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Figure 5. Fitted models in class enumeration of factor mixture modeling.  
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 For PM2 where the covariate had impact on both the latent class membership and the factor, eta-

squared analyses showed that DIF magnitude (𝜂2= .27), the number of DIF items (𝜂2= .14), the 

interaction between analysis model and the covariate effect on the factor (𝜂2= .08), and the analysis 

model (𝜂2= .08) had significant impact on the class enumeration for BIC. The same simulation factors 

impacted the class enumeration rates for saBIC substantially, but eta-squared values were different 

(please refer to Table 10 for the values). As shown in Table 12, AM3 performed well in identifying the 

correct model when the DIF magnitude was .8 and 1.2. Note that AM3 matched the data generation model 

where there were covariate effects on the latent class variable and the factor. As the DIF magnitude 

increased, the class enumeration rates increased substantially across all analysis models. AM2 (i.e., 

ignoring the covariate effect on the factor) worked well in detecting the 2-class metric model when the 

covariate effect on the factor was .4. When the effect was .8, ignoring that effect would lead to an over-

extraction of latent classes, that is, 3-class metric instead of 2-class metric model. AM4, which was the 

most complex model with covariate effects on all items, supported the 2-class metric model only when 

DIF magnitude was .8 or 1.2 with 2 DIF items; it supported the 2-class scalar model instead for other 

conditions. A1 only worked well with 1.2 DIF magnitude and 2 DIF items. But for most conditions, it 

tended to select the 1-class model.  

For PM3 where the covariate had impact on the latent class membership, the factor, and the item, 

simulation factors that had significant impact on the class enumeration included: analysis model (𝜂2= 

.25), the interaction between analysis model and the covariate effect on the item (𝜂2= .11), and the 

interaction between analysis model and sample size (𝜂2= .06) for BIC. For saBIC, the interaction between 

analysis model and the covariate effect on the item (𝜂2= .23), analysis model (𝜂2= .14), the interaction 

between analysis model and DIF magnitude (𝜂2= .11), the interaction between analysis model and 

covariate effect on the factor (𝜂2= .07), the interaction between analysis model and sample size (𝜂2= .07), 

and the DIF magnitude (𝜂2= .07) all affected the class enumeration. Surprisingly, overall AM3 performed 

better than AM4 in detecting the 2-class metric model, as seen in Table 13. In other words, it was better to 
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ignore the covariate effect on the item if the effect was present than including covariate effects on all 

items. But this was the case only when the covariate effect on the item was .4. When the effect was .8, 

ignoring that effect tended to result in an additional latent class (i.e., 3-class metric instead of 2-class 

metric). AM4 only worked well when sample size was 2000 and the DIF magnitude was 1.2. AM2 (i.e., 

ignoring both covariate effects on the factor and the item) only worked well when these two covariate 

effects were .4 and sample size was 500; for other conditions, an over-extraction of latent classes (i.e., 3-

class metric) was observed. A1 tended to support the 2-class scalar model rather than the 2-class metric 

model.  

Comparing the Fit of Analysis Models When Measurement Invariance Did Not Hold in the 

Population 

For PM1, BIC and saBIC showed that overall AM2 had the best model fit among all analysis 

models (see Table 14). For PM1, more replications selected AM2 as the best-fitting model as the DIF 

magnitude, sample size, number of DIF items, and the covariate effect on the latent class variable 

increased. Other analysis models were much less likely to be selected as the best-fitting model. As 

expected, for PM2, AM3, which matched PM2, showed the best model fit (see Table 15). For PM3, AM4, 

which modeled the covariate effect on all items, had the best model fit (see Table 16).
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Table 4. Non-Convergence and Inadmissible Solutions Check  

 Proportion of converged replications 

Population model 1  

    Analysis model 1 .74 ~ 1.00 

    Analysis model 2 .78 ~ 1.00 

    Analysis model 3 .86 ~ 1.00 

    Analysis model 4 .84 ~ 1.00a 

  

Population model 2  

    Analysis model 1 .67 ~ 1.00 

    Analysis model 2 .87 ~ 1.00 

    Analysis model 3 .87 ~ 1.00 

    Analysis model 4 .83 ~ 1.00a 

  

Population model 3  

    Analysis model 1 .76 ~ 1.00 

    Analysis model 2 .88 ~ 1.00 

    Analysis model 3 .88 ~ 1.00 

    Analysis model 4 .84 ~ 1.00a 

Note. aThe range of convergence rates did not include the 1-class model, because all replications of the 1-

class model did not converge. 

