July 2018

Interrogation of Protein Function with Peptidomimetics

Olapeju Bolarinwa
University of South Florida, ooyesiku@mail.usf.edu

Follow this and additional works at: https://scholarcommons.usf.edu/etd
Part of the Biochemistry Commons, and the Organic Chemistry Commons

Scholar Commons Citation

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.
Interrogation of Protein Function with Peptidomimetics

by

Olapeju Bolarinwa

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Chemistry
College of Arts and Sciences
University of South Florida

Major Professor: Jianfeng Cai, Ph.D.
James Leahy, Ph.D.
Wayne Guida, Ph.D.
Cheng, Feng, Ph.D.

Date of Approval:
June 27, 2018

Keywords:, γ-AApeptide, amylin, hIAPP, diabetes, MPP8, peptidomimetics, protein-protein interaction

Copyright © 2018, Olapeju Bolarinwa
DEDICATION

I dedicate this work to the Almighty God who sustained me through it all.
ACKNOWLEDGEMENTS

I would like to express my profound gratitude to my Lord Jesus Christ for His undeniable faithfulness that kept me through this program. I am sincerely grateful, Lord.

To my husband, Olufemi Daniel Bolarinwa, I appreciate your firm support through it all. I could not have asked for a better man in my life. I will always love you. Thank you for your understanding. Thank you for staying by me through the thicks and thin.

To God’s heritage, Oluwalani and Oluwatoni, I am grateful to have you both. You are the sunshine in my world. You made this journey easier for me. I cherish those warm hugs that we shared. Thank you both for the “welcome home” song that cheered me up every evening, after a tiring day. I love you and cherish you both in my life.

To my Advisor, Dr. Cai, thank you for always believing in me. Thank you for those kind words of encouragement. I admire the level of understanding that you showed with every student in the lab. I appreciate your leadership and mentorship. Thank you for giving me a chance to prove myself.

To my committee members: Dr. Wayne Guida, Dr. James Leahy, Dr. Feng Cheng and Dr. Cao, I am grateful for your advisement. Thank you for sharing part of your valued time with me at USF. Thank you for believing in me.

To members of the Cai Lab, thank you for making this journey worthwhile. Thank you for always being there for me. Thank you for your help.
To my Parents and Parents-in-law, your words of encouragement were always timely. Thank you for your support all the way. You have always given me the feeling that we were into this together. You have always got my back. Oluwalani and Oluwatoni will never forget you. Thank you for always making yourself available anytime we call on you. I can boldly say that you are the best.

To my siblings - Olamide (Sister mi), Fisayo, Oluwaseyi (King), Oluwatosin (Queen) and Olufunmilayo (Princess), I am very grateful to have you. You all are the best. Thanks for those sincere concerns you expressed. I love you all.

To the Ogunade, Oloke and Owotoki families, thanks for your all time support. Thank you for your prayers, words of assurance and encouragement. I am grateful for the privilege to have you.

To my church family, I am sincerely grateful for all your prayers and words of encouragement. I love you all.
TABLE OF CONTENTS

List of Tables ... iv

List of Figures ... v

List of Abbreviations ... ix

Abstract .. xii

Chapter 1: Introduction ... 1
 1.1 Peptidomimetics ... 1
 1.2 Protein-Protein Interactions (PPIs) ... 1
 1.3 γ-AApeptides .. 3
 1.4 Outline of the Dissertation ... 4
 1.5 References .. 5

Chapter 2: Sulfono-γ-AA Modified Peptides That Inhibit HIV-1 Fusion 7
 2.1 Introduction .. 7
 2.2 Results and Discussion ... 11
 2.3 Conclusion ... 16
 2.4 General Information ... 16
 Peptide synthesis .. 16
 Synthesis of sulfono-γ-AApeptides .. 16
 Synthesis of Cbz-aminoethanesulfonyl chloride ... 16
 Synthesis of Fmoc-sulfono-γ-AA1 ... 17
 Solid phase synthesis ... 18
 Olefin metathesis and purification ... 19
Circular dichroism analysis ... 20
HIV-1 neutralization assay. .. 20
Protease stability assay. ... 21
2.5 References ... 24

Chapter 3: γ-AApeptides –Based Small Molecule Ligands That Disaggregate Human Islet Amyloid Polypeptide ... 27
3.1 Introduction ... 27
3.2 Results and Discussion .. 29
3.3 Conclusion ... 42
3.4 Materials and Methods .. 43
 Peptides synthesis ... 43
 General information ... 43
 Solid phase peptide synthesis .. 43
 hIAPP sample preparation ... 45
 Thioflavin T fluorescence assay .. 45
 Transmission electron microscopy (TEM) .. 46
 Atomic force microscopy (AFM) .. 46
 Percentage inhibition .. 47
 Cell viability/proliferation assay ... 47
3.5 References ... 50

Chapter 4: Evaluation of the Sequence-Dependent Aggregation And Inhibitory Potential Of Islet Amyloid Polypeptide-Derived Retro-Peptides ... 53
4.1 Introduction ... 53
4.2 Results and Discussion .. 56
4.3 Conclusion ... 69
4.4 General information .. 70
 Peptide synthesis ... 70
 Congo red binding assay ... 70
 Circular dichroism studies. .. 71
 Thioflavin T fluorescence assay .. 71
 Transmission electron microscopy (TEM).. 72
Kinetic aggregation assay ...72
4.5 References ...73

Chapter 5 : Development of Potent Chemical Probes Targeting MPP8-H3K9me Interaction ..75
 5.1 Introduction ...75
 5.2 Results and Discussion ..80
 5.3 Conclusion ...83
 5.4 General information ...83
 Peptide synthesis ...83
 Synthesis of building blocks ...85
 Cell fractionation assay ..87
 5.5 References ...87

Chapter 6 : Conclusion and Future Outlook ..89

Appendix A: Publishing Rights ..91
LIST OF TABLES

Table 2.1 Antiviral activity from Viral infection assay ...14

Table 2.2 Enzymatic hydrolysis assay with chymotrypsin...15

Table 2.3 HPLC purities and retention time of peptides 1-4 ...23

Table 3.1 Percent Inhibition (Based on ThT Fluorescence assay) of HW-155,C1 and 1-8 ...30

Table 3.2 HPLC purities and retention time of peptides 1-8 and HW-15548

Table 4.1 Peptide sequences of designed retro-peptides ...56

Table 4.2 Molecular weight of peptides and their percent yield73
LIST OF FIGURES

Figure 1.1 General structure of α-peptide and γ-AApeptide .. 4

Figure 2.1 Schematic illustration of the different regions of HIV-1 gp41 .. 9

Figure 2.2 General structures of α-peptide, γ-AApeptides, and Sulfono-γ-AApeptides 10

Figure 2.3 C-HR derived peptides .. 12

Figure 2.4 CD spectra of peptides 1 – 4 .. 13

Figure 2.5 Melting curve of peptides 1-4 ... 13

Figure 2.6 The degradation curves of 1-4 ... 15

Figure 2.7 Synthesis of Cbz-aminoethanesulfonylchloride ... 17

Figure 2.8 Synthesis of Fmoc-sulfono-γ-AA1 ... 18

Figure 2.9 Solid phase synthesis of stapled peptides ... 19

Figure 2.10 1H NMR (400 MHz, CDCl3) and MS of Fmoc-sulfono-γ-AA1 .. 22

Figure 2.11 13C NMR (400 MHz, DMSO-d6) of Fmoc-sulfono-γ-AA1 .. 22

Figure 2.12 HPLC spectra of peptides 1-4 ... 23

Figure 3.1 Peptide Sequences HW-155, control C1 and 1-8 ... 29

Figure 3.2 Time-dependent ThT assay of hIAPP1-37 (10µM) and various molar equivalents of 1 ... 32
Figure 3.3 Time-dependent ThT assay of hIAPP_{1-37} (10\mu M) and various molar equivalents of 2 ...33

Figure 3.4 Time-dependent ThT assay of hIAPP_{1-37} (10\mu M) and various molar equivalents of 3 ...33

Figure 3.5 Time-dependent ThT assay of hIAPP_{1-37} (10\mu M) and various molar equivalents of 4 ...34

Figure 3.6 Time-dependent ThT assay of hIAPP_{1-37} (10\mu M) and various molar equivalents of 5 ...35

Figure 3.7 Time-dependent ThT assay of hIAPP_{1-37} (10\mu M) and various molar equivalents of 6 ...36

Figure 3.8 Time-dependent ThT assay of hIAPP_{1-37} (10\mu M) and various molar equivalents of 7 ...36

Figure 3.9 Time-dependent ThT assay of hIAPP_{1-37} (10\mu M) and various molar equivalents of 8 ...37

Figure 3.10 Time-dependent ThT assay of hIAPP_{1-37} (10\mu M) and various molar equivalents of HW-155 ...38

