11-15-1991

Reflectance Model for Quantifying Chlorophyll-a in the Presence of Productivity Degradation Products

Kendall L. Carder
University of South Florida, kcarder@marine.usf.edu

S. K. Hawes
University of South Florida

K. A. Baker
University of California

R. C. Smith
University of California

R. G. Steward
University of South Florida

See next page for additional authors

Follow this and additional works at: https://scholarcommons.usf.edu/msc_facpub

Part of the [Marine Biology Commons](https://scholarcommons.usf.edu/msc_facpub)

Scholar Commons Citation
https://scholarcommons.usf.edu/msc_facpub/84

This Article is brought to you for free and open access by the College of Marine Science at Scholar Commons. It has been accepted for inclusion in Marine Science Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.
Reflectance Model for Quantifying Chlorophyll \(a \) in the Presence of Productivity Degradation Products

Marine colored dissolved organic matter (CDOM) (also gilvin or yellow substance) absorbs light at an exponentially decreasing rate as a function of wavelength. From 410 nm to about 640 nm, particulate phytoplankton degradation products including pheopigments, detritus, and bacteria have absorption curves that are similar in shape to that of CDOM. In coastal areas and areas downstream from upwelling regions, these constituents of seawater often absorb much more light than do living phytoplankton, leading to errors in satellite-derived chlorophyll estimates as high as 133%. Proposed NASA sensors for the 1990s will have spectral channels as low as 412 nm, permitting the development of algorithms that can separate the absorption effects of CDOM and other phytoplankton degradation products from those due to biologically viable pigments. A reflectance model has been developed to estimate chlorophyll \(a \) concentrations in the presence of CDOM, pheopigments, detritus, and bacteria. Nomograms and lookup tables have been generated to describe the effects of different mixtures of chlorophyll \(a \) and these degradation products on the \(R(412):R(443) \) and \(R(443):R(565) \) remote-sensing reflectance or irradiance reflectance ratios. These are used to simulate the accuracy of potential ocean color satellite algorithms, assuming that atmospheric effects have been removed. For the California Current upwelling and offshore regions, with chlorophyll \(a \) \(\leq 1.3 \text{ mg m}^{-3} \), the average error for chlorophyll \(a \) retrievals derived from irradiance reflectance data for degradation product-rich areas was reduced from \(+61\% \) to \(+23\% \) by application of an algorithm using two reflectance ratios \((R(412):R(443) \text{ and } R(443):R(565)) \) rather than the commonly used algorithm applying a single reflectance ratio \((R(443):R(565)) \).

1. INTRODUCTION

The next generation of ocean-viewing, visible/near-infrared satellite spectrometers will include for the first time a short-wavelength band which will permit improved chlorophyll \(a \) concentration determinations. The sea-viewing wide-field-of-view sensor (Sea-WiFS), the high-resolution infrared satellite spectrometers will include for the first time products, or DP) absorb more strongly in the 412-nm band from atmospheric aerosols for coastal or other waters with high in-water backscattering. Colored, dissolved organic matter (CDOM) (also gilvin or yellow substance), pheopigments, detritus, and associated bacteria (collectively referred to hereafter as “degradation products,” or DP) absorb more strongly in the 412-nm band than at longer wavelengths [see Bricaud et al., 1981; Kiefer and Soohoo, 1982; Kirk, 1976, 1980, 1983; Kishino et al., 1985; Mitchell and Kiefer, 1988a; Roelsser et al., 1989], whereas phytoplankton absorb more strongly at 443 nm than at 412 nm [Jeffrey, 1980; Bricaud et al., 1983]. These contrasting absorption characteristics can be exploited for the purpose of quantifying viable phytoplankton pigments (mainly chlorophyll \(a \) but including some accessory pigments) independently from DP. They also provide a means to remotely assess the absorption due to DP.

CZCS algorithms for estimating chlorophyll \(a \) (Chl \(a \)) plus pheophytin \(a \) (pheo \(a \)) concentrations perform quite well for regions of the ocean where scattering and absorbing components of seawater covary with these pigments [Gordon and Morel, 1983; Gordon et al., 1983]. A number of empirical and semianalytical optical models have been developed to simulate the behavior of the underwater light field for such Morel case 1 waters [Morel and Prieur, 1977; Smith and Baker, 1978; Baker and Smith, 1982; Gordon et al., 1988; Morel, 1988; Mitchell and Holm-Hansen, 1991; Mitchell, 1991]. Such models have been used as the basis for classifying water types and/or for developing remote sensing algorithms.

The accuracies of these models, however, may decrease when environmental conditions depart from those representative of the data set used to empirically derive the covariation relationships. For instance, DP including CDOM are produced when grazing, photolysis, and other mechanisms degrade the viable plant matter at and downstream from phytoplankton blooms. The DP-to-chlorophyll ratio will change dramatically for a parcel of upwelled water over a relatively short time, from chlorophyll-rich and DP-poor to DP-rich and chlorophyll-poor. Solid evidence for the occurrence of this scenario can be found in two separate studies. Peacock et al. [1988] found that absorption attributed to CDOM at 440 nm was at least sixteenfold that due to phytoplankton pigments within an offshore jet from an upwelling region, whereas pigments were the dominant absorption agents at the upwelling center near the coast. Similarly, Carder et al. [1989] found that particulate absorption at 440 nm decreased thirteenthfold, while CDOM absorp-
tion at 440 nm increased by 60% in 10 days as they tracked a phytoplankton bloom from the Mississippi River plume to Cape San Blas. This widely varying CDOM-to-chlorophyll ratio has a profound effect on upwelled radiance in the blue 443-nm band of the CZCS and a smaller but still significant effect in the green 520-nm band. The correspondence in absorption at 443 nm and 520 nm between CDOM and chlorophyll creates erroneously high estimates of pigment concentration in those models which rely solely upon either of these spectral bands to indicate absorption due to phytoplankton.

Separate studies performed in the Southern California Bight point to another way to view the problem. Smith and Baker [1982] developed a pigment algorithm for that site that appears to require a larger absorption effect per unit of chlorophyll-like pigment than do most other case 1 algorithms [see Gordon and Morel, 1983]. However, the algorithm parameters for the Southern California Bight study region changed with time (compare Smith and Baker [1982] to Smith and Wilson [1981]), requiring contemporaneous ship and satellite data for parameter adjustment. Mitchell and Kiefer [1988a] found significant variability in pigment-specific particulate absorption in this region, which may account for some of the difference between the two algorithms, but the presence of CDOM and other degradation products can also cause such variation. In any event, without expensive surface verification, waters laden with DP cannot be unambiguously identified based upon satellite data from sensors using as limited a suite of spectral channels as the CZCS employed.

Another problem is that models which do not separate absorption due to viable pigments from absorption due to DP have less utility to researchers applying physiological primary production models that are driven by quanta absorbed by photosynthetic pigments [e.g., Kiefer and Mitchell, 1983; Platt, 1986; Smith et al., 1989] or to researchers interested in the DP rather than the pigments.

A previously developed semianalytical reflectance model is modified here to address the concerns listed above. The model is used to develop an algorithm that utilizes a 412-nm spectral channel in addition to the 443-nm and 565-nm channels expected on Sea-WIFS in order to estimate from irradiance reflectance data Chl a concentration and the absorption effects due to DP. In situ reflectance data from the California Current region is used to test the algorithm.

2. MODEL AND ALGORITHM DEVELOPMENT

Morel and Gordon [1980] describe three approaches to interpret ocean color data in terms of the in situ optical constituents: empirical, semiempirical, and analytical. In the analytical approach, (1) radiative transfer theory provides a relationship between upwelling radiance and the in situ constituents, then (2) constituent concentrations are derived from irradiance values measured at several wavelengths by inversion of the resultant system of equations. The algorithm presented here uses this approach, and the term "semianalytical" is invoked because pieces of the radiative model are expressed by empirical relationships. This analytical derivation of the two quantities in question, Chl a and degradation products, avoids the problem of statistical nonvalidity, due to the spatial and spectral correlation between the two, that Prieur and Sathyendranath [1981] encountered in their attempt to decouple the optical effects of those two quantities. In the following sections, the radiative transfer model will be developed, the individual terms in the resultant equations will be expressed in terms of Chl a and degradation product concentrations, and the algorithm for determining the constituent concentrations will be explained.