 

 

Table 5. Results of Eta-Squared Analyses by Population Model When Measurement Invariance Held in 

the Population 

Population 

model 

BIC saBIC 

Simulation factor 𝜂2 Simulation factor 𝜂2 

 

Analysis model  .99 Analysis model .70 

  Analysis model*sample size .17 

  Sample size  .11 

     

 

Analysis model .76 Analysis model .47 

Analysis model*covariate effect on 

factor 

.17 Analysis model*covariate effect on 

factor 

.24 

Covariate effect on factor .06 Analysis mode*sample size .13 

  Covariate effect on factor .07 

     

 

Analysis model .99 Analysis model .79 

  Analysis model*sample size .16 

Note. BIC = Bayesian information criterion, saBIC = sample size adjusted BIC.  
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Table 6. Class Enumeration and Measurement Invariance (MI) Testing When MI Held in the Population 

   Analysis Model 

   

    
Population Model Covariate 

Effect on 

Factor 

Sample 

Size BIC saBIC BIC saBIC BIC saBIC BIC saBIC 

 

 
500 .01 .14 .83 .39 .00 .03 .92 .32 

 
2000 .00 .05 .93 .84 .00 .00 .98 .84 

 

.4 500 .00 .15 .95 .72 .00 .03 .94 .33 

 2000 .00 .03 .92 .74 .00 .05 .99 .85 

.8 500 .00 .15 .12 .00 .00 .02 .94 .38 

 2000 .00 .04 .00 .00 .01 .10 .98 .84 

 

 500 .00 .00 .00 .00 .08 .00 .94 .33 

 2000 .00 .01 .00 .00 .00 .00 .99 .87 

Note. BIC = Bayesian information criterion, saBIC = sample size adjusted BIC.  

  



38 

 

Table 7. Comparing Analysis Models When Measurement Invariance Held in the Population under Population Model 1 

 Sample 

size 

Mixing 

proportion 

Covariate 

effect on 

class 

AIC_a1 AIC_a2 AIC_a3 AIC_a4 BIC_a1 BIC_a2 BIC_a3 BIC_a4 saBIC_a1 saBIC_a2 saBIC_a3 saBIC_a4 

500 50-50 1 .37 .37 .25 .02 .53 .39 .09 .00 .39 .39 .23 .00 

2 .25 .34 .38 .04 .45 .40 .15 .01 .30 .38 .32 .02 

30-70 1 .37 .39 .22 .03 .58 .37 .06 .00 .41 .42 .17 .01 

2 .33 .30 .35 .03 .53 .33 .14 .00 .37 .31 .32 .01 

2000 50-50 1 .18 .27 .49 .07 .33 .47 .20 .00 .24 .40 .36 .01 

2 .02 .24 .69 .07 .06 .66 .28 .00 .04 .45 .51 .01 

30-70 1 .23 .27 .45 .06 .44 .39 .17 .00 .33 .36 .32 .00 

2 .05 .20 .69 .06 .15 .56 .30 .00 .08 .41 .51 .01 

Note. The suffix of a1, a2, a3, and a4 for AIC, BIC, and saBIC indicates that analysis models 1, 2, 3, and 4 (see Figure 5a, 5b, 5c, and 5d), respectively. 
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Table 8. Comparing Analysis Models When Measurement Invariance Held in the Population under Population Model 2 

 Sample 

size 

Mixing 

proportion 

Covariate 

effect on 

class 

Covariate 

effect on 

factor 

AIC_a1 AIC_a2 AIC_a3 AIC_a4 BIC_a1 BIC_a2 BIC_a3 BIC_a4 saBIC_a1 saBIC_a2 saBIC_a3 saBIC_a4 

500 50-50 1 4 .07 .40 .00 .53 .14 .85 .00 .02 .08 .71 .00 .22 

8 .00 .02 .00 .99 .00 .02 .00 .99 .00 .02 .00 .99 

2 4 .12 .39 .00 .51 .27 .71 .00 .03 .20 .66 .00 .15 

8 .00 .01 .00 1.00 .00 .01 .00 1.00 .00 .01 .00 1.00 

30-70 1 4 .07 .37 .00 .57 .13 .87 .00 .01 .08 .67 .00 .26 

8 .00 .02 .00 .99 .00 .02 .00 .99 .00 .02 .00 .99 

2 4 .13 .40 .00 .49 .22 .77 .00 .02 .16 .66 .00 .19 

8 .00 .01 .00 .99 .00 .01 .00 .99 .00 .01 .00 .99 

2000 50-50 1 4 .00 .06 .00 .95 .00 .99 .00 .01 .00 .58 .00 .43 

8 .00 .01 .00 1.00 .00 .01 .00 1.00 .00 .01 .00 1.00 

2 4 .00 .06 .00 .94 .00 .99 .00 .02 .00 .66 .00 .34 

8 .00 .01 .00 .99 .00 .01 .00 .99 .00 .01 .00 .99 

30-70 1 4 .00 .05 .00 .96 .00 .97 .00 .04 .00 .53 .00 .47 

8 .00 .02 .00 .99 .00 .02 .00 .99 .00 .02 .00 .99 

2 4 .00 .26 .00 .74 .00 1.00 .00 .00 .00 1.00 .00 .01 

8 .00 .02 .00 .99 .00 .02 .00 .99 .00 .02 .00 .99 

Note. The suffix of a1, a2, a3, and a4 for AIC, BIC, and saBIC indicates that analysis models 1, 2, 3, and 4 (see Figure 5a, 5b, 5c, and 5d), respectively. 
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Table 9. Comparing Analysis Models When Measurement Invariance Held in the Population under Population 

