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ABSTRACT

In this dissertation we investigate self-distributive algebraic structures and their coho-

mologies, and study their relation to topological problems in knot theory. Self-distributivity

is known to be a set-theoretic version of the Yang-Baxter equation (corresponding to Rei-

demeister move III) and is therefore suitable for producing invariants of knots and knotted

surfaces. We explore three different instances of this situation. The main results of this dis-

sertation can be, very concisely, described as follows. We introduce a cohomology theory of

topological quandles and determine a class of topological quandles for which the cohomology

can be computed, at least in principle, by means of the cohomology groups of smaller and

discrete quandles. We utilize a diagrammatic description of higher self-distributive structures

in terms of framed links via a functorial procedure called doubling, and generalize previously

known (co)homology theories to introduce a cocycle invariant of framed links. Finally, we

study a class of ternary self-distributive structures called heaps, and introduce two cohomol-

ogy theories that classify their extensions. We show that heap cohomology is related to both

group cohomology (via a long exact sequence) and ternary self-distributive cohomology (the

heap second cohomology group canonically injects into the ternary self-distributive one with

modified coefficients). We also develop the theory in the context of symmetric monoidal

categories.
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CHAPTER 1 : INTRODUCTION

Knot theory is the study and classifications of the embeddings of S1, the unit circle

in the plane R2, into the three dimensional euclidean space R3 or its compactification S3.

Such an embedding is what we refer to as a knot. Two knots are considered to be equivalent

if there exists an ambient isotopy transforming one into the other. In other words, given

two knots K1 and K2, we say that they are equivalent, and write K1
∼= K2, if there exists

a continuous map F : [0, 1] × R3 −→ R3 such that F (0, K1) = K1, F (1, K1) = K2 and

F (t, •) is required to be a homeomorphism for all t, see [PS97] for instance. It is often

required in the literature a “smoothness” assumption, meaning that the embeddings are

differentiable maps with nonsingular differential, the isotopies depend smoothly on the first

variable t ∈ [0, 1] and for a fixed value of the parameter t, they induce a diffeomorphism

of R3 onto itself. Equivalently, we can require embeddings to be piecewise linear. The two

types of requirements are essentially the same, in the sense that the two theories can be seen

to correspond “bijectively”. Smooth (and pieciewise linear) knots admitting an immersion in

R2, obtained as a projection, with finitely many double points (no tangent points allowed)

are called tame, in contrast with wild knots, to which no extra requirement is applied. More

generally, a link is an embedding of finitely many copies of S1. The definition of isotopy in

the case of links is essentially the same as in the case of knots.
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1.1 Knot diagrams

Of fundamental importance to the classification of knots and links, is the concept of

diagram of a knot or a link. This is a generically immersed closed plane curve together with

over/under crossing information corresponding to each double point. See the description in

Chapter 1 of [CS98], for a detailed account of knot diagrams and their generalizations to

knotted surfaces. See also [CJK+, PS97]. The relevance of the concept of diagram relies in

the fact that it allows to translate topological problems into combinatorial ones.

Given two diagrams D1 and D2, it is natural to ask whether they represent the same

knot/link or not. Consider for instance the "O" shaped and the "8" shaped diagrams. It is

intuitively clear that they both correspond to the same embedding of the circle, since it is

possible to untwist the 8. The answer to this question has been given by K. Reidemeister

in the 1930’s. To this purpose, he has introduced three kinds of diagram manipulations

that now are referred to as Reidemeister moves of type I, II and III. We refer the reader to

[PS97, CS98] for a diagrammatic depiction of Reidemeister moves.

Theorem 1.1.1. Two link diagrams correspond to isotopic links if and only if one can be

obtained from the other via plane isotopies and finitely many applications of Reidemeister

moves.

This fundamental result provides the correspondence between topology of knots/links

and combinatorics. To determine isotopic classes of links is the same as to determine classes

of diagrams up to plane isotopy and Reidmeister moves.

2



1.2 Knot Invariants

In order to classify knots/links (up to ambient isotopy), it is of central importance

the notion of knot invariant, i.e. a quantity that does not depend on the representatiave of

the equivalence class of the knot/link.

Famous examples of knot invariants include polynomial invariants like Alexander

polynomial, Jones polynomial, HOMFLY-PT polynomial; homological invariants such as

Khovanov homology (a categorification of Jones polynomial); categorical invariants such as

the Reshetikin-Turaev invariant for ribbon graphs.

Of specific interest to us, will be the notion of cocycle invariant introduced by Carter,

Jelsovsky, Kamada, Langfor and Saito in [CJK+], and generalized by Carter, Elhamdadi,

Grana and Saito in [CEGnS] to the case of quandle homology with non abelian coefficients.

See also [CES, CENS]. We give a brief overview of this invariant, along with the notion of

quandle and its homology in Section 1.3 below.

1.3 Quandles and Cocycle Invariants

Quandles are algebraic objects that encode the essence of Reidmeister moves. They

have been introduced in the 1920’s in [BM29], under the name of Distributive Groups. See

also [Tak43].

Matveev, in [Mat], and Joyce, in [Joy82], later showed that for a given a knot, using

a procedure similar to the Wirtinger presentation of the fundamental group (i.e. the first

3



homotopy group), it is possible to construct what is called fundamental quandle of the knot.

They also showed that the fundamental quandle is a complete invariant of a knot, up to mirror

symmetry and orientation reversal. Unfortunaly, this invariant is usually computationally

extremely difficult to determine. The books [Nos17, EN] are good references regarding the

theory of quandles.

Definition 1.3.1. A quandle is a set X togehter with a binary operation ∗ : X ×X −→ X

satisfying the following three axioms

• x ∗ x = x, for all x ∈ X,

• the right multiplicaiton map − ∗ x : X −→ X is a bijection for all x ∈ X, where − is

a placeholder,

• (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z), for all x, y, z ∈ X.

Remark 1.3.1. The three axioms in the definition of quandle correspond to Reidmeister

moves of type I, II and III.

A binary operation satisfying only the third axiom (self-distributivity) is called shelf,

while a binary operation satisfying second and third axioms is called rack. Therefore a

quandle is an idempotent rack.

Given two quandles (resp. racks or shelfs) (X, ∗X) and (Y, ∗Y ), we define a ho-

momorphism of quandles (resp. racks or shelfs) f : X −→ Y , to be a map satisfying

f(x ∗X y) = f(x) ∗Y f(y) for all x, y ∈ X. Quandles (resp. racks or shelfs) together with

4



their homomorphisms give rise therefore to a category. The isomorphisms in this categories

are the bijective homomorphisms.

Example 1.3.2. Every group G, endowed with the operation of conjugation x ∗ y := yxy−1

defines a quandle structure. This quandle is called conjugation quandle.

Example 1.3.3. A group G with the operation a ∗ b := ba−1b is a quandle called the core

quandle of G.

Example 1.3.4. Any Λ(= Z[t, t−1])-module M is a quandle with a ∗ b := ta + (1− t)b, for

a, b ∈M , and is called an Alexander quandle.

Example 1.3.5. Given a group G and an automorpism f ∈ Aut(G), it is easy to show that

x∗y := f(xy−1)y defines a quandle structure. This is called a generalized Alexander quandle.

Remark 1.3.6. If X is a rack, then by the second axiom of Definition 1.3.1, it follows

that the right multiplication map Rx is a bijection for all x ∈ X. Moreover, using the

third axiom of Definition 1.3.1, it follows that Rx is a rack automorphism. Consider now the

subgroup of Aut(X) generated by the right multiplication maps Rx, indicated by Int(X), and

called the interior automorphisms group. A rack is said to be indecomposable if Int(X) acts

transitively on X. The word connected is also commonly found in the literature. We prefer

to use “indecomposable” mostly because of the possible ambiguity arising in the topological

context of Chapter 2.

In [CJK+], a cohomology theory of quandles has been introduced, and utilized to

construct invariants of knots, called cocycle invariants. We briefly recall the definition of
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quandle (co)homology.

Let (X, ∗) be a quandle. Define the chain group of order n, written Cn(X), to be the

free group generated by n-tuples (x1, . . . , xn) ∈ X×n. We define differentials ∂n : Cn(X) −→

Cn−1(X) on generators by the assignment

∂n(x1, . . . , xn) :=
n∑
i=2

[(x1, . . . , x̂i, . . . , xn)− (x1 ∗ xi, x2 ∗ xi, . . . , x̂i, . . . , xn)],

where, as usual, the symbol ̂ indicates omission of the underlying element. It is easy to see

that the differentials ∂n satisfy ∂n−1∂n = 0, therefore defining a chain complex. As usual,

Zn(X) indicates the group of n-cycles, and Bn(X) indicates the subgroup of n-boundaries.

Given an abelian group A, we obtain a cohomology theory by dualization. We refer the reader

to [Moc, Nos] for examples of computations of quandle cohomology groups and constructions

that relate the quandle cohomology to invariant theory, respectively.

Definition 1.3.2 ([CJK+]). A coloring of a link diagram D by a quandle X, is a function

C : R −→ X, where R is the set of arcs of the diagram D, with the following property.

Suppose we have a crossing as in Figure 1.1 left, where we assume the orientation of the over

arc to be downward, with the over arc r given the color C(r) = y, and the under arcs r1

and r2, reading from top to bottom. Then it is required that if C(r1) = x, r2 is given color:

C(r2) = x ∗ y.

Remark 1.3.7. A crossing as in the left diagram of Figure 1.1, with arrows oriented down-

wards, is called a positive crossing. In the same situation, with inverted over-passing/under-

6



passing arrows, we say that the crossing is negative. A good mnemonic rule to remember

how to determine if a crossing is positive or negative is given by the “right hand rule”, as for

the cross product. See Figure 4 in [CJK+].

1

0 1

y

0
, y , 

y

y )T* y

yx

(x x

y

x*

x

Figure 1.1: Diagrammatic representations of a binary (left) and ternary (right) operations

In order to define the cocycle invariant, we need one more preliminary definition.

Definition 1.3.3 ([CJK+]). Let φ ∈ Z2(X,A) be a quandle 2-cocycle. A Boltzmann weight

B(τ, C), at the crossing τ is defined in the following way. Let y be the color of the over arc

and x and x∗y be the colors of the under arcs accoding to the rules in Definition 1.3.2. Then

we set B(τ, C) := φ(x, y)ε(τ), where ε(τ) = ±1 for a positive (resp. negative) crossing τ .

Finally, we are able to introduce the cocycle invariant.

Definition 1.3.4 ([CJK+]). Given φ ∈ Z2(X,A), the Botlzmann state sum is given by the

expression ∑
C

∏
τ

B(τ, C),

where the sum is taken over all the possible colorings of the link diagrams, and for a given

coloring, τ varies among all the crossings.

7



Remark 1.3.8. Observe that in Definition 1.3.3 and Definition 1.3.4, the group A is assumed

to be in multiplicative notation. The Boltzmann state sum is an element of the group ring

of A.

In [CJK+] is then proved that the Boltzmann state sum is indeed a link invariant.

Specifically, we have the following result.

Theorem 1.3.9. The Boltzmann state sum in Definition 1.3.4 is invariant under Reidmeis-

ter moves. It therefore defines an invariant of links denoted by Φ(K).

As we will see in Chapter 3, it is possible to generalize this construction to the

case of framed links and their diagrams using ternary quandle cohomology and a functorial

procedure that we call doubling.

1.4 Ternary and Higher Arity Self-Distributivity

The notion of quandle has been recently generalized to ternary and higher arity

operations, see for instance [CEGM, Gre]. As will be described in Chapter 3, a diagrammatic

interpretation of these operations requires now more strings at once and is particularly

suitable to describe framed links. We hereby recall the definition of ternary self-distributive

operation and ternary cohomology. The natural generalization to higher arities is obtained by

introducing the appropriate number of variables and does not present a particular hindrance.

We begin with the following definitions.

8



Definition 1.4.1. Let (X,T ) be a set equipped with a ternary operation T : X×X×X → X.

The operation T is said to be ternary self-distributive if it satisfies the following condition

for all x, y, z, u, v ∈ X,

T (T (x, y, z), u, v) = T (T (x, u, v), T (y, u, v), T (z, u, v)).

Definition 1.4.2. Let T : X ×X ×X → X be a ternary distributive operation on a set X.

If for all a, b ∈ X, the map Ra,b : X → X given by Ra,b(x) = T (x, a, b) is invertible, then

(X,T ) is said to be a ternary rack. If further T satisfies

T (x, x, x) = x

, for all x ∈ X. Then (X,T ) is called a ternary quandle.

Example 1.4.1. The following constructions are found in [EGM].

• Let (X, ∗) be a rack and define a ternary operation on X by T (x, y, z) = (x ∗ y) ∗ z,

for all x, y, z ∈ X. It is straightforward to see that (X,T ) is a ternary rack. Note that

in this case Ra,b = Rb ◦Ra. We will say that this ternary rack is induced by a (binary)

rack.

In particular, if (X, ∗) is an Alexander quandle with x ∗ y = tx + (1 − t)y, then the

ternary rack coming from X has the operation

T (x, y, z) = t2x+ t(1− t)y + (1− t)z.

9



• Let M be any Λ-module where Λ = Z[t±1, s]. The operation T (x, y, z) = tx+sy+(1−

t− s)z defines a ternary rack structure on M . We call this an affine ternary rack.

In particular, consider Z8 with the ternary operation T (x, y, z) = 3x + 2y + 4z. This

affine ternary rack given in [EGM] is not induced by an Alexander quandle structure

as described in the preceding item since 3 is not a square in Z8.

• Any group G with the ternary operation T (x, y, z) = xy−1z gives a ternary rack. This

operation is well known and called heap (sometimes also called groud) of the group G.

For a ternary distributive operation T on X, we also use the notation

x ∗ y := T (x, y0, y1),

where y = (y0, y1). Although strictly speaking T (x, y0, y1) is not equal to T (x, (y0, y1)), no

confusion is likely to happen by this convention. Furthermore, for x = (x0, x1), we use the

notation x ∗ y to represent

(x0 ∗ y, x1 ∗ y) = (T (x0, y0, y1), T (x1, y0, y1)).

In this notation the ternary distributivity can be written as

(x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z)

in analogy to the binary case.
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We also recall the definition of homology of ternary racks [EGM]. Define first Cn(X)

to be the free abelian group generated by (2n + 1)-tuples (x0, x1, . . . , x2n) of elements of a

ternary rack (X,T ). Define the differentials ∂n : Cn(X) −→ Cn−1(X) as:

∂n(x0, x1, . . . , x2n)

=
n∑
i=1

(−1)i[(x0, . . . , x̂2i−1, x̂2i, . . . , x2n)

−(T (x0, x2i−1, x2i), . . . , T (x2i−2, x2i−1, x2i, ), x̂2i−1, x̂2i, . . . , x2n)].

Definition 1.4.3. The nth homology group of the ternary rack X is defined to be:

Hn(X) = ker∂n/im∂n+1.

By dualizing the chain complex given above, we get a cohomology theory for ternary

racks.

11



CHAPTER 2 : CONTINUOUS COHOMOLOGY OF TOPOLOGICAL

QUANDLES

Topological quandles were introduced by R.L. Rubinsztein in [Rub07] to construct an

invariant of links, indicated with the symbol JQ(L), for a link L and a fixed topological quan-

dle Q. Roughly speaking, this invariant is a topological space consisting of the fixed points

of the action of an element of the braid group Bn on a topological quandle Q. Two other

possible interpretations of the invariant are as follows. Given a link L, we can contruct the

fundamental quandle Q(L) associated to it. It is possible to show that the space of quandle

homomorphism Homq(Q(L), Q) endowed with the compact-open topology is homeomorphic

to JQ(L). Lastly, one can interpret JQ(L) as the space of coloring of a fixed diagram D of

the link L, with colors belonging to Q. This point of view is due to Oleg Viro (see [Rub07]).

The main purpose of this chapter is to introduce a cohomology theory for topological

quandles and techniques to compute continuous cohomology groups. One natural question

that arises is whether or not the continuous cohomology differs from the standard (discrete)

one. We will show that it is indeed the case that the two theories differ, providing an

explicit example in which the continuous (i.e. topological chomology is zero while the discrete

cohomology is not.

The chapter is organized as follows. In the first section we recall the definition and
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basic examples of topological quandles. In the second section we introduce a cohomology

theory for topological quandles and study general properties of the first and second cohomol-

ogy groups. In particular we will see that, as usual, the second cohomology group classifies

extensions. In the third section we introduce the notion of inverse and direct limit of quan-

dles and utilize it to provide a computation of cohomology groups. Furthermore we will

see that the cohomology groups of inverse limits of quandles are isomorphic, under certain

hypothesis to the direct limit of the cohomology of the components, a result analogous to

one which is quite known in the group theoretic context.

The present chapter is based on the article [ESZ19].

2.1 Basics of Topological Quandles

Definition 2.1.1. Let X be a topological space together with a continuous operation ∗ :

X ×X −→ X, usually indicated as ∗(x, y) = x ∗ y. We say that X is a topological quandle

if ∗ satisfies the properties

• for all x ∈ X we have x ∗ x = x, i.e. the operation is idempotent;

• for all y ∈ X the right multiplication map X −→ X, given by x 7→ x ∗ y is a homeo-

morphism;

• for all x, y, z ∈ X (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).

Here we have a list of typical examples of topological quandles encountered in the

literature.
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Example 2.1.1. Any topological group G becomes a topological quandle with operation

∗ given by conjugation: x ∗ y = y−1xy. This quandle is denoted Conj(G), the conjugation

quandle associated to G.

For a topological group G and a continuous automorphism f : G → G, x ∗ y =

f(xy−1)y for x, y ∈ G defines a topological quandle structure on G. This is called a gen-

eralized Alexander quandle and is denoted by (G, f). If G is abelian, then the conjugation

quandle is called an Alexander quandle.

In particular, for any T ∈ GL(n,R), Rn can be given a topological quandle structure

by defining x ∗ y = Tx+ (I − T )y, for all x, y ∈ Rn, where I denotes the identity matrix.

The following two examples can be found in [Rub07].

Example 2.1.2. Consider the n-dimensional sphere Sn ⊂ Rn+1. The operation x ∗ y =

2 〈x|y〉 y − x, for all x, y ∈ Sn endows the sphere with a topological quandle structure,

where 〈x|y〉 denotes the standard inner product in Rn+1. Also, this operation induces a

topological quandle structure on the real projective space RPn giving a topological quandle

homomorphism Sn → RPn.

Example 2.1.3. Let V be a finite dimensional complex vector space and let q ∈ C be

a modulus one complex number. For each 1 ≤ k ≤ dim(V ), consider the grassmannian

Grk(V ). Given an element U ∈ Grk(V ), choose an orthonormal basis {u1, . . . , uk} of U and

define the map ιqU : V −→ V by the assignment ιqU(v) = qv + (1 − q)
∑

i 〈v|ui〉 v, where

〈−|−〉 stands for the standard inner product. We can define an operation on Grk(V ) by
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U ∗ V = ιqV (U). This operation turns the grassmannian into a topological quandle.

We can define the category of topological quandles, denoted T Q, as follows. The

objects are topological quandles and, given two objects X and Y , a morphism f : X −→ Y

is a morphism of quandles that is continuous with respect to the topologies of X and Y . It

is clear that T Q is a subcategory of Q, the category of quandles.

2.2 Continuous Cohomology

In this section we define a cohomology theory for topological quandles. We would

also like to point out that a similar construction for smooth quandles has been introduced

by Nosaka in [Nos18].

Let X be a topological quandle. Let A be a topological abelian group, T : A → A

be a continuous automorphism, and A is also considered with the generalized Alexander

quandle structure (A, T ). We define the n-cochain group to be the set of continuous maps

from n-tuples (x1, . . . , xn) ∈ Xn to A, endowed with the abelian group structure induced by

pointwise addition in A, where Xn is given the product topology. We indicate the n-cochain

group by the symbol Γn(X,A). Define the maps Γn(X,A) −→ Γn+1(X,A), n ∈ N as in the

discrete case, namely

δi0f(x1, . . . , xn+1) = f(x1, . . . , x̂i, . . . , xn+1);

δi1f(x1, . . . , xn+1) = f(x1 ∗ xi, . . . , xi−1 ∗ xi, xi+1, . . . , xn+1).
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We now set the differentials to be

δn =
n+1∑
i=1

(−1)i[Tδi0 − δi1].

It is easy to show that the differentials satisfy δn+1δn = 0. We therefore define the nth-

cohomology group as usual and indicate them by Hn
TC(X,A). We assume further that

the map δ0 is defined to be the canonical inclusion of the trivial group into Γ1(X,A), i.e.

H1
TC(X,A) = Γ1(X,A).

When T = 1, the groups Hn
TC(X,A) are called (untwisted) continuous quandle coho-

mology groups and will be denoted Hn
C(X,A).

Continuous cohomology groups in low dimensions take the following form.

Example 2.2.1. Let X be a topological quandle and (A, T ) be a topological Alexander

quandle. Then a continuous map η : X → A is a continuous 1-cocycle if it satisfies T [η(y)−

η(x)] − [η(y) − η(x ∗ y)] = 0, that is, η is a continuous quandle homomorphism, η(x ∗ y) =

Tη(x) + (1 − T )η(y). If, in particular, T = 1 and A is considered as a topological abelian

group with trivial quandle structure, then the 1-cocycle condition is η(x ∗ y) = η(x).

A continuous map φ : X2 → A is a 2-cocycle if and only if it satisfies the condition:

Tφ(x1, x2) + φ(x1 ∗ x2, x3) = Tφ(x1, x3) + (1− T )φ(x2, x3) + φ(x1 ∗ x3, x2 ∗ x3)

and φ(x, x) = 0. These considerations appear in [CES] except the requirement of continuity.

16



The notation that we will use throughout the rest of this chapter, to indicate the

various type of cohomologies, is summarized as follows.

HQ : Original (untwisted) HT : Original twisted

HC : Continuous (untwisted) HTC : Continuous twisted

HGC : Continuous generalized (quandle module)

The cohomologyHGC is a continuous version of Andruskiewitsch-Grana’s generalized quandle

cohomology, see [AGn], and will be treated in Section 2.5.

2.3 First Continuous Cohomology Groups

We determine next, the first continuous cohomology group of certain topological

quandles satisfying some suitable hypothesis. First, we have the following result for untwisted

continuous cohomology.

Proposition 2.3.1. Let X be a topological quandle and A be an Alexander topological quna-

dle. If X is indecomposable, then the first cohomology group H1
C(X,A) is isomorphic to

A.

Remark 2.3.2. We note the similarity between this result and the more traditional case of

the first cohomology group of a path-connected topological space.

Proof. Let x, x′ ∈ X be arbitrary elements of X and let f : X → A be a 1-cocycle. By

indecomposability of X there exist y1, . . . , yn ∈ X such that (· · · (x ∗ε1 y1) ∗ε2 · · · ∗εn yn) = x′,

17



such that εi = ±1, where ∗−1 is defined by x ∗−1 y = z if z ∗ y = x. Recall that in this case

the 1-cocycle condition is f(x ∗ y) = f(x), which also implies f(x ∗−1 y) = f(x). Therefore

f(x′) = f(· · · (x ∗ε1 y1) ∗ε2 · · · ∗εn yn) = f(· · · (x ∗ε1 y1) ∗ε2 · · · ∗εn−1 yn−1)

where the second equality follows from the 1-cocycle condition for f . Inductively it follows

that f is a constant map. On the other hand, any constant map satisfies the cocycle condition

and is continuous, hence it is in H1
C(X,A) = Z1

C(X,A). As a consequence there is a bijective

correspondence between H1
C(X,A) and A that respects the group structures as the group

operation of cocycles is pointwise. �

We also have the following result regarding the first twisted continuous cohomology

groups.

Proposition 2.3.3. Let X = (Rn, S) and A = (Rm, T ) be indecomposable Alexander quan-

dles, where S, T are continuous additive automorphisms. Then H1
TC(X,A) is isomorphic

to

{ F + a : Rn → Rm | a ∈ A, F is linear, FS = TF }.

Proof. Since X and A are indecomposable, we have I − S and I − T invertible. Let G ∈

H1
TC(X,A). Then G is a continuous quandle homomorphism G : X → A. Then for all a ∈ A,

G + a ∈ H1
TC(X,A). For any G ∈ H1

TC(X,A), there is a ∈ A such that (G + a)(0) = 0.

By certain results due to E.W. Clark, see Appendix, we have that F = G+ a is linear, and

FS = TF . Hence the result follows. �
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2.4 Second Continuous Cohomology Groups

Our next objective is to estabilish a bijective correspondence between extensions of

topological quandles and second continuous cohomology groups, and utilize this result to

determine families of topological quandles having non trivial second continuous cohomology

groups. We start with the following

Definition 2.4.1. Assume we are given a topological quandleX and a topological Alexander

quandle (A, T ). For a continuous 2-cocycle ψ ∈ Z2
TC(X,A) (so that ψ(x, x) = 0 for all

x ∈ X), a quandle structure is defined on X × A by

(x, a) ∗ (y, b) = (x ∗ y, a ∗ b+ ψ(x, y))

for all x, y ∈ X and a, b ∈ A, as in [CENS]. The resulting quandle is denoted by X ×ψ A

and called a topological extension of X by A.

Remark 2.4.1. The projection π : X ×ψ A→ X is a topological quandle homomorphism.

