Microbially-mediated and abiotic synthesis of siderite from 10 to 70°C: a new Δ_{47} and $\delta^{18}O$ calibration

Joep v. Dijk1, Alvaro Fernandez1, Inigo A. Müller1, Timoty White2, Mark Lever3 and Stefano M. Bernasconi1

1ETH, Geological Institute, Zürich, Switzerland
2Penn State University, Earth and Environmental Systems Institute, University Park, USA
3ETH, Department of Environmental Sciences, Zürich, Switzerland
Email: joep.vandijk@erdw.ethz.ch

The clumped and oxygen isotope composition of pedogenic siderite (FeCO$_3$) can be exploited to reconstruct climate in humid continental environments. The only published siderite Δ_{47}-T calibration [Fernandez et al. 2014] is based on few data points and does not cover the entire temperature range that can be expected in palaeosols. Furthermore, interlaboratory discrepancies regarding Δ_{47}-T calibrations are yet to be resolved. For oxygen isotopes, two calibrations exist. One is derived from abiotic [Carothers et al. 1988] and the other from microbially-mediated precipitation experiments [Zhang et al. 2001]. These calibration are consistent between 45 and 75°C, but but diverge below 33°C and disequilibrium between DIC and water cannot be ruled out [Zhang et al. 2001]. In this contribution, we present a new siderite Δ_{47} and $\delta^{18}O$ calibration that was produced by inorganic precipitation through active degassing and with microbial cultures using the iron reducing bacteria Sheewanella Putrefaciens. Our aim is to cover a temperature range from 10 to 70°C. To promote DIC equilibrium, the enzyme carbonic anhydrase is used in both active degassing [Fernandez et al. 2014] and bacterial culture experiments. Experiments between 25 and 35°C will be performed both inorganically and with bacterial cultures. Siderites were digested offline at 100°C and analyzed with a MAT 253+ isotope ratio mass spectrometer (Thermo Scientific, Bremen, Germany). Δ_{47} values were pressure baseline corrected, transferred to the absolute reference frame and projected on an acid digestion temperature of 25°C [Meckler et al. 2014]. Preliminary results based on 4 precipitation temperatures indicate that the derived Δ_{47}-T calibration has the same temperature sensitivity as the previously published calibration of Fernandez et al. [2014]. Furthermore, both Δ_{47} and $\delta^{18}O$ to temperature regressions are highly linear. Δ_{47} and $\delta^{18}O$ fractionation at 30°C is the same for both abiotic and microbially mediated siderites.