2.1. Reflectance Model

The concept of using spectral ratios of water-leaving radiance to determine phytoplankton pigment concentrations has enjoyed widespread currency ever since the idea first surfaced in the work by Clarke et al. [1970]. The most commonly applied algorithm for use with CZCS data corrected for atmospheric effects falls into the empirical category as described by Morel and Gordon [1980] and is described by

\[[C] = A(r_{ij}) B \]

(1)

where \([C] = [\text{Chl} a] + [\text{pheo} a]\) (square brackets here indicate concentration in mg m\(^{-3}\)), \(A\) and \(B\) are empirical constants, and \(r_{ij}\) is the spectral ratio of water-leaving radiance, defined as

\[r_{ij} = \frac{L_w(\lambda_i)/L_w(\lambda_j)}{E_d(\lambda_i, 0+)} \]

(2)

[Gordon and Morel, 1983]. Symbols not defined explicitly in the text can be found in the notation section.

Equation (2) derives from earlier research where \(r_{ij}\) represented \(R(\lambda_i)/R(\lambda_j)\), the irradiance reflectance ratio. Irradiance reflectance is defined as

\[R(\lambda) = \frac{E_d(\lambda, 0-)}{E_d(\lambda, 0-)} \]

(3)

[Morel and Prieur, 1977], and a similar quantity, remote-sensing reflectance, is defined as

\[R_{rs}(\lambda) = \frac{\pi L_w(\lambda)}{E_d(\lambda, 0+)} \]

(4)

[see Austin, 1974; Carder and Steward, 1985], where \(E_d(\lambda, 0-)\) is upwelling irradiance just below the sea surface and \(E_d(\lambda, 0-)\) and \(E_d(\lambda, 0+)\) are downwelling irradiances just below and just above the sea surface, respectively. The spectral ratio given by (2) can be expressed in terms of \(R_{rs}(\lambda)\) as

\[r_{ij} = \frac{R_{rs}(\lambda_i)/R_{rs}(\lambda_j)*E_d(\lambda_i, 0+)}{E_d(\lambda_j, 0+)} \]

(5)

or, for areas where \(E_s(\lambda, 0-)\) is weakly dependent on wavelength [Austin, 1979], as the approximation

\[r_{ij} = \frac{R(\lambda_i)/R(\lambda_j)*E_d(\lambda_i, 0+)}{E_d(\lambda_j, 0+)} \]

(6)

since parameters associated with passing irradiance thru the air-sea interface are nonspectral. For cloudless skies, \(E_d(\lambda, 0+)\) can be calculated based upon a number of models [Justus and Paris, 1985; Bird and Riordan, 1986; Frouin et al., 1989; Gregg and Carder, 1990]. Thus reflectance data of either type can be used interchangeably in spectral ratio form as long as \(E_s(\lambda, 0-)/L_w(\lambda)\) is relatively constant with wavelength. The implications of this condition will be considered in section 5.

Our model (called the "DP model") employs the spectral ratio concept but uses a semianalytical formulation of irradiance reflectance, \(R(\lambda)\), rather than the empirical approach that is manifest in (1). Based upon the work of Morel and
Prieur [1977] and Gordon et al. [1975], $R(\lambda)$ can be expressed in terms of the inherent optical properties of the water:

$$R(\lambda) \approx 0.33(b'_{w} + b'_{p})/(a_{w} + a_{\text{cdom}} + a_{p})$$

(7)

where b' is the backscattering coefficient, a is the absorption coefficient, and the subscripts w, cdom, and p represent water, CDOM, and particles. The spectral dependence of each term has been left off for convenience. In practice, a_{cdom} corresponds to the fraction of a given water sample that passes through a 0.2-μm pore size filter, while a_{p} corresponds to the fraction that is retained on a Whatman GF/F glass-fiber filter. This approach ignores the absorption effects of bacteria and detritus in the size range of 0.2 to about 0.7 μm [Altabet, 1990].

A difficulty with the above expression is that absorption effects due to viable phytoplankton pigments, pheopigments, detritus, and bacteria are all a part of a_{p}. The last three of these components, referred to hereafter as "particulate degradation products" or PDP, do not contribute to the photosynthetic process, yet they often play a significant role in determining the magnitude of a_{p}, especially at the shorter wavelengths [Mitchell and Kiefer, 1988a]. This effect is apparent in Figure 1 where the Chl a-specific absorption coefficient for particles at 443 nm, $a'_{p}(443)$, is graphed against [Chl a] for samples taken during the 1982 Optical Dynamics Experiment (ODEX) cruise off California. The variation in $a'_{p}(443)$ is quite large, even over a small range of [Chl a] (0.05 < [Chl a] < 0.2 mg/m3). Although some of this variation may be due to the package effect (see section 2.4), evaluation of the absorption ratio $a_{p}(435)/a_{p}(675)$ yielded values as high as 7.08 with a mean value of 4.56, indicating that significant detrital absorption effects must also be present [see Mitchell and Kiefer, 1988a; Roesler et al., 1989].

By removing the PDP absorption from a_{p} and regrouping it with the CDOM absorption term, an absorption coefficient that represents all DP, including the 0.2- to 0.7-μm size fraction, is formed ($a_{\text{dp}} = a_{\text{cdom}} + a_{\text{pdp}}$), as well as one which represents biologically utilizable absorption ($a_{p} = a_{p} - a_{\text{pdp}}$), assuming that all viable pigments are contained in cells larger than the nominal GF/F pore size of 0.7 μm. This change leads to the following reformulation of (7):

$$R(\lambda) = 0.33(b'_{w} + b'_{p})/(a_{w} + a_{\text{dp}} + a_{p}'[\text{Chl } a])$$

(8)

where a_{p}' is the Chl a-specific absorption coefficient due only to viable phytoplankton pigments. [Chl a] (used as a surrogate for the concentration of all photosynthetic pigments) is chosen as the index for specific absorption rather than the commonly used [Chl a] + [pheo a] since absorption due to pheopigments is included in the DP absorption term. As will be shown in section 2.3, this regrouping fits smoothly into the modeling scheme due to the similar spectral shapes of a_{cdom} and a_{pdp}.

Tables are available for both b'_{w} [Morel, 1974] and a_{w} [Smith and Baker, 1981]. Expressions for each remaining term in (8) will be developed for each of the three wavelengths 412, 443, and 565 nm. Two irradiance ratio equations will be formed from the three irradiance equations, forming the basis for the pigment and degradation product algorithm.

2.2. Spectral Backscattering Due to Particles

Expressions for b_{p}' at 443 nm and 565 nm are adapted from empirical formulas developed by Gordon et al. [1988]. They are

$$b_{p}'(443) = 0.0030[\text{Chl } a]^{0.22}$$

(9)

$$b_{p}'(565) = 0.0033[\text{Chl } a]^{0.36}$$

(10)

We have substituted [Chl a] for [C] and assumed that the backscattering coefficient at 565 nm is the same as that at 550 nm, the wavelength that is used by Gordon et al. [1988]. The spectral dependence of (9) and (10) is weak for the range of [Chl a] values encountered in this study ([Chl a] \leq 1.3 mg m$^{-3}$; see Table 2), and particle backscattering will thus play only a minor role relative to absorption in affecting the spectral irradiance ratios. For waters where [Chl a] is of the order of 10 mg m$^{-3}$ or larger, this may not be the case.