We define morphisms in the class of extensions of X by the abelian group A and,

consequently, define an equivalence relation corresponding to the isomorphism classes. The

class of extensions of X by A can be viewed therefore as a category. Consider two topological

extensions X ×ψ A and X ×φ A where ψ and φ are two 2-cocycles. A morphism X ×ψ A→

X×φA of extensions of X by A is a morphism of topological quandles f : X×ψA→ X×φA

making the following diagram commute
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In particular, if f is an isomorphism of topological quandles with the property of

making the above diagram commute, it will be called an isomorphism of topological exten-

sions. Two extensions are equivalent if there is an isomorphism f as above. We now prove

the following result, analogous to the classification of the second cohomology group for group

cohomology and the corresponding result for discrete quandles, as in [CENS, CES].

Proposition 2.4.2. There is a bijective correspondence between equivalence classes of topo-

logical abelian extensions of X by A and the second cohomology group H2
TC(X,A) of X with

coefficients in A.

Proof. Although computations below are similar to those in [CES], we examine topological

aspects of the argument. Assume X ×ψ A and X ×φ A are two topological extension of X

with ψ and φ cohomologus 2-cocycles (i.e. they differ by a coboundary). Consider the map

f : X ×A→ X ×A, (x, a) 7→ (x, a+ g(x)), where g : X → A is such that δg = ψ− φ. Since

g ∈ Z1
TC(X,A), g is continuous, and so is f . We have

f((x, a) ∗ (y, b)) = f(x ∗ y, a ∗ b+ φ(x, y)) = (x ∗ y, a ∗ b+ φ(x, y) + g(x ∗ y)).

20



On the other hand we have

f(x, a) ∗ f(y, b) = (x, a+ g(x)) ∗ (y, b+ g(y)) = (x ∗ y, a ∗ b+ g(x) ∗ g(y) + ψ(x, y)).

These two terms are equal since φ = ψ + δg, hence f is an isomorphism of quandles. Since

it is also a homeomorphism and clearly makes the required diagram commute, we get that

X ×ψ A and X ×φ A are equivalent.

Conversely, assume X ×ψ A and X ×φ A are equivalent. Say f : X × A → X × A

is an isomorphism of topological extensions. Since, by definition, both π(x, a) = x and

π(f(x, a)) = x, the map f is determined by its second component. Using the group structure

of A we can also write f as f(x, a) = (x, a + g(x)) for some map g : X → A. Now the

continuity of f implies the continuity of g. Since f is a morphism of quandles we get, for all

x, y ∈ X and all a, b ∈ A,

(x ∗ y, a ∗ b+ g(x ∗ y) + ψ(x, y)) = f((x, a) ∗ (y, b))

= f(x, a) ∗ f(y, b) = (x ∗ y, a ∗ b+ g(x) ∗ g(y) + φ(x, y)).

Equating the second component, we find that ψ and φ differ by δg, i.e. they are representa-

tives of the same cohomology class, since g is continuous. �

Let (G,+) be a topological abelian group. Consider Gm with the binary operation
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given by the rule

(a1, . . . , am) ∗ (b1, . . . , bm) = (a1, a2 + b1 − a1, . . . , am + bm−1 − am−1).

By direct computation we see that the operation just defined respects the defining axioms

for a quandle structure and it is continuous, hence define a topological quandle structure on

Gm.

Proposition 2.4.3. Let (G,+) be a topological abelian group, x 6= 0, and (Gm, ∗) be the

topological quandle defined as above. Then H2
C(Gm, G) 6= 0.

Proof. Consider the following 2-cycle (in the usual sense of discrete homology):

α = (0, . . . , 0)× (x, 0, . . . , 0) + (0, x, 0, . . . , 0)× (−x, x, 0, . . . , 1) ,

where × has been used to better indicate that α is an element of Gm × Gm. By direct

computation using the boundary map, it follows that α is indeed a 2-cycle. Consider also

the 2-cocycle:

φ : Gm ×Gm −→ G

defined by

φ( (a1, . . . , am)× (b1, . . . , bm) ) = bm − am .

Again by direct computation using the coboundary map it can be shown that φ is a cocycle.

Applying φ to α we get φ(α) = x 6= 0. The lemma below shows therefore that φ is not
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null-cohomologus, and we obtain H2
C(Gm, G) 6= 0. �

Lemma 2.4.4. Let X be a topological quandle, and (A, T ) be a topological Alexander quandle.

Let α ∈ ZT
n (X,A) be an n-cycle (in the usual sense of discrete homology), and φ ∈ Zn

TC(X,A)

be a continuous n-cocycle. If φ(α) 6= 0, then [φ] 6= 0 ∈ Hn
TC(X,A).

Theorem 2.4.5. Let X = (Rn, S) and A = (Rm, T ) be Alexander quandles, where S ∈

GLn(R) and T ∈ GLm(R), respectively. Then H2
TC(X,A) 6= 0 if the following conditions

hold for k > 1:
∑k+1

i=0 (−S)i = 0 =
∑k+1

i=0 (−T )i, and there exists an n × m matrix C such

that
∑k

`=0(−T )`C(
∑k−`+1

j=1 (−S)j) 6= 0.

Proof. Let w =
∑k

i=0 T
i(ui, vi). One computes

∂w =
k∑
i=0

T i[T (ui) + (1− T )(vi)− (Sui + (1− S)vi)]

= [(v0)− (Su0 + (1− S)v0)]

+
k−1∑
i=1

T i[(ui−1)− (vi−1) + (vi)− (Sui + (1− S)vi)]

+T k+1[(uk)− (vk)].

By setting

v1 = Su0 + (1− S)v0, ui−1 = Sui + (1− S)vi, vj = vj−2, and uk = vk−1 (2.1)
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for i = 1, . . . , k and j = 2, . . . , k, we obtain

∂w = (
k+1∑
`=0

(−T )`)[(v0)− (v1)].

Hence the condition (2.1) and the assumption
∑k+1

`=0 (−T )` = 0 implies ∂w = 0.

For k odd, set

uk−2i = (
2i+1∑
j=2

(−S)j)u0 + (1−
2i+1∑
j=2

(−S)j)v0

uk−(2i+1) = (−
2i+2∑
j=1

(−S)j)u0 + (
2i+2∑
j=0

(−S)j)v0

and for even k, set

uk−2i = (−
2i+1∑
j=1

(−S)j)u0 + (
2i+1∑
j=0

(−S)j)v0

uk−(2i+1) = (
2i+2∑
j=2

(−S)j)u0 + (1−
2i+2∑
j=2

(−S)j)v0.

Then it is checked by induction that these satisfy Equations (2.1).

For φ(x1, x2) = C(x1 − x2) one computes

φ(w) =
k∑
`=0

φ(T `(u`, v`)) =
k∑
`=0

T `C(u` − v`) =
k∑
`=0

(−T )`C(
k−`+1∑
j=1

(−S)j)(u0 − v0)

as desired. The last equality is obtained by substituting the formulas for uk−2i and uk−(2i+1)
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for each case of k odd and even. �

Example 2.4.6. Let n = 4, m = 2, S = T ⊕T , and T =

0 −1

1 1

. Then S2−S+ 1 = 0 =

T 2−T +1. Let C = (I, I) where I is 2×2 identity matrix. Then C−TCS = (I−S2, I−S2)

is not the zero matrix, and applying Theorem 2.4.5 we obtain H2
TC(X,A) 6= 0.

2.5 Continuous Cohomology with Quandle Modules

The goal of this section is to introduce a topological version of the cohomology theory

generalized in [AGn] and exhibit explicit examples with non-trivial continuous cohomology.

We adapt the definition of quandle module, see the original paper [AGn]), to the topological

case by requiring the triple (A, η, τ) to consist of a topological abelian group and continuous

morphisms. In this setting, consider the abelian groups Γn(X,A), δi0 and δi1 as defined above

in Section 2.2. Define the differentials by the following formula

δn :=
n+1∑
i=2

(−1)i
(
η[x1,··· ,x̂i,··· ,xn+1],[xi,··· ,xn+1]δ

i
0 − δi1

)
+ τ[x2,x3,...,xn+1],[x1,x3,...,xn+1]δ

1
0

where

[x1, x2, x3, . . . , xn] = ((· · · (x1 ∗ x2) ∗ x3) · · · ) ∗ xn.
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As in the discrete case, it is easy to see that we obtain a cochain complex

· · · → Γn(X,A)
δ−→ Γn+1(X,A)→ · · ·

The resulting cohomology groups are denoted by Hn
GC(X,A).

Following [AGn], if X is a topological quandle and (A, η, τ) is a topological quandle

module, we can define a topological quandle structure on X × A by

(x, a) ∗ (y, b) = (x ∗ y, ηx,y(a) + τx,y(b) + κx,y),

for all x, y ∈ X and a, b ∈ A, where X × A is given the product topology. This formula

defines a topological quandle structure if and only if κx,y is a 2-cocycle of this cohomology

theory.

Similar definition and arguments as in Section 2.4 show that there is a bijective

correspondence between the second generalized continuous cohomology group of X, with

coefficients in A, and equivalence classes of extensions of X by A. We will leave the details

to the reader.

Example 2.5.1. Let G be the subgroup of GL(2n,R) for a positive integer n, consisting of

block matrices of the form
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G =

 E =

 S O

C T


∣∣∣∣∣∣∣∣∣ S, T ∈ GL(n,R), C ∈ M(n,R)

 ,

where O denotes the zero matrix, and consider X = G× Rn with quandle operation

(E0, x0) ∗ (E1, x1) = (E1E0E
−1
1 , S1x0 + (I − S1)x1),

where Ei =

 Si O

Ci Ti

 for i = 0, 1. Let A = Rn and consider endomorphisms of A defined

by η(E0,x0),(E1,x1)(a) = T1a and τ(E0,x0),(E1,x1)(a) = (I − T1)a. It is checked by computation

that these define an X-module structure on A.

Theorem 2.5.2. Let X and A be as in Example 2.5.1. Then we have

H2
GC(X,A) 6= 0

Proof. The quandle operation on X × A = G× R2n defined by

(E0, u0) ∗ (E1, u1) = (E1E0E
−1
1 , E1u0 + (I − E1)u1),
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where ui = (xi, ai) and ai ∈ A for i = 0, 1 are computed as operation on X × A as

[ (E0, x0), a0 ] ∗ [ (E1, x1), a1 ]

= [ E1E0E
−1
1 , S1x0 + (I − S1)x1, T1a0 + (I − T1)a1 + C1(x0 − x1))].

Let p : X × A → X by p( [(E, x), a)] ) = (E, x). Then we find that p defines the extension

of X by the X-module A, with the 2-cocycle κ(E0,x0),(E1,x1) = C1(x0 − x1).

We show that κ is not a coboundary. Let E =

 −I O

C −I

, and w = [(E, x), (E, 0)]−

[(E,−x), (E, 0)] be a 2-chain. Since ∂( (x, y) ) = ηx,y(x) + τx,y(y)− (x ∗ y), one computes

∂(w) = (−I)(E, x) + (2I)(E, 0)− (E, (−I)x+ (2I)0)

− [(−I)(E,−x) + (2I)(E, 0)− (E, (−I)(−x) + (2I)0) = 0.

Hence w is a 2-cycle. One also computes

κ(E,x),(E,0) − κ(E,−x),(E,0) = C1(x− 0)− C1(−x− 0)

= C1(2x)

and by choosing x,C1 such that C1x 6= 0, we obtain that κ is not a coboundary by the

argument similar to Lemma 2.4.4. �
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2.6 Continuous Cohomology vs Discrete Cohomology

Given a topological quandle X, there is an obvious forgetful functor F : T Q −→ Q,

from the category of topological quandles to the category of (discrete) quandles. Therefore,

for a given topological abelian group A, associated to any topological quandles there are two

type of cohmology. The classical discrete cohomology, Hn
T (F(X);A), where we also use the

discrete topology on the group A, and the topological one, Hn
TC(X;A). The main purpose

of this section is to show that the two theories are different. In other words, there exists

topological quandles having Hn
T (F(X);A) 6= Hn

TC(X;A).

Remark 2.6.1. We also observe that there is another obvious “discretization” functor D :

Q −→ T Q, that turns a discrete quandle into a topological one by endowing it with the

discrete topology, and works on morphisms as the identity. It is clear that in this case, we

have Hn
TC(D(X);A) = Hn

T (X;A), for all n ∈ N.

Remark 2.6.2. The pair of functors (F ,D) is an adjoint pair.

Let A be a topological abelian group and p : E → X be a principal A-bundle; a fiber

bundle with a fiber preserving right action of A on E that acts freely and transitively.

Definition 2.6.1 (cf. [Eis]). Let E,X be connected topological quandles and A be a topo-

logical abelian group. A principal (abelian) quandle extension by A is a continuous surjective

quandle homomorphism p : E → X that is a principal A-bundle such that for all x, y ∈ X

and a ∈ A, the following conditions hold:

(i) (x ∗ y) · a = (x · a) ∗ (y · a), (equivariance),
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(ii) (x · a) ∗ y = (x ∗ y) · a. (commutativity of right actions).

In particular, the quandle homomorphism in Example 2.1.2 is a principal abelian

quandle extension by Z2.

Lemma 2.6.3. Let A be a topological abelian group and p : E → X be a principal abelian

quandle extension by A. Let s : X → E be a set-theoretic section; p ◦ s = idX . Then for all

x, y ∈ X, there exists a unique element a ∈ A such that s(x) ∗ s(y) = s(x ∗ y) · a.

Proof. Since p is a quandle homomorphism, we have

p(s(x) ∗ s(y)) = (ps)(x) ∗ (ps)(y) = x ∗ y = (ps)(x ∗ y).

Since A acts freely and transitively, there is a unique a such that s(x) ∗ s(y) =

s(x ∗ y) · a. �

Remark 2.6.4. In the preceding lemma, the unique element a is determined by x, y ∈ X,

so that we denote it by a = φ(x, y). Then we obtain a function φ : X ×X → A.

Lemma 2.6.5. Let φ : X × X → A be defined as above. Then φ is a quandle (abelian)

2-cocycle.

Proof. We perform the following computations analogous to those in [CENS] and [Eis]:

(s(x) ∗ s(y)) ∗ s(z) = [ s(x ∗ y) · φ(x, y) ] ∗ s(z)

= [ s(x ∗ y) ∗ s(z) ] · φ(x, y)
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= s((x ∗ y) ∗ z) · [φ(x ∗ y, z)φ(x, y)],

(s(x) ∗ s(z)) ∗ (s(y) ∗ s(z)) = [ s(x ∗ z) · φ(x, z) ] ∗ [ s(y ∗ z) · φ(y, z) ]

= ([ s(x ∗ z) · φ(x, z)φ(y, z)−1 ] ∗ s(y ∗ z)) · φ(y, z)

= (s(x ∗ z) ∗ s(y ∗ z)) · [(φ(x, z)φ(y, z)−1)φ(y, z)]

= s((x ∗ z) ∗ (y ∗ z)) · [(φ(x ∗ z, y ∗ z)φ(x, z)],

and s(x)∗s(x) = s(x∗x) ·φ(x, x) gives φ(x, x) = 0. Hence φ satisfies the 2-cocycle condition.

�

Remark 2.6.6 (Nosaka). The argument works also for non-abelian groups A. See [AGn]

for non-abelian 2-cocycles.

Example 2.6.7. Consider p : S2 → RP2 as in Example 2.1.2. Let

P+ := {(x, y, z) ∈ S2 : z > 0 or z = 0, y > 0 or y = z = 0, x > 0}

and P− := S2 \ P+. Let s : RP2 → S2 be a set-theoretic section defined by s([x]) = x

where x ∈ P+. Then the map φ of the preceding lemma provides a non-zero 2-cocycle. For

example, φ([1, 0, 0], [0, 1, 0]) = 1 ∈ Z2. In this case, as a set S2 is regarded as RP2 × Z2.

Remark 2.6.8. Let p : E → X be a principal abelian quandle extension by A, and fix a

set-theoretic section s : X → E. For any given u ∈ E, let x = p(u), then there is a unique

a = as(u) such that u = s(x) · a. Similarly for v ∈ E let y = p(v) and v = s(y) · b. Then one
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computes

u ∗ v = (s(x) · a) ∗ (s(y) · b) = [(s(x) · (ab−1)) ∗ s(y)] · b = [s(x) ∗ s(y)] · a = s(x ∗ y) · (aφ(x, y)).

Note that this equality (s(x) · a) ∗ (s(y) · b) = s(x ∗ y) · (a φ(x, y)) compares to the equality

(x, a) ∗ (y, b) = (x ∗ y, a+ φ(x, y)) for E = X ×φ A in the case T = 1.

Proposition 2.6.9. H2
Q(RP2,Z2) 6= 0, yet H2

C(RP2,Z2) = 0.

Proof. Let φ be the quandle 2-cocycle constructed in Example 2.6.7. By Lemma 2.6.5 and

Example 2.6.7, φ is a (discrete) quandle 2-cocycle, that yields a non-trivial extension, and

therefore, φ is non-trivial in H2
Q(RP2,Z2). Any continuous 2-cocycle gives rise to the trivial

extension. Indeed, let φ be such a 2-cocycle. By continuity assumption, it is the con-

stant map. But since φ(x, x) = 0 for all x, it follows that φ is the zero map. Therefore

H2
C(RP2,Z2) = 0. �

Remark 2.6.10. The difference in Proposition 2.6.9 intercurring between the discrete and

continuous cases can be interpreted in the following way. Since RP2 is not (homeomorphic

to) a cartesian product, we can construct set theoretic sections, but these ought not to

be continuous. Since a 2-cocycle with coefficients in Z2 gives rise to a section, a discrete

2-cocycle can be nonzero, but a topological 2-cocycle cannot.
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2.7 Inverse Limits of Quandles and their Cohomology

In this section we introduce the notion of inverse and direct limits of quandles and

show that, under suitable hypothesis, the continuous cohomology of an inverse limit is iso-

morphic to the direct limit of the cohomology groups of the components.

Suppose we are given a projective system of quandles (Xn, ψn)n∈N:

X1
ψ1←− X2

ψ2←− · · · ←− Xn
ψn←− · · ·

where each ψn is a quandle morphism. We define the inverse limit of the projective system,

lim←−Xn, as the subset of
∏

n∈NXn of sequences (x0, x1, . . . , xn, . . .) satisfying ψn(xn+1) = xn

for all n ≥ 1. We give lim←−Xn the ∗ operation induced componentwise by the operations of

the Xn. This construction together with the canonical projection maps lim←−Xn → Xi, for

each i ∈ N, satisfies the usual universal property for an inverse limit of a projective system

indexed by the natural numbers, see Remark 2.7.2 below.

The same construction can be defined for a projective system of topological quandles,

where each morphism is now required to be continuous, and lim←−Xn is endowed with the

initial topology with respect to the projection maps. The initial topology is the coarsest

topology that makes projections pi : lim←−Xn → Xi continuous, and in our case, it is the same

topology as the subspace topology of the product space.

Example 2.7.1. Fix a prime p ∈ N. Put Xn = Z/pnZ together with the standard dihedral

quandle operation x ∗ y = 2y − x. There are canonical projections ψn : Xn+1 → Xn
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obtained by reducing mod pn a representative of a class modulo pn+1. These maps are ring

homomorphisms and, as a consequence, quandle morphisms, since the quandle structure on

Xn is obtained from the ring operations. By definition, the inverse limit of this projective

system is the ring of p -adic integers Zp and it inherits a topological quandle structure from

the dihedral quandles Xn. To be precise, the same quandle operation would be obtained on

Zp defining the Alexander quandle structure with T = −1, via the ring operations on Zp.

That is, (lim←−Xn, ∗) is isomorphic to (Zp,−1).

Remark 2.7.2. More generally, if we start with a directed set I and a projective system

of (topological) quandles (Xi, ψi,j), where the morphisms ψi,j satisfy the usual compatibility

relations, we can define

lim←−Xn = {x ∈
∏
n∈I

Xn | ψi,jπj(x) = πi(x) for all i, j with j ≥ i}

where πi is the canonical projection onto the ith factor. They satisfy the universal property

depicted below.

Then we can endow it again with the ∗ operation induced pointwise by the quandle operations
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in each Xi and get an inverse limit for the projective system we started with. If we start with

topological quandles, the topology of lim←−Xi will be again the initial topology with respect

to the projections. By definition it follows that the inverse limit of (topological) quandles,

is the usual inverse limit in the category of topological spaces, equipped with a continuous

binary operation that turns it into a topological quandle.

We have now the main result of the section.

Theorem 2.7.3. Let (Xn, ψn) be a projective system of discrete quandles and (Am, φm) a

direct system of discrete abelian groups. Then ther cohomology groups H•T (Xn, An) can be

arranged in an inductive system such that the following isomorphisms hold

H•TC(lim←−Xk, lim−→Al) ∼= lim−→H•T (Xn, An).

Proof. We first define an inductive system of cohomology groups, whose direct limit is

lim−→H•T (Xn, An). Below we suppress subscripts of cochain groups for simplicity. Define

cochain maps C•(Xn, An) −→ C•(Xn+1, An+1) by the following diagram

where the vertical map is the change of coefficients induced by φn and the horizontal map

is the dual map of the projection ψn. We obtain consequently an inductive system in the
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category of groups. Consider now the following diagram

where δ indicates the cohomology differentials and the maps τ are defined above. Since ψ∗n

and φn◦− commute with differentials, the diagram is commutative, so that each τn induces a

map on cohomology (which we will still denote by τn). Thus we obtain the inductive systems

of cohomology groups:

H•T (X0, A0)
τ0−→ H•T (X1, A1)

τ1−→ · · · τn−1−−→ H•T (Xn, An)
τn−→ · · ·

from which we derive their inductive limits: lim−→H•T (Xn, An). Next, we construct a homo-

morphism of groups

Ψ : lim−→H•T (Xn, An) −→ H•TC(lim←−Xk, lim−→Al)

Consider the following diagram, corresponding to any representative f of a class [f ] ∈

H•T (Xn, An)
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where π•n is the canonical projection (lim←−Xk)
• → X•n and ιn : An → lim−→Al is the natural

morphism of An into the direct limit. Observe that if ιnfπ•n is as above, then it factors

through X•n by definition and, in particular, any preimage of a subset in lim−→Al is a basis

element of the topology of lim←−X
•
k since each Xk is a discrete topological space and lim←−Xk is

endowed with the projective limit topology. Since lim−→Al is discrete, being a direct limit of

discrete spaces; it follows then that ιnfπ•n is continuous. Also, the correspondence {f : X•n →

An}
ιnfπ•n−→ {(lim←−Xk)

• → lim−→Al} respects equivalence classes, so it induces a well defined map

σn : H•T (Xn, An)→ H•TC(lim←−Xk, lim−→Al). We obtain therefore the diagram

which can be seen to be commutative by a direct inspection. By the universal property of

colimits we obtain a unique morphism lim−→H•T (Xn, An)
Ψ−→ H•TC(lim←−Xk, lim−→Al). Our, last

step is to prove that Ψ is indeed an isomorphism.

Suppose α ∈ lim−→H•T (Xn, An) is mapped to zero by Ψ. By construction of Ψ, it means that

there exists some i ∈ N such that [ιifπ
•
i ] is the zero class in H•TC(lim←−Xk, lim−→Al), where

f is a representative of a class [f ] ∈ H•T (Xi, Ai), π•i is the projection on the ith factor
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and ιi is the natural map Ai → lim−→Al. So ιifπ
•
i is a coboundary of some continuous

g : (lim←−Xk)
•−1 → lim−→Al which factors through some X•−1

j , j ∈ N. Choosing t ∈ N large

enough it follows that [ιtfπ
•
t ] = 0 in H•T (Xt, At). Since [ιifπ

•
i ] ∼ [ιtfπ

•
t ] in lim−→H•T (Xn, An)

it follows that α is the zero class.

Suppose now we are given a class [β] ∈ H•TC(lim←−Xk, lim−→Al). Since β is continuous and

lim−→Al is discrete, it factors through some X•i . Therefore its image in lim−→Al is finite and it

will be contained in some Aj. Choosing t ∈ N large enough, we get that [β] is the image

T [h], for some [h] ∈ H•T (Xt, At), where the bar symbol indicates that we are considering a

representative class in lim−→H•T (Xn, An). This concludes the proof. �

Remark 2.7.4. Observe that the construction of the morphism Ψ and the proof above

are still valid if we consider topological compact Hausdorff quandles Xn and replace each

H•T (Xn, An) by their continuous counterparts. The proof depends indeed on categorical

properties of direct and inverse limits, and a key factorization property of conitnuous maps

between compact Hausdorff spaces and direct limits of discrete spaces. See [ESZ19], for a

brief account pertaining this property.

As an application of Theorem 2.7.3, we are able to establish more computations of

continuous cohomology groups. We first have the following

Example 2.7.5. Fix an odd prime p ∈ Z and choose u ∈ Z such that (u, p) = 1. Then

multiplications by u and by 1 − u define automorphisms of Z/pnZ, for any n ∈ N. Thus

we obtain an Alexander quandle structure on Z/pnZ, which will be denoted by Xu
n . Also
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recall that there are natural maps Z/pnZ −→ Z/pn+1Z given by multiplication by p, which

commute with the action by Z and consequently a direct system, whose direct limit is

the Prüfer group Z(p∞). Thus we have an Alexander quandle (Z(p∞), u), denoted also by

Z(p∞)u.

