and 2003.

Transect S2T10 included _H. wrightii_ and _R. maritima_ in 1997 (Figure 25), however, only _H. wrightii_ has been observed since 1998. _H. wrightii_ coverage increased between the 100m-300m sections of the transect through 2001, however there was little change in distribution or abundance in 2002. In 2003 the coverage did not change appreciably but the Braun Blanquet abundance increased in the 200-300m sections.

Seagrass Study Area 11:

H. wrightii in Area 11 (Figure 2) had been characterized by fluctuations in annual coverage between 1994 and 1999. However, between 2000 and 2002, numerous _H. wrightii_ patches developed from just north of Catfish Point southward to Gadsden Point (Figure 7). In addition, many of these patches have coalesced to form a ca. 25ha meadow at Catfish Point. _H. wrightii_ coverage in 2002 was determined to be nearly 32ha. However, a 94% reduction in areal coverage occurred between 2002-2003 as coverage for 2003 was estimated to be 1.8ha (Figure 26).

Prior to 2000, a narrow band of _R. maritima_ was documented shoreward of the _H. wrightii_ coverage found just north of Catfish Point. However, _R. maritima_ has not been noted in Area 11 since 2000.

Coverage along Transect S2T111 has been comprised primarily of _H. wrightii_ along the first 100m section and has changed little since 1997 (Figure 27). _H. wrightii_ noted along the 250m-400m portion of the transect probably represents the northern edge of the offshore coverage which developed between Catfish Point and Gadsden Point. Although, the seaward edge did not change from 2002, the Braun Blanquet abundance decreased along the transect in 2003.

Seagrass was found on Transect S2T112 for the first time in 1999 (Figure 28). The patchy _H. wrightii_ coverage seen in 2000 coalesced in 2001 reflecting the same process of seagrass development seen on Catfish Point. However, between 2002-2003, coverage waned as _H. wrightii_ was found in only one meter square placement.
Seagrass Study Area 12:

H. wrightii coverage in Area 12 expanded rapidly between 1999 and 2001. During this period, *H. wrightii* increased from about 3ha to nearly 17ha resulting in a sizable meadow between Gadsden Point and the Macdill AFB marina (Figure 7). However, in 2002, areal coverage was reduced by nearly seventy percent to just under 5ha (Figure 29). The areal coverage for 2003 was not appreciably different from 2002.

Patchy *R. maritima* was noted in Area 12 prior to 1999, however, this seagrass species has not been present in this area during the past four years.

Transect S2T12 data (Figure 30) reflect the rapid *H. wrightii* expansion in this area after 1998. The figure illustrates the formation of the *H. wrightii* meadow prior to 2002 with the more robust portion of the meadow developing in the 400-700 m range. In contrast, the loss of coverage between 300m-600m is evident during 2002. Losses continued in 2003 as less *H. wrightii* was observed between 600-800m and an absence of seagrass within the 100-600m meter square placements.

Seagrass Study Area 13:

H. wrightii has been the only seagrass species reported in this area. The *H. wrightii* that was noted along the eastern and southern shoreline of the spoil disposal island 2-D (Figure 5) in 2000 persisted through 2002. Further, *H. wrightii* coverage adjacent to a small spoil island just to the east of 2-D increased between 2000 and 2002. However, *H. wrightii* in each of these areas declined in 2003. The coverage for Area 13 decreased from 2.5ha in 2002 to 4000m2 in 2003 (Figure 31).

Seagrass Study Transect S3T12:

Transect S3T12 is located at the mouth of Broad Creek on the south end of Interbay Peninsula (Figure 1). *H. wrightii* coverage increased along the transect each year between 1997 and 2002 (Figure 32). In 2002, a nearly continuous meadow was present starting 25m from the shoreline seaward to the 860m placement. In 2003, the seaward edge fragmented leaving patchy *H. wrightii* from 575 to 890m. The Braun Blanquet data indicates decreasing *H. wrightii* abundance from 50 to 350m with only some increasing abundance from 400-500m.

The sparse to patchy *R. maritima* found in the first 100m of Transect S3T12 in 1997-1998 (Figure 32) reappeared in 2003 after being absent since 1999.