Figure 3.11 Time-dependent ThT assay of the disruption of hIAPP_{1-37} (10\mu M) preformed fibrils by 5 (100\mu M) ...39

Figure 3.12 AFM image the disruption of hIAPP_{1-37} (10\mu M) preformed fibrils by 5 (100\mu M) ...39

Figure 3.13 TEM images of hIAPP_{1-37} alone and in the presence of equimolar amount 2,3,4,5, and HW-155 ...40

Figure 3.14 Effects of peptides 2,3,4,5 and HW-155 on NIH-3T3 cells in CCK-8 cell viability assay ...41

Figure 3.15 Evaluation of the potential of peptides 2,3,4,5 and HW-155 to improve the chances of cell survival in the presence of hIAPP_{1-37} amyloid. ...42
Figure 3.16 Synthesis of γ-A peptide building block/monomeric unit. ..43

Figure 3.17 Solid Phase synthesis scheme for HW-155,C1 and 1-8 ...45

Figure 3.18 HPLC spectra of peptides 1-8 and HW-155 ...50

Figure 4.1 A sample L-peptide and its analogues ..55

Figure 4.2 Congo red spectra of retro-peptides at time t = 0h ...60

Figure 4.3 Congo red spectra of retro-peptides at time t = 28h ..60

Figure 4.4 Congo red spectra of retro-peptides at time t = 43h ..61

Figure 4.5 ThT assay for aggregation of retro-peptides ...61

Figure 4.6 TEM images of hIAPP22-29, and peptides r1 – r8 ...62

Figure 4.7 CD spectra of peptides consisting of alternating L- and D-amino acid units63

Figure 4.8 CD spectra of peptides consisting of all D-amino acid units (r5, r6, and r8)63

Figure 4.9 CD spectra of peptides consisting of all D-amino acid units (r7)64

Figure 4.10 Kinetic aggregation assay for all peptides. ..64

Figure 4.11 ThT inhibition assay for r1. ..65

Figure 4.12 ThT inhibition assay for r2. ..65

Figure 4.13 ThT inhibition assay for r3. ..66

Figure 4.14 ThT inhibition assay for r4. ..66

Figure 4.15 ThT inhibition assay for r5. ..67
Figure 4.16 ThT inhibition assay for r6. ...67
Figure 4.17 ThT inhibition assay for r7. ...68
Figure 4.18 ThT inhibition assay for r8. ...68
Figure 4.19 ThT inhibition assay for hIAPP22-29. ..69
Figure 5.1 Peptides designed to disrupt H3K9me3-MPP8 interaction.78
Figure 5.2 Western blot from cell fractionation studies (PJ-164-13 – PJ-164-17).79
Figure 5.3 Structure of designed cell-penetrating and cyclic peptides.............................80
Figure 5.4 Structure of designed cyclic peptides. ...81
Figure 5.5 Western blot of cell fractionation assay for peptides PJ 164-18 – PJ 164-24..........................82
Figure 5.6 Synthetic scheme for the reductive alkylation of Lysine..............................86
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>TIS</td>
<td>Triisopropylsilane</td>
</tr>
<tr>
<td>HPLC</td>
<td>High-performance liquid chromatography</td>
</tr>
<tr>
<td>ACN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>MALDI-TOF</td>
<td>Matrix-assisted laser desorption ionization time of flight</td>
</tr>
<tr>
<td>HOBt</td>
<td>1-hydroxybenzotriazole monohydrate</td>
</tr>
<tr>
<td>DIC</td>
<td>Diisopropylcarbodiimide</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>DIPEA</td>
<td>Diisopropylethylamine</td>
</tr>
<tr>
<td>Fmoc</td>
<td>Fluorenylmethyloxycarbonyl (chloride)</td>
</tr>
<tr>
<td>Alloc</td>
<td>Allyl chloroformate</td>
</tr>
<tr>
<td>CCK-8</td>
<td>Cell counting kit 8</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>AFM</td>
<td>Atomic force microscopy</td>
</tr>
<tr>
<td>ThT</td>
<td>Thioflavin-t</td>
</tr>
<tr>
<td>OBOC</td>
<td>One-bead-one-compound</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>CDCl3</td>
<td>Deuterated chloroform</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>CD</td>
<td>Circular dichroism</td>
</tr>
<tr>
<td>RCM</td>
<td>Ring-closing metathesis</td>
</tr>
<tr>
<td>DCE</td>
<td>Dichloroethane</td>
</tr>
<tr>
<td>EtOAc</td>
<td>Ethyl acetate</td>
</tr>
<tr>
<td>Boc</td>
<td>tert-Butyloxy carbonyl</td>
</tr>
<tr>
<td>Cbz</td>
<td>Benzyl chloroformate</td>
</tr>
<tr>
<td>LC/MS</td>
<td>Liquid chromatography-mass spectrometry</td>
</tr>
<tr>
<td>AZT</td>
<td>Azidothymidine</td>
</tr>
<tr>
<td>N-HR</td>
<td>N-heptad repeat</td>
</tr>
<tr>
<td>C-HR</td>
<td>C-heptad repeat</td>
</tr>
<tr>
<td>6-HB</td>
<td>Six helical bundle</td>
</tr>
<tr>
<td>PPI</td>
<td>Protein-protein interaction</td>
</tr>
<tr>
<td>SPPS</td>
<td>Solid phase peptide synthesis</td>
</tr>
<tr>
<td>CO2</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified eagle’s medium</td>
</tr>
<tr>
<td>T2DM</td>
<td>Type 2 diabetes mellitus</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>PTM</td>
<td>Post – translational modifications</td>
</tr>
<tr>
<td>EMT</td>
<td>Epithelial- mesenchymal transition</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MPP8</td>
<td>M-phase phosphoprotein 8</td>
</tr>
<tr>
<td>NE</td>
<td>Nuclear extract</td>
</tr>
<tr>
<td>NP</td>
<td>Nuclear pellet</td>
</tr>
<tr>
<td>TBTU</td>
<td>2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethylaminium tetrafluoroborate</td>
</tr>
<tr>
<td>MEOH</td>
<td>Methanol</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>M</td>
<td>Molarity</td>
</tr>
</tbody>
</table>
ABSTRACT

Proteins can be described as the “machineries” responsible for almost all tasks in the levels of organizational complexity in multi-cellular organisms namely: the cells, tissues, organs and systems. Any disorder in the function of a protein at any of these levels could result in disease, and a study of protein function is critical to understanding the pathological features of the disease at the molecular level. A quick glance at these abundantly present proteins reveals two striking features: large diversity of biological function, and the variations in structural complexity, which varies from simple random coils, to turns and helices, and on to structured assemblies of turns, helices and sheets.

Over the past few years, more research efforts have been channeled to the application of synthetic research to protein dynamics, most especially in disease conditions. This provides insight into the design and development of chemical tools capable of modulating protein functions. Some of such tools include small molecules, peptides and peptidomimetics.

In this work, we have described the application of these tools to three (3) different disease systems topping the list of incurable diseases: HIV, Diabetes, and Cancer. We have designed and developed chemical probes to facilitate a better understanding of major “culprit” proteins underlying the pathological conditions associated with these diseases. Our designed chemical probes were capable of modulating protein functions by producing the desired effects: inhibition of protein-protein interactions.
CHAPTER 1 : INTRODUCTION

1.1 Peptidomimetics

In the last three decades, peptides have gained a broader application, especially for therapeutic interventions. The relevant application of these macromolecules to nature, and their facile and well-established solid phase synthesis (SPPS) have encouraged their study, and proven applicability in medicinal chemistry and drug discovery. Even though the solubility of peptides is strictly sequence-dependent, they generally exhibit better solubility profiles than classical medicinal chemistry therapeutics, including low molecular weight compounds and small molecules. Despite their abundance and relative ease of accessibility, their application is limited by major drawbacks including protease degradation, poor oral availability, short plasma half-life.

However, several strategies have been explored to fully or partially address these concerns. These include backbone modification, cyclization, cyclization, PEGylation, lipidation, and stapling. Another very effective approach is the concept of peptidomimetics.

Peptidomimetics are small, protein-like chains that are capable of mimicking native analogs with presumably better pharmacokinetic and pharmacological profiles.

1.2 Protein-Protein Interactions (PPIs)

Protein-protein interactions (PPIs) are short-lived interactions between protein partners. The driving force for these interactions could be one or more of these: electrostatic and hydrophobic interactions, hydrogen bonding, and Van der Waals attraction. Compared to enzyme-substrate interactions, the druggability of PPIs is very poor because they lack well defined binding
pockets. For instance, two proteins can interact with each other over large areas and in a less
defined way as seen in transcription factors and their co-activators.