Model 3 

Sam

ple 

size 

Mixing 

proport

ion 

Covari

ate 

effect 
on 

class 

Covari

ate 

effect 
on 

factor 

Covari

ate 

effect 
on 

item 

AIC_

a1 

AIC_

a2 

AIC_

a3 

AIC_

a4 

BIC_

a1 

BIC_

a2 

BIC_

a3 

BIC_

a4 

saBIC

_a1 

saBIC

_a2 

saBIC

_a3 

saBIC

_a4 

500 50-50 1 4 4 .00 .00 .00 1.00 .00  .00 .00 1.00 .00 .00 .00 1.00 

8 .00 .00 .00 1.00 .00 .00 .00 1.00 .00 .00  .00 1.00 

8 4 .00 .00 .01 .99 .00 .00   .37 .63 .00 .00 .04 .96 

8 .00 .00 .01 1.00 .00 .00 .01 1.00 .00 .00 .01 1.00 

2 4 4 .00 .00 .01 1.00 .00 .00 .01 1.00 .00 .00 .01 1.00 

8 .00 .00 .00 1.00 .00 .00 .00 1.00 .00 .00 .00 1.00 

8 4 .00 .00 .02 .99 .00 .00 .35 .65 .00 .00 .05 .95 

8 .00 .00 .01 1.00 .00 .00 .01 1.00 .00 .00 .01 1.00 

30-70 1 4 4 .00 .00 .01 1.00 .00 .00 .01 1.00 .00 .00 .01 1.00 

8 .00 .00 .01 1.00 .00 .00 .01 1.00 .00 .00 .01 1.00 

8 4 .00 .00 .01 .99 .00 .00 .39 .61 .00 .00 .06 .95 

8 .00 .00 .00 1.00 .00 .00 .00 1.00 .00 .00 .00 1.00 

2 4 4 .00 .00 .01 1.00 .01 .00 .00 1.00 .00 .00 .01 1.00 

8 .00 .00 .00 1.00 .00 .00 .00 1.00 .00 .00 .00 1.00 

8 4 .00 .00 .01 .99 .00 .00 .35 .66 .00 .00 .04 .96 

8 .00 .00 .01 .99 .00 .00 .01 .99 .00 .00 .01 .99 

2000 50-50 1 4 4 .00 .00 .00 1.00 .00 .00 .00 1.00 .00 .00 .00 1.00 

8 .00 .00 .00 1.00 .00 .00 .00 1.00 .00 .00 .00 1.00 

8 4 .00 .00 .03 .98 .00 .00 .03 .98 .00 .00 .03 .98 

8 .00 .00 .01 1.00 .00 .00 .01 1.00 .00 .00 .01 1.00 

2 4 4 .00 .00 .00 1.00 .00 .00 .00 1.00 .00 .00 .00 1.00 

8 .00 .00 .01 1.00 .00 .00 .01 1.00 .00 .00 .01 1.00 

8 4 .00 .00 .01 .99 .00 .00 .01 .99 .00 .00 .01 .99 

8 .00 .00 .01 .99 .00 .00 .01 .99 .00 .00 .01 .99 

30-70 1 4 4 .00 .00 .00 1.00 .00 .00 .00 1.00 .00 .00 .00 1.00 

8 .00 .00 .01 .99 .00 .00 .01 .99 .00 .00 .01 .99 

8 4 .00 .00 .02 .99 .00 .00 .02 .99 .00 .00 .02 .99 

8 .00 .00 .01 1.00 .00 .00 .01 1.00 .00 .00 .01 1.00 

2 4 4 .00 .00 .00 1.00 .00 .00 .00 1.00 .00 .00 .00 1.00 

8 .00 .00 .00 1.00 .00 .00 .00 1.00 .00 .00 .00 1.00 

8 4 .00 .00 .02 .99 .00 .00 .02 .99 .00 .00 .02 .99 

8 .00 .00 .02 .98 .00 .00 .02 .98 .00 .00 .02 .98 
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Table 10. Results of Eta-Squared Analyses by Population Model When Measurement Invariance Did Not Hold in 

the Population 

Population 

model 

BIC saBIC 

Simulation factor 𝜂2 Simulation factor 𝜂2 

 

DIF magnitude .28 DIF magnitude .27 

Analysis model .22 Analysis model .23 

Number of DIF items .12 Number of DIF items .14 

 Sample size .08 Sample size .08 

     

 

DIF magnitude .27 DIF magnitude .20 

Number of DIF items .14 Analysis model*covariate effect on factor .15 

Analysis model*covariate effect on 

factor 

.08 Analysis model .12 

Analysis model .08 Number of DIF items .11 

     

 