Seagrass Study Transect S3T13:

Transect S3T13 is located at the mouth of Wolf Branch Creek south of Apollo Beach (Figure 1). Data from this transect (Figure 33) indicate that the seaward edge of the *H. wrightii* meadow has receded about 65m since 1998 which includes a 15m recession between 2001-2002. The Braun
Blanquet rating from 100-300m has increased indicating that the bed has thickened. However, the Braun Blanquet rating from 300-350m has decreased indicating that the seaward edge thinned considerably between 2002-2003.

Throughout the study, small Thalassia testudinum beds have been near the transect and sparse coverage has been reported along the 200-400m section in 1999 and 2001. In 2003, T. testudinum was found within two one-meter square placements in this section.

Except for the years 1997 and 2000, very sparse R. maritima has been observed along the first 100m segment of the transect.

Seasonal Trends for Halodule wrightii Blade Length and Short Shoot Density

Seasonal values for H. wrightii blade length (seagrass canopy height) are presented in Figure 34. These data indicate that mean blade lengths are shorter in the winter (9.163.6cm) and spring (10.364.2cm) as compared to the summer (18.065.9cm) and fall (17.467.0cm).

Seasonal values for H. wrightii short shoot density are presented in Figure 35. These data indicate that mean short shoot density per square meter is less in the winter (8736492ss/m²) as compared to spring, summer, and fall. Spring shoot density (12556733ss/m²) is similar to that found in the fall (13866745ss/m²) with peak shoot density usually found in the summer (17046880ss/m²).

Caulerpa prolifera

Two major C. prolifera meadows have developed then degenerated in Hillsborough Bay since 1986. In western Hillsborough Bay, a 40 fold increase in coverage from about 5ha to 200ha was documented between April and December of 1986 (Figure 36). The areal coverage of this meadow was reduced by 90 percent in the fall of 1988 immediately following a "25 year" rainfall event that lowered salinities to 2PSU in some areas of Hillsborough Bay. The decline of this C. prolifera coverage is probably a result of extended exposure to unusually hyposaline conditions. Similarly, in an area south of Pendola Point, the alga expanded from 8000m² in 1987 to 190ha in 1990. Following this maximum, C. prolifera coverage quickly diminished to 10ha in 1991 and was not noted in this area after 1994. However, these losses do not appear to be related to major rain events. C. prolifera had not been observed in Hillsborough Bay between 1997-2001, however, during 2002 ca. 4ha developed between Gadsden Point and the Macdill marina channel which persisted into 2003.

CONCLUSION

Recolonization of H. wrightii into most intertidal and shallow subtidal areas of Hillsborough Bay has occurred concurrent with improving water quality. Data generated by traditional water quality monitoring programs suggest that conditions appear to be adequate for continued seagrass recolonization (see the City of Tampa report submitted to the Florida Department of Environmental
Protection on May 1, 2004 entitled “Results of the City of Tampa Compliance Monitoring for the Year 2003 and Examination of Long Term Water Quality and Biological Indicator Trends in Hillsborough Bay”).

H. wrightii coverage within Hillsborough Bay increased each year between the initiation of the seagrass program in 1986 and 1997. However, in recent years, rainfall events may have played a predominant role in limiting or reversing seagrass gains documented in Hillsborough Bay. For instance, during the “El Nino” period between 1997-1999, there was little change in *H. wrightii* coverage. This period of stagnation was followed by an increase of 29ha of *H. wrightii* through 2001, with the majority of the new coverage developing along southeastern Interbay Peninsula (Areas 10, 11, and 12). These meadows were short lived as the *H. wrightii* in Area 12 declined between 2001-2002. Further reductions were seen in Area 11 during 2002-2003.

Rainfall events may have exacerbated the decline in *H. wrightii* coverage seen in Area 11. In contrast, the loss of *H. wrightii* in Area 12 did not occurred during a normal rainfall year. Declining seagrass in this area may be a result of sediment transport. Sediment erosion has been seen to expose and uproot *H. wrightii* rhizomes. Conversely, sediment accretion has resulted in plant burial. Other factors such as bioturbation and wave energy may also potentially impede seagrass restoration.