An expression for b_{p}' at 412 nm can be developed using arguments that parallel those of Gordon and Morel [1983] and Gordon et al. [1988]. We assume that (1) $b_{p}'(\lambda) = A(\lambda)[\text{Chl } a]^{B(\lambda)}$, where A and B are constants; (2) at high chlorophyll ([Chl a] = 20 mg m$^{-3}$), $b_{p}'(412)/b_{p}'(443)$ = 1.2 due to enhanced pigment absorption, and thus decreased backscattering, at 443 versus 412 nm; and (3) at low chlorophyll ([Chl a] = 0.05 mg m$^{-3}$), backscattering follows a λ^{-1} power law [Gordon and Morel, 1983], yielding $b_{p}'(412)/b_{p}'(443) = 1.0752$. Applying the points in 2 and 3 to the equation in 1 leads to

$$b_{p}'(412)/b_{p}'(443) = 1.14[\text{Chl } a]^{0.016}$$

(11)

and substituting (9) yields

$$b_{p}'(412) = 0.0034[\text{Chl } a]^{0.24}$$

(12)

Different relationships are needed for situations where backscattering is poorly correlated with Chl a, within a coccolithophore bloom for example or where suspended sediments or other nonalgal scatterers are in high proportion to living cells.
2.3. Spectral Absorption by Degradation Products

Recently, the term CDOM has been employed to describe that fraction of the dissolved organic matter which modifies the color of the water by absorption of light (the terms gilvin, gelbstoff, or yellow substance are often used interchangeably with CDOM). The oceanographic and limnological literature is rife with reports of the absorption effects of CDOM [James and Birge, 1938; Jerlov, 1955; Kalle, 1961, 1966; Hojerslev, 1974; Stuermer, 1975; Lundgren, 1976; Kirk, 1976, 1980; Bricaud et al., 1981; Cader et al., 1989]. Similarly, PDP often has a significant effect on the spectral absorption of ocean particles, especially at short wavelengths [Kiefer and Soohoo, 1982; Kishino et al., 1985; Mitchell and Kiefer, 1988a; Roesler et al., 1989]. Both CDOM and PDP are accounted for in our degradation product absorption term.

In general, the CDOM found in most of the oceans of the world can be of either marine or terrigenous origin. However, G. Harvey (personal communication, 1991) has found that the molecular weights of the humic and fulvic acid samples collected from the euphotic zone of oceanic waters in several oceans and even in the offshore Mississippi River plume (salinity > 25‰) were less than 1000, indicative of a marine or aqueous rather than a terrigenous origin [Hayase and Tsubota, 1985; Cader et al., 1989]. This is important because the optical properties of marine humus are quite different from those of terrestrial humus. In addition, Cader et al. [1989] argue that at least for the Gulf of Mexico, CDOM absorption can largely be accounted for by the summed absorptions of marine humic acid (MHA) and marine fulvic acid (MFA). By adopting the approximation $a_{cdom} = a_h + a_f$, degradation product absorption can be expressed as

$$ a_{dp} = a_h + a_f + a_{dp} $$

where the subscripts h and f refer to MHA and MFA, respectively. Note that this approximation can only underestimate CDOM absorption.

Cader et al. [1989] have shown that spectral absorption curves for MHA and MFA can be fit by exponential functions of the form

$$ a_x(\lambda) = C_xa_{x}(450)e^{S_x(450 - \lambda)} $$

where $a_x(\lambda)$ is the absorption coefficient of component x ($x = h$ or f) at wavelength λ in m$^{-1}$, C_x is the concentration of x in g m$^{-3}$, $a_x(450)$ is the specific absorption coefficient of x at 450 nm in m2 g$^{-1}$, and S_x is the spectral slope parameter of x in nm$^{-1}$. They determined that $a_h(450) = 0.1304$ m2 g$^{-1}$, $a_f(450) = 0.0073$ m2 g$^{-1}$, $S_h = 0.011$ nm$^{-1}$, and $S_f = 0.019$ nm$^{-1}$ for MHA and MFA samples from the Gulf of Mexico.

Furthermore, it is clear from the work of Kishino et al. [1985] and Roesler et al. [1989] that spectral absorption curves for PDP rather closely approximate the curve shapes for marine CDOM for wavelengths greater than 412 nm (see Figure 2). In fact, the global mean spectral slope for detrital absorption data (S_{dp}) fit to an exponential curve like (14) was found by Roesler et al. [1989] to be 0.011 nm$^{-1}$. This value is the same as the spectral slope parameter S_f for MHA found by Cader et al. [1989], rendering the absorption by the two components spectrally inseparable. We thus define a weighted concentration parameter, C'_h, that accounts for both MHA and PDP in the same term:

$$ C'_h = C_h + C_{dp}a_{dp}(450)/a_{450} $$

The prime indicates that the parameter is not a true concentration, but one which includes PDP, which is weighted by the specific absorption coefficients.

Using (15) and the Gulf of Mexico parameters from Cader et al. [1989], (13) can be rewritten as

$$ a_{dp} = 0.1304C_f e^{0.011(450 - \lambda)} + 0.0073C_f e^{0.019(450 - \lambda)} $$

Here a_{dp} is a function of C'_h and C_f for a given wavelength. However, in order to apply an algorithm with two irradiance ratios, the model is underspecific unless a_{dp} can be parameterized in terms of just a single variable quantity (see section 2.5). This can be achieved by specifying a priori the MFA fraction of total DP. This fraction is defined as f' where

$$ f' = C_f'/C'_dp = C_f/(C_h + C_f) $$

and C'_dp is called the "weighted degradation product concentration." Again, the prime is used to indicate that the weighted PDP concentration is present implicitly. The full equation for DP absorption is now

$$ a_{dp} = C'_dp[0.1304(1 - f')e^{0.011(450 - \lambda)} + 0.0073f' e^{0.019(450 - \lambda)}] $$

with C'_dp being the sole variable for a given f' and λ. Note that for regions where absorption due to CDOM is high relative to that due to PDP (which is usually the case), $C'_h = C_h$ and C'_dp is equivalent to the CDOM concentration.

It is important to remember that the parameters $a^n_h(450)$, $a^n_f(450)$, S_h, S_f, and f', are not universal and that they should be evaluated on a site-specific basis. This is particularly important in regions that are heavily influenced by terrigenous and riverine CDOM, since the spectral slopes and especially the mass-specific absorption coefficients for humic and fulvic acids are dependent upon their molecular weights [Hayase and Tsubota, 1985; Cader et al., 1989], and since the molecular weights of soil-derived humus can exceed 100,000 [Hayase and Tsubota, 1985]. On the positive
side, Mueller and Lange [1989] have demonstrated that certain very large provinces exist which have stable or only slowly changing bio-optical parameters.

2.4. Spectral Absorption by Phytoplankton

In this section, expressions for the Chl a-specific absorption coefficient for phytoplankton, $a^{s}_a(\lambda)$, are developed as functions of [Chl a] for the three wavelengths of interest. This task is complicated by the complex bio-optical characteristics of phytoplankton. Morel and Bricaud [1981] showed theoretically that $a^{s}_a(\lambda)$ is a function of the absorption coefficient of the cell material, the intracellular pigment concentration, and cell size. The "pigment package" or self-shading effect that they describe results in an inverse relation between $a^{s}_a(\lambda)$ and cell size for a given internal cell pigment concentration and cell material absorption coefficient, and it is manifest most significantly near the pigment absorption maximum of 436 nm. Also, recent work has shown that $a^{s}_a(\lambda)$ varies with light [Dubinsky et al., 1986; Mitchell and Kiefer, 1988b] and nutrient adaptation [Sosik and Mitchell, 1991]. These variations are due to the relative internal concentrations of Chl a and photoprotective pigments, and package effects. These lab studies suggest that $a^{s}_a(\lambda)$ for surface waters may also have a seasonal and latitudinal signature, dependent on species composition and light and nutrient history. In order to characterize phytoplankton absorption, a conceptual understanding is needed of how cell size, light history, and nutrient limitation affect the pigment packaging.

To begin, consider two studies that have pointed out the correlation between cell size and nutrient availability. Herring et al. [1985] found that pigments in the submicron phytoplankton size fraction dominated pigment concentration values for oligotrophic surface waters in the equatorial Atlantic, whereas they were only a minor component for nutrient- and chlorophyll-rich waters near the bottom of the photic zone. Carder et al. [1986] found an analogous trend in the onshore-offshore direction for subtropical waters off Florida; that is, the pigments of the nutrient- and chlorophyll-rich inshore waters were generally found packaged in larger cells than were the pigments of the more oligotrophic offshore waters. These findings suggest that for a given light domain (e.g., season, latitude), [Chl a] is roughly correlated with ensemble average cell size, which in turn suggests a rough inverse correlation between [Chl a] and $a^{s}_a(\lambda)$.