PPIs form the basis of a wide range of crucial cellular processes, hence, they are
indispensable to human existence. An appealing and innovative strategy to drug discovery is the
disruption and destabilization of PPIs. However, this comes with a lot of challenges including
difficulty in screening assays due to lack of measurable output, and poor druggability. These
bottlenecks have limited research in this area as many small molecules cannot span the entire
length of the interacting flat surfaces in PPIs. In addition, large molecules cannot gain access to
PPIs targets in cell compartments. The short-term nature of these interactions also makes
quantitative evaluations difficult.

Due to these challenges, only one small molecule PPI inhibitor have been approved till
date: Venetoclax (Venclexta). Venetoclax (Venclexta) is a BH3-mimetic developed by
AbbVie and Genentech, and approved for the treatment of Chronic Lymphocytic Leukaemia
(CLL). This was approved in 2016 and works by inhibiting the interaction between BCL-2, a BH3-
only protein, and the pro-apoptotic proteins, BAK and BAX. This inhibition results in the apoptosis
of CLL cells bearing the 17p deletion.

Despite these shortcomings, intensive and vigorous research in finding inhibitors of
protein-protein interactions has provided a ray of hope over the past few years. In fact, the recent
successes recounted in this area has indicated that protein-protein interfaces might be easier to
manipulate than previously thought. These studies unraveled the ‘hotspots’ on protein contact
surfaces and developed compact small molecules that bind tighter and deeper within the contact
surface than the contact atoms of the natural protein partner. High-throughput methods that
enhance easy screening and accurate qualitative characterization of protein-protein interactions have been developed.30-32

The identification of epitopes on the interacting surface of proteins (hotspots) have paved way for the design of peptides and peptidomimetic inhibitors of protein-protein interactions. In recent times, Peptide fragments consisting of the contact amino acid residues on partner proteins have been designed.33 On several occasions, alanine scanning has been used to further detect the most relevant amino acid in the hotspot.29 A similar but more effective approach in identifying protein-protein interactions modulators is peptidomimetics. Peptidomimetics that mimic the functional epitope of protein complexes have been developed.34-39

The application of peptides and peptidomimetics has advanced the course of medicinal chemistry and drug discovery as it unlocks potential agents that could target a broad spectrum of proteins that are implicated in many pathogenic diseases.

1.3 γ-AApeptides

Over the past two decades, peptidomimetics have found important applications in chemical biology and drug discovery.19 Our recently developed peptidomimetics, γ-AApeptides are oligomers of N-acylated-N-aminoethyl amino acids, and are capable of accommodating a second side chain functional group, in addition to the chiral side chain (Figure 1.1).40 This means that a γ-AApeptide monomer is similar to a canonical dipeptide residue. In addition to having other desirable features of a typical peptidomimetic, a unique advantage that γ-AApeptides offer is their limitless derivatization potential, which is not commonly found in most reported peptidomimetics.
1.4 Outline of the Dissertation

In this dissertation, we discuss the design, synthesis, and therapeutic applications of peptides and our recently developed peptidomimetic scaffold, γ-AApeptides, and its derivatives as chemical probes for protein interactions in disease conditions.

In chapter 2, we describe the design of a modified peptide that shows great HIV-fusion inhibitory activity.

In chapter 3, we discuss the design of γ-AApeptide–based small molecule ligands that inhibit the formation of pancreatic amyloid deposits in Type 2 diabetes mellitus.

In chapter 4, we describe the design of retro-D peptides based on the amyloid forming unit in amylin, the Type 2 diabetes amyloid. We also evaluated their aggregation propensity and fibril morphology, and tested their inhibitory activity.

In chapter 5, we describe the design and development of short peptide antagonists of the MPP8-H3K9me interaction, which is implicated in many cancers.

In chapter 6, we summarize our research findings and gave the future directions of all studies conducted in this research.

Figure 1.1 General structure of α-peptide and γ-AApeptide
1.5 References

CHAPTER 2: SULFONO-Γ-AA MODIFIED PEPTIDES THAT INHIBIT HIV-1 FUSION

2.1 Introduction

The global HIV statistics of 2015 revealed that approximately 36.7 million people worldwide are living with human immunodeficiency virus (HIV) and over 2.1 million new cases of HIV infection was recorded\(^1\) annually. The envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1) encoded by the HIV \textit{env} gene, is a somewhat stable membrane fusion machine which exists as a trimeric complex (gp160)\(_3\). This precursor trimer is proteolytically processed by furin into gp120 and gp41 heterodimers\(^2\). During the membrane fusion process, gp41 forms a fusion active six-helix bundle (6-HB) with a hydrophobic pocket\(^3\)\(^4\). In this six-helix bundle, the amino-terminal heptad repeat (N-HR) forms a central trimeric coiled-coil core whereas the trimeric helical carboxyl terminal repeat (C-HR) wraps around and interact with it in an antiparallel fashion\(^5\). This six-helix bundle brings into close proximity and facilitates the fusion of the viral and host cell membranes (Figure 2.1)\(^6\)\(^7\). The mutual dependence of N-HR and C-HR on each other in the 6-HB formation during viral entry makes them very important targets for fusion inhibitor design. Indeed, Targeting viral entry and fusion process of enveloped virus remains a very appealing therapeutic strategy due to its relative accessibility. Potent inhibitors which block these specific interactions that are mandatory for HIV-1 viral entry, including small molecules\(^8\)\(^-\)\(^10\), engineered peptides\(^11\), artificially designed peptidomimetics\(^12\)\(^-\)\(^15\), etc., have been discovered. However, peptides derived from N-HR mostly show weak inhibitory activity if the design does not promote trimerization of N-HR peptides\(^5\)\(^,\)\(^16\). Only typical N-HR constructs forming stable trimers can efficiently target HIV-1 fusion\(^17\)\(^-\)\(^20\). As a result, C-HR derived peptides have been studied.
extensively in the therapeutic search for potential fusion inhibitors. Examples include α-helical peptides such as enfuvirtide (T20) \(^{21,22}\) and C34 \(^{23-26}\). Enfuvirtide got market approval as the only HIV-1 fusion inhibitor for clinical use and works by competitively binding the N-HR thereby blocking the formation of the six-helical bundle required for fusion. It is very active against various HIV-1 strains including those resistant to reverse transcriptase and protease inhibitors \(^{22,27}\). It is similar in design to a segment of C-HR comprising amino acids 127 to 162 of the C-terminal end\(^{28}\). Although T20 has great anti-HIV activity, it is prone to induce drug resistance through mutations within the N-HR sites. Additionally, its poor bioavailability and large dose requirements complicate its therapeutic use \(^{30,31}\). Similar to T20, C34 also has sequence homology to the C-HR. Due to a 22-amino acid overlap between T-20 and C34 peptides, HIV-1 has also developed major mutations for C34 resistance in vitro \(^{31}\). Meanwhile, its bioavailability was still a concern due to its canonical peptide backbone.

To overcome the problems posed by T20 and other similar HIV fusion inhibitors, great efforts have been made to optimize the fusion inhibitors derived from the C-HR helical region of gp41 to suppress the emergence of resistant strains and increase the in-vivo stability and N-HR binding affinity \(^{32-34}\). One approach is to introduce electrostatic constraints into peptides to improve helicity and antiviral activity profile. This entails the substitution of charged and hydrophilic amino acids such as glutamic acid (E) and Lysine (K) at i and i+4 positions in the solvent-accessible site of C34 and its short variants \(^{4,36-39}\). In a six helix bundle, C-HR interact with N-HR with amino acid residues at their a and d positions of the heptad repeat (Figure 2.1). These residues are known to be critical for molecular recognition between both heptad repeats while residues at positions b, c, f and g are exposed to the solution and are almost non-crucial for gp41 C-HR and N-HR interaction\(^6\).
Figure 2.1 (A) Schematic illustration of the different regions of HIV-1 gp41. N-HR: N Heptad Repeat, C-HR: C Heptad Repeat, MPER: Membrane Proximal Ectodomain Region, MSD: Membrane Spanning Domain and. (B) Schematic illustration of the helical wheel of gp41 C-HR.