Several areas of Hillsborough Bay have *R. maritima* meadows that vary in size from year to year. In recent years, this species has become a minor component of the seagrass coverage in Hillsborough Bay, although in 1996, it increased to about 40ha, equaling the amount reported for *H. wrightii*. In 2003, *R. maritima* coverage was estimated to be about 2.5 ha, less than 5 percent of the *H. wrightii* coverage in Hillsborough Bay.

C. prolifera has been a major contributor to SAV coverage in the past fifteen years. This alga has been observed growing in deeper waters than *H. wrightii*, suggesting that the alga may be a pioneer SAV species in areas with relatively low light penetration. *C. prolifera* can vegetate large areas in a short period and, conversely, undergo sudden, large scale die-offs. For example, a 90% reduction of the *C. prolifera* meadows in western Hillsborough Bay occurred immediately following exposure to unusually low salinities for an extended period of time in 1988. In other areas, reductions in areal coverage do not appear to be salinity related and occurred more gradually.
Table 1. *Halodule wrightii* coverage (m²) by area in Hillsborough Bay for the years 1986, 1989, and 1991-2003.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Area</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>690</td>
<td>700</td>
<td>400</td>
<td>500</td>
<td>2000</td>
<td>2630</td>
<td>2500</td>
<td>3000</td>
<td>5600</td>
<td>3000</td>
<td>3000</td>
<td>3500</td>
<td>2000</td>
<td>3600</td>
<td>1000</td>
</tr>
<tr>
<td>2</td>
<td>1125</td>
<td>3300</td>
<td>16300</td>
<td>40800</td>
<td>34000</td>
<td>135000</td>
<td>16700</td>
<td>29600</td>
<td>40000</td>
<td>40000</td>
<td>39000</td>
<td>29000</td>
<td>29500</td>
<td>28500</td>
<td>306585</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>350</td>
<td>250</td>
<td>1200</td>
<td>2500</td>
<td>4500</td>
<td>10800</td>
<td>54300</td>
<td>27000</td>
<td>21000</td>
<td>33000</td>
<td>26900</td>
<td>49389</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td>475</td>
<td>500</td>
<td>600</td>
<td>500</td>
<td>1000</td>
<td>9000</td>
<td>1900</td>
<td>200</td>
<td>200</td>
<td>4000</td>
<td>3400</td>
<td>5333</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>150</td>
<td>600</td>
<td>1200</td>
<td>750</td>
<td>1500</td>
<td>7900</td>
<td>1900</td>
<td>400</td>
<td>44300</td>
<td>13000</td>
<td>10800</td>
<td>13568</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>300</td>
<td>160</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>80</td>
<td>90</td>
<td>200</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>85</td>
<td>140</td>
<td>800</td>
<td>1900</td>
<td>7000</td>
<td>10400</td>
<td>8700</td>
<td>11000</td>
<td>9000</td>
<td>1000</td>
<td>11000</td>
<td>11000</td>
<td>16000</td>
<td>12645</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>750</td>
<td>1600</td>
<td>6750</td>
<td>22400</td>
<td>32400</td>
<td>54000</td>
<td>60000</td>
<td>59000</td>
<td>60000</td>
<td>72000</td>
<td>74000</td>
<td>11400</td>
<td>10800</td>
<td>85669</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>65</td>
<td>200</td>
<td>650</td>
<td>5000</td>
<td>10500</td>
<td>28500</td>
<td>15000</td>
<td>40000</td>
<td>16700</td>
<td>24000</td>
<td>11520</td>
<td>19900</td>
<td>31820</td>
<td>18495</td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>250</td>
<td>1300</td>
<td>2800</td>
<td>17000</td>
<td>11000</td>
<td>11700</td>
<td>22000</td>
<td>30000</td>
<td>11200</td>
<td>16600</td>
<td>49250</td>
<td>42863</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>100</td>
<td>400</td>
<td>500</td>
<td>600</td>
<td>500</td>
<td>1500</td>
<td>15000</td>
<td>17850</td>
<td>25400</td>
<td>4140</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1960</td>
<td>4975</td>
<td>19575</td>
<td>51825</td>
<td>73080</td>
<td>196830</td>
<td>28185</td>
<td>40351</td>
<td>55598</td>
<td>56955</td>
<td>56210</td>
<td>68821</td>
<td>85506</td>
<td>84676</td>
<td>538900</td>
</tr>
</tbody>
</table>
Figure 1. Location of the thirteen seagrass study areas in Hillsborough Bay.
Figure 2. Location of the thirteen Bay Study Group seagrass transects and the SWIM study sites (▼) in Hillsborough Bay.
Figure 3. Total *Halodule wrightii* coverage in Hillsborough Bay from 1986-2003.
Figure 4. Distribution of *Halodule wrightii* in southeastern Hillsborough Bay (Areas 1, 2, and 3) in 2003.
Figure 5. Distribution of *Halodule wrightii* in northeastern Hillsborough Bay (Areas 4, 5, 6, and 13) in 2003.
Figure 6. Distribution of *Halodule wrightii* in northwestern Hillsborough Bay (Areas 7, 8, and 9) in 2003
Figure 7. Distribution of \textit{Halodule wrightii} in southwestern Hillsborough Bay (Areas 10, 11, and 12) in 2003.
Figure 8. *Halodule wrightii* coverage in Area 1 from 1986-2003.