Another factor to consider is that as [Chl a] approaches very low or high values, $a^{s}_a(\lambda)$ approaches physiological limits, rather like asymptotes. For decreasing [Chl a], the cell size and the package effect decrease until $a^{s}_a(\lambda)$ approaches the upper limit provided by soluble pigments which is about 0.10 m2 (mg Chl a)$^{-1}$ at 435 nm for high-light, high-carotenoid conditions [Bricaud et al., 1988]. For increasing [Chl a], $a^{s}_a(\lambda)$ decreases because a higher fraction of the pigments are contained in larger, pigment-rich cells in high-chlorophyll waters.

These two concepts, the inverse correlation between $a^{s}_a(\lambda)$ and [Chl a] and the fact that there are physiological upper and lower bounds on $a^{s}_a(\lambda)$ are used as the basis for a preliminary description of how $a^{s}_a(\lambda)$ may behave as a function of [Chl a]. We chose a hyperbolic tangent function to provide a curve shape that is limited by asymptotes, and logarithmic coordinates are used to deal with the large dynamic range of [Chl a] values found in natural waters (see Figure 3). For the 443-nm channel our expression has the generic form

$$a^{s}_a(443) = A \exp \{B \tanh (C \ln ([\text{Chl } a]/D) \} \quad (19)$$

where the parameters A and D describe the ordinate and abscissa of the point of symmetry for the curve, B describes the asymptotes of the graph, and C describes how quickly the curve approaches the asymptotes. Choosing values for the parameters A, B, C, and D requires that the curve be fit to an appropriate set of $a^{s}_a(443)$ versus [Chl a] data points. Since tropical and subtropical phytoplankton are typically smaller than are cells from temperate and boreal waters, a global empirical relationship would likely be less accurate due to package effects than would separate relationships for different oceanic regimes. Due to this size variation and to light history considerations, it makes sense to define at least two separate regimes, "subtropical" and "temperate."

Most of the phytoplankton absorption data used for adjusting the $a^{s}_a(443)$ versus [Chl a] curves for both regimes were determined by the simple and inexpensive GF/F filter pad transmission method described by Mitchell and Kiefer [1984, 1988b]. This method also incorporates absorption due to particulate detritus into the measured absorption spectrum, so only those data which are reasonably "detritus-free" have been used (a methodology for separating the absorption effects of phytoplankton from those due to detritus has been developed by Kishino et al. [1985], but unfortunately, few data using this methodology have been reported). Recently, Stramski [1990] reported that particulate optical densities determined by this method for two species of diatoms changed rapidly after filtration, presumably due to degradation of chlorophyll to pheopigments. However, a cyanobacterium and a flagellate species showed no such artifacts when tested, and it appears that absorption at 443 nm decreased by only about 8% 15 min after filtration of one of the diatom cultures. Since our samples are measured directly after filtration, the error introduced should be much smaller than 8%, especially if the phytoplankton assemblage on the filter pad is comprised largely of species that do not exhibit the degradation effect.

The data sets for both regimes are sparse, but the subtropical data has a greater range of [Chl a] values, and it is...
augmented on the high [Chl a] end by data for the Gulf of Mexico that has been derived from the work of Carder et al. [1986]. The subtropical data points consist of oligotrophic data from the spring bloom north of Hawaii and eutrophic data from near Baja California taken from Kiefer and Soohoo [1982]. Laws et al. [1990], whose absorption data set is the one from which the oligotrophic data mentioned above derive, provide arguments for the detritus-free nature of those data, while detrital effects have been statistically removed from the Baja data. Figure 3 illustrates the proposed subtropical curve shape (as well as the proposed temperate curve), and it is described by

\[a^s_\lambda (443) = 0.044 \cdot \exp \left(1.05 \tanh \left(-0.60 \ln \left(\frac{[\text{Chl a}]}{0.7}\right)\right) \right) \]

While there is a need for additional data points to better corroborate the proposed curve shape, it does represent the data reasonably well.

The high-chlorophyll data points for the temperate curve in Figure 3 were determined via filter pad transmission from upwelling stations of the coastal transition zone cruise off northern California in July 1988. Only those data which exhibited relatively low particulate absorption at 400 nm relative to the absorption at 443 nm are used. Detritus-free data for low-chlorophyll temperate waters have not been located however, precluding an attempt to empirically adjust the equation parameters. In light of the limited data available, we have adopted the subtropical curve shape and adjusted the lead coefficient downwards from 0.044 to 0.02 in order to provide a temperate relationship for algorithm development purposes. Note that the curve does appear to provide a general lower limit to the ODEX specific absorption data shown in Figure 1. It is this temperate regime expression that is used in the reflectance model.

The curves in Figure 4 are used to develop package-effect relationships that express \(a^p_\lambda (412) \) and \(a^p_\lambda (565) \) as fractions of \(a^s_\lambda (443) \). The \(a^s_\lambda (\lambda) \) curve from a high-light, oligotrophic, subtropical environment where picoplankton predominate was obtained at 26°N, 155°W at a depth of 20 m on April 2, 1987. This curve was measured via the filter pad transmission method of Mitchell and Kiefer [1984, 1988b], and it has a minimal package effect. The \(a^s_\lambda (\lambda) \) curve for high-chlorophyll subtropical waters is the ensemble-average curve of Kiefer and Soohoo [1982] for coastal waters near Baja California with the detrital absorption effects statistically removed. Once again the hyperbolic tangent function in logarithmic coordinates was chosen to model these relationships. Using points from Figure 4 to determine extrema yielded the following expressions:

\[a^s_\lambda (412) = \left\{0.85 \exp \left(0.2 \tanh \left(0.4 \ln \left(\frac{[\text{Chl a}]}{0.6}\right)\right)\right)\right\} a^s_\lambda (443) \]

(21)

\[a^s_\lambda (565) = \left\{0.2 \exp \left(0.4 \tanh \left(0.4 \ln \left(\frac{[\text{Chl a}]}{0.6}\right)\right)\right)\right\} a^s_\lambda (443) \]

(22)

It must be emphasized that by no means are the formulations developed in this section meant to be universal. The generic forms are used in an attempt to model the behavior of \(a^s_\lambda (\lambda) \) as a function of [Chl a] based on the theoretical concepts regarding the package effect discussed earlier. In light of the limited data available, the relationships given are first approximations that can be tolerated temporarily in order to develop the algorithm as a whole. As data sets of adequate size emerge, the new relationships that result can easily be inserted into the model. Researchers are encouraged to develop \(a^s_\lambda (\lambda) \) expressions for various environments using the improved qualitative filter technique of Mitchell [1990], augmented by both detrital correction [Kishino et al., 1985] and pheopigment absorption correction [Roesler et al., 1989].

2.5. Pigment Algorithm

Inserting the appropriate expressions for each of the terms in the irradiance reflectance equations (equation (8) with \(\lambda = 412, 443, \) and 565 nm) results in the two irradiance reflectance ratios

\[\frac{R(412)}{R(443)} = \frac{\left[b^s_\lambda (412) + b^p_\lambda (412)\right] [a_w(443) + a_{dp}(443) + a_\phi (443)]}{\left[b^s_\lambda (443) + b^p_\lambda (443)\right] [a_w(412) + a_{dp}(412) + a_\phi (412)]} \]

(23)

\[\frac{R(443)}{R(565)} = \frac{\left[b^s_\lambda (443) + b^p_\lambda (443)\right] [a_w(565) + a_{dp}(565) + a_\phi (565)]}{\left[b^s_\lambda (565) + b^p_\lambda (565)\right] [a_w(443) + a_{dp}(443) + a_\phi (443)]} \]

(24)
where
\[a_{dp}(\lambda) = [0.1304(1 - f')e^{0.011(450 - \lambda)}] + 0.0073f'e^{0.019(450 - \lambda)}C_{dp} \]
\[a_{\phi}(412) = 0.85e^{0.2 \tanh (0.4 \ln ([Chl a]_0)0.6)}a_{\phi}(443) \]
\[a_{\phi}(443) = 0.02e^{1.05 \tanh (-0.6 \ln ([Chl a]_0)0.7)}[Chl a] \]
\[a_{\phi}(565) = 0.20e^{0.4 \tanh (0.4 \ln ([Chl a]_0)0.6)}a_{\phi}(443) \]