Corollary 2.7.6. H1
TC(lim←−X

u
n ,Z(p∞)u) ∼= Z(p∞)u×Z(p∞)u for any u ∈ Z such that (u, p) =

1.

Proof. As in Section 2.3 it is possible to show that the first twisted (discrete) cohomology

group H1
T (Xu

n ,Z/pnZ) is the abelian group of affine maps {fα,β : Z/pnZ → Z/pnZ | f(x) =

αx + β, α, β ∈ Z/pnZ} which can be seen to be isomorphic to Z/pnZ × Z/pnZ for all

n ∈ N, via the isomorphism fα,β 7→ α × β. Using the definition of σn : H1
T (Xu

n ,Z/pnZ) →

H1
T (Xu

n+1,Z/pn+1Z) we have that (σnf)(x) = (pfπn)[x] = pα[x] + pβ, from which we obtain

the direct limit

Z/pZ× Z/pZ→ · · · → Z/pnZ× Z/pnZ→ · · ·

where each map is just multiplication by p on each coordinate.

It follows that lim−→H1
T (Xu

n ,Z/pnZ) = Z(p∞)u × Z(p∞)u and the result follows. �

Corollary 2.7.7. H3
C(lim←−Rpn ,Z/pZ) = 0, where Rpn denotes the dihedral quandle on pn

elements and the cohomology group is meant to be untwisted.

Proof. For a given odd prime, it has been computed by Mochizuki [Moc], that

H3(Rpn ,Z/pZ) = Z/pZ, where Rpn . Directly from the proof in [Moc] it also follows that the
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map H3(Rpn ,Z/pZ) → H3(Rpn+1 ,Z/pZ) induced by the canonical projection Rpn+1 → Rpn

is the trivial map. We obtain the inductive system:

Z/pZ 0−→ Z/pZ 0−→ · · · 0−→ Z/pZ 0−→ · · ·

whose direct limit is the trivial group. �
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CHAPTER 3 : HIGHER ARITY SELF-DISRIBUTIVE OPERATIONS

In this chapter we introduce new constructions regarding self-distributive operations

of arbitrary arity and study the relations intercurring between their cohomology theories.

We introduce a diagrammatic interpretation of higher arity self-distributivity and relate our

constructions to diagrams of ribbon tangles. Our ultimate, though somehow elusive, goal

is to introduce new (quantum) invariants of ribbon graphs and tangles via state-sums of

Boltzmann weights of higher arity 2-cocycles. See [CJK+, CEGnS] for the binary (quandle)

analogue of this construction. It is therefore of crucial importance to find new ways to

define higher order self-distributive operations and compute their (co)homology groups. We

will introduce, partially after [Prz] and in parallel to [IIJ], certain classes of well behaved

ternary self-distributive oeprations via the doubling procedure and relate their cohomology

groups to those of the binary "building blocks" used to construct them. The procedure is

general and it is seen to extend to higher arities. We also introduce a categorical version

of self-dsitributivity making use of comonoidal objects in symmetric monoidal categories.

This categorical generalization is expected to be particularly fruitful in the construction of

interesting examples.

The present chapter is based on [ESZb].
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3.1 Doubling Functor

In this section we introduce a functor that produces a "doubled" binary operation

from two binary operations under certain assumptions. We can interpret this construction as

the algebraic counterpart of doubling a string into a ribbon. Recall the following definition,

due to J. Przytycki ([Prz]).

Definition 3.1.1. Let X be a set and ∗0 and ∗1 be two binary rack operations on X. We call

the pair (∗0, ∗1) mutually distributive if ∗ε is self-distributive for ε = 0, 1, and the equalities

(x ∗0 y) ∗1 z = (x ∗1 z) ∗0 (y ∗1 z) and (x ∗1 y) ∗0 z = (x ∗0 z) ∗1 (y ∗0 z) hold for all x, y, z ∈ X.

We call (X, ∗0, ∗1) a mutually distributive rack.

Przytycki calls (X, ∗0, ∗1) a distributive set and defines this object for more then two

operations. We provide a few examples of mutually distributive racks.

Example 3.1.1. Let (X, ∗X), (Y, ∗Y ) be racks. Define ∗0, ∗1 on X × Y , respectively, by

(x0, y0) ∗0 (x1, y1) = (x0 ∗X x1, y0) and (x0, y0) ∗1 (x1, y1) = (x0, y0 ∗Y y1). Then computation

shows that (∗0, ∗1) are mutually distributive.

Example 3.1.2. The following example appears in [II] and provides a way of constructing

mutually distributive rack operations from a given rack. Denote by ∗n the rack operation on

X defined by n-fold leftmost product x ∗n y = (· · · (x ∗ y) ∗ y) ∗ · · · ∗ y. Then ∗0 = ∗m and

∗1 = ∗n are mutually distributive for positive integers m and n.

More generally, the following appears in [IIJ, Prz]. Let X be a group, and let

f0, f1 ∈ Aut(X) be mutually commuting automorphisms. Let ∗ε be the generalized Alexan-
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der quandles with respect to fε for ε = 0, 1. Thus x ∗ε y = (xy−1)fεy, where the action

is denoted in exponential notation. Then computations show that ∗0 and ∗1 are mutually

distributive.

Lemma 3.1.3. Let (X, ∗0, ∗1) be mutually distributive racks. Define the operation for

(x0, x1), (y0, y1) ∈ X ×X by

(x0, x1) ∗ (y0, y1) := ((x0 ∗0 y0) ∗1 y1, (x1 ∗0 y0) ∗1 y1).

Then (X ×X, ∗) is a rack.

Proof. We have

[(x0, x1) ∗ (y0, y1)] ∗ (z0, z1)

= ((x0 ∗0 y0) ∗1 y1, (x1 ∗0 y0) ∗1 y1) ∗ (z0, z1)

= (([(x0 ∗0 y0) ∗1 y1] ∗0 z0) ∗1 z1, ([(x1 ∗0 y0) ∗1 y1] ∗0 z0) ∗1 z1)

= ([((x0 ∗0 y0) ∗0 z0) ∗1 (y1 ∗0 z0)] ∗1 z1,

[((x1 ∗0 y0) ∗0 z0) ∗1 (y1 ∗0 z0)] ∗1 z1)

= ([(x0 ∗0 z0) ∗0 (y0 ∗0 z0)) ∗1 (y1 ∗0 z0)] ∗1 z1],

[((x1 ∗0 z0) ∗0 (y0 ∗0 z0)) ∗1 (y1 ∗0 z0)] ∗1 z1)

= ([{(x0 ∗0 z0) ∗1 z1} ∗0 {(y0 ∗0 z0) ∗1 z1}] ∗1 [(y1 ∗0 z0) ∗1 z1],

[{(x1 ∗0 z0) ∗1 z1} ∗0 {(y0 ∗0 z0) ∗1 z1}] ∗1 [(y1 ∗0 z0) ∗1 z1])

43



= ((x0 ∗0 z0) ∗1 z1, (y1 ∗0 z0) ∗1 z1) ∗ ((y0 ∗0 z0) ∗1 z1, (x1 ∗0 z0) ∗1 z1)

= [(x0, x1) ∗ (z0, z1)] ∗ [(y0, y1) ∗ (z0, z1)].

The fact that the right multiplication is bijective is straightforward. �

Remark 3.1.4. We observe that in Lemma 3.1.3 we have used both the equalities in Defi-

nition 3.1.1.

1
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0 0 1
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Figure 3.1: Diagrammatic representation of doubling

A diagrammatic representation of the preceding lemma is depicted in Figure 3.1, and

the computations in its proof are facilitated by the corresponding Reidemeister type III move

with doubled strings (i.e. ribbons).

Definition 3.1.2. Let RM be the category defined as follows. The objects consist of

(X, ∗0, ∗1), where X is a set and (∗0, ∗1) is mutually distributive. For objects (X, ∗0, ∗1)

and (X ′, ∗′0, ∗′1), a morphism f is a map f : X → X ′ that is a rack morphism for both

(∗0, ∗′0) and (∗1, ∗′1).

We observe that if f : X → X ′ is a morphism in the sense of this definition, then f

will automatically respect the mutual distributivity. Specifically, simple computations imply

the following.
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Lemma 3.1.5. If f : (X, ∗0, ∗1)→ (X ′, ∗′0, ∗′1) is a morphism in RM , then it holds that

f((x ∗0 y) ∗1 z) = (f(x) ∗′1 f(z)) ∗′0 (f(y) ∗′1 f(z)).

We also have the following result.

Lemma 3.1.6. Let (X, ∗0, ∗1) and (X ′, ∗′0, ∗′1) be two mutually distributive racks, and (X ×

X, ∗) and (X ′ × X ′, ∗′) be racks as in Lemma 3.1.3. If f : (X, ∗0, ∗1) → (X ′, ∗′0, ∗′1) is

a morphism in RM , then the map F : (X × X, ∗) → (X ′ × X ′, ∗′) defined by F (x, y) =

(f(x), f(y)) is a rack morphism.

Definition 3.1.3. The functor DR from RM to the category R of binary racks defined

on objects by DR(X, ∗0, ∗1) = (X × X, ∗) through Lemma 3.1.3 and on morphisms by

DR(f) = f × f through Lemma 3.1.6, is called the doubling functor.

Remark 3.1.7. The functor DR is injective on objects and morphisms, but not surjective

on either.

It is natural to ask if there is a relation between the cohomology groups of the mutu-

ally distributive racks (X, ∗0, ∗1) and the cohomology of the double racks obtained via DR.

Toward this direction, we introduce the following

Definition 3.1.4. Let (X, ∗0) and (X, ∗1) be two binary racks and let φ0 be a 2-cocycle

for (X, ∗0) and φ1 be a 2-cocycle for (X, ∗1) both with coefficients in an abelian group A.

We say that (φ0, φ1) is a pair of mutually distributive rack 2-cocycles, if the following two
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conditions are satisfied

φ0(x, y) + φ1(x ∗0 y, z) = φ1(x, z) + φ0(x ∗1 z, y ∗1 z),

φ1(x, y) + φ0(x ∗1 y, z) = φ0(x, z) + φ1(x ∗0 z, y ∗0 z).

Example 3.1.8. Let (X, ∗X), (Y, ∗Y ) be racks, and (∗0, ∗1) be mutually distributive oper-

ations defined on X × Y in Example 3.1.1. Let φX and φY be 2-cocycles of (X, ∗X) and

(Y, ∗Y ), respectively. Define 2-cocycles of X × Y corresponding to ∗0, ∗1, respectively, by

φ0((x0, y0), (x1, y1)) = φX(x0, x1) and φ1((x0, y0), (x1, y1)) = φY (y0, y1). Then computations

show that (φ0, φ1) are mutually distributive.

Example 3.1.9. The following construction is found in [II]. Let (X, ∗) be a rack, φ :

X×X → A be a 2-cocycle, and (E = X×A, ∗̃) be the corresponding extension. Recall that

∗n denotes the n-fold leftmost product x ∗n y = (· · · (x ∗ y) ∗ y) ∗ · · · ∗ y. Then the function

φn defined by

φn(x, y) = φ(x, y) + φ(x ∗ y, y) + · · ·+ φ(x ∗n−1 y, y)

is a 2-cocycle.

Let (X, ∗0 = ∗m, ∗1 = ∗n) be the mutually distributive rack defined in Example 3.1.2,

and let φm, φn be 2-cocycles defined above. Then φm and φn are mutually distributive. This

is seen by a diagrammatic interpretation of parallel strings.

We show next that given a pair of mutually distributive 2-cocycles, we can produce
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a 2-cocycle for the doubled rack. Specifically, we have the following result.

Theorem 3.1.10. Let (X, ∗0, ∗1) and (X×X, ∗) be as described in Lemma 3.1.3. Let φ0, φ1

be rack 2-cocycles of (X, ∗0) and (X, ∗1), respectively, that satisfy the mutually distributive

rack 2-cocycle condition. Then

φ((x0, x1), (y0, y1)) = φ0(x0, y0) + φ1(x0 ∗0 y0, y1) + φ0(x1, y0) + φ1(x1 ∗0 y0, y1)

is a rack 2-cocycle of (X ×X, ∗).

We defer the proof of Theorem 3.1.10 and prove instead a preliminary result, relating

extensions of racks defined from mutually distributive 2-cocycles.

Lemma 3.1.11. Let (X, ∗0, ∗1) be a mutually distributive rack, and (φ0, φ1) be mutually

distributive rack 2-cocycles. Let (E, ∗̃ε) be abelian extensions of (X, ∗ε) with respect to φε,

(x, a) ∗̃ε (y, b) = (x ∗ε y, a+ φε(x, y))

for ε = 0, 1. Then (E, ∗̃0, ∗̃1) is a mutually distributive rack.

Proof. We have

((x, a)∗̃0(y, b))∗̃1(z, c)

= (x ∗0 y, a+ φ0(x, y))∗̃1(z, c)

= ((x ∗0 y) ∗1 z, a+ φ0(x, y + φ1(x ∗0 y, z)))
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= ((x ∗1 z) ∗0 (y ∗1 z), a+ φ1(x, z) + φ0(x ∗1 z, y ∗1 z))

= ((x ∗1 z), a+ φ(x, z)) ∗0 (y ∗1 z, b+ φ1(y, z))

= ((x, a) ∗1 (z, c)) ∗0 ((y, b) ∗1 (z, c)).

A similar computation shows the second equality in Definition 3.1.4. �

We construct then, a ternary version of the binary doubling functor. We start with

the following definition, which can be considered as a ternary counterpart to Definition 3.1.1.

Definition 3.1.5. Let T0 and T1 be two ternary operations on a set X. We say that T0 and

T1 are compatible if they satisfy

T0(T0(x0, y0, y1), z0, z1)

= T0(T0(x0, z0, z1), T0(y0, z0, z1), T1(y1, z0, z1)),

T1(T1(x1, y0, y1), z0, z1)

= T1(T1(x1, z0, z1), T0(y0, z0, z1), T1(y1, z0, z1)).

Doubling of ternary operations can be interpreted diagrammatically as a crossing of

ribbons and the compatibility conditions correspond to a ribbon Redemeister move III. We

depict this ideas in Figure 3.2.

Example 3.1.12. Consider a Λ-module M where Λ = Z[t±1, t′±1, s, s′]. The following two

ternary operation T0(x, y, z) = tx+ sy+ (1− t− s)z and T1(x, y, z) = t′x+ s′y+ (1− t′− s′)z
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Figure 3.2: Diagrammatic representation of compatible ternary rack operations

are compatible if and only if the following conditions hold


(1− t− s)(t′ − t) = 0

(1− t− s)(s′ − s) = 0

and


(1− t′ − s′)(t− t′) = 0

(1− t′ − s′)(s− s′) = 0 .

For example, one can chooseM = Z8 with T0(x, y, z) = 3x+2y+4z and T1(x, y, z) =

−x+ 2y.

Theorem 3.1.13. Let (T0, T1) be compatible ternary distributive operations on X. Then

T : X2 ×X2 ×X2 → X2 defined by

T ((x0, x1), (y0, y1), (z0, z1))

= (T0(T0(x0, y0, y1), z0, z1), T1(T1(x1, y0, y1), z0, z1))

is a ternary distributive operation on X2.
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Proof. We need to establish

T (T ((x0, x1), (y0, y1), (z0, z1)), (u0, u1), (v0, v1))

= T ( T ((x0, x1), (u0, u1), (v0, v1)),

T ((y0, y1), (u0, u1), (v0, v1)), T ((z0, z1), (u0, u1), (v0, v1)) ).

A diagrammatic representation of this equality is depicted in Figure 3.3. This diagrammatic

equality follows from a sequence of moves as in Figure 3.2. Thus calculations are obtained

by applications of defining relations of compatibility accordingly. �

x
0/1

u
0/1

v
0/1

y
0/1

z
0/1 x

0/1
u

0/1
v

0/1
y

0/1
z

0/1

Figure 3.3: Diagrammatic representation of Theorem 3.1.13

Definition 3.1.6. The category TC of compatible ternary distributive racks is defined as

follows. The objects consist of triples (X,T0, T1) where X is a set and (T0, T1) are compatible

ternary operations on X. A morphism between two objects (X,T0, T1) and (Y, T ′0, T
′
1) is a

map f : X → Y which is morphism in the ternary category for both (T0, T
′
0) and (T1, T

′
1).

Observe that if (X,T0, T1) and (X ′, T ′0, T
′
1) are mutually distributive racks and f :

X −→ X ′ is a morphism according to Definition 3.1.6, then f automatically respects the

mutual distributivity conditions. This is the content of the next Lemma.

50



Lemma 3.1.14. If f : (X,T0, T1)→ (X ′, T ′0, T
′
1) is a morphism in TM , then it holds that

f(T0(T0(x0, y0, y1), z0, z1)) =

T ′0(T ′0(f(x0), f(z0), f(z1)), T ′0(f(y0), f(z0), f(z1)), T ′1(f(y1), f(z0), f(z1))),

f(T1(T1(x0, y0, y1), z0, z1)) =

T ′1(T ′1(f(x0), f(z0), f(z1)), T ′0(f(y0), f(z0), f(z1)), T ′1(f(y1), f(z0), f(z1))).

Proof. A direct computation. �

The following is analogous to Lemma 3.1.6 and is shown by direct computations.

Lemma 3.1.15. Let (X,T0, T1) and (X ′, T ′0, T
′
1) be sets with mutually distributive ternary

operations, and (X × X,T ) and (X ′ × X ′, T ′) be ternary distributive racks constructed in

Theorem 3.1.13. If f : (X,T0, T1) → (X ′, T ′0, T
′
1) is a morphism in TC, then F defined from

f by f × f is a morphism of TC.

Definition 3.1.7. We denote the functor from TM to the category of ternary racks defined

on objects by DT (X,T0, T1) = (X ×X,T ) and on morphisms by DT (f) = f × f , and call it

doubling.

Remark 3.1.16. The functor DT is injective on both objects and morphisms, but is not

surjective on either.

Definition 3.1.8. Let (T0, T1) be compatible ternary distributive operations on X. Let ψ0,

ψ1 be 2-cocycles with respect to T0 and T1, respectively. Then the following are called the
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compatibility conditions for ψ0 and ψ1:

ψ0(x0, y0, y1) + ψ1(T1(x1, y0, y1), z0, z1)

= ψ1(x1, z0, z1) + ψ0(T0(x0, z0, z1), T0(y0, z0, z1), T1(y1, z0, z1)),

ψ1(x1, y0, y1) + ψ0(T0(x0, y0, y1), z0, z1)

= ψ0(x0, z0, z1) + ψ1(T1(x0, z0, z1), T0(y0, z0, z1), T1(y1, z0, z1)).

We assert now that given a pair of compatible ternary 2-cocycles, as in Definition 3.1.8

above, we can construct a 2-cocycle of the doubled tenrary rack. Specifically, we have the

following result.

Theorem 3.1.17. Let (T0, T1) be compatible ternary distributive operations on X. Let T be

the doubled ternary operation defined in Theorem 3.1.13. Let ψ0, ψ1 be 2-cocycles with respect

to T0 and T1, respectively, that satisfy the compatibility condition defined in Definition 3.1.8.

Then

ψ((x0, x1), (y0, y1), (z0, z1))

= ψ0(x0, y0, y1) + ψ1(x1, y0, y1)

+ψ0(T0(x0, y0, y1), z0, z1) + ψ1(T1(x1, y0, y1), z0, z1)

is a ternary rack 2-cocycle of (X ×X,T ).

We call ψ the doubled ternary rack 2-cocycle. We will prove Theorem 3.1.17 along

52



with Theorem 3.1.10 in Section 3.4.

3.2 From Binary Racks to Ternary Racks

In this section, we construct a functor from the category of mutually distributive racks

RM , as in Definition 3.1.2, to the category of ternary racks. We start with the assignments

on objects.

Lemma 3.2.1. Let (X, ∗0, ∗1) be a mutually distributive rack. Then the operation T given

by

T (x, y0, y1) := (x ∗0 y0) ∗1 y1

is a ternary distributive operation, that is,

T (T (x, y0, y1), z0, z1) = T (T (x, z0, z1), T (y0, z0, z1), T (y1, z0, z1)).

Proof. We have

T (T (x, y0, y1), z0, z1)

= [[(x ∗0 y0) ∗1 y1] ∗0 z0] ∗1 z1

= [[(x ∗0 y0) ∗0 z0] ∗1 (y1 ∗0 z0)] ∗1 z1

= [[(x ∗0 z0) ∗0 (y0 ∗0 z0)] ∗1 (y1 ∗0 z0)] ∗1 z1

= ([(x ∗0 z0) ∗0 (y0 ∗0 z0)] ∗1 z1) ∗1 [(y1 ∗0 z0) ∗1 z1]
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= ([(x ∗0 z0) ∗1 z1] ∗0 [(y0 ∗0 z0) ∗1 z1]) ∗1 [(y1 ∗0 z0) ∗1 z1]

= T (T (x, z0, z1), T (y0, z0, z1), T (y1, z0, z1))

where the second and the fifth equalities follow from the mutual distributivity of ∗0 and

∗1. �

Remark 3.2.2. Note that the order in which the two operations ∗0 and ∗1 in Lemma 3.2.1

appear is important. In other words, the two ternary structures T (x, y, z) = (x∗0 y)∗1 z and

T ′(x, y, z) = (x ∗1 y) ∗0 z may not be isomorphic in general, as the following example shows.

Consider the set Z3 with the two binary operations x ∗0 y = x and x ∗1 y = 2y − x.

The induced ternary structures T (x, y, z) = (x ∗0 y) ∗1 z and T ′(x, y, z) = (x ∗1 y) ∗0 z are

not isomorphic. In fact, if f : (Z3, T )→ (Z3, T
′) is an isomorphism then for all x, y, z in Z3,

we have f(T (x, y, z)) = T ′(f(x), f(y), f(z)). Then f(2z − x) = 2f(y) − f(x). One obtains

then a contradition, for example, by setting x = z = 0.

Definition 3.2.1. The assignment on objects defined by Lemma 3.2.1 is denoted by F :

RM → T , where F(X, ∗0, ∗1) = (X,T ).

Let f : (X, ∗0, ∗1)→ (X ′, ∗′0, ∗′1) be a morphism of mutually distributive sets. Define

an assignment on morphisms by F(f) = f . Lemma 3.1.5 implies that F is a functor.

By definition F is injective and surjective on morphisms.

Proposition 3.2.3. Let QM denote the subcategory of RM restricted on quandles. Then the

functor F|QM is not surjective on objects.
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Proof. Let (X,T ) = F(X, ∗0, ∗1), where (X, ∗0, ∗1) is a set with mutually distributive quan-

dle operations. Then for all x, y ∈ X, it holds that

T (x, x, y) = (x ∗0 x) ∗1 y = x ∗1 y = (x ∗0 y) ∗1 y = T (x, y, y).

On the other hand, a heap (X,T ′), where X is a group and T ′(x, y, z) = xy−1z, satisfies

T ′(x, x, y) = y and T ′(x, y, y) = x, so that it is not in the image of F for a non-trivial group

X. �

The functor F and extensions commute in the following sense.

Proposition 3.2.4. Let (X, ∗0, ∗1) be a mutually distributive rack, and (φ0, φ1) be mutually

distributive rack 2-cocycles. Let (E, ∗̃0, ∗̃1) be a mutually distributive rack that is an abelian

extension with respect to (φ0, φ1) obtained by Lemma 3.1.11. Let F(X, ∗0, ∗1) = (X,T ), and

ψ be the ternary 2-cocycle obtained in Theorem 3.2.5. Let (E, T̃ ) be the abelian extension

with respect to ψ obtained in Lemma ??. Then we have F(E, ∗̃0, ∗̃1) = (E, T̃ ).

Proof. Suppose φ0 and φ1 are 2-cocycles with coefficients in an abelian group A. Let ∗̃0 and

∗̃1 be the binary distributive structures obtained on X × A from φ0 and φ1, respectively.

Then, by Lemma 3.1.11, (X × A, ∗̃0, ∗̃1) is a mutually distributive rack. We want to show

that the ternary structure obtained on X × A by applying F , is the same as the ternary

structure obtained on X×A as a ternary extension, with cocycle ψ as in Theorem 3.2.5 and

T obtained from ∗0 and ∗1. By direct computation, F(E, ∗̃0, ∗̃1) has ternary operation given
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by:

T̃ ((x, a), (y0, b0), (y1, b1))

= ((x, a) ∗̃0 (y0, b0)) ∗̃1 (y1, b1)

= ((x ∗0 y0) ∗1 y1, a+ φ0(x, y0) + φ1(x ∗0 y0, y1)

= (T (x, y0, y1), a+ ψ(x, y0, y1)),

which is the ternary abelian extension on F(X, ∗0, ∗1) corresponding to the cocycle ψ. �

The situation of the proposition above is represented by the following commutative

diagram.

It is natural to demand a way to define a correspondence between binary 2-cocycles of

mutually distributive racks, and ternary 2-cocycles of the ternary self-distributive structure

they produce via the functor F . This is the content of the main result of this section,

Theorem 3.2.5 below.
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Figure 3.4: Diagrammatic proof of 2-cocycle conditions

Theorem 3.2.5. Let (X, ∗0, ∗1) be a mutually distributive rack, and (φ0, φ1) be mutually

distributive rack 2-cocycles. Then ψ(x, y, z) given by

ψ(x, y, z) := φ0(x, y) + φ1(x ∗0 y, z)

is a ternary 2-cocycle for the ternary distributive set (X,T ) = F(X, ∗0, ∗1).