However, the residues at these positions are very critical for solubility and stability and they have great effects on the in-vivo activity and druggability of peptide fusion inhibitors. These engineered electrostatic interactions are helix enhancers and have significantly improved the solubility, helicity and potency of such derived peptides $^4, 36, 37, 40$. An additional approach is to introduce conformational restraints and substitution with non-proteinogenic amino acids in C-HR derived peptide mimics. For instance, peptidomimetics with unnatural amino acids and building blocks have been reported to successfully mimic the molecular interaction between gp41 C-HR and N-HR $^{12-15, 29, 33, 34, 41-46}$. Peptide mimics that targets gp41 N-HR include D-peptides $^{15, 17}$, unnatural foldamers $^{44, 45}$, and covalently restrained α-helices $^{13, 14, 46}$. These peptide mimics have generated highly potent fusion inhibitors with outstanding in-vivo stability.
Sulfono-γ-AApeptides are a sub-class of γ-AApeptides that are oligomers of N-acylated-N-aminoethyl amino acids. The replacement of carboxylic acids with sulfonyl chlorides in γ-AApeptides produces sulfono- γ-AApeptides (Figure. 2.2). They have enormous potential in functional group diversity. Like γ-AApeptides, sulfono- γ-AApeptides are able to display the same number of side chains as conventional peptides of equal length, endowing them with the ability to mimic bioactive peptides. As evidenced by their crystal structures, sulfono- γ-AApeptides possess an intrinsic folding propensity which is most likely a result of the bulkiness of the tertiary sulfonamide group besides intramolecular hydrogen bonding. Their optical analysis by circular dichroism and 2D-NMR also supports their well-crafted helical conformation. To explore the potential of sulfono-γ-AApeptides for their ability to modulate HIV-1 fusion at the cell entry stage, we designed a few peptides containing sulfono-γ-AA residues. Our previous findings suggested that replacement of amino acid residues with sulfono-γ-AA residues could retain sequence helicity. Thus, we envisioned these sequences were still capable of mimicking gp41.

Figure 2.2 General structures of α-peptide, γ-AApeptide, and Sulfono-γ-AApeptides

Peptide 1 is a 24-residue electrostatically constrained C-HR derived peptide with MT-hook, which was previously reported to be an active fusion inhibitor. Thus it was used as the template sequence for modification (Figure 2.3). As the initial attempt, we employed a combination of
sulfono γ-AA residue substitution and single hydrocarbon stapling to identify three peptides: 2, 3 and 4. 3 and 4 contain a sulfono-γ-AA residue at the 22nd position while only 2 and 4 contain hydrocarbon stapling between residues X at the 4th and 8th position (Figure 2.3).

2.2 Results and Discussion

We first assessed the helicity of the sequences by CD. As shown in Figure 2.4, interestingly, both 1 and 3 exhibited comparable helical folding propensity with characteristic minima at both 207 and 222 nm suggesting the existence of probable α-helical conformation. This suggests that incorporation of sulfono-γ-AA residue did not alter helicity significantly. As expected, after hydrocarbon stapling, both 2 and 4 clearly showed a significant increase in helicity compared to their unstapled counterparts, 1 and 3 (Figure 2.4). This is consistent with the previous findings that \(i, i+4\) hydrocarbon stapling enhances the α-helicity of peptides. These findings are corroborated by the thermal stability studies (Figure 2.5). 1 and 3 showed similar behavior at low temperature. However, 3 is more stable than 1 at temperature higher than 42°C. Also, 2 demonstrated increased stability than 4. Overall, hydrocarbon stapling improved the helicity and thermal stability profiles of 2 and 4.
Figure 2.3 (A) C-HR derived peptides. Peptide 1 is MT-SC22EK and was first reported in ref. 33; (B) The structure of sulfono-γAA1(γK) (S)-N-((2-aminoethyl)sulfonyl)-N-(2,6-diaminohexyl)glycine and (S)-2-(4-pentenyl)Ala residue (X) substituted at i and i+4 positions.
We next examined the antiviral activity of these sulfono-γ-AA containing peptides by viral infection assay54. Conformationally stabilized pre-formed recombinant \textit{env} trimers derived from various subtypes of HIV-1 strains55 were used in the assay. Both (enfuvirtide) T20 and AZT were
also tested for comparison. Intriguingly, both 3 and 4 displayed more potent antiviral activity in most tested subtypes including CZA97, B41, BG505, SF162 and DU422 than the unsubstituted peptide 1 (control) and stapled peptide 2. This indicates that the introduction of the peptidomimetic monomer, sulfono-γ-AA1, improved the interaction of peptide 3 and 4 with the N-HR of gp41, resulting in the inhibition of six-helical bundle formation. It is noteworthy that antiviral activity is not strictly dependent on secondary structures as evidenced by the obtained results (Table 2.1), as 3 and 4 exhibited comparable antiviral activity. All tested peptides showed comparable or greater anti-HIV activity than enfuvirtide (T20), a fusion inhibitor and AZT, a reverse transcriptase inhibitor which are currently being used in the clinics for the treatment of the symptomatic disease (Table 2.1). Thus, 3 and 4 emerged to be the most active with the best antiviral activity across all strains tested.

<table>
<thead>
<tr>
<th>IC50 (nM)</th>
<th>CZA97</th>
<th>B41</th>
<th>BG505</th>
<th>SF162</th>
<th>MN</th>
<th>DU422</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.8±1.6</td>
<td>181.1±89.1</td>
<td>15.2±0.2</td>
<td>11.3±2.2</td>
<td>102.4±29.9</td>
<td>14.8±0.3</td>
</tr>
<tr>
<td>2</td>
<td>7.6±1.0</td>
<td>210.8±58.9</td>
<td>14.0±0.5</td>
<td>15.6±0.9</td>
<td>67.1±9.1</td>
<td>16.0±1.1</td>
</tr>
<tr>
<td>3</td>
<td>4.6±0.1</td>
<td>118.8±4.0</td>
<td>9.0±0.2</td>
<td>7.2±1.8</td>
<td>77.9±2.4</td>
<td>6.0±2.7</td>
</tr>
<tr>
<td>4</td>
<td>6.5±0.8</td>
<td>171.3±4.6</td>
<td>9.7±2.6</td>
<td>11.4±0.8</td>
<td>51.2±10.2</td>
<td>11.3±0.1</td>
</tr>
<tr>
<td>T20</td>
<td>941.0±328.3</td>
<td>214.6±16.2</td>
<td>18.4±10.1</td>
<td>23.9±2.1</td>
<td>6.5±0.6</td>
<td>56.0±1.6</td>
</tr>
<tr>
<td>AZT</td>
<td>184.6±26.4</td>
<td>106.4±16.8</td>
<td>84.0±1.8</td>
<td>109.6±23.5</td>
<td>194.1±1.6</td>
<td>183.3±1.9</td>
</tr>
</tbody>
</table>

To directly interrogate the effect of sulfono-γAA1 substitution and hydrocarbon stapling on proteolytic cleavage, we used LC/MS to identify proteolytic fragments generated by the digestion of our peptide panels with chymotrypsin (Figure 2.6). After 10 mins, 2 and 4...
demonstrated greater stability to chymotrypsin than 1 and 3, suggesting stapling lead to sequences with increased stability. It is noted that 1 proved better than 3 (Figure 2.6 and Table 2.2), which may be because the inclusion of sulfono-γ-AA residue slightly altered the helicity, making it easier to be hydrolyzed. However, after backbone stapling, still possessing one sulfono-γ-AA residue, 4 exhibited almost similar resistance to proteolytic degradation as 1, indicating that the introduction of unnatural residue could enhance stability of the sequence.

Table 2.2 Enzymatic hydrolysis assay with chymotrypsin

<table>
<thead>
<tr>
<th>Peptide</th>
<th>% remaining after 10 mins</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>53.3</td>
</tr>
<tr>
<td>2</td>
<td>69.3</td>
</tr>
<tr>
<td>3</td>
<td>17.6</td>
</tr>
<tr>
<td>4</td>
<td>57.2</td>
</tr>
</tbody>
</table>

Figure 2.6 The degradation curves of 1-4
2.3 Conclusion
To summarize, although the daunting challenges hampering the clinical applications of enfuvirtide (T20) has limited the repository of active peptide-fusion inhibitors, the possibility of incorporating non-natural scaffolds may ultimately usher in new generation of peptide–fusion inhibitors with great therapeutic potential and improved protease resistance. Although our current design did not yield peptides with enhanced stability toward proteolysis, our study reveals that sulfono-γ-AA modified peptides could be used for the development of more potent anti-HIV agents. Furthermore, it is known that homogeneous sulfono-γ-AA peptides are completely resistant to enzymatic degradation and they possess remarkable helical propensity, we envision that we could use homogeneous sulfono-γ-AA peptides to design GP41 mimetics in the future. Additionally, the strategy implemented herein not only provide ideas for future HIV-1 inhibitor design, but may also be explored for the protein-protein interaction inhibitor (PPII) design.