Analysis model .25 Analysis model*covariate effect on item .23 

Analysis model*covariate effect on 

item 

.11 Analysis model .14 

Analysis model*sample size .06 Analysis model*DIF magnitude .11 

  Analysis model*covariate effect on factor .07 

  Analysis model*sample size .07 

  DIF magnitude .07 

Note. BIC = Bayesian information criterion, saBIC = sample size adjusted BIC.  
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Table 11. Class Enumeration and Measurement Invariance (MI) Testing When MI Did Not Hold in the Population under Population Model 1 

    Analysis Model 

    

    
Population 

Model 

DIF 

Magnitude 

Number 

of DIF 

Items 

Sample 

Size BIC saBIC BIC saBIC BIC saBIC BIC saBIC 

 

.4 1 500 .00 .02 .11 .24 .00 .06 .02 .15 

  2000 .00 .00 .29 .60 .00 .07 .01 .05 

 2 500 .00 .02 .18 .40 .00 .13 .02 .15 

  2000 .00 .01 .70 .92 .05 .51 .01 .13 

.8 1 500 .00 .02 .36 .54 .00 .32 .03 .15 

  2000 .00 .00 .92 .98 .46 .78 .03 .18 

 2 500 .00 .16 .82 .82 .19 .71 .14 .39 

  2000 .07 .88 1.00 1.00 .99 1.00 .95 .97 

1.2 1 500 .00 .03 .69 .73 .13 .63 .03 .21 

  2000 .00 .00 1.00 1.00 .84 .99 .34 .60 

 2 500 .36 .84 1.00 .87 .93 .83 .96 .74 

  2000 1.00 .98 1.00 .99 1.00 .99 .99 .97 

Note. BIC = Bayesian information criterion, saBIC = sample size adjusted BIC.  
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Table 12. Class Enumeration and Measurement Invariance (MI) Testing When MI Did Not Hold in the Population under Population Model 2 

    Analysis Model 

    

    
Population Model DIF 

Magnitude 

Number 

of DIF 

Items 

Covariate 

Effect on 

Factor 

BIC saBIC BIC saBIC BIC saBIC BIC saBIC 

 

.4 1 .4 .00 .02 .14 .41 .00 .09 .01 .10 

  .8 .00 .02 .00 .00 .00 .06 .01 .11 

 2 .4 .00 .01 .46 .69 .10 .44 .02 .15 

  .8 .00 .02 .02 .00 .08 .47 .01 .15 

.8 1 .4 .00 .02 .65 .80 .25 .65 .03 .18 

  .8 .00 .01 .01 .00 .23 .64 .02 .23 

 2 .4 .08 .56 .94 .88 .71 .88 .56 .69 

  .8 .07 .57 .32 .01 .76 .90 .55 .72 

1.2 1 .4 .00 .02 .86 .86 .60 .84 .20 .43 

  .8 .00 .02 .08 .00 .54 .86 .25 .52 

 2 .4 .75 .90 .98 .61 1.00 .90 .96 .85 

  .8 .76 .92 .34 .08 1.00 .91 .95 .87 

Note. BIC = Bayesian information criterion, saBIC = sample size adjusted BIC.  
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Table 13. Class Enumeration and Measurement Invariance (MI) Testing When MI Did Not Hold in the Population under Population Model 3 

     Analysis Model 

     

    
Population 

Model 

Covariate 

Effect on 

Item 

Sample 

Size 

Covariate 

Effect on 

Factor 

DIF 

Magnitude BIC saBIC BIC saBIC BIC saBIC BIC saBIC 

 

.4 500 .4 .4 .00 .03 .99 .41 .91 .63 .02 .18 

   .8 .00 .03 .99 .35 .98 .58 .02 .18 

   1.2 .00 .11 .99 .25 1.00 .49 .06 .30 

  .8 .4 .00 .01 .07 .00 .08 .72 .03 .17 

   .8 .00 .02 .13 .00 .39 .76 .02 .22 

   1.2 .00 .04 .14 .00 .80 .76 .08 .33 

 2000 .4 .4 .00 .00 .17 .00 .98 .22 .01 .05 

   .8 .00 .04 .08 .00 .91 .07 .08 .33 

   1.2 .04 .58 .02 .00 .71 .01 .61 .80 

  .8 .4 .00 .00 .00 .00 1.00 .99 .01 .06 

   .8 .00 .00 .00 .00 1.00 .96 .14 .46 

   1.2 .00 .14 .00 .00 .75 .67 .54 .76 

.8 500 .4 .4 .00 .04 .00 .00 .00 .00 .02 .15 

   .8 .00 .28 .00 .00 .00 .00 .02 .17 

   1.2 .13 .67 .00 .00 .00 .00 .05 .30 

  .8 .4 .00 .03 .00 .00 1.00 .33 .02 .18 

   .8 .00 .12 .00 .00 1.00 .34 .02 .18 

   1.2 .01 .49 .00 .00 1.00 .29 .09 .31 

 2000 .4 .4 .00 .07 .00 .00 .00 .00 .01 .07 

   .8 .48 .88 .00 .00 .00 .00 .08 .34 

   1.2 .98 .99 .00 .00 .00 .00 .62 .80 

  .8 .4 .80 .01 .00 .00 .66 .02 .02 .07 

   .8 .12 .69 .00 .00 .47 .01 .14 .47 

   1.2 .89 .98 .00 .00 .20 .00 .77 .89 

Note. BIC = Bayesian information criterion, saBIC = sample size adjusted BIC.  
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Table 14. Comparing Analysis Models When Measurement Invariance Did Not Hold in the Population under 