Proof. It is sufficient to check that the map ψ satisfies the following equation

ψ(x, y0, y1) + ψ(T (x, y0, y1), z0, z1) =

ψ(x, z0, z1) + ψ(T (x, z0, z1), T (y0, z0, z1), T (y1, z0, z1)).

The computations below are aided by diagrams shown in Figure 3.4, where each equality

is represented by a type III Reidemeister move. In the figure and the computations below,
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underlines highlight those terms to which the cocycle condition is applied. We compute

LHS = φ0(x, y0) + φ1(x ∗0 y0, y1) + φ0((x ∗0 y0) ∗1 y1), z0)

+φ1((x ∗0 y0) ∗1 y1) ∗0 z0, z1)

= φ0(x, y0) + φ0(x ∗0 y0, z0) + φ1((x ∗0 y0) ∗1 y1) ∗0 z0, z1)

+φ1((x ∗0 y0) ∗0 z0, y1 ∗0 z0)

= φ0(x, z0) + φ0(x ∗0 z0, y0 ∗0 z0) + φ1((x ∗0 y0) ∗0 z0) ∗0 z0, y1 ∗0 z0)

+φ1(((x ∗0 y0) ∗1 y1) ∗0 z0, z1)

= φ0(x, z0) + φ0(x ∗0 z0, y0 ∗0 z0) + φ1((x ∗0 y0) ∗0 z0), z1)

+φ1((x ∗0 y0) ∗0 z0) ∗1 z1, (y1 ∗0 z0) ∗1 z1)

= φ0(x, z0) + φ1(x ∗0 z0, z1)

+φ1((x ∗0 y0) ∗0 z0) ∗1 z1, (y1 ∗0 z0) ∗1 z1)

+φ0((x ∗0 z0) ∗0 z0) ∗1 z1, (y1 ∗0 z0) ∗1 z1) = RHS

as desired. �

The result given by Theorem 3.2.5. We would like to construct a map from the binary

rack second cohomology groups of (X, ∗0) and (X, ∗1) to the tarnary second cohomology

group of F(X, ∗0, ∗1). A first hindrance to such a construction is that in general, Theorem

3.2.5 defines a map from a subset of C2((X, ∗0);A)× C2((X, ∗1);A) to C2
T (F(X, ∗0, ∗1);A),
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domain of which is not part of a (co)chain complex in a natural way. We now construct a new

chain complex, from the binary rack complexes, that encodes the compatibility conditions

between pairs of rack 2-cocycles and enables us to obtain Theorem 3.2.5 as part of a more

general construction.

We construct a complex by taking the direct sum of n copies of Cn(X;A) = {f : Xn →

A} for all n, and combining the rack differentials corresponding to ∗0 and ∗1 according to

certain rules. The situation is better described by means of the diagram below

where we take direct sum along diagonals at 135 degrees, δi stands for the rack differential

of the rack (X, ∗i) and the signs corresponding to each differential will be described in detail

below.

Remark 3.2.6. Observe that starting from C1 and proceeding vertically, we have just

compositions of δ1 we obtain the cohomology of (X, ∗1). Similarly horizontally we obtain
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the cohomology of (X, ∗0).

Recall the following Definition.

Definition 3.2.2 ([Prz]). Let ∗j, j = 1, . . . , k, be distributive binary operations on X that

are pairwise mutually distributive. Then we call (X, {∗j}kj=1) a mutually distributive set.

We first introduce a chain complex and its associated homology, whose dualized

cochain complex corresponds to the cohomology sought for. This chain complex general-

izes those found in [EGM, IIJ, Prz].

Definition 3.2.3. Let (X, {∗j}kj=1) be a mutually distributive set. Let ~ε = (ε1, . . . , εn−1)

be a vector such that εi ∈ {j}kj=1 for i = 1, . . . , n − 1. Let chain groups C~εn(X) be defined

by the free abelian group generated by tuples x = (x0, (x1, ε1), . . . , (xn−1, εn−1)). Define

Cn(X) = ⊕~ε C~εn(X) where the direct sum ranges over all possible vectors ~ε. Define the

differential ∂~εn : C~εn(X)→ Cn−1(X) by

∂~εn(x) =
n−1∑
i=2

(−1)i[(x0 ∗εi xi, (x1 ∗εi xi, ε1), . . . , (xi−1 ∗εi xi, εi−1), (̂xi, εi),

(xi+1, εi+1), . . . , (xn−1, εn−1))

−(x0, (x1, ε1), . . . , (̂xi, εi), . . . , (xn−1, εn−1))],

and let

∂n =
∑
~ε

∂~εn : Cn(X)→ Cn−1(X).
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In Section 3.5 we show that the differentials given in Definition 3.5.3 indeed satisfy

the condition ∂n−1∂n = 0.

Lemma 3.2.7. Let (X, {∗j}kj=1) be a mutually distributive set. Then the sequence (Cn(X), ∂n)

defines a chain complex.

Proof. The proof is the binary case of the higher arity (vector) version given in Section

3.5. �

Definition 3.2.4. The chain complex defined by Definition 3.5.3 and the homology that

it induces will be called labeled chain complex and labeled homology and will be denoted

CL
• (X) and HL

• (X), respectively.

Remark 3.2.8. The chain complex in Definition 3.5.3 has a diagrammatic interpretation as

in Figure 3.5. In particular, the mutual distributivity condition, takes the same form as in

the curtain homology of [PW].

n
(x )

...
i

ε

i i
x( , ε )

i

... ...
x

0
x(

1
, ε

1
) x( , ε )

n n
x

0
x(

1
, ε

1
) x( , ε )

n n

Σ
i

( )1
i

...
x( , ε )

Figure 3.5: Curtain diagram representing chain maps

Remark 3.2.9. For a given abelian group A, we obtain a labeled cochain complex with co-

efficients in A, upon dualizing the chain complex in Definition 3.5.3. We will write Cn
L(X;A)

and Hn
L(X;A) to indicate the labeled nth cochain and cohomology groups with coefficients in

A, respectively. We observe that the cochain complex encodes the compatibility conditions,

as described in the next proposition.
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Proposition 3.2.10. Let (X, ∗0, ∗1) be a mutually distributive rack and let C2
L(X;A) be the

second labeled cochain group with coefficients in A, as in Remark 3.2.9. Then the labeled

2-cocycle conditions corresponding to δ(01)ψ = 0 and δ(10)ψ = 0 are equivalent to the mutual

distributive rack 2-cocycle condition in Definition 3.1.4.

Proof. By definition, CL
2 (X) splits in the direct sum of labeled cycles. Dualizing, a 2-cocycle

ψ ∈ C2
L(X;A) is a pair (φ0, φ1), where φi ∈ Hom(C

(i)
2 , A), i = 0, 1. Similarly, CL

3 (X) consists

of a direct sum of four terms labeled by vectors (00), (01), (10) and (11). It follows therefore

that δψ consists of four summands, obtained by dualizing the labeled differential and pre-

composing with each of the two components of ψ. Specifically, the component corresponding

to the differential ∂(01) reads

δ(01)ψ(x, (y, ∗0), (z, ∗1)) = φ1(x ∗0 y, (z, ∗1))− φ1(x, (z, ∗1))

−φ0(x ∗1 z, (y ∗1 z, ∗0)) + φ0(x, (y, ∗0)).

This gives us the first condition in Definition 3.1.4. Similarly, from δ(ii) we obtain the 2-

cocycle condition for φi with respect to the rack (X, ∗i), and δ(10) gives the second equation

in Definition 3.1.4. �

Definition 3.2.5. We define maps F],n : CT
n (X) −→ CL

n (X), from the tenrary cochain
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complex, to the chain complex defined by Lemma 3.5.5 for n = 1, 2, 3. Explicitly:

F],1 = 1

F],2(x, y0, y1) = (x, y0)0 + (x ∗0 y0, y1)1

F],3(x, y0, y1, z0, z1) = (x, y0, z0)00 + (x ∗0 z0, y0 ∗0 z0, z1)01 +

(x ∗0 y0, y1, z0)10 + ((x ∗0 y0) ∗0 z0, y1 ∗0 z0, z1)11,

where we put the labels as a subscript.

Definition 3.2.6. Let (X, ∗0, ∗1) be a mutually distributive racks. Let F ],n : Cn
L(X) →

Cn
T (X) for n = 2, 3 be the maps obtained from F],n by dualization.

Lemma 3.2.11. For n = 2, 3 the maps F],n define chain maps. Therefore they define

induced homomorphisms F],n : HT
n (X)→ HL

n (X) in homology and F∗,n : Hn
L(X)→ Hn

T (X)

in cohomology.

Proof. For a ternary 2-chain (x, y0, y1) we have:

∂F],2(x, y0, y1) =

−(x ∗0 y0) + (x)− ((x ∗0 y0) ∗1 y1) + (x ∗0 y0) = ∂T (x, y0, y1).

By direct computation, we also have:
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F],2∂T (x, y0, y1, z0, z1)

= (x, z0)0 + (x ∗0 z0, z1)1 − (T (x, y0, y1), z0)0

−(T (x, y0, y1) ∗0 z0, z1)1 − (x, y0)0 − (x ∗0 y0, y1)1

+(T (x, z0, z1), T (y0, z0, z1)0

+(T (x, z0, z1) ∗0 T (y0, z0, z1), T (y1, z0, z1))1.

On the other hand, the following holds:

∂F],3(x, y0, y1, z0, z1)

= (x, z0)0 − (x ∗0 y0, z0)0 − (x, y0)0

+(x ∗0 z0, y0 ∗0 z0)0 + (x ∗0 z0, z1)1 − ((x ∗0 z0) ∗0 (y0 ∗0 z0), z1)1

−(x ∗0 z0, y0 ∗0 z0)0 + (T (x, z0, z1), T (y0, z0, z1))0

+(x ∗0 y0, z0)0 − (T (x, y0, y1), z0)0

−(x ∗0 y0, y1)1 + ((x ∗0 y0) ∗0 z0, y1 ∗0 z0)1

+((x ∗0 y0) ∗0 z0, z1)1 − (((x ∗0 y0) ∗0 z0) ∗1 (y1 ∗0 z0), z1)1

−((x ∗0 y0) ∗0 z0, y1 ∗0 z0)1 + (((x ∗0 y0) ∗0 z0) ∗1 z1, T (y1, z0, z1))1.
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The two quantities can be seen to be equal, making use of the identity:

T (x, z0, z1) ∗0 T (y0, z0, z1) = ((x ∗0 y0) ∗0 z0) ∗1 z1.

Therefore we obtain F],2∂T = ∂F],3, which concludes the proof of the first statement. The

second statement follows easily from the first one by standard arguments in homological

algebra. �

We can conclude the section with a refined version of Theorem 3.2.5.

Theorem 3.2.12. The construction given in Theorem 3.2.5 induces a well defined map

between second cohomology groups H2
L(X;A) and H2

T (X;A).

Proof. In virtue of Lemma 3.2.11, it is enough to show that the map F ],2 : C2
L(X)→ C2

T (X)

in Definition 3.2.6 coincide with the map ψ defined in Theorem 3.2.5. This follows from a

direct inspection. �

Remark 3.2.13. We observe that Lemma 3.2.11 actually serves two purposes. On the one

hand it formalizes the construction in Theorem 3.2.5 providing a map of second cohomology

groups. On the other hand it also provides a version of the construction for third cohomology

groups as well.
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3.3 From Ternary Racks to Binary Racks

In this section we present a construction of a rack structure on the product X × X

from ternary distributive operations (T0, T1) on X, and describe the functor that arises from

it.

Lemma 3.3.1. Let T0 and T1 be two compatible ternary rack operations. Then the binary

operation on the cartesian product X ×X defined by

(x0, x1) ∗ (y0, y1) := (T0(x0, y0, y1), T1(x1, y0, y1)) = (x0 ∗0 y, x1 ∗1 y)

gives a rack structure (X ×X, ∗).

Proof. We have the distributivity as follows

[(x0, x1) ∗ (y0, y1)] ∗ (z0, z1)

= (T0(x0, y0, y1), T1(x1, y0, y1)) ∗ (z0, z1)

= (T0(T0(x0, y0, y1), z0, z1), T1(T1(x1, y0, y1), z0, z1))

= (T0[T0(x0, z0, z1), T0(y0, z0, z1),

T1(y1, z0, z1)], T1[T1(x1, z0, z1),

T0(y0, z0, z1), T1(y1, z0, z1)])

= (T0(x0, z0, z1), T1(x1, z0, z1)) ∗ (T0(y0, z0, z1), T1(y1, z0, z1))

= [(x0, x1) ∗ (z0, z1)] ∗ [(y0, y1) ∗ (z0, z1)].
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The invertibility of the map R(y0,y1) : X2 → X2 comes from the fact that, for given y0, y1 ∈ X,

the maps Ti(−, y0, y1) from X to X sending u to Ti(u, y0, y1) are invertible for i = 0, 1. �

Definition 3.3.1. The functor defined by Lemma 3.3.1 is denoted by G : TC → R, where

G(X,T0, T1) = (X ×X, ∗) on objects, and G(f) = f × f on morphisms.

Observe that G is injective on objects and on morphisms.

Proposition 3.3.2. the functor G is not surjective on objects.

Proof. Consider the binary rack structure on Z× Z defined by

(x0, x1) ∗ (y0, y1) = (x0 + x1, x1).

This rack is not in the image of G since the first entry depends on both x0 and x1. �

Theorem 3.3.3. Let (X,T0, T1) be an object in TC, and (X ×X, ∗) = G(X,T0, T1) be as in

Lemma 3.3.1. Suppose ψ0 and ψ1 are compatible ternary 2-cocycles of respectively (X,T0)

and (X,T1). Then

φ((x0, x1), (y0, y1)) := ψ0(x0, y0, y1) + ψ1(x1, y0, y1)

defines a 2-cocycle φ of (X ×X, ∗).
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Proof. We check that φ satisfies the following equation

φ((x0, x1), (y0, y1)) + φ((x0, x1) ∗ (y0, y1), (z0, z1))

= φ((x0, x1), (z0, z1)) + φ((x0, x1) ∗ (z0, z1), (y0, y1) ∗ (z0, z1)).

We have

LHS = ψ0(x0, y0, y1) + ψ1(x1, y0, y1) +

ψ0(T0(x0, y0, y1), z0, z1) + ψ1(T1(x1, y0, y1), z0, z1),

RHS = ψ0(x0, z0, z1) + ψ1(x1, z0, z1) +

ψ0(T0(x0, z0, z1), T0(y0, z0, z1), T1(y1, z0, z1)) +

ψ1(T1(x1, z0, z1), T0(y0, z0, z1), T1(y1, z0, z1)).

The compatibility conditions of ψ0 and ψ1 show that LHS and RHS coincide. �

The functors F ,G,DR and DT are not indipendent, as the proposition below shows.

Proposition 3.3.4. It holds that G ◦ F = DR and F ◦ G = DT .

Proof. Let (X, ∗0, ∗1) be a set with mutually distributive rack operations. Let (X,T ) =

F(X, ∗0, ∗1). Then by definition T (x, y0, y1) = (x ∗0 y0) ∗1 y1. Lemma 3.3.1 implies that
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(X×X, ∗) = G(X,T, T ) is a rack, since T is mutually distributive over itself. One computes

G(X,T, T ) = (x0, x1) ∗ (y0, y1)

= (T (x0, y0, y1), T (x1, y0, y1))

= ((x0 ∗0 y0) ∗1 y1, (x1 ∗0 y0) ∗1 y1)

= DR(X, ∗0, ∗1)

as desired.

Let (X,T0, T1) be a set with mutually distributive ternary rack operations. Let (X ×

X, ∗) = G(X,T0, T1). Then by definition (x0, x1) ∗ (y0, y1) = (T0(x0, y0, y1), T1(x1, y0, y1)).

Since ∗ is mutually distributive over itself, Lemma 3.2.1 implies that (X ×X,T ) = F(X ×

X, ∗, ∗) is a rack. One computes

F(X ×X, ∗, ∗) = T ((x0, x1), (y0, y1), (z0, z1))

= [(x0, x1) ∗ (y0, y1)] ∗ (z0, z1)

= (T0(x0, y0, y1), T1(x1, y0, y1)) ∗ (z0, z1)

= (T0(T0(x0, y0, y1), z0, z1), T1(T1(x1, y0, y1), z0, z1)

= DT (X,T0, T1)

as desired. �
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3.4 Proofs of Theorem 3.1.10 and Theorem 3.1.17

In this section we provide the long delayed proofs of Theorem 3.1.10 and Theorem

3.1.17. The relations intercurring between the funcotrs F ,G,DR and DT as in Proposition

3.3.4, play a central role in the proofs.

Proof of Theorem 3.1.10. Let (∗0, ∗1) be mutually distributive rack operations on X. Let

(X,T ) = F(X, ∗0, ∗1). By Lemma 3.2.1, (X,T ) is a ternary rack. Let φ0, φ1 be mutualy

distributive rack 2-cocycles of (X, ∗0) and (X, ∗1), respectively. Then by Theorem 3.2.5,

ψ(x, y0, y1) := φ0(x, y0) + φ1(x ∗0 y0, y1)

is a ternary rack 2-cocycle of (X,T ). Since T is compatible over itself,

(G ◦ F)(X, ∗0, ∗1)((x0, x1), (y0, y1), (z0, z1))

= G(X ×X,T, T )((x0, x1), (y0, y1), (z0, z1))

= (T (T (x0, y0, y1), z0, z1), T (T (x1, y0, y1), z0, z1)

is a rack operation by Theorem 3.1.13. Then Theorem 3.3.3 applied to (X ×X,T, T ) with

mutually distributive cocycles (ψ, ψ) implies that
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φ((x0, x1), (y0, y1))

= ψ(x0, y0, y1) + ψ(x1, y0, y1)

= φ0(x, y0) + φ1(x ∗0 y0, y1) + φ0(x1, y0) + φ1(x1 ∗0 y0, y1)

as desired. �

Proof of Theorem 3.1.17. Let (T0, T1) be compatible ternary distributive operations on X,

and (X × X, ∗) = G(X,T0, T1). By Lemma 3.3.1, (X × X, ∗) is a rack. Let ψ0, ψ1 be

compatible ternary 2-cocycles of (X,T0) and (X,T1), respectively. Then by Theorem 3.3.3,

φ((x0, x1), (y0, y1)) := ψ0(x0, y0, y1) + ψ1(x1, y0, y1)

is a rack 2-cocycle of (X ×X, ∗). Since ∗ is mutually distributive over itself,

(F ◦ G)(X,T0, T1)((x0, x1), (y0, y1), (z0, z1))

= T ((x0, x1), (y0, y1), (z0, z1))

= [(x0, x1) ∗ (y0, y1)] ∗ (z0, z1)

is a ternary rack operation by Lemma 3.2.1. Then Theorem 3.2.5 applied to (X × X, ∗, ∗)
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with mutually distributive cocycles (φ, φ) implies that

ψ((x0, x1), (y0, y1), (z0, z1))

= φ((x0, x1), (y0, y1)) + φ((x0, x1) ∗ (y0, y1), (z0, z1))

= φ((x0, x1), (y0, y1)) + φ((T0(x0, y0, y1), T1(x1, y0, y1)), (z0, z1))

= ψ0(x0, y0, y1) + ψ1(x1, y0, y1)

+ ψ0((T0(x0, y0, y1), z0, z1) + ψ1(T1(x1, y0, y1)), z0, z1)

as desired. �

3.5 General n-Ary Compositions

In this section we generalize compositions of mutual distributive operations to n-ary

cases. We recall the vector notation for n-ary operations given in the Introduction. Let

(X,W ) be an n-ary distributive set. Let y = (y1, . . . , yn−1) ∈ Xn−1. Then the operation

W : Xn → X is denoted by W (x, y1, . . . , yn−1) = W (x,y). An n-ary operation is also

denoted by x ∗ y := W (x,y). Here the extra parentheses caused by the vector notation

is ignored, i.e., for y = (y1, . . . , yn−1) and z = (z1, . . . , zn−1), the concatenation (y, z) or

simply y, z denotes (y1, . . . , yn−1, z1, . . . , zn−1). Furthermore, for x = (x1, . . . , xm) ∈ Xm and

y ∈ Xn−1, denote (W (x1,y), . . . ,W (xm,y)) by W (x,y) or x ∗ y.

Definition 3.5.1. Let Wm and Wn be m-ary and n-ary distributive operations on X, re-
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spectively. The two operations Wm and Wn are called mutually distributive if they satisfy

Wn(Wm(x,y), z) = Wm(Wn(x, z),Wn(y, z))

Wm(Wn(x,u),v) = Wn(Wm(x,v),Wm(u,v))

for all x ∈ X, y,v ∈ Xm−1 and z,u ∈ Xn−1.

Example 3.5.1. Let X be a module over Z[u±1, t±1, s] and ∗, T be affine binary and ternary

rack operations, respectively, defined by

x ∗ y = ux+ (1− u)y,

T (x, y, z) = tx+ sy + (1− t− s)z.

Then computations show that ∗ and T are mutually distributive.

Proposition 3.5.2. Let Wm and Wn be mutually distributive m-ary and n-ary distributive

operations on X. Then W : Xm+n−1 → X defined by

W (x,y, z) = Wn(Wm(x,y), z)

is an (m+ n− 1)-ary distributive operation.

Proof. We establish the equality

W (W (x,y, z),u,v) = W (W (x,u,v),W (y,u,v),W (z,u,v)).
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We replace Wn(x,y) by the notation x ∗n y. Thus we have

W (x,y, z) := (x ∗m y) ∗n z.

Then we compute

W (W (x,y, z),u,v)

= [[(x ∗m y) ∗n z] ∗m u] ∗n v

= ([(x ∗m y) ∗m u] ∗n [z ∗m u]) ∗n v

= [[(x ∗m u) ∗m (y ∗m u)] ∗n (z ∗m u)] ∗n v

= [[(x ∗m u) ∗m (y ∗m u)] ∗n v] ∗n [(z ∗m u) ∗n v]

= [[(x ∗m u) ∗n v] ∗m [(y ∗m u) ∗n v]] ∗n [(z ∗m u) ∗n v]

= W (W (x,u,v),W (y,u,v),W (z,u,v)),

where the second and the fifth equalities follow from the mutual distributivity of ∗m and ∗n.

This concludes the proof. �

Remark 3.5.3. We note that for a group G, the core binary operation (x ∗ y = yx−1y) and

the ternary operation heap (x ∗̂ (y0, y1) = xy−1
0 y1) satisfy (x ∗ y) ∗̂ z = (x ∗̂ z) ∗ (y ∗̂ z) but

not (x ∗̂ y) ∗ z = (x ∗ z) ∗̂ (y ∗ z).
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Definition 3.5.2. Let ∗nj , j = 1, . . . , k, be distributive nj-ary operations on X that are

pairwise mutually distributive. Then we call (X, {∗nj}kj=1) a mutually distributive set.

Computations give the following.

Lemma 3.5.4. Let {∗, ∗0, ∗1} be a mutually distributive binary set. Let (X,T ) = F(X, ∗0, ∗1).

Then {∗, T} are mutually distributive.

Recall the following definition.

Definition 3.5.3. Let (X, {∗nj}kj=1) be a mutually distributive set. Let ~ε = (ε1, . . . , εn−1)

be a vector such that εi ∈ {nj}kj=1 for i = 1, . . . , n − 1. Let chain groups C~εn(X) be defined

by the free abelian group generated by tuples x = (x0, (x1, ε1), . . . , (xn−1, εn−1)). Define

Cn(X) = ⊕~ε C~εn(X) where the direct sum ranges over all possible vectors ~ε. Define the

differential ∂~εn : C~εn(X)→ Cn−1(X) by

∂~εn(x) =
n−1∑
i=2

(−1)i[(x0 ∗εi xi, (x1 ∗εi xi, ε1), . . . , (xi−1 ∗εi xi, εi−1), (̂xi, εi),

(xi+1, εi+1), . . . , (xn−1, εn−1))

−(x0, (x1, ε1), . . . , (̂xi, εi), . . . , (xn−1, εn−1))],

and let

∂n =
∑
~ε

∂~εn : Cn(X)→ Cn−1(X).

We now prove that the construction in Definition 3.5.3 gives a chain complex.
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Lemma 3.5.5. Let (X, {∗nj}kj=1) be a mutually distributive set. Then the sequence (Cn(X), ∂n)

defines a chain complex.

Proof. We define linear maps

∂i~εn =
n∑
i=1

(−1)i[(x0 ∗εi xi, (x1 ∗εi xi, ε1), . . . , (xi−1 ∗εi xi, εi−1), (̂xi, εi),

(xi+1, εi+1), . . . , (xn−1, εn−1))

−(x0, (x1, ε1), . . . , (̂xi, εi), . . . , (xn−1, εn−1))].

Therefore by definition, ∂~εn =
∑

i(−1)i∂i~εn . It is enough to show now that the maps ∂i~εn satisfy

the pre-simplicial complex relation: ∂i~εn ∂j~εn = ∂j~εn ∂
i+1~ε
n for each n ∈ N whenever j < i.