2.4 General Information
Peptide Synthesis
All peptides used in this study were synthesized by the standard Fmoc-based solid phase peptide synthesis protocol using the Burrell Wrist-Action shaker. All Fmoc protected α-amino acids and Rink amide resin (0.7mmol/g, 200-400 mesh) were purchased from Chem-Impex International, Inc. All other Solvents and reagents were purchased from either Sigma Aldrich or Fisher Scientific and used without further purification. The peptides were analyzed and purified on a Waters Breeze 2 HPLC System, and then lyophilized on a Labconco Lyophilizer

Synthesis of sulfono-γ-AA peptides
Synthesis of Cbz-aminoethanesulfonyl chloride
Taurine (5g) and NaOH (2.5 eq) were dissolved in water and was kept stirring at 0°C. Benzylchloroformate (5.8 eq) was mixed with Dioxane and added dropwise to the solution. The ice bath was then removed and the reaction was stirred for 1h. The solution was washed with
EtOAc three times. The aqueous layer was co-evaporated with Toluene (2 times), Ethanol (once) and DCM (3 times). The resulting white solid, Cbz-protected aminoethane sodium sulfonate was suspended in EtOAc and filtered. To the white solid, Thionyl Chloride (10eq) and DMF (3 drops) were added and the reaction was refluxed for three hours and then concentrated on rotavap to obtain the Cbz-protected aminoethanesulfonil chloride (Figure 2.7).

Figure 2.7 Synthesis of Cbz-aminoethanesulfonil chloride

Synthesis of Fmoc-sulfono-γ-AA1

Fmoc-Lysine amino aldehyde and Glycine benzyl ester were dissolved in methanol. Triethylamine was added and the reaction was stirred for one hour. Sodium cyanoborohydride was then added to the reaction and left to stir for another hour. The solution was concentrated, extracted with EtOAc and further concentrated on the rotavap. The crude secondary amine was purified on silica gel with Hexanes/EtOAc (1:1) as eluent. After that, the secondary amine was dissolved in DCM, to which Cbz-protected aminoethanesulfonil chloride and DIPEA were added. The reaction was stirred overnight and the resulting product was purified on silica gel (eluent was hexanes/EtOAc 2:1). Next, hydrogenation was done in methanol and under hydrogen with 20% Pd-C for 1 h to remove the benzyl and carbamate group to yield the mono-Boc protected Fmoc-sulfono- γ-AA1. Boc protection of the amino group on the sulfonyl side chain was achieved by adding Boc anhydride in THF to a stirred solution of Fmoc-sulfono- γ-AA1 (Boc) and NaHCO3 in water in a dropwise manner. The reaction was allowed to continue overnight at room temperature. 1N citric acid was added, followed by extraction with EtOAc and drying over
Na₂SO₄. The solution was then concentrated and purified on silica gel. The product, Fmoc-sulfono-\(\gamma\)-AA1 was eluted with Hexanes/EtOAc 1:1 to give a white solid (Figure 2.8).

Figure 2.8 Synthesis of Fmoc-sulfono-\(\gamma\)-AA1.

Solid Phase synthesis.

The synthesis was conducted on 200 mg Rink amide resin (0.7 mmol/g) at room temperature and atmospheric pressure. The Fmoc protecting group was removed by treatment with 3mL 20% Piperidine in DMF solution for 15 mins(x2). The resin was washed with DCM and DMF (three times each). A solution of Fmoc-aa-OH/ Fmoc-sulfono- \(\gamma\)-AA1/ Fmoc-(S)-2-(4-pentenyl)Ala-OH (2 eq), HOBt (4 eq) and DIC (4 eq) was first premixed in 2mL DMF and then transferred into the peptide vessel containing the deprotected resin. The mixture was allowed to shake for 4h. The resin is then washed with DCM and DMF (3x each) and capped with acetic anhydride (1mL) and Pyridine (2mL) for another 15 min. After capping, deprotection was done and the cycle was repeated until the desired product was obtained (Figure 2.9).
Figure 2.9 Solid phase synthesis of stapled peptides.

Olefin Metathesis and Purification.

Ring-closing metathesis (RCM) of resin-bound N-Fmoc, side chain protected peptides was performed using 20 mol% of Grubbs I catalyst in degassed DCE for 2 hours at room temperature. The resin-bound peptide was washed in the peptide vessel and filtered. The RCM reaction was repeated once again to complete the cross-linking reaction. The reaction was monitored by LC/MS after cleavage of peptide from an aliquot of resin. The resulting stapled peptide was deprotected and cleaved from the resin with a cleavage cocktail mixture of TFA/Phenol/H2O/thioanisole/1, 2-ethanedithiol (82.5%/5%/15%/5%/2.5% v/v) for 3h and then precipitated with diethyl ether. The crude peptides (stapled and unstapled) were analyzed and purified on an analytical (1mL/min) and a preparative (16mL/min) RP-HPLC respectively. 5% to 100% linear gradient of solvent B(0.1% TFA in acetonitrile) in A(0.1% TFA in water) over 40 min was used. The HPLC traces were
detected at 215nm. The fraction containing the desired peptides/stapled peptide was collected, confirmed on an Applied Biosystems 4700 Proteomics Analyzer and lyophilized.

Circular Dichroism Analysis.

Circular dichroism (CD) spectra were measured on an Aviv 215 circular dichroism spectrometer using a 1 nm bandwidth and 1nm step resolution from 200 to 260nm at 25°C. 3 scans were averaged for each sample. Peptide solutions were prepared in water to a final concentration of 300µM. The samples were loaded in a 1mm path length quartz cell, and the CD spectra were acquired with an averaging time of 1s; Settling time of 0.333s and multi-scan wait time of 1s. The final spectra were normalized by subtracting the average blank spectra. The data unit was converted from machine units (millidegree,θ) into mean residue ellipticity [θ]. Mean Residue Ellipticity [θ] (deg.cm².dmol⁻¹) was calculated using the equation:

$$[\theta] = \frac{\theta_{\text{obs}}}{p \times c \times 10 \times n}$$

Where θ_{obs} is the measured ellipticity in millidegrees, while p is the path length in centimeter, n is the number of side chains and c is the concentration of the peptide in Molar.

The temperature-dependent unfolding was carried out by monitoring the change in ellipticity [θ] at 222nm at increasing temperature (5-70°C) after 1.6 mins equilibration at the desired temperature and an integration time of 1s. The temperature was increased at the rate of 1°C per min; data acquisition was done with the following parameters: 1-nm bandwidth; $\lambda = 222\text{nm}$

HIV-1 Neutralization Assay.

The preparation of Env-pseudotyped virus stocks in 293T cells by calcium phosphate transfection and the use of the engineered HIV-1 coreceptor-bearing cell line U87-CD4⁺-CCR5⁺ (3,000 cells per well) for Env-pseudotyped virion infection were described previously. Briefly, the envelope genes were amplified by PCR, cloned into an expression vector and cotransfected
with an envelope-defective proviral plasmid to generate pseudotyped luciferase-encoding viruses. Recombinant viruses were used to infect U87-CD4⁺-CCR5⁺ cells (3,000 cells per well) in the presence of varying concentrations of peptide. The amount of input pseudovirus was normalized by infectivity (virus titer) rather than by p24 antigen content. Luciferase activity in the target cells was measured in relative light units (RLU) 72 h after infection. Data from duplicate measurements were fit to the variable-slope-sigmoid equation to obtain IC₅₀ values.⁵⁴

Protease Stability Assay.
To evaluate the stability of the peptides against enzyme degradation, the peptides (0.1 mg/ml) were incubated with Chymotrypsin (0.1mg/ml) in 100mM pH 7.8 ammonium bicarbonate buffer for 30 mins. The residual substrate and digested products were quantified by LC-based peak detection at 280nm. Each experiment was done in duplicate.

The NMR Spectrum of Fmoc-sulfono-γ-AA1

¹H NMR (400 MHz, CDCl₃): δ 7.71-7.75 (t, J = 8.00 Hz, 2H), 7.57 – 7.60 (t, J = 8.00 Hz, 2H), 7.34 - 7.37 (t, J = 4.00 Hz, 2H), 7.28 – 7.3 (d, J = 8.00 Hz, 2H), 7.24 (s, 1H), 5.65 – 5.67 (d, J = 8.00 Hz, 1H), 5.22 – 5.27 (m, J = 8.00 Hz, 1H), 4.60 – 4.73 (dd, J = 4.00, 16.00 Hz, 1H), 4.38 – 4.43 (t, J = 12.00 Hz,1H), 4.33 – 4.35 (d, J = 8.00 Hz, 1H), 4.25 – 4.29 (t, J = 8.00 Hz,1H), 4.18 – 4.21 (t, J = 8.00 Hz,1H), 3.76(s,2H), 3.57 – 3.65 (dd, J = 4.00 Hz, 1H), 3.27 – 3.33 (t, J = 16.00 Hz, 2H), 3.20 (s,1H), 3.07 (s,2H), 1.50 (s, 4H), 1.41 (s,18H), 1.25 (s,1H).