By forming two irradiance reflectance ratios, \(R(412)/R(443) \) and \(R(443)/R(565) \), we have two equations written in two unknowns, \([Chl a]\) and \(C_{dp}\). Since analytical inversion of this system of equations is difficult, nomograms (Figure 5) and computer look-up tables are generated that relate paired values of \(R(412)/R(443) \) and \(\log[R(443)/R(565)] \) to varying paired values of \([Chl a]\) and \(C_{dp}\) for a given fulvic acid fraction \(f'\). The right sides of (23) and (24) are solved for a two-dimensional array of \([Chl a]\) and \(C_{dp}\) values at a fixed \(f'\) and the corresponding array of irradiance reflectance ratios is tabulated in Table 1. Forty-six discrete concentration values for each ocean color constituent were used to construct the look-up tables, ranging from 0.01 to 3.0 mg m\(^{-3}\) for \([Chl a]\) and from 0 to 6.0 g m\(^{-3}\) for \(C_{dp}\). Three look-up tables were constructed, corresponding to fulvic acid fractions of 0.89, 0.92, and 0.95. Irradiance reflectance ratio data can be compared to the calculated values in the look-up tables, and estimates of \([Chl a]\) and \(C_{dp}\) can be obtained via two-dimensional linear interpolation of the input spectral ratios between the tabulated spectral ratios. Quick estimates can be made by selecting points on the nomogram (Figure 5).

3. Field Measurements

The optical field measurements used to test this algorithm (referred to as the "DP algorithm") consist of irradiance reflectance measurements taken in the top attenuation layer \((z < 1/k_x(490 \text{ nm}))\) during the fall 1982 ODEX cruise west of California (see Figure 6 for station locations). The environment included oligotrophic, coastal transition, and eutrophic water types. Measurements of \(E_u(\lambda)/E_a(\lambda)\) for \(\lambda = 412, 443, \text{ and } 565 \text{ nm}\) were made using the Biospherical Instruments Bio-Optical Profiling System (BOPS, described by Smith et al. [1984]) for \(\lambda\)

![Fig. 5. Nomogram of \([Chl a]\) (mg m\(^{-3}\)) and \(C_{dp}\) (g m\(^{-3}\)) as a function of \(R(412)/R(443)\) and \(\log[R(443)/R(565)]\). \(C_{dp} = C_h + C_f + C_{dp} \alpha_{dp}(450)/a_h(450)\). Here, \(f' = 0.92\).](image)

![Fig. 6. Station locations for ODEX cruise, fall 1982.](image)

4. Results

The optical data set described above has been used for input to both the DP algorithm and to an appropriate Case 1 algorithm. First, \(R(\lambda)\) is calculated from \(E_u(\lambda)/E_a(\lambda)\) for \(\lambda = 412, 443, \text{ and } 565 \text{ nm}\). For the DP algorithm, \([Chl a]\) and

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>412</td>
<td>443</td>
<td>565</td>
<td></td>
</tr>
<tr>
<td>(b_x(\lambda))</td>
<td>0.00333</td>
<td>0.00237</td>
<td>0.000872</td>
</tr>
<tr>
<td>(b_p(\lambda))</td>
<td>0.0034 [Chl a] (^{0.24})</td>
<td>0.0030 [Chl a] (^{0.22})</td>
<td>0.0033 [Chl a] (^{0.36})</td>
</tr>
<tr>
<td>(a_x(\lambda))</td>
<td>0.0160</td>
<td>0.0145</td>
<td>0.0787</td>
</tr>
</tbody>
</table>

\([Chl a]\) values are based on in situ fluorescence measured at 10 m depth. Discrete chlorophyll and pheopigment determinations were made at selected depths on each cast using a Turner 111A fluorometer. Millipore HA filters of pore size 0.45 \(\mu\text{m}\) were used to filter each seawater sample. These filters dissolve in 90% acetone which permits a no-grind chlorophyll extraction technique [Smith et al., 1981]. The BOPS provided measurements of continuous vertical pigment fluorescence which were then calibrated by the discrete extracted chlorophyll values available for each cast.
for all 26 stations. High Chl a points ([Chl a] > 1) are well
explained. First, Table 2 reveals that the ratio (modeled
Chl a)/(measured Chl a) is relatively low for these waters,
indicating that pigment absorption is the dominant influence
on the \(R(443):R(565)\) reflectance ratio; the case 1 algorithm
works well when noncovarying optical components (e.g.,
CDOM) are not high. Second, the nomogram (Figure 5)
shows that the DP algorithm becomes increasingly sensitive
to changes in the input reflectance ratios at higher Chl a and
Cp. Thus the DP algorithm will be less accurate at high Chl
a than in regions of medium-to-low Chl a ([Chl a] < 1).

Another way to present these data is to plot the percent
error in [Chl a] estimates for the two methods versus the
Cdp:[Chl a] ratio (see Figure 8). The mean fractional error
for all stations was ±38% for the case 1 algorithm and ±18%
for the DP model. The highest errors, up to 133%, occur in
regions of medium-to-low Chl a ([Chl a] < 1).

Figure 7b is the same as Figure 7a except that only the
medium-to-low Chl a points are plotted. At this greater
resolution the case 1 algorithm can be characterized by two
distinct regions: a low Chl a region in which [Chl a] estimates
are consistently lower than the measured values and a medium Chl a region in which they are consistently higher than the measured values. The DP algorithm predicts [Chl a] more accurately in these regions, showing little or no net bias at low chlorophyll and only a slight low bias in the medium region.

Another way to present these data is to plot the percent
error in [Chl a] estimates for the two methods versus the
Cdp:[Chl a] ratio (see Figure 8). The mean fractional error
for all stations was ±38% for the case 1 algorithm and ±18%
for the DP model. The highest errors, up to 133%, occur in
using the case 1 model for waters with the highest Cdp:[Chl a].

The percent error for the case 1 algorithm in Figure 8
correlates well with the Cdp:[Chl a] ratio, suggesting that
this ratio can be used to indicate which waters are well
described by the case 1 algorithm and which waters are not.
For this particular cruise at least, an operational means of
establishing the boundaries between true case 1 and DP-rich

Cdp are calculated from \(R(4)\) values as described in section
2.5, and for the case 1 algorithm, \([C]\) is calculated by
\[
[C] = 1.71[R(440)/R(560)]^{-1.82}
\]
which is described in further detail by Gordon and Morel
[1983]. [Chl a] estimated from the DP algorithm and \([C]\)
derived from the Case 1 algorithm are compared with
measured [Chl a], and the performance of the two algorithms
are tested. Only the accuracy of the Chl a portion of the DP
algorithm was run at values of 0.89, 0.92, and 0.95. The total average error
in calculated [Chl a] versus measured [Chl a] was the lowest
for \(f' = 0.92\), and it is assumed that 0.92 is the "regional
average". It is the results from this run that are shown in
Table 2. From left to right the columns represent the ODEX station number, measured irradiance reflectance ratios, measured [Chl a] and [pheo a], \([C]\) calculated with the case 1 algorithm, [Chl a] and Cdp calculated with the DP algorithm, and the ratio of (modeled Cdp:measured Chl a). [Chl a] and [pheo a] are in mg m\(^{-3}\) and Cdp is approximately equal to CDOM concentration in g m\(^{-3}\).