Fix a vector ~ε = (ε1, . . . , εn−1) and consider an element (x0, (x1, ε1), . . . , (xn−1, εn−1)) ∈

C~εn(X). Then we have:

∂in∂
j
n(x0, (x1, ε1), . . . , (xn−1, εn−1)) =

((x0 ∗εj xj) ∗εi+1
xi+1, ((x1 ∗εj xj) ∗εi+1

xi+1, ε1), . . . , (̂xj, εj),

(xj+1 ∗ xi+1, εj+1), . . . , (̂xi, εi), . . . , (xn−1, εn−1))

−(x0, (x1, ε1), . . . , (̂xj, εj),

(xj+1, εj+1), . . . , ̂(xi+1, εi+1), . . . , (xn−1, εn−1)).
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On the other hand we have:

∂j~εn ∂
(i+1)~ε
n (x0, (x1, ε1), . . . , (xn−1, εn−1)) =

((x0 ∗εi+1
xi+1) ∗εj (xj ∗εi+1

xi+1), ((x1 ∗εi+1
xi+1) ∗εj (xj ∗εi+1

xi+1), ε1),

. . . (̂xj, εj), (xj+1 ∗εi+1
xi+1, εj+1), . . . , ̂(xi+1, εi+1), . . . , (xn−1, εn−1))

−(x0, (x1, ε1), . . . , (̂xj, εj),

(xj+1, εj+1), . . . , ̂(xi+1, εi+1), . . . , (xn−1, εn−1)),

where we have used the vector notation introduced in Section 3.5. The two quantities are

equal, in virtue of the mutual distributivity property of the set {∗nj}kj=1. �

Similarly to the binary case, we have the following definition.

Remark 3.5.6. The multiplication on binary operations condidered in [Prz] can be directly

generalized to n-ary operations as follows. Given a nonempty set X, let DistM(X) denotes

the set of all n-ary mutually distributive operations onX. Define the following multiplication

on DistM(X):

(W ·W ′)(x,y) := W (W ′(x,y),y)

for all x ∈ X and y ∈ Xn−1. Then it is straightforward to see that the multiplication defined

above makes DistM(X) into a monoid with identity W0 given by W0(x,y) = x, for all x ∈ X

and y ∈ Xn−1.
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For example, let (X,T ) be a ternary rack. Define, inductively,

T n(x, y0, y1) = T (T n−1(x, y0, y1), y0, y1).

Then (X,T n) is a ternary distributive set for all positive integer n.

We digress now from the main topic, to introduce a braid group action on n-ary

operations. Let (X, ∗) be a rack. Let Bm denote the m-string braid group, and let β ∈ Bm.

As in [Bri], Bm acts on Xm via ∗ by

(x1, . . . , xm)σi = (x1, . . . , xi−1, xi+1, xi ∗ xi+1, xi+2, . . . , xm),

where the right action is denoted by the exponent, and σi, i = 1, . . . ,m − 1 denotes the

standard generator of Bm.

Lemma 3.5.7. Let ∗ and ∗̂ be mutually distributive binary and n-ary operations on X. Let

β ∈ Bm and x ∈ Xm, y ∈ Xn−1. Then we have

xβ ∗̂ y = (x ∗̂ y)β,

where the action of Bm on Xm is defined by ∗.

Proof. It suffices to prove it for standard generators, and hence, the case β = σ1 ∈ B2. Then
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the mutual distributivity implies

xσ1 ∗̂ y = (x1, x2)σ1 ∗̂ y

= (x2, x1 ∗ x2) ∗̂ y = (x2 ∗̂ y, (x1 ∗ x2) ∗̂ y)

= (x2 ∗̂ y, (x1 ∗̂ y) ∗ (x2 ∗̂ y)) = (x ∗̂ y)β

as desired. �

The following establishes braid group actions on the n-ary operations.

Theorem 3.5.8. Let ∗ and ∗̂ be mutually distributive binary and n-ary operations on X.

Let β ∈ Bn−1 and x ∈ X, y ∈ Xn−1. Define the action of Bn−1 on Xn−1 by ∗. Then the

operation defined by x ∗̂β y := x ∗̂ (yβ) is an n-ary distributive operation.

Furthermore, for any β0, β1 ∈ Bn−1, the operations ∗̂β0 and ∗̂β1 are mutually distribu-

tive.

Proof. It suffices to show the second statement with possibility of β0 = β1. One computes,

for x ∈ X and y, z ∈ Xn−1,

(x ∗̂β0 y) ∗̂β1 (z)

= (x ∗̂ yβ0) ∗̂ zβ1

= (x ∗̂ zβ1) ∗̂ (yβ0 ∗̂ zβ1)

= (x ∗̂ zβ1) ∗̂ (y ∗̂ zβ1)β0
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= (x ∗̂β1 z) ∗̂β0 (y ∗̂β1 z),

where the third equality follows from Lemma 3.5.7. �

Example 3.5.9. Let {∗, ∗0, ∗1} be mutually distributive binary rack operations on X. Let

(X,T ) = F(X, ∗0, ∗1). Then {∗, T} are mutually distributive by Lemma 3.5.4. The preceding

theorem provides a new ternary operations ∗̂σ
m
1 from ∗̂ = T for all integers m, where the

braid action is defined by ∗. In particular, Alexander quandles can be used for {∗, ∗0, ∗1}.

3.6 Internalization of Higher Order Self-Distributivity

We begin this section with the definition of n-ary self-distributive object in a sym-

metric monoidal category, providing therefore a higher arity version of the work in [CCES].

We will use the symbol � to indicate the tensor product in the symmetric monoidal category

C, not to confuse the general setting with the standard tensor product in vector spaces, to

be found in the examples. We remind the reader first, that a symmetric monoidal category

is a monoidal category C together with a family of isomorphisms τX,Y : X � Y −→ Y �X,

natural in X and Y , satisfying the following conditions (Section 11 in [ML71]). The hexagon
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is commutative for all objects X,Y and Z in C, where αX,Y,Z indicates the associator of the

monoidal category. We further have the following identity for all objects X and Y

τY,XτX,Y = 1X�Y .

For the sake of simplicity, we work on a strict symmetric monoidal category for the rest

of the paper and forget therefore to keep track of the bracketing. We recall also that a

comonoid in a symmetric monoidal category is an object X ∈ C endowed with morphisms

∆ : X −→ X �X, called comultiplication or diagonal, and ε : X −→ I, called counit, where

I is the unit object of the monoidal category. The comultiplication and the counit satisfy the

usual coherence diagrams analogous to the coalgebra axioms. In virtue of the coassociative

axiom we can inductively define an n-diagonal ∆n : X −→ X�n by the assignment: ∆n =

(∆ � 1)∆n−1, for all n ∈ N. Let us define the isomorphism τi,i+1 : X�n −→ X�n as

τi,i+1 = 1
�(i−1) � τX,X � 1

�(n−i−1). It is easy to verify that the morphisms τi,i+1 satisfy

the relations of the transposition (i, i + 1) in Sn, the symmetric group on n letters. We
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therefore obtain, for every object X, an action of Sn on X�n, by mapping (i, i+ 1) to τi,i+1,

and extending to a homomorphsim of groups between Sn and Aut(X�n), the automorphism

group of X�n. In particular we will make use of the automorphism of X�n2 , corresponding

to the permutation

�n = (2, n+ 1)(3, 2n+ 1) · · · (n, (n− 1)n+ 1)

(n+ 3, 2n+ 2)(n+ 4, 3n+ 2) · · · (2n, (n− 1)n+ 2)

· · · ((n− 2)n+ n, (n− 1)n+ n− 1).

We are ready now to define n-ary self-distributive objects in a symmetric monoidal category

C.

Definition 3.6.1. An n-ary self-distributive object in a symmetric monoidal category C is a

pair (X,W ), where X is a comonoid object in C and W : X�n −→ X is a morphism making

the following diagram commute

Remark 3.6.1. The need of defining a self-distributive object by means of a diagonal map
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∆ seems to be intrinsic to self-distributivity itself. In other words it appears that self-

distributivity is a properadic, (see [Mar06] for a definition of properad), rather than operadic,

property.

Example 3.6.2. Clearly, any n-ary rack is an n-ary self-distributive object in the symmetric

monoidal category of sets, with τ and ∆ defined in the obvious way.

In the rest of this section we will make use of Sweedler notation in the following form:

∆(x) = x(1) ⊗ x(2).

Example 3.6.3. Let H be an involutive Hopf algebra. Define a ternary operation T :

H⊗H⊗H −→ H by the assignment T (x⊗y⊗z) = xS(y)z, extended by linearity, where we

use juxtaposition as a shorthand to indicate the multiplication µ of H and S is the antipode.

By direct computation on tensor monomials we obtain, for the left hand side of ternary

self-distributivity:

T (T (x⊗ y ⊗ z)⊗ u⊗ z)

= T (xS(y)z ⊗ u⊗ v)

= xS(y)zS(u)v.

The right hand side is:

TT⊗3
�3 (1⊗3 ⊗ (∆⊗ 1)∆⊗ (∆⊗ 1)∆)(x⊗ y ⊗ z ⊗ u⊗ v)

= TT⊗3((x⊗ u(11) ⊗ v(11) ⊗ (y ⊗ u(12) ⊗ v(12))⊗ (z ⊗ u(2) ⊗ v(2)))
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= T (xS(u(11))v(11))⊗ yS(u(12))v(12) ⊗ zS(u(2))v(2))

= xS(u(11))v(11)S(yS(u(12))v(12))zS(u(2))v(2)

= xS(u(11))v(11)S(v(12))S2(u(12))S(y)zS(u(2))v(2)

= xS(u(11))ε(v(1) · 1)S2(u(12))S(y)zS(u(2))v(2)

= xS(ε(u(1)) · 1)S(y)zS(u(2))ε(v(1))v(2)

= xS(y)zS(ε(u(1))u(2))v

= xS(y)zS(u)v.

This ternary strucutre is the Hopf algebra analogue of the heap operation in group theory,

which is known to be ternary self-distributive.

2

2

x y z x y z

q ( x y)

= ( )x y z

( ) ( ∆) ( )

T ( )x y z

x y z

q(q    1)

q q q 1

Figure 3.6: Diagrammatic representation of categorical distributivity

n Figure 3.6, a diagrammatic representation of categorical distributivity is depicted.

It is read from top to bottom, where the top 3 end points of both sides represent x⊗y⊗ z, a

trivalent vertex with a small triangle represents a self-distributive morphism q : X⊗X → X,

and the left-hand side represents T = q(q ⊗ 1).
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Given a symmetric monoidal category C, we define categories nSD, for each n ∈ N,

as follows. The objects are n-ary self-distrifbutive objects in C, as in Definition 3.6.1. Given

two objects (X, q) and (X ′, q′), we define the morphism class between them to be the class of

morphism f : X −→ X ′ in C , such that f ◦q = q′ ◦f�n. In particular we define BSD = 2SD

and T SD = 3SD, B and T standing for binary and ternary, respectively.

We will make use of the following results in Theorem 3.6.6.

Lemma 3.6.4. Let C be a strict symmetric monoidal category. Suppose (X,∆, ε) is a

comonoid in C. Then the swithcing morphism and the comultiplication commute. More

specifically, we have: ∆ � 1 ◦ τX,Y = τX,Y �2 ◦ 1� ∆.

This lemma is represented in Figure 3.7 (A) below.

Proof. We consider the following diagram

The outmost diagram commutes by naturality of switching map τX,Y with respect to X and

Y . The lower right triangle commutes by the hexagon axiom.
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The assertion now follows. �

Lemma 3.6.5. Let (X, q) be a binary self-distributive object in a strict symmetric monoidal

category C. Then the switching morphism and the self-distributive operation commute. More

specifically, we have: τX,Y ◦ q � 1 = 1� q ◦ τX�2,Y .

This lemma is represented in Figure 3.7 (B) below.

Proof. Similar to Lemma 3.6.4 and left to the reader. �

(B)(A)

Figure 3.7: The switching morphism commutes with comultiplication and binary self-
distributive operation

In general, the following result is useful to produce ternary self-distributive objects in

the category of vector spaces, starting from binary self-distributive objects (see also [CCES]).

Compare it to the construction of Section 3.2.
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Theorem 3.6.6. Let (X,∆) be a comonoid in a (strict) symmetric monoidal C (e.g. a

coalgebra in the category of vector spaces). Let q : X �X −→ X be a morphism such that

(X, q) is a binary self-distributive object in C. Then the pair (X,T ), where T = q(q � 1),

defines a ternary self-distributive object in C. The construction defines a functor F : BSD →

T SD.

Proof. We define F on objects as F(X, q) = (X,T ) and as the identity on morphisms. To

show that the map T = q(q � 1) is ternary self-distributive, we can proceed as in Figure

3.8. In the left column of the figure, the part of the diagram representing each T = q(q� 1)

are indicated by dotted circles. At each step we are using the definition of T , the binary

self-distributivity of q and Lemmas 3.6.4 and 3.6.5. If f : (X, q) −→ (Y, q′) is a morphism

in BSD, we can show that f is also a morphism in T SD between (X,T = q(q � 1)) and

(Y, T ′ = q′(q′ � 1)) via the following diagram

where the commutativity of the left and right squares is just a restatement of the

fact that q is a morphism in BSD. The consequent commutativity of the outer rectangle

means that f is a morphism in T SD as well. It is also clear that F preserves composition

of morphisms. �
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Figure 3.8: Diagrammatic proof of doubling procedure

The following is a rephrased version of Lemma 3.3 in [CCES], adapted to our lan-

guange in the present article.

Lemma 3.6.7. Let L be a Lie algebra over a ground field k. Define X = k⊕ L and endow

it with a comultiplication ∆, defined by (a, x) 7→ (a, x)⊗ (1, 0) + (1, 0)⊗ (0, x), and a counit

ε, defined by (a, x) 7→ a. Then (X,∆, ε) is a comonoid in the symmetric monoidal category

of vector spaces. The morphsim q : X ⊗X −→ X defined by (a, x)⊗ (b, y) 7→ (ab, bx+ [x, y])

turns X into a binary self-distributive object.

Proof. By direct computation making use of the Jacobi identity. This is done explicitly in

Lemma 3.3 in [CCES]. �

Example 3.6.8. Let L be a Lie algebra and let X = k⊕L be as in Lemma 3.6.7. The map
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T : X ⊗X ⊗X −→ X defined by

(a, x)⊗ (b, y)⊗ (c, z) 7−→ (abc, bcx+ c[x, y] + b[x, z] + [[x, y], z]),

and extended by linearity, is such that (X,T ) is a tenrary self-distributive object in the

category of vector spaces by an easy application of Theorem 3.6.6. An explicit, and tedious,

computation that shows the self-distributivity of T directly, is postponed to Appendix 3.6.8.

If H is a Hopf algebra, we can use the adjoint map to produce a ternary self distribu-

tive map, as the following example shows:

Example 3.6.9. The map defined by T (x⊗ y ⊗ z) = S(z(1))S(y(1))xy(2)z(2) is ternary self-

distributive, as an easy direct computation shows. This is the Hopf algebra analogue of the

iterated conjugation quandle.

The following definition can be considered a ternary analogue of an augmented rack

[FR].

Definition 3.6.2. Let X be a set with a right G-action denoted by X×G 3 (x, g) 7→ x ·g ∈

X. Let G act on the right of X ×X diagonally, (y0, y1) · g = (y0 · g, y1 · g) for y0, y1 ∈ X and

g ∈ G. An (double) augmentation of X is a map p : X ×X → G satisfying the condition

p((y0, y1) · g) = g−1p((y0, y1))g

for all y0, y1 ∈ X and g ∈ G.
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The following is a direct analogue of binary augmented rack and, therefore, the proof

is omitted.

Lemma 3.6.10. Let X be a set with an augmentation p : X × X → G. Then the ternary

operation T : X3 → X defined by

T (x, y0, y1) := x · p((y0, y1))

is ternary self-distributive.

Definition 3.6.3. Let X be a set with an augmentation p : X2 → G and T be a ternary

operation defined in Lemma 3.6.10. Then (X,T ) is called an augmented ternary shelf.

The following is a Hopf algebra version of ternary augmented rack.

Definition 3.6.4. Let X be a coalgebra, and let H be a Hopf algebra such that X is a right

H-module, therefore X⊗2 is also a right H-module via the comultiplication in H. The map

of coalgebras p : X⊗2 −→ H is a ternary augmented shelf if, for all z ∈ X⊗2 and g ∈ H, we

have:

p(z ·∆(g)) = S(g(1))p(z)g(2).

This axiom is depicted diagrammatically in Figure 3.9, where solid lines refer to

X, and dashed lines refer to H. We have used ∆, m and S to indicate comultiplication,

multiplication and antipode in the Hopf algebra H, while µ stands for the action of H on

X.
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Figure 3.9: Augmented ternary shelf axiom

We have the following result.

Theorem 3.6.11. Let p : X⊗2 −→ H be a ternary augmented shelf. Then the ternary

operation defined on monomials via x⊗ y ⊗ z 7−→ x · p(y ⊗ z), and extended by linearity, is

self-distributive.

Proof. By direct computation we have, for the right hand side of self-distributivity axiom:

TT⊗3
�3 (1⊗3 ⊗ (∆⊗ 1)∆⊗ (∆⊗ 1)∆)(x⊗ y0 ⊗ y1 ⊗ z0 ⊗ z1)

= T (x · p(z(1)
0 ⊗ z

(1)
1 )⊗ y0 · p(z(2)

0 ⊗ z
(2)
1 )⊗ y1 · p(z(3)

0 ⊗ z
(3)
1 ))

= x · (p(z(1)
0 ⊗ z

(1)
1 )p(y0 · p(z(2)

0 ⊗ z
(2)
1 )⊗ y1 · p(z(3)

0 ⊗ z
(3)
1 )))

= x · (p(z(1)
0 ⊗ z

(1)
1 )(y0 ⊗ y1 ·∆p((z0 ⊗ z1)(2))))

= x · (p(z0 ⊗ z1)(1)S(p((z0 ⊗ z1)(2)))p(y0 ⊗ y1)p((z0 ⊗ z1))(3))

= x · (ε(p(z0 ⊗ z1)(1)) · 1p(y0 ⊗ y1)p((z0 ⊗ z1))(2))

= x · (p(y0 ⊗ y1)p(z0 ⊗ z1)),
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where we have used the fact that p is a coalgebra morphism in the third equality, the defining

axiom for augmented ternary shelf in the fourth equality, the antipode and the counit axioms

to obtain the fifth and sixth equations respectively. It is easy to see that it coincide with

the left hand side of self-distributivity. �

Example 3.6.12. Let H be a Hopf algebra and let X = H. Then, H acts on X via the

multiplication. Define p to be the map given by x⊗ y 7−→ S(x)y and extended by linearity.

The ternary rack structure obtained is the one in Example 3.6.3. A diagrammatic proof that

the given p satisfies the augmented ternary rack axiom is shown in Figure 3.10.

S

y
1

y
0

g

∆

m
m

m

mp

Figure 3.10: Hopf algebra heap as an augmented ternary shelf

Remark 3.6.13. It is possible, a priori, to develop the theory of higher self-distributivity

in braided monoidal categories, where the switching morphism satisfies the hexagon axiom

but we do not require τY,XτX,Y = 1X�Y . Similarly as above we have an action of the braid

group on n strings on every object X�n and the shuffle map �n takes now into account over

passing and under passing of the strings.
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3.7 Ternary Cocycle Framed Link Invariants

We introduce, following [CJK+, CEGnS], an invariant of framed links, using colorings

of ribbon tangles by ternrary quandles, and ternary quandle 2-cocycles.

Let X be a tarnary quandle and let D be a diagram of a ribbon tangle. Suppose

for the moment that the tangle has a single component, in the sense that its closure is a

diagram of a framed knot. To each ribbon arc in D, we associate a color by a pair of elements

(x1, x2) ∈ X ×X. We visualize a crossing of framed links as in Figure 3.1, where we assume

all the orientations to be downwards. We define the notion of positive/negative crossing in

a similar fashion to Section 1.3. At a crossing τ of D, where the arcs colored by (xτ1, x
τ
2) and

(yτ1 , y
τ
2 ) meet, we let the overpassing ribbon mantain the same color, while we change the

color of the underpassing ribbon to (T (x1, y1, y2), T (x2, y1, y2)).

Definition 3.7.1. A ternary quandle coloring, C, of a ribbon tangle diagram D, is a map

{arcs of D} −→ X ×X,

that is consistent with the coloring rule above.

Suppose φ is a ternary quandle 2-cocycle of X, with coefficients in A. For a given

crossing τ , we define the Boltzmann weight at τ , depending on the coloring C and the 2-

cocycle φ by (φ(xτ1, y
τ
1 , y

τ
2 ), φ(xτ2, y

τ
1 , y

τ
2 ))ε(τ) ∈ A × A, where ε(τ) is the sign of the crossing,

similarly defined as in the case of knots/links. We give an ordering to the crossings of the

diagram in the following way. We consider the closure of the diagram and obtain a framed
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knot. We arbitrarily choose a base point and consider the crossings according to order we

meet them going from the base point, along the direction of the framed knot.

Definition 3.7.2. Let D be a ribbon tangle diagram having k crossings τ1, . . . , τk, C a

coloring of D and φ ∈ Z2(X,A) a ternary 2-cocycle. Define the Boltzmann weight at the

crossing τ , by the 2-cocycle φ associated to the coloring C as

B(φ, τ, C) = (φ(xτi1 , y
τi
1 , y

τi
2 )ε(τi), φ(xτi2 , y

τi
1 , y

τi
2 )ε(τi)).

The ternary cocycle invariant is defined by the assignment

Θ(D) =
∑
C

∏
τ

B(φ, τ, C).

Theorem 3.7.1. The cocycle invariant does not depend on the equivalence class of the ribbon

tangle diagram D. Therefore, it is well defined and it is an invariant of framed knots.

Proof. There is a bijective correspondence between colorings of a framed link, before and

after performing one of the moves T1-T6 in [FY89], or rel1-rel10 in [RT]. Let φ be a ternary

2-cocycle of X, with coefficients in the abelian group A, D a ribbon tangle diagram and C a

coloring ofD byX. It is enough to establish that a Boltzmann sum does not change under the

6 relations T1-T5 and T6f given in [FY89] or, equivalently, [RT] rel1-rel8. Relations T1 and

T2 (resp. rel5 to rel6) hold by construction of the invariant, and the definition of ternary self-

distributive cohomology as in Figure 3.2. Relation T3 (resp. rel1 to rel4) is trivially satisfied.
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We need to verify relations T4, T5 and T6f (resp. rel8 to rel10). We will consider just T6f

(resp. rel8 ), and leave to the reader the remaining cases. Suppose (x, y) is the coloring of the

incoming arc in T6f . Since the first crossing is positive, the second crossing is negative and C

is a coloring of D by X, the contribution of the left hand side of T6f to the total Boltzmann

sum is (φ(T (x, x, y), x, y), φ(T (y, x, y), x, y))(φ(T (x, x, y), x, y)−1, φ(T (y, x, y), x, y)−1). The

Boltzmann sum is therefore invariant under this relation. The remaining cases can be seen

in a similar fashion. �

Remark 3.7.2. The invariant takes values in the group ring of the product A×A, similarly

to the case of the original cocycle link invariant. It is therefore useful to observe that there

is a natural isomorphism of rings Z[A× A] ∼= Z[A]⊗ Z[A].

To generalize the previous construction to the case in which the closure of the ribbon

tangle diagram is a framed link with more than one component, we can just proceed analo-

gously, once per component. The vector whose entries are Boltzmann sums relative to each

component is seen to be invariant by an iterated version of the previous proof.
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CHAPTER 4 : HEAP COHOMOLOGY AND TSD COHOMOLOGY

As we have seen in Chapter 3, ternary self-distibutive (TSD for short) cohomology

can be used to produce invariants of framed links via Boltzmann state-sums of 2-cocycles as

in [CJK+, CEGnS]. It becomes crucial then, to introduce new methods to construct TSD

2-cocycles. This issue has been treated in Chapter 3, for certain kind of TSD operations

obtained as a combination of binary self-distributive operations. In particular, it has been

proved therein that knowledge of the second cohomology groups of the binary operations,

can be translated into knowledge of the second cohomology group of the TSD operation

they give rise to. In this chapter, we will give another useful construction, whose inspiration

comes from Example 3.6.3 of Chapter 3, in which it has been shown that a Hopf algebra

version of the heap operation satisfies the TSD property. We introduce a cohomology theory

for heaps and show that heap 2-cocycles give rise to TSD 2-cocycles in a natural way. Our

main definitions in the present chapter are justified by a deformation theoretical approach.

The content of this chapter is a revised version of the paper [ESZa].

4.1 Generalities on Heaps

We begin by recalling the definition of heap and some notations that will be used in

the rest of the chapter. A heap is an abstraction of the ternary operation a× b× c 7→ ab−1c
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in a group, that allows to “forget” which element of the group is the unit. In fact the

operation just described extends to a functor that determines an equivalence between the

category of pointed (i.e. an element specified) heaps and the category of groups. It is also

interesting that, for a given category C and a fixed object X ∈ C, there is an obvious way to

define a group structure on the automorphism set of X, Aut(X). If we cosider, instead, two

isomorphic objects X and Y in C, the set of isomorphisms Iso(X,Y) cannot be endowed in

general with a “natural" notion of group structure. In this more general case we can define

a heap strucutre on Iso(X, Y ) with a rule formally analogous to a × b × c 7→ ab−1c. This

point of view can be found in [Kon99]. We introduce first some notation that will be used

throughout the whole chapter.