Population Model 1 

DIF 

magnit

ude 

Sam

ple 

size 

Num

ber 

of 

DIF 

items 

Covari

ate 

effect 

on 

class 

AIC_

a1 

AIC_

a2 

AIC_

a3 

AIC_

a4 

BIC_

a1 

BIC_

a2 

BIC_

a3 

BIC_

a4 

ssBIC

_a1 

ssBIC

_a2 

ssBIC

_a3 

ssBIC

_a4 

4 500 1 1 .26 .29 .32 .14 .53 .30 .17 .00 .35 .32 .29 .04 

2 .15 .23 .39 .24 .31 .43 .26 .01 .19 .31 .41 .10 

2 1 .17 .26 .37 .20 .37 .39 .24 .00 .21 .34 .39 .07 

2 .04 .30 .35 .31 .12 .62 .25 .01 .06 .48 .37 .10 

2000 1 1 .10 .23 .39 .29 .25 .54 .21 .00 .15 .45 .38 .03 

2 .00 .43 .24 .33 .00 .90 .09 .00 .00 .76 .21 .03 

2 1 .01 .36 .33 .31 .03 .84 .13 .00 .02 .70 .27 .02 

2 .00 .66 .17 .17 .00 .99 .02 .00 .00 .93 .07 .01 

8 500 1 1 .16 .26 .30 .29 .35 .46 .19 .00 .24 .37 .30 .10 

2 .03 .36 .25 .37 .08 .76 .16 .01 .03 .54 .27 .16 

2 1 .02 .51 .31 .17 .05 .80 .15 .00 .02 .66 .26 .06 

2 .00 .67 .20 .13 .00 .93 .07 .01 .00 .82 .15 .04 

2000 1 1 .01 .41 .21 .38 .01 .93 .06 .00 .01 .81 .17 .02 

2 .00 .71 .20 .10 .00 .98 .02 .00 .00 .91 .09 .00 

2 1 .00 .79 .17 .05 .00 .98 .02 .00 .00 .95 .05 .00 

2 .00 .81 .16 .03 .00 .99 .02 .00 .00 .96 .04 .00 

12 500 1 1 .06 .33 .27 .34 .16 .70 .14 .01 .09 .50 .29 .13 

2 .00 .53 .16 .32 .00 .92 .07 .01 .00 .73 .16 .11 

2 1 .00 .77 .20 .04 .00 .97 .03 .00 .00 .87 .13 .00 

2 .00 .79 .18 .03 .00 .97 .03 .00 .00 .88 .12 .00 

2000 1 1 .00 .71 .18 .11 .00 .97 .03 .00 .00 .92 .07 .01 

2 .00 .81 .19 .01 .00 .98 .02 .00 .00 .94 .06 .00 

2 1 .00 .81 .17 .02 .00 .99 .01 .00 .00 .97 .03 .00 

2 .00 .83 .15 .02 .00 .99 .02 .00 .00 .95 .05 .00 

Note. The suffix of a1, a2, a3, and a4 for AIC, BIC, and saBIC indicates that analysis models 1, 2, 3, and 4 (see 

Figure 5a, 5b, 5c, and 5d), respectively.  



46 

 

Table 15. Comparing Analysis Models When Measurement Invariance Did Not Hold in the Population under 