<table>
<thead>
<tr>
<th>Station</th>
<th>(R(410))</th>
<th>(R(441))</th>
<th>Chl a (Measured)</th>
<th>pheo a (Measured)</th>
<th>(C) (Case 1)</th>
<th>Chl a (DP)</th>
<th>Cdp (DP)</th>
<th>Chl a</th>
</tr>
</thead>
<tbody>
<tr>
<td>9d</td>
<td>0.922</td>
<td>1.116</td>
<td>1.307</td>
<td>0.42</td>
<td>1.400</td>
<td>1.909</td>
<td>3.355</td>
<td>2.57</td>
</tr>
<tr>
<td>9u</td>
<td>0.903</td>
<td>1.129</td>
<td>1.311</td>
<td>0.42</td>
<td>1.372</td>
<td>1.337</td>
<td>3.846</td>
<td>2.93</td>
</tr>
<tr>
<td>21d</td>
<td>0.965</td>
<td>2.877</td>
<td>0.130</td>
<td>0.06</td>
<td>0.250</td>
<td>0.191</td>
<td>1.419</td>
<td>10.91</td>
</tr>
<tr>
<td>21u</td>
<td>0.926</td>
<td>2.839</td>
<td>0.121</td>
<td>0.03</td>
<td>0.256</td>
<td>0.109</td>
<td>1.831</td>
<td>15.13</td>
</tr>
<tr>
<td>23d</td>
<td>0.988</td>
<td>3.973</td>
<td>0.128</td>
<td>0.04</td>
<td>0.197</td>
<td>0.104</td>
<td>0.959</td>
<td>7.49</td>
</tr>
<tr>
<td>23u</td>
<td>1.007</td>
<td>4.247</td>
<td>0.128</td>
<td>0.04</td>
<td>0.123</td>
<td>0.106</td>
<td>0.808</td>
<td>6.31</td>
</tr>
<tr>
<td>24d</td>
<td>0.987</td>
<td>4.263</td>
<td>0.112</td>
<td>0.03</td>
<td>0.122</td>
<td>0.084</td>
<td>0.911</td>
<td>8.13</td>
</tr>
<tr>
<td>29d</td>
<td>0.917</td>
<td>2.156</td>
<td>0.242</td>
<td>0.10</td>
<td>0.423</td>
<td>0.201</td>
<td>2.390</td>
<td>9.87</td>
</tr>
<tr>
<td>30d</td>
<td>0.992</td>
<td>3.492</td>
<td>0.136</td>
<td>0.05</td>
<td>0.176</td>
<td>0.152</td>
<td>1.046</td>
<td>7.69</td>
</tr>
<tr>
<td>30u</td>
<td>0.998</td>
<td>3.520</td>
<td>0.139</td>
<td>0.05</td>
<td>0.173</td>
<td>0.161</td>
<td>1.000</td>
<td>7.19</td>
</tr>
<tr>
<td>36d</td>
<td>1.020</td>
<td>4.285</td>
<td>0.122</td>
<td>0.04</td>
<td>0.121</td>
<td>0.116</td>
<td>0.741</td>
<td>6.07</td>
</tr>
<tr>
<td>47d</td>
<td>1.102</td>
<td>6.029</td>
<td>0.085</td>
<td>0.01</td>
<td>0.065</td>
<td>0.088</td>
<td>0.303</td>
<td>3.56</td>
</tr>
<tr>
<td>77.1d</td>
<td>1.109</td>
<td>6.522</td>
<td>0.074</td>
<td>0.03</td>
<td>0.056</td>
<td>0.074</td>
<td>0.259</td>
<td>3.50</td>
</tr>
<tr>
<td>77.2d</td>
<td>1.173</td>
<td>6.659</td>
<td>0.074</td>
<td>0.03</td>
<td>0.054</td>
<td>0.099</td>
<td>0.130</td>
<td>1.76</td>
</tr>
<tr>
<td>84u</td>
<td>1.142</td>
<td>6.328</td>
<td>0.102</td>
<td>0.06</td>
<td>0.060</td>
<td>0.097</td>
<td>0.200</td>
<td>1.96</td>
</tr>
<tr>
<td>93u</td>
<td>1.101</td>
<td>6.087</td>
<td>0.091</td>
<td>0.09</td>
<td>0.064</td>
<td>0.085</td>
<td>0.303</td>
<td>3.33</td>
</tr>
<tr>
<td>94u</td>
<td>1.141</td>
<td>5.999</td>
<td>0.105</td>
<td>0.08</td>
<td>0.066</td>
<td>0.111</td>
<td>0.221</td>
<td>2.10</td>
</tr>
<tr>
<td>95d</td>
<td>1.097</td>
<td>6.135</td>
<td>0.113</td>
<td>0.02</td>
<td>0.063</td>
<td>0.081</td>
<td>0.309</td>
<td>2.73</td>
</tr>
<tr>
<td>104u</td>
<td>1.131</td>
<td>6.142</td>
<td>0.108</td>
<td>0.01</td>
<td>0.063</td>
<td>0.099</td>
<td>0.234</td>
<td>2.16</td>
</tr>
<tr>
<td>170.2d</td>
<td>1.045</td>
<td>4.317</td>
<td>0.140</td>
<td>0.04</td>
<td>0.119</td>
<td>0.141</td>
<td>0.637</td>
<td>4.54</td>
</tr>
<tr>
<td>170.2u</td>
<td>1.046</td>
<td>4.374</td>
<td>0.142</td>
<td>0.04</td>
<td>0.117</td>
<td>0.138</td>
<td>0.624</td>
<td>4.39</td>
</tr>
<tr>
<td>174d</td>
<td>0.937</td>
<td>3.327</td>
<td>0.158</td>
<td>0.04</td>
<td>0.128</td>
<td>0.084</td>
<td>1.508</td>
<td>9.54</td>
</tr>
<tr>
<td>175.1d</td>
<td>0.926</td>
<td>2.963</td>
<td>0.250</td>
<td>0.00</td>
<td>0.200</td>
<td>0.135</td>
<td>1.564</td>
<td>6.18</td>
</tr>
<tr>
<td>176.1d</td>
<td>0.901</td>
<td>1.825</td>
<td>0.308</td>
<td>0.11</td>
<td>0.572</td>
<td>0.238</td>
<td>3.010</td>
<td>9.77</td>
</tr>
<tr>
<td>176.1u</td>
<td>0.897</td>
<td>1.860</td>
<td>0.299</td>
<td>0.11</td>
<td>0.553</td>
<td>0.202</td>
<td>3.084</td>
<td>10.31</td>
</tr>
<tr>
<td>176.2d</td>
<td>0.900</td>
<td>1.589</td>
<td>0.328</td>
<td>0.12</td>
<td>0.736</td>
<td>0.360</td>
<td>3.329</td>
<td>10.15</td>
</tr>
</tbody>
</table>
waters is to designate the case 1 waters as those for which $C_{dp} : [\text{Chl } a] < 7 \text{ mg}^{-1}$. Waters with high C_{dp} values are not necessarily DP-rich by this definition, notably stations 9d and 9u. Subdividing the study area in such a way is consistent with the concept of "bio-optical provinces" [Platt and Sathyendranath, 1988; Mueller and Lange, 1989], which states that the absorption and scattering properties of seawater vary from one geographical region to the next and with respect to time (e.g., seasonal variation).

Referring to the station location map (Figure 6) and to the tabulated $[\text{Chl } a]$ values (Table 2), it can be seen that in general, the DP-rich waters are found seaward of station 9 and landward of station 36. Thus both the pigment-rich coastal upwelling waters (represented here solely by station 9) and those waters found beyond the coastal transition waters more than 400 km offshore are case 1 waters using this criterion, while those found in the transition waters between the coastal and offshore waters are DP-rich. The only exceptions to this geographic scheme are stations 23u and 175.1d, which are within the oceanographic DP-rich boundaries but which barely miss the DP-rich criteria. Given the rather chaotic nature of currents off the west coast of California [see Abbott et al., 1990], this is well within the scope of expected patchiness. Also, the application of this criterion depends on the estimated value of C_{dp}, introducing another modicum of imprecision.

For the 11 DP-rich stations, the mean error using the case 1 algorithm for $[\text{Chl } a]$ was $\pm 61\%$, while that for the DP algorithm was $\pm 23\%$. The net positive bias in the case 1 estimates for these waters will yield a corresponding inflation of any primary productivity estimates that are based on such values, while the DP algorithm provided only a slight negative bias for these same waters. For the case 1 waters (15 stations) the case 1 algorithm had a mean fractional error of $\pm 22\%$ with a net negative bias and the DP algorithm had $\pm 14\%$ error with little or no net bias. The error percentages are summarized in Table 3.