Given a set with a ternary operation, we call the equalities

[[x1, x2, x3], x4, x5] = [x1, x2, [x3, x4, x5]]

[[x1, x2, x3], x4, x5] = [x1, [x4, x3, x2], x5]

[x1, x2, [x3, x4, x5]] = [x1, [x4, x3, x2], x5]

the type 0, 1, 2 para-associativity (or simply equality), respectively. Observe that any pair of

equalities of type 0, 1 or 2 implies that the remaining one also holds. If a ternary operation

satisfies all types of para-associativity, then it is called para-associative. We call the condition

[x, x, y] = y and [x, y, y] = x the degeneracy (conditions).

Definition 4.1.1. A heap is a non-empty set with a ternary operation satisfying para-
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associativity and degeneracy conditions.

We mention that algebraic structures satisfying the para-associativity conditions,

without the degeneracy conditions, are also called semiheaps in [HL17]. A typical exam-

ple of a heap, as mentioned above, is a group G where the ternary operation is given by

[x, y, z] = xy−1z, which we call a group heap. If G is abelian, we call it an abelian (group)

heap. Conversely, given a heap X with a fixed element e, then one defines a binary operation

on X by x ∗ y = [x, e, y] which makes (X, ∗) into a group with e as the identity and the

inverse of x is [e, x, e] for any x ∈ X.

We refer the reader to the classical reference [BH], chapter IV, where it can also be

found a short historical background and a description in terms of universal algebra. Heaps

are also known under different names such as torsor and groud. In [Sko07] a quantum version

of heap was introduced and it has been shown, in analogy to the “classical” case, that the

category of quantum heaps is equivalent to the category of pointed Hopf algebras. Further

developments of the thematics introduced in [Sko07] can also be found in [Gru02, Sch]. Other

sources include [Kon99, BS11]. We observe that the definition of quantum heap given in

[Sko07] is in some sense dual to the notion of heap object in a symmetric monoidal category,

that we introduce in Section 4.6. Our heap objects in symmetric monoidal categories are

much in the same spirit as in the definition of non-commutative torsor treated in [BS11].
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4.2 Heap Cohomology

In this section we introduce the heap cohomology. Let X be a set with a ternary

operation [−] and A be an abelian group. We focus on para-associative (and in particular

heap) operations. Define the n-dimensional cochain group Cn(X,A) as the abelian group

of functions {f : X2n−1 → A} for positive integers n, where the abelian group structure is

given by pointwise summation in A.

Definition 4.2.1. Let X be a set with a para-associative ternary operation [−], A be an

abelian group and define C1
PA(X,A) = C1(X,A), C2

PA(X,A) = C2(X,A). Then the 1-

dimensional coboundary map δ1 : C1
PA(X,A)→ C2

PA(X,A) is defined for f ∈ C1
PA(X) by

δ1f(x, y, z) = f([x, y, z])− f(x) + f(y)− f(z).

The kernel Z1
PA(X,A) of δ1 is called the 1-dimensional cocycle group. In this case we define

1-dimensional cohomology group H1
PA(X,A) to be Z1

PA(X,A).

We observe that f ∈ Z1
PA(X) if and only if f is a para-associative homomorphism

from X to A regarded as an abelian heap.

We determine Z1
PA(X,A) for two examples.

Example 4.2.1. Consider Z2 endowed with the para-associative ternary operation [x, y, z] =

x+ y + z. We want to compute Z1
PA(Z2;Z2). Given three variables, x, y and z, at least two

of them need to coincide. Consider the case when x = y, the 1-cocycle condition becomes

f([x, x, z]) = f(z) which is trivially satisfied since [x, x, z] = 2x + z = z. The other cases
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are analogous. It follows that Z1
PA(Z2;Z2) = C1

PA(Z2;Z2) ∼= Z2 ⊕ Z2. Observe that Z2 just

defined is actually an abelian heap (and therefore a ternary quandle, see Lemma 4.5.1).

Example 4.2.2. We proceed to compute Z1
PA(Z3,Zn), where Z3 is given the same ternary

operation as before: [x, y, z] = x + y + z. Observe that this operation does not define a

heap, but it is para-associative. Take x = y = 1 in the 1-cocycle condition. We obtain

f(z+ 2) = f(z), which implies that f is the constant map. It follows that Z1
PA(Z3,Zn) ∼= Zn

for all odd integers n.

Definition 4.2.2. Define C3
PA(i)(X,A) for i = 0, 1, 2 to be an isomorphic copy of C3(X,A).

The 2-dimensional coboundary map δ2
(i) : C2

PA(X,A) → C3
PA(i)(X,A) of type i = 0, 1, 2,

respectively, are defined by

δ2
(0)η(x1, x2, x3, x4, x5) = η(x1, x2, x3) + η([x1, x2, x3], x4, x5)

−η(x3, x4, x5)− η(x1, x2, [x3, x4, x5])),

δ2
(1)η(x1, x2, x3, x4, x5) = η(x1, x2, x3) + η([x1, x2, x3], x4, x5)

+η(x4, x3, x2)− η(x1, [x4, x3, x2], x5)),

δ2
(2)η(x1, x2, x3, x4, x5) = η(x3, x4, x5) + η(x1, x2, [x3, x4, x5])

+η(x4, x3, x2)− η(x1, [x4, x3, x2], x5)).
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Direct calculations give the following.

Lemma 4.2.3. If X has a para-associative operation [−], then δ2
(i)δ

1 = 0 for i = 0, 1, 2.

Definition 4.2.3. Let X be a para-associative operation [−] and A be an abelian group.

Define C3
PA(X,A) = C3

PA(1)(X,A)⊕ C3
PA(2)(X,A). Then δ2 = δ2

(1) ⊕ δ2
(2) defines a homomor-

phism C2
PA(X,A)→ C3

PA(X,A). Define the 2nd cocycle group Z2
PA(X,A) by ker(δ2). Define

the 2nd coboundary group B2
PA(X,A) by im(δ1). Then define the 2nd cohomology group is

defined as usual: H2
PA(X,A) = Z2

PA(X,A)/B2
PA(X,A).

Definition 4.2.4. Let X be a para-associative operation [−] and A be an abelian group. A

2-cocycle η ∈ Z2
PA(X,A) is said to satisfy the degeneracy condition if the following holds for

all x, y ∈ X: η(x, x, y) = 0 = η(x, y, y).

We observe that 2-coboundaries δ1f satisfy the degeneracy condition.

Definition 4.2.5. Let X be a heap and A be an abelian group. The 2nd heap cocycle

group Z2
H(X,A) is defined as the subgroup of Z2

PA(X,A) generated by the 2-cocycles that

satisfy the degeneracy conditions. The 2nd heap cohomology group H2
H(X,A) is defined as

the quotient Z2
H(X,A)/B2

PA(X,A).

Example 4.2.4. Let X = Z2 with group heap operation and A = Z2. Computations show
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that η ∈ Z2
PA(X,A) if and only if η satisfies the following set of equations:

η(0, 0, 0) = η(0, 0, 1) = η(1, 0, 0),

η(1, 1, 1) = η(1, 1, 0) = η(0, 1, 1),

η(0, 0, 0) + η(1, 1, 1) + η(0, 1, 0) + η(1, 0, 1) = 0.

Express η =
∑
η(x, y, z)χ(x,y,z) by characteristic functions χ(x,y,z). By setting η(0, 0, 0) = a,

η(1, 1, 1) = b and η(0, 1, 0) = c, the last equation above implies η(1, 0, 1) = −(a + b + c).

Then η is expressed as

η = a(χ(0,0,0) + χ(0,0,1) + χ(1,0,0) − χ(1,0,1))

+ b(χ(1,1,1) + χ(1,1,0) + χ(0,1,1) − χ(1,0,1))

+ c(χ(0,1,0) − χ(1,0,1)).

Since the group of coboundaries is zero from Example 4.2.1, it follows that H2
PA(Z2,Z2) =

Z2
PA(Z2,Z2) ∼= Z2 ⊕ Z2 ⊕ Z2. Since the degeneracy condition implies a = b = 0, we have

H2
H(Z2,Z2) ∼= Z2.

Definition 4.2.6. Let X be a heap, A an abelian group and η : X × X × X −→ A a

2-cochain. We define the heap extension of X by the 2-cochain η with coefficients in A,

denoted X ×η A, as the cartesian product X × A with ternary operation given by:

[(x, a), (y, b), (z, c)] = ([x, y, z], a− b+ c+ η(x, y, z)).
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Lemma 4.2.5. The abelian extension by a 2-cochain η satisfies the equality of type 1, 2, and

degeneracy if and only if η is a heap 2-cocycles of type 1, 2, and with degeneracy condition,

respectively. In particular, a 2-cochain η defines an extension heap if and only if it satisfies

all conditions.

Proof. We prove the Lemma for type 1 equality and type 1 cocycle condition, the remaining

cases being completely analogous.

Let η : X ×X ×X −→ A be a 2-chain. We have:

[[(x, a), (y, b), (z, c)], (u, d), (v, e)]

= ([[x, y, z], u, v], a− b+ c+ η(x, y, z)− d+ e+ η([x, y, z], u, v)).

It also holds:

[(x, a), [(u, d), (z, c), (y, b)], (v, e)]

= ([x, [u, z, y], v], a− d+ c− b− η(u, z, y) + e+ η(x, [u, z, y], v).

The two terms coincide (and hence equality 1 holds) if and only if η satisfies the 2-cocycle

condition of type 1. �

Example 4.2.6. The following is a common construction applied to the heap. Let 0→ A
ι→

E
π→ G → 0 be a short exact sequence of abelian groups, and s : G → E be a set-theoretic

section (πs = id). Since s is a section, we have that s(x)− s(y) + s(z)− s([x, y, z]) is in the
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kernel of π for all x, y, z ∈ G, so that there is η : G×G×G→ A such that

ιη(x, y, z) = s(x)− s(y) + s(z)− s([x, y, z]).

Then computations show the following.

Lemma 4.2.7. η ∈ Z2
H(G,A).

Example 4.2.8. For a positibve integer n > 0, let 0 → Zn
ι→ Zn2

π→ Zn → 0 be as

above, where s(x) mod(n2) = x, representing elements of Zm by {0, . . . ,m − 1}. Then for

all x, y, z ∈ G = Zn, ιη(x, y, z) is divisible by n in E = Zn2 , so that the value of η is

computed by η(x, y, z) = ιη(x, y, z)/n. For example, for n = 3, η(2, 0, 2) = [s(2) − s(0) +

s(2) − s([2, 0, 2])]/3 = 1 ∈ Z3. We will show in Example 4.2.13, that [η] 6= 0 and therefore

H2
H(Z3,Z3) is nontrivial.

Definition 4.2.7. Let X ×η A and X ×η′ A be two heap extensions with coefficients in the

abelian group A, by two 2-cocycles η and η′ of type 1,2 and with degeneracy condition. We

define a morphism of extensions, indicated by φ : X ×η A −→ X ×η′ A, to be a morphism of

heaps making the following diagram (of sets) commutes.

An invertible morphism of extensions is also called isomorphism of extensions.
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Remark 4.2.9. We have a natural equivalence classes decomposition of heap extensions by

heap 2-cocycles.

We prove next, that the second heap cohomology group classifies heap extensions.

Proposition 4.2.10. There is a bijective correspondence between isomorphism classes of

heap extensions by A, and the second heap cohomology group H2
H(X;A).

Proof. Let us first assume that φ : X ×η A −→ X ×η′ A is an isomorphism of extensions.

Since both (x, a) and φ(x, a) project onto the same element x, we can write the map φ, as

φ(x, a) = (x, a+ f(x)), for some set-theoretic function f : X −→ A. We therefore have

φ([(x, a), (y, b), (z, c)]) = ([x, y, z], a− b+ c+ η(x, y, z) + f([x, y, z])).

Similarly, we have

[φ(x, a), φ(y, b), φ(z, c)] = ([x, y, z], a+ f(x)− b− f(y) + c+ f(z) + η′(x, y, z)).

Since φ is a morphism of heaps, we can equate the two expressions. It follows that η = η′+δ1f

and therefore η and η′ are in the same cohomology class.

Viceversa, if η and η′ represent the same cohomology class, they differ by δ1f , for some

1-cochain f . Define φ to be φ(x, a) = (x, a + f(x)). Using the same equations as above we

see that φ is a morphism of heaps. The fact that it is an isomorphism of extensions comes

from the fact that it is easily seen to be bijective and obviously π1(x, a) = x = π1φ(x, a). �
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Lemma 4.2.11. Let η0 be a heap 2-cocycle of type 0 that satisfies the degeneracy condition.

Then the following equality holds:

η0(x1, x2, x3) + η0([x1, x2, x3], x3, x2) = 0.

Proof. Observe that the 2-cocycle condition of type 0 applied to η0(x1, x2, x3, x3, x2) reads

δ1
(0)η0(x1, x2, x3, x3, x2)

= η0(x1, x2, x3) + η0([x1, x2, x3], x3, x2)

−η0(x3, x3, x2)− η0(x1, x2, [x3, x3, x2]).

Applying the degeneracy condition and the degeneracy heap axiom, we obtain the result. �

Definition 4.2.8. Let (ζ1, ζ2) be a pair of heap 3-cochains. Define a heap 3-cochain of type

0 corresponding to (ζ1, ζ2) by

ζ0(x1, x2, x3, x4, x5) = ζ1(x1, x2, x3, x4, x5)− ζ2(x1, x4, x3, x2, x5).

Definition 4.2.9. Let X be a set with para-associative operation [ − ] and A be an abelian

group. Let C4
PA(i)(X,A) be three isomorphic copies of the free abelian group generated

by functions {f : X7 → A} for i = 1, 2, 3. Let C4
PA(X,A) = ⊕i=1,2,3C

4
PA(i)(X,A). For

(ζ1, ζ2) ∈ C3
PA(X,A) = C3

PA(1)(X,A) ⊕ C3
PA(2)(X,A), define δ3

(i) : C3
PA(X,A) → C4

PA(i)(X,A),
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for i = 1, 2, 3, as follows.

δ3
(1)(ζ1, ζ2)(x1, x2, x3, x4, x5, x6, x7)

= ζ1([x1, x2, x3], x4, x5, x6, x7) + ζ1(x1, x2, x3, [x6, x5, x4], x7)

−ζ1(x6, x5, x4, x3, x2)− ζ1(x1, x2, x3, x4, x5)

+ζ2(x1, x2, x3, x4, x5)− ζ1(x1, x2, [x3, x4, x5], x6, x7),

δ3
(2)(ζ1, ζ2)(x1, x2, x3, x4, x5, x6, x7)

= ζ2(x1, x2, x3, x4, [x5, x6, x7]) + ζ2(x1, [x4, x3, x2], x5, x6, x7)

−ζ2(x6, x5, x4, x3, x2)− ζ2(x3, x4, x5, x6, x7)

+ζ1(x3, x4, x5, x6, x7)− ζ2(x1, x2, [x3, x4, x5], x6, x7),

δ3
(3)(ζ1, ζ2)(x1, x2, x3, x4, x5, x6, x7)

= ζ2([x1, x2, x3], x4, x5, x6, x7) + ζ1(x1, x2, x3, [x6, x5, x4], x7)

+ζ1(x6, x5, x4, x3, x2)− ζ1(x1, x2, x3, x4, [x5, x6, x7])

−ζ2(x1, [x4, x3, x2], x5, x6, x7)− ζ2(x6, x5, x4, x3, x2).

Then define δ3 := ⊕i=1,2,3δ
3
(i) : C3

PA(X,A)→ C4
PA(X,A).

Let X be a heap, and let xi ∈ X for i = 1, . . . , 5. We utilize the following dia-
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Figure 4.1: Heap 3-cocycle notations

grammatic representations of heap 3-cocycles in Theorem 4.2.12. In Figure 4.1, 3-cocycles

are associated to changes of diagrams. The three tree diagrams with top vertices labeled

represent the elements in the equality

[[x1, x2, x3], x4, x5] = [x1, [x4, x3, x2], x5] = [x1, x2, [x3, x4, x5]],

from left to right, respectively. The 3-cocycle ζ1(x1, x2, x3, x4, x5) (resp. ζ2(x1, x2, x3, x4, x5))

is associated to the change from the left to the middle (resp. the right to the middle) tree

diagrams as depicted by the solid arrows. The 3-cocycle ζ0(x1, x2, x3, x4, x5) is associated to

the left to the right, and depicted by the dotted arrow.

In Figure 4.2, the 3-cocycle conditions are represented by diagrams with 7 elements.

In the figure, labeled arrows represent 3-cocycles as described above. In the middle, there

is a hexagon formed by labeled arrows, and has double arrow labeled by (3). This hexagon

represents the differential δ3
(3). The definition of the differentials, as well as the proof of

Theorem 4.2.12, are aided by this figure. This procedure is analogous to the one relating

Hochschild cohomology and the Stasheff pentagon.

Theorem 4.2.12. The composition δ3δ2 vanishes.
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Figure 4.2: Heap 3-cocycle conditions

Proof. This follows by proving, for η ∈ C2
PA(X,A) and ζi = δ2

(i)η for i = 1, 2, that δ3
(j)(ζ1, ζ2) =

0 for j = 1, 2, 3. For δ3
(3)(ζ1, ζ2) = 0, first we compute positive terms:

ζ2([x1, x2, x3], x4, x5, x6, x7)

+ζ1(x1, x2, x3, [x6, x5, x4], x7) + ζ1(x6, x5, x4, x3, x2)

= {η(x5, x6, x7) + η([x1, x2, x3], x4, [x5, x6, x7])

−η(x6, x5, x4)− η([x1, x2, x3], [x6, x5, x4], x7)}

+{η(x1, x2, x3) + η([x1, x2, x3], [x6, x5, x4], x7)

−η([x6, x5, x4], x3, x2)− η(x1, [[x6, x5, x4], x3, x2], x7)}
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+{η(x6, x5, x4) + η([x6, x5, x4], x3, x2)

−η(x3, x4, x5)− η(x6, [x3, x4, x5], x2)}

where canceling terms are underlined. For the remaining terms, one computes

ζ1(x1, x2, x3, x4, [x5, x6, x7])

+ζ2(x1, [x4, x3, x2], x5, x6, x7) + ζ2(x6, x5, x4, x3, x2)

= {η(x1, x2, x3) + η([x1, x2, x3], x4, [x5, x6, x7])

−η(x4, x3, x2)− η(x1, [x4, x3, x2], [x5, x6, x7])}

+{η(x5, x6, x7) + η(x1, [x4, x3, x2], [x5, x6, x7])

−η(x6, x5, [x4, x3, x2])− η(x1, [x6, x5, [x4, x3, x2]], x7)}

+{η(x4, x3, x2) + η(x6, x5, [x4, x3, x2])

−η(x3, x4, x5)− η(x6, [x3, x4, x5], x2)}

and all terms cancel.

The conditions δ3
(1)(ζ1, ζ2) = 0 and δ3

(2)(ζ1, ζ2) = 0 follow similarly from direct compu-

tations. �

For type 0 condition, a chain complex is defined in a manner similar to the group

cohomology as follows.

Definition 4.2.10. Let X be a heap. The n-th heap chain group with coefficients in the
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abelian group A, denoted by the symbol C2n−1
H (X;A), is defined to be the dual of the free

abelian group on tuples (x1, . . . , x2n−1), xi ∈ X, and the boundary map δn(0) : C2n−1
H (X) →

C2n+1
H (X) is defined by

δn(0)f(x1, . . . , x2n+1)

= −f(x3, . . . , x2n−1)

+
n∑
i=1

(−1)i+1f(x1, . . . , x2i−2, [x2i−1, x2i, x2i+1], x2i+2, . . . , x2n+1)

+f(x1, . . . , x2n−1),

for n ≥ 2 and δ1
(0) is set to be δ1 as in Definition 4.2.1.

It is straightforward to verify that the boundary maps defined above do indeed satisfy

the differential condition and define therefore a chain complex. The dual cochain groups with

coefficient group A and their dual differential maps coincide with those in Definitions 4.2.1

and 4.2.9 for (type 0) cochain maps.

Definition 4.2.11. The homology of the chain complex introduced in Definition 4.2.10 is

called type 0 para-associative (PA) homology, and written H(0)
n (X).

We note that ∂(0)
2 defined above is dual to δ1 in Definition 4.2.1. Therefore if φ a

2-coboundary and α is a 2-cycle, then

φ(α) = δ1f(α) = f(∂
(0)
2 α) = f(0) = 0.
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Hence the standard argument applies that if φ(α) 6= 0 for a 2-cycle α then φ is not nullco-

homologous.

We conclude this section with an example of a non-trivial heap 2-cocycle.

Example 4.2.13. Cosnider 0 → Z3
ι→ Z9

π→ Z3 → 0 as in Example 4.2.8 and the corre-

sponding η. The 2-chain α := (1, 0, 2) + (0, 1, 0) + (1, 2, 0) is easily seen to be a heap 2-cycle

and η(α) = 1 6= 0. Therefore, the discussion above implies that η is not the cohomologous

to the trivial cochain. Therefore, H2
H(Z3,Z3) 6= 0.

4.3 Relation Between Heap and Group (Co)Homology

4.3.1 Group homology and Type 0 Heap Homology

Proposition 4.3.1. Let X be a heap, e ∈ X, and G be the associated group, so that x · y =

[x, e, y] for all x, y ∈ X. Let Ψn : CG
n → C

(0)
n (X) be the map on chain groups defined by

Ψn(x1, . . . , xn) = (x1, e, x2, e, . . . , e, xn).

Then Ψ• is a chain map and therefore induces a well defined map

Ψ̄n : H(0)
n (X)→ HG

n (X)

.

Proof. This is a direct computation, using the fact that [x2i, e, x2i+1] = x2i·x2i+1 by definition.
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Remark 4.3.2. By dualizing Proposition 4.3.1, the previous result, we obtain a cochain

map between type zero heap cohomology and group cohomology. In the specific case of the

second cohomology group, we observe that Proposition 4.3.1 corresponds to the construction

of a group from a heap through extensions as follows. Let X be a heap, A an abelian group,

E = X×A the heap extension defined in Lemma 4.2.6 with a heap 2-cocycle η. Let (e, c) ∈ E

be a fixed element. Then the group structure on E defined from the heap structure on E is

computed as

(x, a) · (y, b)

= [(x, a), (e, c), (y, b)]

= ( [x, e, y], a− c+ b+ η(x, e, y) )

= (xy, a+ b+ θ(x, y))

giving rise to the relation θ(x, y) = η(x, e, y) − c, a difference of a constant comparing to

Proposition 4.3.1.

Let X be a heap, and e ∈ X. We define chain subgroups Ĉ(0)
n (X) by the free abelian

group generated by

{((x1, . . . , x2n−1) ∈ C(0)
n (X) | x2i = e, i = 1, 2, . . . , n− 1},
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and Ĉ(0)
1 (X) = C

(0)
1 (X). It is checked by direct computation that ∂(0)

n (Ĉ
(0)
n (X)) ⊂ Ĉ

(0)
n−1(X),

so that {Ĉ(0)
n (X), ∂

(0)
n } forms a chain subcomplex. Let Ĥ(0)

n (X) denote the homology groups

of this subcomplex, and let H̃(0)
n (X) denote the relative homology groups for the quotient

C
(0)
n (X)/Ĉ

(0)
n (X). We now have the following result.

Theorem 4.3.3. In the same setting as in Proposition 4.3.1, the map Ψ̄n is an injection

for all n. Furthermore, there is a long exact sequence of homology groups

· · · → HG
n (X)→ H(0)

n (X)→ H̃(0)
n (X)

∂−→ HG
n−1(X)→ · · · .

Proof. The chain map Ψ gives an isomorphism between chain groups CG
n (X) and Ĉ

(0)
n (X)

and commute with differentials, giving rise to an isomorphism of chain complexes. Through

the map Ψ̄n, HG
n (X) is identified with Ĥ(0)

n (X).

The second statement follows from the short exact sequence of chain complexes

0→ Ĉ(0)
• (X)→ C(0)

• (X)→ C(0)
• (X)/Ĉ(0)

• (X)→ 0

using the isomorphism Ψ• and defining ∂ as the usual connecting homomorphism, via the

Snake Lemma. �

Definition 4.3.1. The homology H̃(0)
• (X) is called the type zero essential heap homology.

Remark 4.3.4. The essential homology of a group heap X is regarded as a measure of how

far is group homology from being isomorphic to the type zero heap homology.
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Example 4.3.5. We show that H̃(0)
• (X) can be nontrivial. Consider the group heap corre-

spoding to Z2. The 2-chain (0, 1, 1) is easily seen to be a type zero 2-cycle. We show that the

class [(0, 1, 1)] ∈ H̃(0)
2 (X) is nontrivial. The 2-cochain η(1, 1, 1) = η(1, 1, 0) = η(0, 1, 1) = 1,

and zero otherwise is a heap 2-cocycle, as seen in Example 4.2.4. As previously observed, a

heap 2-cocycle is also a type zero 2-cocycle. Furthermore, ∂(0)
1 is dual to δ1

PA, so that η is

nontrivial as a type zero heap cocycle. Suppose that [(0, 1, 1)] = 0 in H̃(0)
2 (X). Then there

is a 3-chain α such that ∂(0)
3 α − (0, 1, 1) ∈ Ĉ(0)

2 (X). Therefore η(∂(0)α − (0, 1, 1)) = 0, since

by definition η vanishes on Ĉ(0)
2 (X). Since η(∂(0)) = δ(0)η and η is a type zero 2-cocycle, we

have obtained that η(0, 1, 1) = 0, in contradiction with the choice of η. Therefore [(0, 1, 1)]

is nontrivial in H̃(0)
2 (X).