Population Model 2 

Covari

ate 

effect 

on 

factor 

Sam

ple 

size 

DIF 

magnit

ude 

Num

ber 

of 

DIF 

items 

AIC_

a1 

AIC_

a2 

AIC_

a3 

AIC_

a4 

BIC_

a1 

BIC_

a2 

BIC_

a3 

BIC_

a4 

ssBIC

_a1 

ssBIC

_a2 

ssBIC

_a3 

ssBIC

_a4 

4 500 4 1 .02 .05 .62 .31 .09 .19 .71 .01 .04 .09 .74 .14 

2 .02 .11 .52 .36 .08 .26 .65 .01 .03 .15 .68 .13 

8 1 .00 .03 .53 .44 .02 .23 .74 .01 .00 .08 .72 .20 

2 .00 .03 .77 .20 .00 .19 .80 .01 .00 .07 .87 .06 

12 1 .00 .01 .60 .39 .01 .15 .83 .02 .00 .04 .78 .18 

2 .00 .01 .95 .05 .00 .02 .99 .00 .00 .01 .99 .01 

2000 4 1 .00 .01 .56 .44 .00 .03 .96 .00 .00 .01 .94 .05 

2 .00 .00 .68 .32 .00 .04 .96 .00 .00 .02 .96 .03 

8 1 .00 .00 .71 .29 .00 .01 .99 .00 .00 .00 .97 .03 

2 .00 .00 .95 .05 .00 .00 1.00 .00 .00 .00 1.00 .00 

12 1 .00 .00 .91 .09 .00 .00 1.00 .00 .00 .00 1.00 .00 

2 .00 .00 .97 .04 .00 .00 1.00 .00 .00 .00 1.00 .00 

8 500 4 1 .00 .00 .70 .31 .00 .00 .99 .01 .00 .00 .87 .13 

2 .00 .00 .59 .41 .00 .00 .99 .02 .00 .00 .84 .17 

8 1 .00 .00 .53 .47 .00 .00 .98 .02 .00 .00 .77 .23 

2 .00 .00 .80 .20 .00 .00 1.00 .00 .00 .00 .93 .07 

12 1 .00 .00 .65 .35 .00 .00 .99 .01 .00 .00 .83 .17 

2 .00 .00 .96 .04 .00 .00 1.00 .00 .00 .00 1.00 .00 

2000 4 1 .00 .00 .65 .35 .00 .00 .99 .01 .00 .00 .97 .03 

2 .00 .00 .77 .24 .00 .00 1.00 .00 .00 .00 .99 .02 

8 1 .00 .00 .76 .24 .00 .00 1.00 .00 .00 .00 .98 .02 

2 .00 .00 .94 .06 .00 .00 1.00 .00 .00 .00 1.00 .00 

12 1 .00 .00 .93 .07 .00 .00 1.00 .00 .00 .00 1.00 .00 

2 .00 .00 .95 .05 .00    .00 1.00    .00 .00 .00 1.00 .00 

Note. The suffix of a1, a2, a3, and a4 for AIC, BIC, and saBIC indicates that analysis models 1, 2, 3, and 4 (see 

Figure 5a, 5b, 5c, and 5d), respectively.   
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Table 16. Comparing Analysis Models When Measurement Invariance Did Not Hold in the Population under 

Population Model 3 

 Covar

iate 

effect 

on 

item 

Covar

iate 

effect 

on 

factor 

Sam

ple 

size 

AIC

_a1 

AIC

_a2 

AIC

_a3 

AIC

_a4 

BIC

_a1 

BIC

_a2 

BIC

_a3 

BIC

_a4 

ssBIC

_a1 

ssBIC

_a2 

ssBIC

_a3 

ssBIC

_a4 

4 4 500 .00 .00 .02 .98 .00 .03 .38 .59 .00 .00 .05 .95 

2000 .00 .00 .01 .99 .00 .00 .01 .99 .00 .00 .01 .99 

8 500 .00 .00 .17 .83 .00 .00 .91 .09 .00 .00 .37 .63 

2000 .00 .00 .06 .94 .00 .00 .66 .34 .00 .00 .24 .76 

8 4 500 .00 .00 .01 .99 .00 .00 .01 .99 .00 .00 .01 .99 

2000 .00 .00 .01 .99 .00 .00 .01 .99 .00 .00 .01 .99 

8 500 .00 .00 .02 .98 .00 .00 .31 .69 .00 .00 .04 .96 

2000 .00 .00 .00 1.00 .00 .00 .01 1.00 .00 .00 .00 1.00 

Note. The suffix of a1, a2, a3, and a4 for AIC, BIC, and saBIC indicates that analysis models 1, 2, 3, and 

4 (see Figure 5a, 5b, 5c, and 5d), respectively.   
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Chapter 5: Discussion 

This simulation study examined the impact of covariate effect inclusion on measurement 

invariance testing with factor mixture modeling. Different covariate effects were simulated, including the 

covariate effect on the latent class variable, the factor, and the item. Then different analysis models were 

fitted where the covariate effects were misspecified and class enumeration was examined to see how the 

misspecification affected the class enumeration. Key findings will be summarized and discussed first, 

followed by implications of this study on applied and methodological research in the future.  

When measurement invariance (MI) held, two latent classes were distinguished by factor mean 

difference. Overall models that included the covariate effect on the latent class membership only (i.e., 

analysis model 2) and the covariate effects on the latent class membership, factor, and all items (i.e., 

analysis model 4) performed well. Specifically, both models could well identify the correct model (i.e., 2-

class scalar in this study), if there was only covariate effect on the latent class membership or the 

covariate effect on the factor was weak (.4 in this study). Under these circumstances, the simpler model 

including only the covariate effect on the latent class membership had better fit than the more complex 

model including direct covariate effects on all items. However, only the more complex model identified 

the 2-class scalar model when the covariate effect on the factor was strong (i.e., .8 in this study) or there 

was direct covariate effect on the item. Under these circumstances, the more complex model fitted data 

better than the simpler model. However, in reality, it is unknown what the underlying population model 

is, whether the covariate effect on the factor is strong, or whether there are direct covariate effects on the 

items. Therefore, we recommend the most complex model in the class enumeration process when MI 

holds. Once the number of latent classes and the level of invariance are identified, a simpler model (i.e., 

covariate effect on the latent class membership only) with these factors fixed (e.g., 2-class scalar) can be 

fitted and compared to the same solution under the more complex model. Then the model that has better 
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model fit can be selected based on information criteria and parameter estimates can be examined and 

interpreted. However, it should be noted that due to the complexity of this analysis model, it might not be 

a practical solution when there are multiple covariates (Nylund-Gibson & Masyn, 2016). It might be 

challenging to estimate model parameters when all the included covariates have direct effects on all the 

items.  