5. DISCUSSION

5.1. Comparison of the DP Algorithm Versus the Case 1 Algorithm

The most significant result of this study is the considerable improvement in $[\text{Chl } a]$ retrieval accuracy of the DP algorithm over the case 1 algorithm (23% error versus 61% error) for those waters which our model estimates to be DP-rich and where $[\text{Chl } a] \leq 1.3 \text{ mg } m^{-3}$. Although the case 1 algorithm estimates $[C]$, the sum of $[\text{Chl } a]$, and $[\text{pheo } a]$, Table 2 demonstrates that $[C]$ and $[\text{Chl } a]$ differ by only $10-40\%$ and the presence of $[\text{pheo } a]$ can only explain a minor fraction of the case 1 $[\text{Chl } a]$ error for the DP-rich

<table>
<thead>
<tr>
<th>Data Subset</th>
<th>Case 1</th>
<th>DP</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>All stations</td>
<td>38</td>
<td>18</td>
<td>26</td>
</tr>
<tr>
<td>$C_{dp} : [\text{Chl } a] < 7 \text{ mg}^{-1}$</td>
<td>22</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>$C_{dp} : [\text{Chl } a] > 7 \text{ mg}^{-1}$</td>
<td>61</td>
<td>23</td>
<td>11</td>
</tr>
</tbody>
</table>

Percent error is [(modeled $[\text{Chl } a]$/measured $[\text{Chl } a] - 1) \times 100$. n is number of stations.
stations. Some other color constituent must be causing the large overestimates of [Chl a] generated by the case 1 algorithm presented here. Since there is no significant source of riverine or terrestrial CDOM in our study area and since detrital particles are likely to settle out quickly (as Abbott et al. [1990] found off northern California), marine CDOM is the only reasonable component of the DP ensemble that remains to explain the optical effects that we observe. This interpretation contradicts the assertions that marine CDOM always covaries with algal pigments or that it’s measurable influence is everywhere weak [Morel and Prieur, 1977; Bricaud et al., 1981; Gordon and Morel, 1983]. These assertions are further undermined by two previously mentioned studies in which absorption due to CDOM increased with time in the same water mass (Peacock et al. [1988] and Carder et al. [1989]; see section 1).

In addition, [Chl a] estimates from the DP algorithm are better suited for use with primary productivity models than are those of the case 1 algorithm. First, [Chl a] estimates from the DP algorithm are relatively free of bias with respect to the measured values, whereas [C] estimates from the case 1 algorithm have considerable high bias in the DP-rich areas of the study region and low bias in the case 1 areas (see Figure 8). These biases will lead to systematic regional errors in primary productivity estimates. Second, primary productivity models that are based on physiological considerations need to be driven by photon absorption by viable pigments. The DP algorithm explicitly estimates [Chl a], the major photosynthetic pigment, whereas the pigment estimates of the various case 1 algorithms (including Gordon and Morel [1983], Gordon et al. [1988], and Morel [1988]) inherently include pheopigments and other degradation products which do not contribute to the photosynthetic process.

5.2. Regression Analyses

The regression analyses performed on the data depicted in Figure 8 indicate that 80% of the variance in error values for the case 1 [Chl a] algorithm could be accounted for by changes in the C_dp/[Chl a] ratio, while only 5% of the variance in error values for the DP [Chl a] algorithm error could be so explained. Caution must be used in interpreting these results, not only because the C_dp values are estimates and not actual measurements but also because their values are inherently linked to the DP algorithm [Chl a] values with which they are being compared. Prieur and Sathyendranath [1981] used ridge regression to overcome this problem of correlation between independent variables. Since our only concern here is that the covariance between the case 1 error and C_dp/[Chl a] appears to be high, suggesting that a non-case 1, site-specific [Chl a] algorithm of the type described by equation (1) (i.e., a CZCS-type algorithm) can be developed, the correlation problem was not investigated further. A linear regression of log(measured [Chl a]) versus log(R(440)/R(560)) ($r^2 = 0.84, n = 26$) results in the following “case 1 + case 2” reflectance ratio algorithm:

$$[\text{Chl a}] = 0.80[\text{R(440)/R(560)}]^{-1.26}$$

In comparison, Morel [1980] describes a similar “case 1 + case 2” reflectance ratio algorithm, given by

$$[\text{C}] = 1.62[\text{R(440)/R(560)}]^{-1.40}$$

5.3. Variability of f'

The results of the DP algorithm assume that $f' = 0.92$, and some of the error in our DP model results may be explainable in terms of a variable f'. However, iterative trials of the DP algorithm in which f' was allowed to vary by ±0.03 about the “regional average” of 0.92 for each station yielded little or no improvement in the mean fractional error for [Chl a] estimates, so using a single value of f' for the entire study region is probably not a bad approximation.

However, on a larger spatial scale, f' varies significantly. Carder et al. [1989] evaluated the spectral slope values of Bricaud et al. [1981] in terms of MHA and MFA absorption and found that their global average value ($S = 0.014 \text{ nm}^{-1}$ from 370 nm to 440 nm) was consistent with an f' value of 0.89. Similarly, the spectral slope for the western north Atlantic data of Topliss et al. [1989] ($S = 0.013 \text{ nm}^{-1}$) is consistent with an f' value of 0.84. Analyzing 11 published values of f' taken from the Gulf of Mexico [Harvey et al., 1988; Carder et al., 1989] yields a mean of 0.878 and a sample standard deviation of 0.098. This exercise indicates that selection of an appropriate mean value of f' for use in the DP model is site-dependent. For river plumes and areas heavily influenced by terrestrial runoff, the entire a_{dp} term needs reassessment, since the geochemistry of CDOM is different for terrestrial and riverine versus marine ecosystems, resulting in significant variation in the humic/fulvic ratio, the mass-specific absorption coefficients, and the CDOM molecular weights.

5.4. DOC Estimate

The concentration parameter C_{dp} can provide a rough measure of dissolved organic carbon (DOC) if the factors in the following equation can be estimated:

$$\text{DOC} = C_{dp} (C_h + C_f) \frac{\text{DOC}_{uv}}{(C_h + C_f)} \frac{\text{DOC}_{pt}}{(C_h + C_f)}$$

where DOC_{uv} is the total DOC measurable by the ultraviolet oxidation technique [Armstrong et al., 1966] and DOC_{pt} is the total DOC measurable by the new platinum-catalyst method [Sukuki et al., 1985; Sugimura and Suzuki, 1988]. The factor (C_h + C_f)/C_dp corrects C_dp for PDP and can be approximated by the easily measurable ratio $a_{dom}(410)/a_{dp}(410)$. The factor DOC_{uv}/(C_h + C_f) adjusts for the fact that DOC does not consist only of humic and fulvic acids, and the final factor provides a correction for the platinum-catalyst method versus the older ultraviolet technique. A DOC_{uv}/(C_h + C_f) value of about 3.5 is provided by Harvey.
et al. [1983] for both oligotrophic waters (z = 20 m), and for a low-chlorophyll, high-CDOM (i.e., DP-rich) station, both in the Gulf of Mexico. Druffel et al. [1989] found that the platinum-catalyst method and the UV transmission technique yielded DOC values of about 210 and 90 mg at DOC m\(^{-3}\), respectively, in the top 100 m at 31\(^\circ\)N, 159\(^\circ\)W, which provides a DOC\(_\text{wp}/\text{DOC}_{\text{uv}}\) ratio of 2.3. If (C\(_\text{wp}\) + C\(_h\))/C\(_{\text{wp}}\) is near 1.0, these factors yield a mean estimated DOC concentration of 1.93 g DOC m\(^{-3}\) for the cluster of seven oligotrophic stations in this study that are west of 140\(^\circ\)W and near 33\(^\circ\)-34\(^\circ\)N. Using these same factors, the 12 DP-rich stations in this study have a mean estimated DOC concentration of 14.8 g DOC m\(^{-3}\). The oligotrophic ODEX data and the Druffel et al. [1989] data mentioned above are both taken from the North Pacific gyre, so the proximity of our estimate (1.93 g DOC m\(^{-3}\)) to those of Druffel et al. [1989] (2.52 g DOC m\(^{-3}\)) is reassuring. However, the steps between the modeled C\(_{wp}\) and derived DOC estimates contain general approximations that have not been tested at the study site. Care in interpreting C\(_{wp}\) in terms of DOC should be exercised at all study sites, especially those in coastal waters where DOC\(_{uv}/(C_h + C_p)\) ratios can be quite variable (see Harvey et al., 1983).