4.3.2 From Group Cocycles to PA Cocycles

In this section we present a construction of PA 2-cocycles from group 2-cocycles. The

following gives an answer to a natural question on how the relation between groups and heaps

descends to relations in their homology theories. It also provides a construction of ternary

self-distributive 2-cocycles from group 2-cocycles through heap 2-cocycles (Section 4.5). We

recall that the group 2-cocycle condition with trivial action on the coefficient group is written

as

θ(x, y) + θ(xy, z) = θ(y, z) + θ(x, yz)

for all x, y, z ∈ G of a group G. The normalized 2-cocycle satisfies θ(x, 1) = 0 = θ(1, x), and

it follows that normalized 2-cocycles satisfy θ(x, x−1) = θ(x−1, x). The notion of normalized
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cocycles easily generalizes to n-cocycles and they form a sub-complex of the group cochain

complex. We indicate the normalized cohomology by the symbol Ĥn
G(X). We refer the reader

to the classical reference [Bro82], for more details regarding group cohomology.

Theorem 4.3.6. Let G be a group, and X be the associated heap defined by [x, y, z] = xy−1z

for x, y, z ∈ G. Let θ be a normalized group 2-cocycle with trivial action on the coefficient

group A. Then

η(x, y, z) := θ(x, y−1) + θ(xy−1, z)− θ(y, y−1)

is a PA 2-cocycle. This construction defines a cohomology map Φ̄ : Ĥ2
G(X)→ H2

PA(X).

Proof. First we note that for an extension group 2-cocycle θ, the condition y−1(zu−1) =

((uz−1)y)−1 implies following identity

θ(z, u−1) + θ(y−1, zu−1)− θ(y, y−1)− θ(u, u−1)

= θ(u, z−1) + θ(z, z−1) + θ(u−1, uz−1)− θ(y, y−1)

= θ(u, z−1) + θ(uz−1, y)− θ(z, z−1)− θ(uz−1y, y−1zu−1),

which we call product-inversion relation. For δ2
(1)(η) = 0, one computes

η(x, y, z) + η([x, y, z], u, v)

= θ(x, y−1) + θ(xy−1, z)− θ(y, y−1)

+θ(xy−1z, u−1) + θ(xy−1zu−1, v)− θ(u, u−1)
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= θ(y−1, z) + θ(x, y−1z)− θ(y, y−1)

+θ(xy−1z, u−1)− θ(u, u−1) + θ(xy−1zu−1, v)

= θ(y−1, z) + θ(y−1z, u−1) + θ(x, y−1zu−1)

−θ(y, y−1)− θ(u, u−1) + θ(xy−1zu−1, v)

= θ(z, u−1) + θ(y−1, zu−1) + θ(x, y−1zu−1)

+θ(xy−1zu−1, v)− θ(y, y−1)− θ(u, u−1)

= θ(u, z−1) + θ(uz−1, y)− θ(z, z−1)

−θ(uz−1y, y−1zu−1) + θ(x, y−1zu−1) + θ(xy−1zu−1, v)

= η(u, z, y) + η(x, [u, z, y], v),

where we have underlined the terms undergoing the group 2-cocycle relation at each

step, and used the product-inverse relation in the penultimate equality. Similar computations

prove the equality δ2
(2)(η) = 0.

To complete the proof, consider the maps Φ1 := −1 : Ĉ1
G(X) → C1

PA(X), and

Φ2 : Ĉ2
G(X) −→ C2

PA(X), θ 7→ η, as in the previous part of the proof. It is easy to see that

δ1
GΦ2 = Φ1δ

1
PA, therefore showing that Φ̄ is well defined on cohomology groups. �

Remark 4.3.7. Extensions of groups and heaps, in this case, are related as in Remark 4.3.2.

The group extension is defined, for a group G and the coefficient abelian group A, by

(x, a) · (y, b) = (xy, a+ b+ θ(x, y))
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for x, y ∈ G and a, b ∈ A. For the heap E = G× A constructed from the group E = G× A

defined above, one computes

[ (x, a), (y, b), (z, c) ]

= (x, a)(y, b)−1(z, c)

= (x, a)(y−1,−b− θ(y, y−1))(z, c)

= (xy−1z, a− b+ c+ θ(x, y−1) + θ(xy−1, z)− θ(y, y−1))

so that we obtain the correspondence

η(x, y, z) = θ(x, y−1) + θ(xy−1, z)− θ(y, y−1).

4.4 Ternary Self-Distributive Cohomology with Heap Coefficients

In this section we introduce a cohomology theory of ternary self-distributive (TSD)

operations with abelian heap coefficients, and investigate extension theory by 2-cocycles.

Definition 4.4.1. Let (X,T ) be a ternary shelf. We define the nth chain group of X with

heap coefficients in A, denoted by CSD
n (X), to be the free abelian group on (2n − 1)-tuples
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X2n−1. We introduce differentials ∂n : CSD
n (X) −→ CSD

n−1(X) by the formula

∂n(x1, x2, . . . , x2n−2, x2n−1)

=
n∑
i=2

(−1)n+i[(x1, . . . , x̂2i, x̂2i+1, . . . , x2n−1)

−(T (x1, x2i, x2i+1), . . . , T (x2i−1, x2i, x2i+1), x̂2i, x̂2i+1, . . . , x2n−1)]

+(−1)n+1[(x1, x4, . . . , x2n−1)− (x2, x4, . . . , x2n−1)

+(x3, x4, . . . , x2n−1)− (T (x1, x2, x3), x4, . . . , x2n−1)],

where ̂ denotes the deletion of that factor.

Proposition 4.4.1. The differential maps in Definition 4.4.1 satisfy the condition ∂2 = 0.

Proof. We can write the differential in the following form:

∂n = (−1)n
n∑
i=1

(−1)i∂in,

where ∂in is defined, for i ≥ 2, by the formula

∂in(x1, . . . , x2n−1)

= (x1, . . . , x̂2i, x̂2i+1, . . . , x2n−1)

−f(T (x1, x2i, x2i+1), . . . , T (x2i−1, x2i, x2i+1), x̂2i, x̂2i+1, . . . , x2n−1),
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and, for i = 1, is defined by the formula

∂in(x1, . . . , x2n−1)

= (x1, x4, . . . , x2n−1)− (x2, x4, . . . , x2n−1)

+(x3, x4, . . . , x2n−1)− (T (x1, x2, x3), x4, . . . , x2n−1).

Now it remains to prove the relations ∂j−1
n−1∂

i
n = ∂in−1∂

j
n for i < j. The cases with i ≥ 2 are

standard, while the remaining cases 1 = i < j can be checked directly. �

The cycle, boundary and homology groups and their duals with respect to an abelian

group A are defined as usual. Our focus is on significance and constructions of 2-cocycles

in relation to heaps for this theory, so that we provide explicit cocycle conditions in low

dimensions below.

Example 4.4.2. Let (X,T ) be a ternary shelf, and A be an abelian group heap. Then

cochain groups and differentials dual to Definition 4.4.1 in low dimensions are formulated

as follows. The cochain groups Cn
SD(X,A) are defined to be the abelian groups of functions

{f : X2n−1 → A}. The differentials δn = δnSD : Cn
SD(X,A)→ Cn+1

SD (X,A) are formulated for
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n = 1, 2, 3 as follows.

δ1ξ(x1, x2, x3)

= ξ(x1)− ξ(x2) + ξ(x3)− ξ(T (x1, x2, x3)),

δ2η(x1, x2, x3, x4, x5)

= η(x1, x2, x3) + η(T (x1, x2, x3), x4, x5)

−η(x1, x4, x5) + η(x2, x4, x5)− η(x3, x4, x5)

−η(T (x1, x4, x5), T (x2, x4, x5), T (x3, x4, x5)),

δ3ψ(x1, x2, x3, x4, x5, x6, x7)

= ψ(x1, x2, x3, x4, x5) + ψ(T (x1, x4, x5), T (x2, x4, x5), T (x3, x4, x5), x6, x7)

+ψ(x1, x4, x5, x6, x7)− ψ(x2, x4, x5, x6, x7) + ψ(x3, x4, x5, x6, x7)

−ψ(T (x1, x2, x3), x4, x5, x6, x7)− ψ(x1, x2, x3, x6, x7)

−ψ(T (x1, x6, x7), T (x2, x6, x7), T (x3, x6, x7), T (x4, x6, x7), T (x5, x6, x7)).

The case n = 0 is defined by convention that C0
SD(X,A) = 0.

Definition 4.4.2. Let (X,T ) be a ternary self-distributive set, A an abelian group heap

and η : X ×X ×X −→ A a 2-cochain of X with values in A. We define the self-distributive

cocycle extension of X with heap coefficients in A, by the cocycle η to be the cartesian

product X × A, endowed with the ternary operation T ′ given by

(x, a)× (y, b)× (z, c) 7→ (T (x, y, z), a− b+ c+ η(x, y, z)).
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In this situation we denote the extension by X ×η A.

Lemma 4.4.3. The TSD 2-cocycle condition gives extension cocycles of TSDs with abelian

group heap coefficients. Specifically, the ternary operation in Definition 4.4.2, corresponding

to a 2-cocycle η satisfying the second condition δ2η = 0 in 4.4.2, is ternary self-distributive.

Definition 4.4.3. Given two extensions X ×η A and X ×η′ A, we define a morpshim of

extensions to be a morphism of ternary self-distributive sets making commutative a diagram

identical to the one in Definition 4.2.7. An invertible morphism of extensions is called

isomorphism.

Similarly to Definition 4.2.7, we have a subdivision in equivalence classes of extensions.

We have the following result.

Proposition 4.4.4. There is a bijective correspondence between H2
SD(X,A) and equivalence

classes of extensions.

Proof. Similar to the group-theoretic case and Proposition 4.2.10. �

Example 4.4.5. Let X = Z2 with the TSD operation T (x, y, z) = x+y+ z ∈ Z2. This is in

fact the abelian heap Z2 and by Lemma 4.5.1 below, the same operation is self-distributive. In

this example we compute the first cohomology group H1
SD(X,Z2) and the second cohomology

group H2
SD(X,Z2) with coefficients in the abelian heap Z2. For a function f : X → Z3, a

straightforward computation gives that δ1(f) = 0. This gives H1
SD(X,Z2) ∼= C1

SD(X,Z2).

To compute the kernel of δ2, let us write an element φ : X3 → Z2 in term of characteristic
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functions as φ =
∑

x,y,z φ(x, y, z)χ(x,y,z). Then δ2(φ) = 0 gives the following system of

equations in Z2: 

φ(1, 1, 1) + φ(0, 0, 0) = 0

φ(1, 1, 0) + φ(0, 0, 1) = 0

φ(1, 0, 1) + φ(0, 1, 0) = 0

φ(1, 0, 0) + φ(0, 1, 1) = 0

implying that ker(δ2) is 4-dimensional with a basis χ(1,1,1) +χ(0,0,0), χ(1,1,0) +χ(0,0,1), χ(1,0,1) +

χ(0,1,0), and χ(1,0,0) + χ(0,1,1). Since im(δ1) = 0 we then obtain that H2
SD(X,Z2) ∼= Z2

⊕4.

Example 4.4.6. In this example we compute the first cohomology groupH1
SD(X,Z3) and the

second cohomology group H2
SD(X,Z3) for the same X = Z2 as above, with coefficients in the

abelian heap Z3. For a function f : X → Z3, a direct computation gives that δ1(f)(1, 0, 1) =

f(0)− f(1), δ1(f)(0, 1, 0) = f(1)− f(0) and all other unspecified values of δ1(f)(x, y, z) are

zeros. This gives H1
SD(X,Z3) ∼= Z3. To compute the kernel of δ2, let us write an element

φ : X3 → Z3 in term of characteristic functions as φ =
∑

x,y,z φ(x, y, z)χ(x,y,z). Then hand

computations give that ker(δ2) is 3-dimensional with a basis χ(1,1,1)+χ(0,0,0)+χ(1,0,0)+χ(0,1,1),

χ(1,1,0) + χ(0,0,1) − χ(0,1,0) and χ(1,0,1) − χ(0,1,0). Since im(δ1) is generated by χ(1,0,1) − χ(0,1,0),

we then obtain that H2
SD(X,Z3) ∼= Z3 ⊕ Z3.

Example 4.4.7. If the TSD set X is trivial, that is T (x, y, z) = x for all x, y, z ∈ X, then
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the differentials δ1 and δ2 take the following simpler forms:

δ1ξ(x, y, z) = ξ(z)− ξ(y),

δ2η(x, y, z, u, v) = η(y, u, v)− η(z, u, v).

This gives, for an abelian group A,

im(δ1) = {η : X3 → A, η(x, y, z) = ξ(z)− ξ(y), for some map ξ : X → A}.

Thus H1
SD(X,A) = Z1

SD(X,A) is the group of constant functions, which is isomorphic to A.

The kernel of δ2 is given by

ker(δ2) = {η : X3 → A, η(x, y, z) = η(x′, y, z), ∀x, x′, y, z ∈ X}

that are functions constant on the first variable. Hence Z2
SD(X,A) is isomorphic to AX×X ,

the group of functions AX×X from X ×X to A. This group has the subgroup B1
SD(X,A) =

im(δ1) = {η(x, y, z) = ξ(z)− ξ(y) | ξ ∈ AX}.

For example, if X is an n element set and A = Zp for a prime p, then Z2
SD(X,A) ∼=

Z⊕n2

p , B1
SD(X,A) ∼= Z⊕np and H1

SD(X,A) ∼= Z⊕np .

The following provides an algebraic meaning of the TSD 3-cocycle condition.

Proposition 4.4.8. The TSD 3-cocycle condition gives obstruction cocycles of TSDs for

short exact sequences of coefficients. Specifically, let X be a TSD set and consider a short
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exact sequence of abelian groups,

0 −→ H
ι−→ E

π−→ A −→ 0,

where E is the extension heap corresponding to the 2-cocycle φ ∈ Z2(X,A), and a section

s : A −→ E, such that s(0) = 0, the obstruction for sφ to satisfy the 2-cocycle condition is

a 3-cocycle with heap coefficients in H.

Proof. We construct the mapping α : X5 −→ H by the equality

ια(x1, . . . , x5)

= sφ(x1, x2, x3)− sφ(T (x1, x4, x5), T (x2, x4, x5), T (x3, x4, x5))

+sφ(T (x1, x2, x3), x4, x5)− sφ(x1, x4, x5)

+sφ(x2, x4, x5)− sφ(x3, x4, x5).

Since φ satisfies the 2-cocycle condition, we see that πα is the zero map, where π : E → A is

the projection. It follows that there is α : X5 −→ H satisfying the above equality. We claim

that α : X5 −→ H so defined satisfies the 3-cocycle condition with heap coefficients in H.

To shorten the computation we introduce the following notation. The ternary operation will

be indicated in exponential form, T (x, y, z) = xyz, we will identify the element xi with its

index i, will not write sφ in front of the parenthesis and, finally, we will use bars to separate

the entries in the tuples. For example we will write (123|4|5) for sφ(T (x1, x2, x3), x4, x5). The
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3-cocycle condition applied on α now reads

δ3α(x1, . . . , x7)

= (1|2|3)− (145|245|345) + (123|4|5)− (1|4|5)

+(2|4|5)− (3|4|5) + (145|245|345)− (1(45)(67)|2(45)(67)|3(45)(67))

+(1(45)(245345)|6|7)− (145|6|7) + (245|6|7)− (345|6|7)

+(1|4|5)− (167|467|567) + (145|6|7)− (1|6|7)

+(4|6|7)− (5|6|7)− (2|4|5) + (267|467|567)

−(245|6|7) + (2|6|7)− (4|6|7) + (5|6|7)

+(3|4|5)− (367|467|567) + (345|6|7)− (3|6|7)

+(4|6|7)− (5|6|7)− (123|4|5) + (1(23)(67)|467|567)

−(1(23)(45)|6|7) + (123|6|7)− (4|6|7) + (5|6|7)

−(1|2|3) + (167|267|367)− (123|6|7) + (1|6|7)

−(2|6|7) + (3|6|7)− (167|267|367)

+((1(67)(467567)|2(67)(467567)|3(67)(467567)))

−(1(67)(267367)|467|567) + (167|467|567)− (267|467|567) + (367|467|567).

Most of the terms cancel right away, while the remaining terms can be seen to cancel after

one application of the TSD property. This concludes the proof. �
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4.5 From Heap Cocycles to TSD Cocycles

In this section, we show that heaps and their 2-cocycles give rise to those for TSDs.

In particular, combining this result with Lemma 4.3.1, we obtain a way to construct TSD

2-cocycles with heap coefficients from group 2-cocycles. We start with a preliminary result,

implicitly present in [ESZb] and Chapter 3, showing that heaps are a particular instance of

TSD structures.

Lemma 4.5.1. If [−] is a heap operation on X, then the same operation is ternary self-

distributive.

Proof. First we note that for a heap operation it holds that

[[x, y, z], z, y] = [x, y, [z, z, y]] = [x, y, y] = x.

Then one computes

T (T (x1, x4, x5), T (x2, x4, x5), T (x3, x4, x5))

= [ [x1, x4, x5], [x2, x4, x5], [x3, x4, x5] ]

= [ x1, [ [x2, x4, x5], x5, x4], [x3, x4, x5] ]

= [ x1, x2, [x3, x4, x5] ]

= [ [x1, x2, x3], x4, x5]

= T (T (x1, x2, x3), x4, x5))
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as desired. The notation T (x, y, z) = [x, y, z] was used for clarification. �

We now state and prove the main result of the section.

Theorem 4.5.2. Let X be a heap, with the operation regarded as a TSD operation by

Lemma 4.5.1, and let A be an abelian group. Suppose that η ∈ Z2
H(X,A), that is, η satisfies

δ2
(1)η = 0 = δ2

(2)η and the degeneracy condition. Then η is a TSD 2-cocycle, η ∈ Z2
SD(X,A).

This assignment induces an injection of H2
H(X,A) into H2

SD(X,A).

Proof. We note that δ2
(1)η = 0 = δ2

(2)η also implies δ2
(0)η = 0, and the equality [[x, y, z], z, y] =

x from the proof of Lemma 4.5.1. One computes

η(x1, x4, x5)− η(x2, x4, x5) + η(x3, x4, x5)

+η(T (x1, x4, x5), T (x2, x4, x5), T (x3, x4, x5))

= −η([x2, x4, x5], x5, x4) + η(x1, [[x2, x4, x5], x5, x4], [x3, x4, x5])

(= η(x1, x2, [x3, x4, x5]) )

−η(x2, x4, x5) + η(x3, x4, x5)

= η(x1, x2, x3) + η([x1, x2, x3], x4, , x5)

−η([x2, x4, x5], x5, x4)− η(x2, x4, x5)

= η(x1, x2, x3) + η(T (x1, x2, x3), x4, , x5)

as desired. The equalities follow from δ2
(1)η = 0, δ2

(0)η = 0 and Lemma 4.2.11, respectively,

and the underlined terms indicate where they are applied. This proves that we have an
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inclusion h : Z2
H(X,A) ↪→ Z2

SD(X,A). Since we have the equality C1
H(X,A) = C1

SD(X,A)

and the first cochain differentials for heap and TSD cohomologies coincide up to sign, δ1
H =

−δ1
SD, we have h(δ1

H(f)) = −δ1
SD(h(f)) and h(B2

H(X,A)) ⊂ B2
SD(X,A), so that h induces

a homomorphism h̄ : H2
H(X,A) → H2

SD(X,A). Lastly, the map h̄ is injective. Indeed, for

η ∈ Z2
H(X,A), assume that h(η) ∈ Z2

SD(X,A) is null-cohomologous. Then h(η) = δ1
SD(ξ′) for

some ξ′ ∈ C1
SD(X,A). For ξ = −ξ′ ∈ C1

H, we have η = δ1
H(ξ), so that η is null-cohomologous

in Z2
H(X,A). �

Example 4.5.3. In Example 4.2.13, a nontrivial heap 2-cocycle η was given forX = Z3 = A.

By Theorem 4.5.2, η is a non-trivial TSD 2-cocycle. Hence we obtain H2
TSD(X,A) 6= 0.

Remark 4.5.4. The construction in Theorem 4.5.2 and taking extensions commute (c.f.

Remarks 4.3.2 and 4.3.7). Indeed, for a heap X and an abelian heap A, the heap extension

X × A by a heap 2-cocycle η is defined by

[(x, a), (y, b), (z, c)] = ( [x, y, z], a− b+ c+ η(x, y, z) ),

and Lemma 4.5.1 states that this heap operation gives a ternary shelf. On the other hand,

this is the extension of a ternary shelf by a TSD 2-cocycle η with the heap coefficient A by

Definition 4.4.2.
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4.6 Categorical Heaps

In this section we proceed to introduce a more general version of heap, in symmetric

monoidal categories. This construction is particularly suitable to produce objects that behave

in a similar fashion with respect to the set-theoretic version studied thus far, and therefore

interesting to from a point of view of self-distributive property and low-dimensional topology

related to it. The definition introduced in this section is similar to the one previously sudied

by Booker and Street in [BS11]. The reasons that lead us to it, are quite different from the

scopes set in [BS11], though.

Throughout the section all symmetric monoidal categories are strict (the associator

(A�B) �C → A� (B �C), the right and left unitors I �X → X and X � I → X are all

identity maps, where I is the unit object).

Let (C,�) be a symmetric monoidal category, (X,∆, ε) be a comonoid object in C and

consider a morphism µ : X �X �X → X. We translate the heap axioms of Section 4.1 into

commutative diagrams in the category C. The equalities of type 1 and 2 para-associativity

are defined by the commutative diagram
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where the central arrow corresponds to the morphism

µ(1� µ� 1)(1� τ � 1
2)(12 � τ � 1).

The type 0 para-associativity is defined by

and follows from those of types 1 and 2. The degeneracy conditions are formulated

as commutativity of the following diagrams.

Definition 4.6.1. A heap object in a symmetric monoidal category is a comonoid object

(X,∆, ε), where ε : X → I is a counital morphism to the unit object I, endowed with a

morphism of comonoids µ : X�3 → X making all the diagrams above commute.

Example 4.6.1. A (set-theoretic) heap in the sense of Section 4.1 is a heap object in the

category of sets.

The following appeared implicitly in [ESZb].
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Example 4.6.2. Let H be an involutory Hopf algebra (i.e. S2 = 1) over a field k. Then

H is a heap object in the monoidal category of vector spaces and tensor products, with the

ternary operation µ induced by the assignment

x⊗ y ⊗ z 7→ xS(y)z

for single tensors. Indeed, we have

µ(µ(x⊗ y ⊗ z)⊗ u⊗ v)

= xS(y)zS(u)v

= xS(y)S2(z)S(u)v

= xS(uS(z)y)v

= µ(x⊗ µ(u⊗ z ⊗ y)⊗ v)

corresponding to the commutativity of the diagram representing equality of type 1. Observe

that we have used the involutory hypothesis to obtain the second equality. We also have

(1⊗∆)(x⊗ y)

= µ(x⊗ y(1) ⊗ y(2))

= xS(y(1))y(2)

= ε(y)x
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which shows the left degeneracy constraint. The rest of the axioms can be checked in a

similar manner.

The opposite direction in the group-theoretic case is the assertion that a pointed heap

generates a group by means of the operation xy = [x, e, y]. The following is a Hopf algebra

version and can be obtained by calculations. More general statement of this can be found

in [BS11] and below.

Proposition 4.6.3. Let (X, [−]) be a heap object in a coalgebra category, and let e ∈ X be a

group-like element (i.e., ∆(e) = E ⊗ e and ε(e) = 1). Then X is an involutory Hopf algebra

with multiplication m(x⊗y) := µe(x⊗y) := [x⊗e⊗y], unit e, and antipode S(x) := [e⊗x⊗e].

Proof. We use Sweedler’s notation ∆(x) = x(1) ⊗ x(2). The associativity of m follows from

the type 0 para-associativity of µ. A unit condition is computed by

m(e⊗ x) = µ(e⊗ e⊗ x) = µ(∆(e)⊗ x) = x

by the degeneracy condition and the assumption that e is group-like. The other condition
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m(x⊗ e) = x is similar. The compatibility between m and ∆ is computed as

∆m(x⊗ y) = ∆µ(x⊗ e⊗ y)

= µτ(∆(x)⊗∆(e)⊗∆(y))

= µτ(x(1) ⊗ x(2) ⊗ e⊗ e⊗ y(1) ⊗ y(2))

= µ(x(1) ⊗ e⊗ y(1))⊗ µ(x(2) ⊗ e⊗ y(2))

= m(x(1) ⊗ y(1))⊗m(x(2) ⊗ y(2))

as desired, where τ is an appropriate permutation that give the third equality, and the

group-like assumption is used in the second equality. An antipode condition is computed as

m(S ⊗ 1)∆(x)

= µ(µ(e⊗ x(1) ⊗ e)⊗ e⊗ x(2))

= µ(e⊗ x(1) ⊗ µ(e⊗ e⊗ x(2)))

= µ(e⊗ x(1) ⊗ µ(∆(e)⊗ x(2)))

= µ(e⊗ x(1) ⊗ x(2))ε(e)

= eε(x)

as desired, where the group-like condition ε(e) and the degeneracy condition for µ were used.