¹³C NMR (400MHz, DMSO-d₆): δ 156.4, 155.9, 155.7, 144.4, 141.4, 127.9, 127.45, 125.6, 120.5, 78.4, 77.7, 70.2, 65.7, 65.3, 51.5, 47.2, 40.5, 40.3, 40.1, 39.9, 39.7, 39.5, 39.3, 35.3, 31.8, 29.8, 28.7, 23.2. HRMS (ESI): ([M+H]⁺) calculated for C₃₅H₅₀N₄₀O₁₀S, 719.3281; found, 719.3336.
Figure 2.10 1H NMR (400 MHz, CDCl$_3$) and MS of Fmoc-sulfono-γ-AA1

Figure 2.11 13C NMR (400 MHz, DMSO-d_6) of Fmoc-sulfono-γ-AA1.
Table 2.3 HPLC purities and retention time of peptides 1-4

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Molecular Mass [M+H]+ (expected/observed)</th>
<th>Purity (based on HPLC) %</th>
<th>Retention Time (min)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3125.6431/3125.8845</td>
<td>93.55</td>
<td>19.99</td>
<td>67</td>
</tr>
<tr>
<td>2</td>
<td>3118.6494/3118.3872</td>
<td>95.45</td>
<td>21.53</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>3147.5702/3147.8384</td>
<td>93.62</td>
<td>19.82</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>3140.6007/3140.3728</td>
<td>98.89</td>
<td>20.02</td>
<td>48</td>
</tr>
</tbody>
</table>

Figure 2.12 HPLC spectra of peptides 1-4
2.5 References

CHAPTER 3: Γ-AAPEPTIDES –BASED SMALL MOLECULE LIGANDS THAT DISAGGREGATE HUMAN ISLET AMYLOID POLYPEPTIDE

3.1 Introduction

The human islet amyloid polypeptide (hIAPP), also known as amylin, is a unique amyloidogenic precursor peptide, and a critical pathogenic feature of Type II diabetes. Amylin is co-secreted with insulin by the β-cells of the pancreas, and co-stored in the secretory granules. As a matter of fact, there is an overwhelming evidence of the useful role of soluble amylin in glucose metabolism, however, the insoluble aggregates resulting from the misfolding of this protein is implicated in type II diabetes. Just like the amyloid deposits formed in neurodegenerative disorders (e.g., Alzheimer’s, Parkinson’s and Huntington’s diseases) and progressive diseases (e.g., Type II diabetes and cystic fibrosis), amylin aggregates consist of stacked protofilaments, leading to a structural architecture known as the cross-β structure. The oligomerization of amylin into amyloid fibrils has been suggested to be a stepwise process: first, the aggregation of monomers into colloidal spheres, which stop growing after reaching a uniform diameter; second, the association of the spheres to form linear chains of toxic, mature fibrils of pore-like morphology. The extent of these oligomerization process is strongly correlated to pancreatic β-cell dysfunction and death in Type II diabetic patients, therefore, an impairment of the initial monomer aggregation process is an appealing therapeutic approach to diabetes drug discovery and development.
So far, there is no treatment for pancreatic amyloidosis, and there is only a few approved therapeutic strategies for its prevention. Hence, the need for channelling intense research efforts to the search for potent inhibitors of the process producing these pathogenic fibrils. In line with this, some inhibitors have been reported including the peptides derived from the various secondary recognition elements along the amylin peptide chain, engineered peptides, constrained peptides, small molecules and natural products. Although, many of these inhibitors are specific in their activity, a few of them have exhibited dual inhibitory activity.

In order to advance the application of peptidomimetics in chemical biology and drug discovery, we have recently introduced our new class of peptidomimetic scaffold, γ-AApeptide. γ-AApeptide contain N-acylated-N-aminoethyl amino acid units, and are derived from γ-PNAs. Each monomeric unit of the γ-AApeptide is equivalent to a dipeptide residue in a conventional peptide. This means that they are able to project an identical number of functional groups as canonical peptides of the equal length.

In our previous work, we reported on a small molecule Aβ aggregation inhibitor, HW-155, which was identified from a peptidomimetic OBOC (one-bead-one-compound) library. HW-155 is a γ-AApeptide tetramer with little structural similarity to KLVFF, the core amyloid-forming unit of Aβ. Inspired by the findings on dual inhibitors, and based on the fact that HW-155 was from an OBOC library, we hypothesized that HW-155 could be a non-specific amyloid inhibitor. To critically evaluate this hypothesis, we synthesized HW-155 and eight (8) analogues (1 - 8), and investigated their ability in preventing the fibrillation of amylin (hIAPP), and the disruption of preformed hIAPP aggregates. We also
examined the effect of **HW-155** and its analogues (Figure 3.1) on the toxicity of hIAPP aggregates towards the cell.

![Peptide Sequences HW-155, control C1 and 1-8](image)

Figure 3.1 Peptide Sequences HW-155, control C1 and 1-8

3.2 Results and Discussion

We have previously reported a γ-AApeptide oligomer, **HW-155**, as a potent inhibitor of Aβ aggregation. In this study, we investigated the effectiveness of **HW-155** in the inhibition of amyloid formation by hIAPP$_{1-37}$. First, we studied the aggregation
behaviour of hIAPP\textsubscript{1-37} in the presence of a 2.5-, 5-, and 10- fold molar excesses of HW-155. Time-dependent ThT assay revealed a significantly enhanced fluorescent intensity with hIAPP\textsubscript{1-37} (10µM) alone.

Table 3.1 Percent Inhibition (Based on ThT Fluorescence assay) of HW-155, C1 and 1-8.

<table>
<thead>
<tr>
<th>Peptides (Peptides)</th>
<th>100µM</th>
<th>50µM</th>
<th>25µM</th>
<th>12.5µM</th>
<th>6.25µM</th>
<th>3.13µM</th>
<th>1.56µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50.6</td>
<td>67.9</td>
<td>44.1</td>
<td>42.7</td>
<td>54.7</td>
<td>43.2</td>
<td>71.8</td>
</tr>
<tr>
<td>2</td>
<td>59.2</td>
<td>49.3</td>
<td>55.0</td>
<td>70.6</td>
<td>49.5</td>
<td>43.3</td>
<td>50.1</td>
</tr>
<tr>
<td>3</td>
<td>55.1</td>
<td>55.9</td>
<td>60.0</td>
<td>62.3</td>
<td>54.1</td>
<td>54.1</td>
<td>50.7</td>
</tr>
<tr>
<td>4</td>
<td>60.5</td>
<td>64.4</td>
<td>63.6</td>
<td>67.4</td>
<td>67.1</td>
<td>58.2</td>
<td>48.7</td>
</tr>
<tr>
<td>5</td>
<td>50.0</td>
<td>56.7</td>
<td>73.2</td>
<td>74.1</td>
<td>67.8</td>
<td>66.5</td>
<td>59.6</td>
</tr>
<tr>
<td>6</td>
<td>66.0</td>
<td>65.7</td>
<td>64.5</td>
<td>59.0</td>
<td>59.5</td>
<td>65.8</td>
<td>60.2</td>
</tr>
<tr>
<td>7</td>
<td>50.4</td>
<td>58.8</td>
<td>48.1</td>
<td>48.8</td>
<td>51.6</td>
<td>50.5</td>
<td>46.7</td>
</tr>
<tr>
<td>8</td>
<td>51.9</td>
<td>48.7</td>
<td>51.7</td>
<td>55.0</td>
<td>57.3</td>
<td>47.0</td>
<td>34.4</td>
</tr>
<tr>
<td>HW-155</td>
<td>52.0</td>
<td>51.6</td>
<td>45.8</td>
<td>40.2</td>
<td>44.2</td>
<td>45.6</td>
<td>36.5</td>
</tr>
<tr>
<td>C1</td>
<td>21.1</td>
<td>-2.3*</td>
<td>-21.9*</td>
<td>-11.9*</td>
<td>0.4</td>
<td>-8.9*</td>
<td>-1.6*</td>
</tr>
</tbody>
</table>

* no inhibition

Surprisingly, HW-155 was able to prevent hIAPP\textsubscript{1-37} aggregation by ~50% at the 2.5-, 5- and 10-fold molar excesses tested (Figure 3.10).

Encouraged by this result, we further studied the aggregation formation by hIAPP\textsubscript{1-37} in the presence of equimolar or lesser concentration of HW-155. To our surprise, a significant reduction in the fluorescent intensity of hIAPP\textsubscript{1-37} was observed at these tested
concentrations of HW-155, even with 0.2-fold molar excess of HW-155. This implies that HW-155 could not only inhibit Aβ aggregation, but also prevent amyloid formation in hIAPP1-37. This was further confirmed by the TEM images that were captured (Figure 3.13). A characteristic feature of amyloidogenic peptides is the presence of fibrillar morphology under the electron microscope. 37

Inspired by this new development, we sought to pinpoint the role and effect of each monomeric unit in HW-155 on inhibitory activity. Using HW-155 as a template, we designed and performed a functional analysis of eight (8) analogues of HW-155 namely peptides 1-8 (Figure 3.1). In four analogues (1-4), we substituted each of the N-side chains in HW-155 with an acetyl group, while alanine scanning was performed on the chiral side chains (5-8). We also designed a control peptide, C1, which consists of both modifications. Our intention was to carefully evaluate the effects of a change in the molecular interface of HW-155 on inhibition.