Figure 9. *Halodule wrightii* coverage in Area 2 from 1986-2003.
Figure 10. Distribution and abundance of *Ruppia maritima* and *Halodule wrightii* along Transect S2T2 from 1997-2003.
Figure 11. *Halodule wrightii* coverage in Area 3 from 1986-2003.
Figure 12. Distribution and abundance of *Halodule wrightii* along Transect S2T3 from 1997-2003.
Figure 13. *Halodule wrightii* coverage in Area 4 from 1986-2003.
Hillsborough Bay
Transect 4 Gypsum Stack

Figure 14. Distribution and abundance of submerged aquatic vegetation along Transect S2T4 from 1997-2003.
Figure 15. *Halodule wrightii* coverage in Area 5 from 1986-2003.
Figure 16. Distribution and abundance of *Ruppia maritima* and *Halodule wrightii* along Transect S2T5 from 1997-2003.
Figure 17. *Halodule wrightii* coverage in Area 6 from 1986-2003.
Figure 18. Distribution and abundance of *Ruppia maritima* along Transect S2T6 from 1997-2003.
Figure 19. *Halodule wrightii* coverage in Area 7 from 1986-2003.

Figure 20. *Halodule wrightii* coverage in Area 8 from 1986-2003.
Hillsborough Bay
Transect 8 North Bayshore Blvd.

Figure 21. Distribution and abundance of *Halodule wrightii* along Transect S2T8 from 1997-2003.
Figure 22. *Halodule wrightii* coverage in Area 9 from 1986-2003.
Figure 23. Distribution and abundance of *Halodule wrightii* along Transect S2T9 from 1997-2003.
Figure 24. *Halodule wrightii* coverage in Area 10 from 1986-2003.
Figure 25. Distribution and abundance of *Halodule wrightii* along Transect S2T10 from 1997-2003.
Figure 26. *Halodule wrightii* coverage in Area 11 from 1986-2003.
Figure 27. Distribution and abundance of *Ruppia maritima* and *Halodule wrightii* along Transect S2T111 from 1997-2003.
Figure 28. Distribution and abundance of *Halodule wrightii* along Transect S2T112 from 1997-2003.
Figure 29. *Halodule wrightii* coverage in Area 12 from 1986-2003.
Figure 30. Distribution and abundance of *Halodule wrightii* along Transect S2T12 from 1997-2003.
Figure 31. *Halodule wrightii* coverage in Area 13 from 1986-2003.
Figure 32. Distribution and abundance of *Ruppia maritima* and *Halodule wrightii* along Transect S3T12 from 1997-2003.
Figure 33. Distribution and abundance of *Ruppia maritima*, *Halodule wrightii*, and *Thalassia testudinum* along Transect S3T13 from 1997-2003.
Figure 34. Mean seasonal *Halodule wrightii* blade lengths (± 1SD) in Hillsborough Bay from 1986-2003.
Figure 35. Mean seasonal *Halodule wrightii* short shoot density (± 1SD) in Hillsborough Bay from 1986-2003.
Figure 36. Areal coverage of *Caulerpa prolifera* in Hillsborough Bay from 1986-2003.