The other case m(1⊗ S)∆(x) = eε(x) is similar. This completes the proof. �

Remark 4.6.4. Observe that S so defined, is involutory. This observation corroborates the
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necessity of including the involutory hypothesis in Example 4.6.2.

Remark 4.6.5. We observe a relation between a choice of a group-like element e in Proposi-

tion 4.6.3 and a coaugmentation map of a coalgebra. Let (X,∆, ε) be a coalgebra. A coaug-

mentation is a coalgebra morphism η : k→ X (i.e., ∆η = (η ⊗ η)j, where j : k→ k⊗ k is

the canonical isomorphism, j(1) = 1⊗ 1) such that εη = 1|k. Let e = η(1). We show that e

is group-like. One computes ∆(e) = ∆η(1) = η(1)⊗ η(1) = e⊗ e, and ε(e) = ε(η(1)) = 1 as

desired. We do not know, however, in general the converse holds, i.e., whether for any group-

like element e, there exists a coaugmentation map η such that η(1) = e. We observe that

an advantage of using coaugmentation map is the desired condition can be stated by a map,

without mention of particular elements, which becomes fruitful in categorical definitions as

we see below.

We generalize Example 4.6.2 and Proposition 4.6.3 to symmetric monoidal categories

as follows, using Remark 4.6.5. For this purpose first we define a coaugmentation of a

comonoid object (X,∆, ε) in a symmetric monoidal category with a unit object I as a

comonoidal morphism η : I → X such that εη = 1.

Definition 4.6.2. Let C be a symmetric monoidal category. We define the category of heap

objects in C, HC, as follows. The objects of HC are the heap objects as in Definition 4.6.1.

The morphisms are defined to be the morpshisms of C commuting with the heap maps

and the comonoidal structures. A heap object X, is called pointed, if it is endowed with a

coaugmentation η : I → X. The category of pointed heap objects in C, H∗C, is the category
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consisting of pointed heap objects over C, and morphisms of heap objects commuting with

the coaugmentations.

An involutory Hopf monoid (object) in a symmetric monoidal category is equipped

with a monoidal productm, a unit object I, a comonoidal product ∆, an antipodal morphism

S with S2 = 1, a unit morphism η : I → X that satisfies the left and right unital conditions

m(η � 1) = 1 and m(1 � η) = 1, and a counit morphism ε : X → I that satisfies the left

and right counital conditions (ε� 1)∆ = 1 and (1� ε)∆ = 1.

Theorem 4.6.6. Let C be a symmetric monoidal category. There is an equivalence of cate-

gories between the category H∗C and the category of involutory Hopf monoids in C, sHC.

Proof. We define a functor F : H∗C −→ sHC as follows. Let (X, η, µ, ε,∆) be a pointed

heap object in C, define F(X) := (X, I, η, λη, ρη,m, ε,∆, S), where multiplication m :=

µ ◦1� η�1, antipode S := µ ◦ η�1� η, the unit object I, the left and right unitors λη, ρη

by λη := m(η�1) : I�X → X and ρη := m(1�1) : X� I → X, and comonoidal structure

unchanged. The functor F is defined to be the identity on morphisms. The fact that F(X)

is a Hopf monoid in C is a translation of the computations in Example 4.6.2 in commutative

diagrams or series of composite morphisms.

Specifically, defining conditions are verified as follows. The associativity of m follows

from the para-associativity as before. The unit η and the counit ε are unchanged and a left
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unital condition is check by

m(η � 1) = µ(η � η � 1)

= µ(∆η � 1) = (ε� 1)(η � 1) = εη � 1 = 1� 1

as desired. The right unital condition is computed similarly. The compatibility between m

and ∆ is computed as

(m�m)τ(∆ � ∆) = [(µ(1� η � 1) � (µ(1� η � 1)]τ(∆ � ∆)

= (µ� µ)τ(∆ � ∆η � ∆) = ∆µ(1� η � 1) = ∆m.

We note that we have implicitly used the naturality of the switching morphisms multiple

times. The antipode condition is computes as

m(S � 1)∆

= µ(1� η1)(µ(η � η) � 1)∆

= µ(η � 1� µ(η � η � 1))∆

= µ(η � 1� (ε� 1))(1� η)∆.

The other antipode condition is similar.
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Similarly, we define a functor G : iHC −→ H∗C by the assignment on objects

G(X, η,m, ε,∆, S) := (X, η, µ, ε,∆)

, with µ := m(m�1)(1�S�1). Also, G is the identity on morphisms. We leave the details

of the proof to the reader. �

Next we show that Lemma 4.5.1 holds for a coalgebra (i.e. a comonoid in the category

of vector spaces). Although this is a special case of Theorem 4.6.9, we include its statement

and proof here to illustrate and further motivate Theorem 4.6.9. For this goal, we slightly

modify the definition of TSD maps in a symmetric monoidal categories, given in [ESZb].

Definition 4.6.3. Let (X,∆, ε) be a comoidal object in a symmetric monoidal category C.

A ternary self-distributive object (X,∆, ε, µ) in C is a comonoidal object that satisfies the

following condition:

µ(µ�3)�3 (∆′ � 1)∆ � (∆′ � 1)∆) = µ(µ� 1
�2)

where�3 denotes the composition of switching maps corresponding to transpositions (2, 4)(3, 7)(6, 8)

and ∆′ = τ∆.

This differs from the definition found in [ESZb] only in the use of ∆′ instead of ∆.

The main examples, set theoretical ones and Hopf algebras, satisfy both definitions.

138



Proposition 4.6.7. Let H and µ be as in the Example 4.6.2. Then µ defines a ternary

self-distributive object in the category of vector spaces.

Proof. One proceeds as in the proof of Lemma 4.5.1 as follows. We use the Sweedler notation

∆(x) = x(1) ⊗ x(2) and (∆⊗ 1)∆(x) = x(11) ⊗ x(12) ⊗ x(2). Then one computes

µ(µ(x⊗ y(1) ⊗ z(1))⊗ z(2) ⊗ y(2))

= µ(x⊗ y(1) ⊗ µ(z(2) ⊗ z(1) ⊗ y(2))

= µ(x⊗ y(1) ⊗ y(2))ε(z) = x ε(y)ε(z).

We note that the last equality S(y(2))y(1) = ε(y) follows from the assumption that H is

involutory. Then we obtain

µ(µ(x1 ⊗ x(12)
4 ⊗ x(12)

5 )⊗ µ(x2 ⊗ x(11)
4 ⊗ x(11)

5 )⊗ µ(x3 ⊗ x(2)
4 ⊗ x

(2)
5 ))

= µ(x1 ⊗ µ(µ(x2 ⊗ x(11)
4 ⊗ x(11)

5 )⊗ x(12)
5 ⊗ x(12)

4 )⊗ µ(x3 ⊗ x(2)
4 ⊗ x

(2)
5 ) )

= µ(x1 ⊗ x2 ε(x
(1)
4 )ε(x

(1)
5 )⊗ µ(x3 ⊗ x(2)

4 ⊗ x
(2)
5 ) )

= µ(µ(x1 ⊗ x2 ⊗ x3)⊗ ε(x(1)
4 )ε(x

(1)
5 )(x

(2)
4 ⊗ x

(2)
5 ))

= µ(µ(x1 ⊗ x2 ⊗ x3)⊗ x4 ⊗ x5))

as desired. �

Our goal, next, is to show that a more general version of Lemma 4.5.1 and Proposi-

tion 4.6.7 holds in an arbitrary symmetric monoidal category. We first have the following
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preliminary result.

Lemma 4.6.8. Let (X,∆, ε, µ) be a heap object in a symmetric monoidal category with

tensor product � and switching morphism τ . Then the following identity of morphisms holds

µ(µ� 1
�2)τ4,5τ3,4(1�∆ � ∆) = 1� ε� ε.

Proof. We observe that the following commutative diagram implies our statement.

where the rectangle on top, and the two triangles below commute because of naturality

of the braiding, while the other parts of the diagram commute by heap and comonoid axioms.

�

Theorem 4.6.9. Let (X,∆, ε, µ) be a heap object in a symmetric monoidal category C. Then

(X,∆, ε, µ) is also a ternary self-distributive object in C.
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Proof. Since (X,∆, ε) is a comonoid in C by hypothesis, we just need to prove that ternary

self-distributivity of µ. We use the following commutative diagram

where we have omitted the symbol � in the product of morphisms, omitted the

subscripts corresponding to the switching morphisms τ , to slightly shorten the notation

and, finally, we have used the notation ◦ to indicate the composition of morphisms. The

leftmost τ : X7 → X7 is the composition of symmetry constraints corresponding to the

transposition (5, 6)(4, 5)(5, 6)(4, 5)(3, 4), proceeding clockwise, τ : X9 → X9 corresponds to

(4, 5)(3, 4)(4, 5)(3, 4)(2, 3). The reader can easily find the correct compositions correspond-

ing to the remaining τ ’s by a diagrammatic approach. The triangles on the right and on the

bottom are instances of type 1 and type 0 axioms, respectively. The middle triangle com-

mutes as a consequence of Lemma 4.6.8. The other diagrams can be seen to be commutative

either by applying the comonoid axioms or naturality of the braiding. Finally, by direct

inspection we can see that the upper perimeter of the diagram corresponds to the LHS of

TSD, as stated in Definition 4.6.3. �
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CHAPTER 5 : FUTURE WORK

In this final chapter, we provide a brief description of future projects we intend to

embark upon. This list includes projects that are currently at a germinal stage (i.e. some

proofs have been done but they lack an overall structure), or at a hypothetical stage (i.e.

based on preliminary considerations we believe it is possible to obtain certain results).

5.1 Non-Associative/Quantum Algebra and Knot Theory

The cocycle invariant introduced in Section 3.7 has not been computed in any practical

examples. It is therefore of fundamental importance to determine the invariant in some

specific cases. In particular, we ask whether or not the invariant distinguishes certain framed

links. Is it possible to find certain families of framed links for which it is possible to compute

the cocycle invariant?

Graña proved in [Gn02] that cocycle invariants are “quantum” invariants, in the sense

that it is possible to obtain them as the trace of a certain endomorphism in an appropirate

category. Does an analogous result hold in the case of framed link cocycle invariant? Is it

possible to utilize the categorical doubling procedure described in Chapter 3 to generalize

Graña’s proof to the framed cocycle link invariant case? In this perspective, we expect that

the internalization prcoedure of categorical self-distributivity will play a crucial role.
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Lastly, we intend to complete a currently ongoing project (with M. Elhamdadi and

M. Saito) regarding Yang-Baxter (YB) operators and their homology theory. It has been

conjectured, based on strong computational evidence, that the homology groups of a certain

YB operator have rank 2 and a torsion described by means of the Fibonacci sequence [PW].

In [ESZc], we are making progress towards the understanding of this conjecture [ESZc]

using skein theoretic procedures. Our current results are in concordance with the conjecture

and solve part of it. Homology and cohomology theories of Yang-Baxter operators are highly

promising tools to develop new invariants of knots but it is still an open problem to determine

these invariants and relate them to well known invariants. Explicit computations of homology

groups for specific YB operators are exiguous and the computational methods applied so far

are rather rudimentary. The skein techniques introduced in [ESZc] seem to be applicable to

a vast range of YB operators and to be suitable to systematically (algorithmically) compute

homology.

5.2 Koszul Duality for Operads and its Ramifications

More recently I have been increasingly interested in the theory of operads and, more

specifically, operadic Koszulity and (co)homology. I am currently studying Koszul duality

theory of the Jordan operad (in [Zap]), whose algebras are the well known Jordan algebras.

For years, the problem of Koszul duality of Jordan operad has been considered not well posed,

due to the fact that the Jordan operad is cubic. In this paper it is estabilished that, with

a certain suitable presentation, the Jordan operad is quadratic-linear Koszul, whose main
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impact lies in the fact that the cobar construction of its dual cooperad is a resolution of it.

An explicit description of the notion of Homotopy Jordan Algebra is given, as a corollary of

the aforementioned Koszul duality, by means of Maurer-Cartan elements in the enveloping

differential-graded Lie algebra. My next goal is to proceed to study infinity morphisms,

homotopy transfer theorem and the deformation complex in this context. We expect that

these results might be applied to the study of Jordan super-algebras.

The following project is similar, in spirit, to the previous one. Hartwig, Larsson and

Silvestrov have introduced in [HLS06], a generalized version of the Jacobi identity and studied

in subsequent works, what are now known as “Hom” versions of famous algebraic structures

(i.e. Hom-Lie algebras, Hom-associative algebras, Hom-Nambu brackets, Hom-Jordan al-

gebras etc.). Whereas the main motivation to study these kind of structures comes from

Theoretical Physics (Conformal Field Theories and Quantum Gravity among others), it is

inherently interesting to understand these “deformed” algebras. Based on our considerations

and current understanding, we pose the following:

Conjecture 5.2.1. The operad controlling the Hom-Jacobi identity is Koszul, and the Ho-

motopy Hom-Lie algebras obtained via the standard cobar resolution produce the n-ary

Hom-Nambu Lie brackets introduced in [AMS09].

The implications of such a result, if true, in Theoretical Physics provide quite an

interesting perspective for future work.
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5.3 Applied Mathematics

In this section, we give a brief explanation of a project we have started to work on

during Fall 2019, in an Internship at the Biomedical & Clinical Informatics Lab at University

of Michigan, Ann Arbor.

It has recently proposed in [ZNL18], a method to construct Neural Networks by

means of Tropical Algebra and Tropical Geoemtry. In [ZNL18], the authors show that there

is a bijective correspondence between Feedforward Neural Networks and Tropical Rational

Functions (i.e. he tropical version of rational functions in Algebraic Geoemtry). It is possible

therefore, at least in principle, to produce decision making algorithms based on Tropical

Hypersurfaces. We intend to develop a method of diagnosis of heart failure based on “tropical

networks”.
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APPENDIX A : CONTINUOUS ISOMORPHISMS OF TOPOLOGICAL
QUANDLES

In this appendix we show that continuous isomorphism classes differ from algebraic
isomorphism classes for topological quandles. The results of this appendix were obtained by
W. Edwin Clark.

Lemma .0.1. [Ree] If T : Rn → Rm is additive and continuous, then T is R-linear.

Remark .0.2. We recall [Nel] that an Alexander quandle (X,T ) is indecomposable if and
only if I − T is surjective. If (Rn, T ) is a topological generalized Alexander quandle that is
indecomposable such that T is additive, then I − T is surjective, and Lemma .0.1 implies
that T is linear. Hence I − T is invertible.

Lemma .0.3. Let (Rn, S) and (Rm, T ) be topological Alexander quandles, such that I − S
and I − T are invertible. Let F : Rn → Rm be a continuous quandle homomorphism such
that F (0) = 0. Then S, T, F are R-linear and the condition FS = TF holds.

Proof. First from Lemma .0.1, S and T are linear. Since F is a quandle homomorphism,

F (Sx+ (I − S)y) = TF (x) + (I − T )F (y) (1)

holds for all x, y ∈ Rn. By setting x = 0 and y = 0 respectively in Equation(1) and using
the assumption F (0) = 0, we obtain

F ((I − S)y) = (I − T )F (y), (2)

and
F (Sx) = TF (x), (3)

which is the condition FS = TF . These Equations (2) and (3) also imply

F (Sx+ (I − TS)y) = F (Sx) + F ((I − S)y). (4)

By the invertibility assumptions, we have {Sx | x ∈ Rn} = Rn and {(I−S)y | y ∈ Rn} = Rn.
Hence Equation (4) implies that F (a+b) = F (a)+F (b) for all a, b ∈ Rn. Since F is additive
and continuous, Lemma .0.1 implies that F is linear. �

Solving the matrix equation FS = TF can be found, for example, in [Bar]. A direct
calculation gives the following lemma.
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Lemma .0.4. Let (Rn, S) and (Rm, T ) be Alexander quandles. Let F : Rn → Rm be a
quandle homomorphism. Let a ∈ Rm. Then F+a : Rn → Rm defined by (F+a)(x) = F (x)+a
for x ∈ Rn is a quandle homomorphism.

Proposition .0.5. Let (Rn, S) and (Rn, T ) be indecomposable topological Alexander quan-
dles. If F : Rn → Rn is a continuous quandle isomorphism such that F (0) = 0, then S, T, F
are R-linear and S and T are similar: T = FSF−1.

Proof. By Lemma .0.1, S, T, F are linear. By Lemma .0.3, S and T are similar via F . �

Proposition .0.6. There is a family with continuum cardinality of topological quandle struc-
tures on Rn for all n > 0, such that its elements are pairwise non-isomorphic as topological
quandles but are isomorphic as algebraic quandles.

Proof. Let Q(u) be the field of rational functions over R with variable u. Let s ∈ R be a
transcendental number. Let Q(u) act on Rn by the scalar multiple f(u) · x = f(s)x. Let s, t
be distinct transcendentals. Then there are two vector space structures on Rn over Q(u) by
multiples by s and t. They have the same dimension as vector spaces, and therefore, there is
a vector space isomorphism F : Rn → Rn over Q(u), and it satisfies F (sx) = tF (x). Hence
F is a quandle isomorphism. If F is continuous, then F is linear over R by Lemma .0.3, and
Fs = sF = tF and s = t, a contradiction. Hence F is a quandle isomorphism that is not
continuous. �
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APPENDIX B : EXAMPLE 3.6.8 REVISITED

In this appendix we explicitly show that the map in Example 3.6.8 is indeed self-
distributive. Each equality is obtained by applying the Jacobi identity as in the proof of
Lemma 3.3 in [CCES]. In fact, each step corresponds to one of the diagrams in the proof
of Theorem 3.6.6 (cf. figure 3.8). Recall also the definition of the diagonal ∆, from Lemma
3.6.7, and the inductive definition for ∆3 at the beginning of Section 3.6. Explicitly, we have
for ∆3:

∆3(a, x) = (a, x)⊗ (1, 0)⊗ (1, 0) + (1, 0)⊗ (0, x)⊗ (1, 0) + (1, 0)⊗ (1, 0)⊗ (0, x).

To make the steps easier for the reader, we declare the terms that are going to be replaced
according to the Jacobi identity, and underline the replacing terms in the subsequent equality.
We obtain therefore:

T (T ((a, x)⊗ (b0, y0)⊗ (b1, y1))⊗ (c0, z0)⊗ (c1, z1))

= (ab0b1c0c1, b0b1c0c1x+ b1c0c1[x, y0] + b0c0c1[x, y1]

+c0c1[[x, y0], y1] + b0b1c1[x, z0] + b1c1[[x, y0], z0]

+b0c1[[x, y1], z0] + c1[[[x, y0], y1], z0] + b0b1c0[x, z1]

+b1c0[[x, y0], z1] + b0c0[[x, y1], z1] + c0[[[x, y0], y1], z1]

+b0b1[[x, z0], z1] + b1[[[x, y0], z0], z1] + b0[[[x, y1], z0], z1]

+[[[[x, y0], y1], z0], z1]).

Applying the Jacobi identity to the terms b0c1[[x, y1], z0], c1[[[x, y0], y1], z0], b0[[[x, y1], z0], z1]
and [[[[x, y0], y1], z0], z1] we obtain:

= (ab0b1c0c1, b0b1c0c1x+ b1c0c1[x, y0] + b0b1c1[x, z0]

+b1c1[[x, y0], z0] + b0c0c1[x, y1] + c0c1[[x, y0], y1]

+b0c1[[x, z0], y1] + c1[[[x, y0], z0], y1] + b0c1[x, [y1, z0]]

+c1[[x, y0], [y1, z0]] + b0b1c0[x, z1] + b1c0[[x, y0], z1]

+b0b1[[x, z0], z1] + b1[[[x, y0], z0], z1] + b0c0[[x, y1], z1]

+c0[[[x, y0], y1], z1] + b0[[[x, z0], y1], z1] + [[[[x, y0], z0], y1], z1]

+b0[[x, [y1, z0]], z1] + [[[x, y0], [y1, z0]], z1]).

We now apply the Jacoby identity to the term b1c1[[x, y0], z0], b1[[[x, y0], z0], z1], c1[[[x, y0], z0], y1]
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and [[[[x, y0], z0], y1], z1] to obtain:

= (ab0b1c0c1, b0b1c0c1x+ b0b1c1[x, z0] + b1c0c1[x, y0]

+b1c1[[x, z0], y0] + b0c0c1[x, y1] + b0c1[[x, z0], y1]

+c0c1[[x, y0], y1]] + c1[[[x, z0], y0], y1] + b1c1[x, [y0, z0]]

+c1[[x, [y0, z0]], y1] + b0c1[x, [y1, z0]] + c1[[x, y0], [y1, z0]]

+b0b1c0[x, z1] + b0b1[[x, z0], z1] + b1c0[[x, y0], z1]

+b1[[[x, z0], y0], z1] + b0c0[[x, y1], z1] + b0[[[x, z0], y1], z1]

+c0[[[x, y0], y1], z1] + [[[[x, z0], y0], y1], z1] + b1[[x, [y0, z0]], z1]

+[[[x, [y0, z0]], y1], z1] + b0[[x, [y1, z0]], z1] + [[[x, y0], [y1, z0]], z1]).

Next, we use the Jacoby identity on the terms b0c0[[x, y1], z1], b0[[[x, z0], y1], z1], b0[[x, [y1, z0]], z1],
c0[[[x, y0], y1], z1], [[[[x, z0], y0], y1], z1], [[[x, [y0, z0]], y1], z1] and [[[x, y0], [y1, z0]], z1].

= (ab0b1c0c1, b0b1c0c1x+ b0b1c1[x, z0] + b1c0c1[x, y0]

+b1c1[[x, z0], y0] + b0b1c0[x, z1] + b0b1[[x, z0], z1]

+b1c0[[x, y0], z1] + b1[[[x, z0], y0], z1] + b0c0c1[x, y1]

+b0c1[[x, z0], y1] + c0c1[[x, y0], y1] + c1[[x, [y0, z0]], y1]

+b1c1[x, [y0, z0]] + b0c0[[x, z1], y1] + b0[[[x, z0], z1], y1]

+c0[[[x, y0], z1], y1] + b1[[x, [y0, z0]], z1] + [[[[x, z0], y0], z1], y1]

+[[[x, [y0, z0]], z1], y1] + b0c1[x, [y1, z0]] + c1[[x, y0], [y1, z0]]

+b0[[x, z1], [y1, z0]] + [[[x, y0], z1], [y1, z0]] + b0c0[x, [y1, z1]]

+b0[[x, z0], [y1, z1]] + c1[[[x, z0], y0], y1] + c0[[x, y0], [y1, z1]]

+[[[x, z0], y0], [y1, z1]] + [[x, [y0, z0]], [y1, z1]] + b0[x, [[y1, z0], z1]]

+[[x, y0], [[y1, z0], z1]]),

Lastly, making use of the Jacobi identity on the terms b1c0[[x, y0], z1], b1[[[x, z0], y0], z1],
c0[[[x, y0], z1], y1], b1[[x, [y0, z0]], z1], [[[[x, z0], y0], z1], y1], [[[x, [y0, z0]], z1], y1] and
[[[x, y0], z1], [y1, z0]] we obtain:
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= (ab0b1c0c1, b0b1c0c1x+ b0b1c1[x, z0] + b0b1c0[x, z1]

+b0b1[[x, z0], z1] + b1c0c1[x, y0] + b1c1[[x, z0], y0]

+b1c0[[x, z1], y0] + b1[[[x, z0], z1], y0] + b0c0c1[x, y1]

+b0c1[[x, z0], y1] + b0c0[[x, z1], y1] + b0[[[x, z0], z1], y1]

+c0c1[[x, y0], y1] + c1[[[x, z0], y0], y1] + c0[[[x, z1], y0], y1]

+[[[[x, z0], z1], y0], y1] + b0c1[x, [y1, z0]] + b0[[x, z1], [y1, z0]]

+c1[[x, y0], [y1, z0]] + [[[x, z1], y0], [y1, z0]] + b1c1[x, [y0, z0]]

+b1[[x, z1], [y0, z0]] + c1[[x, [y0, z0]], y1] + [[[x, z1], [y0, z0]], y1]

+b1c0[x, [y0, z1]] + b1[[x, z0], [y0, z1]] + c0[[x, [y0, z1]], y1]

+[[[x, z0], [y0, z1]], y1] + b1[x, [[y0, z0], z1]] + [[x, [[y0, z0], z1]], y1]

+[[x, [y0, z1]], [y1, z0]] + b0c0[x, [y1, z1]] + b0[[x, z0], [y1, z1]]

+c0[[x, y0], [y1, z1]] + [[[x, z0], y0], [y1, z1]] + [[x, [y0, z0]], [y1, z1]]

+b0[x, [[y1, z0], z1]] + [[x, y0], [[y1, z0], z1]]).

This last term can be seen to coincide with the right-hand side of the self-distributivity
equation:

T (T⊗3)�3 (13 ⊗∆⊗2
3 )((a, x)⊗ (b0, y0)⊗ (b1, y1))⊗ (c0, z0)⊗ (c1, z1)).

It follows therefore, that the map T turns X into a ternary self-distributive object in the
category of vector spaces.
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