Amyloid aggregation kinetics of hIAPP1-37 in the presence of 1-8 was monitored by time-dependent ThT assay. In an initial attempt, we studied the anti-aggregation activity of 2.5-, 5-, and 10-fold molar excesses of 1-8. Interestingly, peptides 1-8 were able to suppress the fluorescence by over 40% at 2.5-fold and over 50% at 5- and 10-fold molar excesses. Further investigation of equimolar of lesser concentrations of 1-8 resulted in a minimum inhibitory activity of 30% (Figures 3.2 – 3.10).

We identified peptides 3, 5, and 6 (Figures 3.4, 3.6, and 3.7) with over 50% inhibition across all molar equivalents tested. In fact, 5 (Figure 3.6) showed more than 65% inhibition at 1-, 0.6- and 0.3-fold molar excesses. Also, our control peptide, C1, only prevented hIAPP1-37 aggregation at a 10-fold molar excess (Table 3.1).
To evaluate the ability of our designed analogues to disaggregate preformed hIAPP1-37 fibrils, we performed a time–dependent ThT assay and monitored the fluorescent intensity for over twenty four (24) hours. Interestingly, only 5 was able to disrupt preformed hIAPP1-37 fibrils at a tested concentration of 100µM (Figure 3.11).

Further evidence of hIAPP1-37 aggregation inhibition by the designed analogues and HW-155 was obtained from the TEM morphological studies of hIAPP1-37 that was pre-incubated with equimolar amount of peptides 2,3,4,5 and HW-155.

Figure 3.2 Time-dependent ThT assay of hIAPP1-37 (10µM) and various molar equivalents of 1
Figure 3.3 Time-dependent ThT assay of hIAPP$_{1-37}$ (10µM) and various molar equivalents of 2

Figure 3.4 Time-dependent ThT assay of hIAPP$_{1-37}$ (10µM) and various molar equivalents of 3
Figure 3.5 Time-dependent ThT assay of hIAPP$_{1-37}$ (10µM) and various molar equivalents of 4
Figure 3.6 Time-dependent ThT assay of hIAPP$_{1-37}$ (10µM) and various molar equivalents of 5
Figure 3.7 Time-dependent ThT assay of hIAPP1-37 (10µM) and various molar equivalents of 6

Figure 3.8 Time-dependent ThT assay of hIAPP1-37 (10µM) and various molar equivalents of 7
Figure 3.9 Time-dependent ThT assay of hIAPP1-37 (10µM) and various molar equivalents of 8
Figure 3.10 Time-dependent ThT assay of hIAPP1-37 (10µM) and various molar equivalents of HW-155

The TEM micrographs for hIAPP1-37 revealed a dense network of intertwined mature fibrils with linear, and thread-like morphology (Figure 3.13) indicating the presence of hIAPP1-37 amyloid. However, no such fibril was observed in the presence of 2, 3, 4, 5 and HW-155, indicating a significant prevention of fibril formation by hIAPP1-37. A prevention of fibril formation by 2, and 5 resulted in the monomers observed in the TEM images. Likewise, the oligomers seen in 3, 4, and HW-155 were as a result of the inhibition of formation of mature fibrils.

To visualize the effect of 5 on hIAPP1-37 preformed aggregates, we allowed 10µM hIAPP1-37 to age for 10h before treatment with a 10–fold molar excess of 5.AFM showed a disappearance of mature fibrils (Figure 3.12). However, very few oligomeric hIAPP1-37...
spheres resulting from the disrupted aggregates were observed. This confirms that 5 is able to disaggregate preformed hIAPP₁₋₃₇ aggregates.

Figure 3.11 Time-dependent ThT assay of the disruption of hIAPP₁₋₃₇ (10µM) preformed fibrils by 5 (100µM)

Figure 3.12 AFM image the disruption of hIAPP₁₋₃₇ (10µM) preformed fibrils by 5 (100µM)
Figure 3.13 TEM images of hIAPP\textsubscript{1-37} alone and in the presence of equimolar amount 2,3,4,5, and HW-155.

Based on our findings on the inhibition of hIAPP\textsubscript{1-37} fibrillation by 2,3,4,5, and HW-155, we further assessed their safety index in mammalian cells by CCK-8 assay. We tested the toxic effects of 1µM and 5µM concentrations of 2,3,4,5, and HW-155 on NIH-3T3 cells (Figure 3.14). At 1µM concentration, only peptide 2 altered the viability of the cell (~10% reduction). However, at a peptide concentration of 5µM, peptides 3, 4, 5, and HW-155 reduced the cell viability by at least 10%, while peptide 2 showed a significant cell viability reduction of about 20%. At both concentrations tested, peptide 2 exhibited some cytotoxic effect on the NIH-3T3 cells.
To study the ability of peptides 2,3,4,5 and HW-155 to modulate the hIAPP$_{1-37}$ amyloid–induced cytotoxicity, we treated NIH-3T3 cells with hIAPP$_{1-37}$ (10µM) and 5µM peptide as described in the general information section. Results showed that cells treated with only hIAPP$_{1-37}$ exhibited a significant reduction in survival, whereas, treatment with 5µM concentration of peptides 2,3,4,5 and HW-155 was able to rescue the cells from hIAPP$_{1-37}$ amyloid assembly cytotoxicity (Figure 3.15). However, it is noteworthy that peptides 3,4, and 5 were better at reducing cell death due to hIAPP$_{1-37}$ amyloid toxicity than 2 and HW-155.
Figure 3.15 Evaluation of the potential of peptides 2,3,4,5 and HW-155 to improve the chances of cell survival in the presence of hIAPP$_{1-37}$ amyloid.

3.3 Conclusion

Altogether, this study provides experimental support to the dual action of HW-155 in preventing amyloid fibril formation by Aβ$_{36}$ and hIAPP$_{1-37}$. We have utilized a simple, but effective approach for designing potential inhibitors of hIAPP$_{1-37}$ fibrillation. We have also demonstrated the ability of HW-155 analogues to effectively disaggregate preformed hIAPP$_{1-37}$ fibrils. The truncation/substitution of side chains in HW-155 resulted in analogues that proved more effective in amyloid prevention, and disaggregation of preformed hIAPP$_{1-37}$ amyloid than HW-155. HW-155 as a dual inhibitor compound, does not only have greater advantages over other known inhibitors of amyloid formation that only target a specific amyloid system, it also provides a template for the design of potent...
analougues that could be next-generation therapeutic agents for the treatment of Type 2 diabetes mellitus.

3.4 Materials and Methods
Peptides Synthesis
General Information Fmoc –protected α-amino acids and Rink amide resin used for γ-AApeptide synthesis were purchased from Chem-Impex International, Inc. All chemicals and solvents used were purchased from Aldrich or Fisher and were used without further purification.

γ-AApeptide Monomer Synthesis

![Figure 3.16 Synthesis of γ-AApeptide building block/monomeric unit.](image)

Solid Phase Peptide Synthesis Peptides were synthesized on the rink amide resin (0.6mmol/g) on a Burrell Wrist-action shaker (Figure 3.2). 200 mg resin was treated twice (15 mins each time) with 3ml 20% Piperidine in DMF to deprotect the Fmoc group. The beads were then washed thrice with 3ml each of DCM and DMF. The desired N-alloc
protected γ-AApeptide building blocks were prepared (Figure 3.16) and are combined (2 equivalents) with 4 equivalents each of HOBt and DIC in 3ml DMF. The solution was then added to the deprotected resin and was allowed to react for 4 hours. Ninhydrin test35 was used to confirm the success of the coupling and depending on the Ninhydrin test result, a second round of coupling was done. On reaction completion, the beads were washed with DMF and DCM, followed by a fifteen minutes (15 min) capping reaction with 500uL Acetic Acid. After capping, the beads were washed and alloc-deprotection reaction was done by reacting the beads with Pd (PPh\textsubscript{3})\textsubscript{4} (1 equivalent) and Me\textsubscript{2}NH BH\textsubscript{3} (6 equivalents) (10 mins each time). The beads were then washed with DCM and DMF, followed by the reaction of the deprotected beads with acyl chloride (4 equivalents) and DIPEA (6 equivalents) in 3ml DCM for 1h or with the carboxylic acid (4 equivalents), HOBt (8 equivalents), and DIC (8 equivalents) for 6h (x2).