When MI held, the unconditional model tended to select the 1-class model, which might result 

from the low class separation. That is, classes were separated only by the factor mean difference so both 

the class separation and classification accuracy could be low. Therefore, information criteria failed to 

identify the 2-class scalar model. The poor performance of the unconditional model compared with other 

model that included covariate effects showed that including covariate effects might help improve class 

separation and thus the class enumeration in MI testing (Lubke & Muthén, 2007; Maij-de Meij et al., 

2010). However, the inclusion of covariate effects does not necessarily guarantee accurate results for MI 

testing. Specifically, the analysis model including both covariate effects on the latent class membership 

and the factor also supported 1-class model. This might be because although the covariate effect on the 

factor was simulated within each latent class and the factor mean difference was simulated between latent 

classes, the covariate path to the factor in the fitted model captured the variability in the factor mean as a 

whole. Therefore, the 1-class model was supported instead of the 2-class scalar model. Other possible 

explanations have been ruled out by results of a few additional simulation conditions. That is, larger 

factor mean difference (1.5 rather than the original .5) and the covariate effect on the latent class variable 

being zero were simulated separately. Similar results were found with these additional simulations that 

adding the covariate effect on the factor would lead to the 1-class solution. That is, even though the factor 

mean difference between classes got larger or the covariate had no relationship with the latent class 

membership, the difference in the factor mean would still be captured by the covariate effect. Overall, 

when MI held, BIC was more reliable than saBIC. The performance of saBIC was sample-dependent.  

When MI did not hold, overall the choice of analysis models depended upon the population 

model and class separation. When there were covariate effects on the latent class variable only 
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(population model 1) or both the latent class variable and the factor (population model 2), all analysis 

models including the unconditional model performed well if the class separation was large; otherwise, the 

analysis model that matched the population model performed the best. For population model 1, in 

addition to the analysis model that matched the population model, the slightly over-specified model 

including covariate effects on both the latent class membership and the factor also performed well, when 

the class separation was large. For population model 2, the analysis model that ignored the covariate 

effect on the factor performed well when the omitted covariate effect was not strong. When the covariate 

effect on the factor was strong, the analysis model that matched the population model (i.e., covariate 

effects on both the latent class membership and the factor) performed the best. When there were covariate 

effects on the latent class membership, the factor, and the item (population model 3), the model that 

ignored the covariate effect on the item performed very well when the omitted effect was not strong. 

When the effect was strong, none of the models performed satisfactorily; however, with large sample size 

and large separation, the unconditional model was acceptable.  

Overall, when there was measurement noninvariance, the unconditional model should not be 

recommended, because it tended to select the 1-class model regardless of the population model. This is 

similar to the finding under measurement invariance conditions and consistent with previous findings in 

the literature (Lubke & Muthén, 2007; Maij-de Meij et al., 2010). That is, including covariates in the class 

enumeration could improve the class separation and thus covariates should be included in the factor 

mixture model when testing measurement invariance across latent classes. Note that the poor performance 

of the unconditional model was not observed in previous simulation studies using latent class analysis 

model (Nylund-Gibson & Masyn, 2016) and regression mixture model (M. Kim et al., 2016). Both 

studies found that the unconditional model performed well in terms of class enumeration. This 

discrepancy in the performance of the unconditional model might occur due to several differences 

between this study and the other two studies mentioned above. First, this study focused on the factor 

mixture modeling, which is a combination of confirmatory factor analysis and latent class analysis. 

Therefore, the model could be considered as more complex than the latent class analysis and regression 
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mixture model. It might be more difficult to distinguish latent classes because simulated differences 

across classes might be absorbed by other model parameters. If this happens, including covariates could 

improve the class separation and classification accuracy, which would further help the class enumeration. 

Second, class enumeration is defined differently for this study and the other two studies. This study 

examined the number of latent classes and the level of invariance simultaneously in the class enumeration 

process, while the other two studies only considered the number of latent classes. Overall, it would be 

beneficial to include covariate effects into the factor mixture model in class enumeration. 