5.5. Optical Effects on Water-Leaving Radiance

The DP model presented here is based on irradiance reflectance and is thus well-suited for use with moored or free-floating buoys with instrumentation located at 5–10 m depth (depths typical of the data set utilized in this study). However, in judging the applicability of this model for use with water-leaving radiance data, additional concerns must be addressed. In making the transition from upwelling irradiance, \(E_u(\lambda, 10\text{ m})\), to water-leaving radiance, \(L_w(\lambda)\), consideration must be given to changes in \(R(\lambda)\) with depth, spectral variations in \(E_u(\lambda, 0\text{–}10\text{ m})/L_w(\lambda, 0\text{–}10\text{ m})\), and transpectral effects due to water Raman scattering and solar stimulated fluorescence from CDOM.

Monte Carlo simulations by Kirk [1984] show that \(R(\lambda)\) changes very little with depth for inelastic scattering, so this effect should be negligible. However, although the wavelength dependence of the radiance distribution parameter \(E_u(\lambda, 0\text{–}10\text{ m})/L_u(\lambda, 0\text{–}10\text{ m})\) is typically taken to be spectrally quite flat, it apparently becomes more variable for \(\lambda < 440\) nm and \(\lambda > 550\) nm [Austin, 1979; R. Smith, unpublished Sargasso Sea data, 1991; C. Davis, unpublished California Current data, 1991]. This problem cannot be so easily ignored.

In addition, recent measurements and model results indicate that for oligotrophic environments, Raman inelastic scattering is not negligible [Marshall and Smith, 1990; Stavn, 1990; Peacock et al., 1990] and that for CDOM-rich environments, solar stimulated fluorescence of the CDOM may likewise not be negligible [Hawes and Corder, 1990; Peacock et al., 1990]. Contributions to the photon flux by these source-like phenomena will exert a maximum effect in the blue-green wavelengths near the sea surface where UV and near-UV light is available to stimulate emission of blue and green photons. This is so because both the Raman scattering cross section and CDOM absorption increase with decreasing wavelength and because the availability of UV light for excitation decreases rapidly with depth.

An understanding of the effects of these transspectral phenomena on spectral ratios of \(L_w(\lambda)\) is necessary in order to modify the model and algorithm appropriately for use with satellite-derived \(L_w(\lambda)\) data. Peacock et al. [1990] estimated these effects to be of second-order importance, affecting \(L_u(\lambda)\) by less than 15%. If this is indeed the case, the modifications necessary should not be major.

5.6. Conclusion

For the California Current region where [Chl \(a\)] \(\approx 1.3\) mg m\(^{-3}\), the confounding effects of absorption due to primary productivity degradation products on remote assessment of chlorophyll \(a\) can be removed to a large extent by the addition of a blue spectral channel at about 412 nm to the nominal suite of CZCS-like channels expected on Sea-WIFS and other future ocean color scanners. It is anticipated that DP models such as the one described here will be somewhat site- and perhaps season-specific and that they will significantly enhance the accuracy of remotely sensed estimates of [Chl \(a\)] for waters rich in marine productivity degradation products. A noteworthy feature of the DP-model is that the individual absorption and scattering parameters can be customized for a given province. A particularly important task is to develop empirical descriptions of the variation in \(a^*_{\text{ph}}(\lambda)\) with respect to [Chl \(a\)], which is due primarily to variations in phytoplankton species composition and light- and nutrient-histories. Presently, the technique best suited to determine these relationships is the improved quantitative filter technique of Mitchell [1990], augmented by both the detrital correction method of Kissino et al. [1985] and the pheopigment absorption correction of Roesler et al. [1989].

NOTATION

- \(\lambda\): wavelength of light, nm.
- \(a_x(\lambda)\): absorption coefficient for any component \(x\), at wavelength \(\lambda\), m\(^{-1}\) (subscripts \(\phi\), cdom, dp, f, h, p, pdp, and \(w\) refer to phytoplankton, CDOM, DP, MFA, MHA, particles, PDP, and water).
- \(a^*_{\text{ph}}(\lambda)\): mass-specific absorption coefficient for any component \(x\) at wavelength \(\lambda\), m\(^2\) g\(^{-1}\) (subscripts described above).
- \(a^*_{\text{pa}}(\lambda), a^*_{\text{ph}}(\lambda)\): Chl \(a\)-specific absorption coefficients for phytoplankton and particles at wavelength \(\lambda\), m\(^2\) [mg Chl \(a\)]\(^{-1}\).
- \(b'_p(\lambda), b'_w(\lambda)\): backscattering coefficients for particles and water at wavelength \(\lambda\), m\(^{-1}\).
- \([C]\): concentration of chlorophyll \(a\) + pheophytin \(a\), mg m\(^{-3}\).
- \(C_x\): concentration of component \(x\), g m\(^{-3}\) (subscripts described above).
- \(C_{\text{dp}}, C_h\): weighted concentration parameter for DP and MHA, g m\(^{-3}\) (the prime indicates that the values are weighted by the presence of PDP via the specific absorption coefficients (see equation (15))).
- \(C_{\text{pt}}, \text{DOC}_{\text{uv}}\): dissolved organic carbon, as determined by the platinum catalyst method and by the ultraviolet oxidation method, g m\(^{-3}\).
- \(E_d(\lambda, z), E_d(\lambda, z)\): downwelling and upwelling irradiances at wavelength \(\lambda\) and depth \(z\), W m\(^{-2}\) nm\(^{-1}\).
f fulvic acid fraction of DP (the prime indicates that the fraction is weighted by the presence of PDP via the specific absorption coefficients (see equations (15) and (17)).

$k_d(490)$ diffuse attenuation coefficient for downwelling irradiance at 490 nm, m$^{-1}$.

$L_w(\lambda)$ upwelling radiance at wavelength λ, W m$^{-2}$ sr$^{-1}$ nm$^{-1}$.

$L_w(\lambda)$ water-leaving radiance at wavelength λ, W m$^{-2}$ sr$^{-1}$ nm$^{-1}$.

n number of samples.

r_{ij} ratio of water-leaving radiances at wavelengths λ_i and λ_j.

r^2 correlation coefficient of regression.

$R(\lambda)$ irradiance reflectance at wavelength λ.

$R_{rs}(\lambda)$ remote sensing reflectance at wavelength λ.

S_x spectral slopes for the exponential expressions that describe absorption due any component x, nm$^{-1}$ (subscripts f, h, and pdp refer to MFA, MHA, and PDP).

z depth, m.

Acknowledgments. This study was supported by NASA grants NAGW-465 and NASS-30779 and ONR grant N00014-89-J-1091. We also acknowledge ONR for funding the Optical Dynamics Experiment which provided the data used in the algorithm development.

REFERENCES

Austin, R. W., Inherent spectral reflectances of the ocean surface, in Ocean Color Analysis, SIO Ref. 74-10, pp. 2.1-2.20, Scripps Inst. of Oceanogr., La Jolla, Calif., 1974.

CARDER ET AL.: REFLECTANCE MODEL FOR QUANTIFYING CHLOROPHYLL a

Morel, A. Y., In-water and remote measurement of ocean color, Boundary Layer Meteorol., 18, 177–201, 1980.

Suzuki, Y., T. Sugimura, and T. Itoh, A catalytic oxidation method for the measurement of oceanic chlorophyll in the support of remote sensing, SIO Ref. 81-17, 14 pp., Scripps Inst. of Oceanogr., La Jolla, Calif., 1981.

K. A. Baker, Marine Bio-Optics, Scripps Institution of Oceanography, A-018, University of California, San Diego, La Jolla, CA 92039.

K. L. Carder, S. K. Hawes, and R. G. Steward, Marine Science Department, University of South Florida, 140 Seventh Avenue South, St. Petersburg, FL 33701.

R. C. Smith, Center for Remote Sensing and Environmental Optics, University of California, Santa Barbara, CA 93106.

(Received March 1, 1991; revised July 8, 1991; accepted August 13, 1991.)