Specifically, it seems that including covariate effects on both the latent class membership and the 

factor yielded desirable results consistently across population models, when there was measurement 

noninvariance. However, the model should be interpreted with caution because when the class separation 

was not large, that is, smaller DIF magnitude coupled with fewer DIF items, the model tended to select 

the 1-class model. Only including the covariate effect on the latent class membership might lead to over-

extraction of latent classes if there were other covariate effects but were omitted. In other words, 

additional latent classes emerged due to the omitted effects. Nevertheless, if the direct covariate effects on 

all the items were modeled in the most complex analysis model, the 2-class scalar model was selected 

instead of the 2-class metric model. This might be because the covariate effects on items absorbed the 

intercept noninvariance.  

Although including covariate effects on the latent class variable and the factor seemed to work 

well in identifying the correct model under measurement noninvariance, this approach did not have the 

best model fit across simulation conditions. That is, with intercept noninvariance, the analysis model that 

matched the population model yielded the best fit to the data, as compared with other analysis models. 

Therefore, instead of recommending a single model that includes covariate effects on the latent class 

variable and the factor, we suggest that applied researchers can use this model as a starting point in the 

class enumeration process and compare that model to other analysis models. That is, first, identify the 

number of latent classes and the level of invariance using the model that includes covariate effects on the 

latent class variable and the factor. Second, fit other analysis models that modeled the covariate effects 
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differently with the number of latent classes and the level of invariance identified at the first step. The 

fitted analysis models include the model that has the covariate effect on the latent class membership only, 

and the most complex analysis models that includes covariate effects on the latent class membership, the 

factor, and all items. Third, compare the fit of the analysis models with the model used at the first step 

and choose an analysis model that yields the best fit.  

It is important to note that the recommendation provided above regarding the inclusion of 

covariate effects in testing measurement invariance are assuming measurement noninvariance. In other 

words, the recommendation can be taken if applied researchers hypothesize measurement noninvariance 

based on substantive theory or previous research. If the hypothesis is wrong and measurement invariance 

actually holds, following the recommendation would lead to biased results. That is, although including 

covariates on the latent class variable and the factor is recommended in testing measurement invariance 

across latent classes assuming measurement noninvariance, this way of modeling covariate effects would 

not work in testing factor mean differences across classes when measurement invariance actually held. In 

other words, if the only difference across classes was in the factor mean, including covariate effects on 

both the latent class variable and the factor would not lead to the identification of the scalar invariance 

model. Instead, the 1-class model would be supported, because the factor mean difference would be 

absorbed by the covariate effect on the factor, as discussed earlier. In this case, including covariate effects 

on both the latent class membership and the factor was not a good option. If applied researchers had no 

hypothesis about whether measurement invariance holds or not, including the covariate effect only on the 

latent class membership seems to be a reasonable approach. This approach would lead to satisfactory 

class enumeration results except when the covariate effect on the factor was strong or there were direct 

effects on the items. Then the fit of this model can be compared with other analysis models, including the 

model that has the covariate effects on both the latent class membership and the factor, and the model that 

includes the covariate effects on the latent class membership, the factor, and all the items. The number of 

latent classes and the level of invariance for these analysis models are fixed to be the same as the solution 

identified by the model with covariate effect on the latent class membership only.  
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Some additional words of caution need to be pointed out in interpreting or generalizing results 

and recommendations. First, this study focused on the impact of excluding/misspecifying covariate effects 

on the class enumeration for MI testing with factor mixture modeling. Future research could further 

examine the classification accuracy and parameter estimates once the correct solution and the best-fitting 

analysis model is identified. Second, only measurement noninvariance in intercepts was considered in this 

study and factor loadings were constrained to be equal across latent classes. It would be interesting to 

examine the performance of the analysis models under loading noninvariance only or both loading and 

intercept noninvariance. Third, this study focused on detecting measurement noninvariance across latent 

classes (i.e., latent DIF), but results showed that the presence of observed DIF related with the covariate 

could distort the results for testing latent DIF. That is, when there was a strong direct covariate effect on 

the item (i.e., observed DIF), all analysis models fitted in this study failed to detect the correct level of 

measurement invariance across latent classes. Future methodological research can further examine how to 

conduct measurement invariance testing across latent classes with the presence of observed DIF and what 

approaches or model building process should be used to identify latent and observed DIF. Note that Tay 

et al. (2011) proposed a procedure to test latent and observed DIF in the item response theory framework. 

Masyn (2017) proposed a stepwise MIMIC approach to testing observed nonuniform and uniform DIF 

related with a covariate in latent class analysis. Nevertheless, simulation studies are needed in the future 

to investigate the performance of the approach and other possible approaches.  

In summary, this study shows that covariates should be included in the factor mixture modeling 

when the focus is to identify the number of latent classes and the level of invariance. It is not a good 

option to exclude the covariate effects because this approach would lead to the 1-class solution. Instead, 

when testing measurement invariance, the covariate effect on the latent class membership can be included 

if there is no priori hypothesis regarding whether measurement invariance might hold or not. If 

measurement invariance might not hold based on substantive theory or prior research, the covariate 

effects on the latent class membership and the factor can be included to identify a solution. In addition, it 

is good to know that larger sample size and larger class separation would help the class enumeration.  
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