The above steps were repeated to assemble the desired sequence on the resin (Figure 3.17). After these, the resin was washed and the peptide was cleaved from the resin with the cocktail: TFA/H\textsubscript{2}O/TIS (95/2.5/2.5) for 2.5h. The solvent evaporated to obtain the crude peptide which was analysed and purified on an analytical (1ml/min) and a preparative (20ml/min) Waters HPLC systems, respectively. 5-100% linear gradient of 0.1% TFA/ACN in 0.1 % TFA/H\textsubscript{2}O over 50 min was used. The HPLC traces were detected at 215 nm. The products were confirmed by MALDI-TOF MS. The product fractions were then collected and lyophilized.
Figure 3.17 Solid Phase synthesis scheme for HW-155,C1 and 1-8.

hIAPP Sample Preparation

This was done according to previously published protocol. 3.1mg of hIAPP$_{1-37}$ was dissolved in minimal amount of HFIP (50ul) to remove aggregated hIAPP and the HFIP was removed over a gentle stream of Nitrogen gas. The process was done twice and 5ml of Milli Q pure water was added to the disaggregated hIAPP film. The solution was then divided into 25 aliquots of 200µl each. The 25 aliquots were lyophilized and reconstituted in 800µL of PBS prior to use to obtain a hIAPP stock solution of 40µM. The stock solution was always sonicated prior to use.

Thioflavin T Fluorescence Assay

Inhibition of hIAPP aggregate formation Different peptide concentrations were made in PBS (x1, pH 7.4). hIAPP stock solution (40µM) was also prepared as described above. The peptide, hIAPP and 15µM ThT were added into a 96-well black plate. Equal volume of hIAPP solution was added into the 96-well black plate to make the final concentration of hIAPP in each well to be 10µM. Time-dependent fluorescent change was monitored for
24h by the Biotek Synergy H1 hybrid plate reader at excitation and emission wavelengths of 435 and 490 nm respectively.

Disruption of preformed aggregates Similar to the protocol described above for the inhibition studies, hIAPP and ThT were added to PBS in a 96-well black plate and at concentrations of 10µM and 15µM respectively. Time dependent fluorescent change was monitored for 10h after which 5ul of peptide was added to make a final peptide concentration of 100µM.5µl of PBS was also added to control wells. Each test well containing the peptide has a control well to which equal volume of PBS was added. The fluorescent change was then monitored for another 12h.

Transmission Electron Microscopy (TEM)
Sample preparation was similar to ThT assay. Sample solution containing 10µM hIAPP1-37 and 12.5µM of the respective peptide were incubated at 30°C for 24h. 10µL aliquot of the incubated solution was placed on carbon-coated 200-mesh copper grid. After 10 mins, excess solution was wicked away and the grid was allowed to dry. This is then followed by the addition of 2% uranyl acetate solution (10µL) which was allowed to float for 5min. The excess solution was then removed using the blotting paper. The copper grid was left to dry at room temperature before imaging with FEI Morgagni 268D TEM operated at 60kV.

Atomic Force Microscopy (AFM)
A droplet (10 µl) of the sample solution is placed on the freshly cleaved mica disk and let it dry in open air at room temperature. Imaging is performed by Multimode 8 AFM (Bruker, Santa Barbara, CA) and a Nanoscope V controller in Peak Force quantitative nanomechanics (QNM) air mode. Standard silicon cantilever probe, FMVA(Bruker), with
spring constant of 2.8N/m, and tip radius 8nm is used for imaging at room temperature.
Images are acquired at scan rate of 1-1.5 Hz and 256pixel/lines.

Percentage inhibition
The percent inhibition was calculated using the formula below:

\[
\text{Percent inhibition} = 100\% - \left(\frac{F_\text{in the presence of inhibitor}}{F_\text{in the absence of inhibitor}} \times 100 \right) \%
\]

where \(F \) = the average of the ThT signals at 870, 900, 930, 960 and 990 min. These time points were chosen because the maximum ThT signals were observed at these points in the uninhibited hIAPP control experiment.

Cell viability/proliferation assay
The 3T3 cells were seeded in a 96-well flat-bottomed microplate (5000 cells/well) and cultured in 100 μL of growth medium at 37°C and 5% CO₂ for 24 h. The cell culture medium in each well was then replaced with 100 μL of cell growth medium containing peptides 2,3,4,5 and HW-155 alone at concentrations of 1μM and 5μM or 5μM peptide with 10μM hIAPP1-37.

After incubation for 24 hours at 37°C, the peptides were washed with PBS three times. Then, 10 μL of CCK-8 dye and 100 μL of DMEM cell culture medium were added to each well, and the cells were incubated for another 1.5 hour at 37°C. The absorbance at 450 nm was measured by a Synergy H1 Hybrid Reader (BioTek, Dallas, TX, USA). Untreated cells served as controls with 100% viability. The results are presented as the mean±SD of three measurements.
Table 3.2 HPLC purities and retention time of peptides 1-8 and HW-155

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Molecular Mass [M+H]+ (expected/observed)</th>
<th>Purity (based on HPLC) %</th>
<th>Retention Time (min)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1048.6845/1048.6747</td>
<td>99.01</td>
<td>17.95</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>1048.6845/1048.6746</td>
<td>96.48</td>
<td>17.13</td>
<td>83</td>
</tr>
<tr>
<td>3</td>
<td>1000.6845/1000.6750</td>
<td>96.59</td>
<td>16.82</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>1048.7209/1048.7217</td>
<td>91.42</td>
<td>17.88</td>
<td>78</td>
</tr>
<tr>
<td>5</td>
<td>1048.6845/1048.7781</td>
<td>91.61</td>
<td>17.14</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>1033.6736/1033.7318</td>
<td>92.47</td>
<td>21.04</td>
<td>87</td>
</tr>
<tr>
<td>7</td>
<td>1014.7001/1014.7594</td>
<td>85.32</td>
<td>16.94</td>
<td>95</td>
</tr>
<tr>
<td>8</td>
<td>1033.6736/1033.7430</td>
<td>99.1</td>
<td>20.58</td>
<td>96</td>
</tr>
<tr>
<td>HW-155</td>
<td>1090.7314/1090.7928</td>
<td>98.98</td>
<td>18.95</td>
<td>75</td>
</tr>
</tbody>
</table>
Figure 3.18 HPLC spectra of peptides 1-8 and HW-155
Figure 3.19 HPLC spectra of peptides 1-8 and HW-155 continued

3.5 References

CHAPTER 4: EVALUATION OF THE SEQUENCE-DEPENDENT AGGREGATION AND INHIBITORY POTENTIAL OF ISLET AMYLOID POLYPEPTIDE-DERIVED RETRO-PEPTIDES.

4.1 Introduction

Amyloid fibrillation of proteins and peptides are underlying causes of a wide range of pathological conditions including Parkinson’s, Alzheimer’s and Diabetes type II mellitus (T2DM), to mention a few. These pathological conditions are collectively referred to as protein misfolding or amyloid diseases, and over fifty (50) distinct human protein misfolding disorders have been reported.1,2 Even though the culprit proteins in these disorders are dissimilar in their primary and tertiary structure, their amyloid fibril morphologies share many similarities in their structure and chemical properties.3 The production of these fibrils have been implicated in loss of protein function and most importantly, a gain of toxic function by the aggregated protein.2

Human amylin, also called human Islet Polypeptide Hormone (hIAPP), is a 37-residue peptide responsible for amyloid formation in Type II diabetes mellitus. hIAPP contains three major regions, the N-terminal region with probable α-helical propensity especially in membrane conditions, the aggregation-prone middle region (20-29), which contains the core molecular recognition sequence and amyloid forming units, and the C-terminal region.4 Monomeric hIAPP exhibit random coil conformation, contains a disulfide bridge between cysteine residues at positions 2 and 7, and is amidated at the C-terminus. However, some previous reports have shown evidence that hIAPP monomers may adopt helical conformations.5

The step-wise process of hIAPP amyloid formation includes the self-aggregation of monomers, leading to the conversion of the protein secondary structure from its random coil native
state to cross β-sheets. The oligomers formed from this process gradually grow into protofibrils, which eventually matures into full grown toxic fibrils. While it may be true and generally believed that the full grown fibrils are very toxic, evidences have shown that the soluble oligomer may be more toxic. A good understanding of the fibrillation properties and behaviors of hIAPP could provide insights for the development of inhibitors that are capable of interrupting the amyloidogenic process.

To date, sequences derived from the middle region of hIAPP have been reported to show similar aggregation patterns to the full length hIAPP peptide. Variations in this region can significantly impact amyloid formation. Among the core amyloid forming motifs of hIAPP, hIAPP₂₂₋₂₉ (NFGAILSS) have been shown to form amyloid fibrils with great similarities to the full-length peptide. Hence, it is frequently studied as a simple model for understanding the factors regulating amyloid fibrillation. Modifications in this region have also shed more light on the relationship between sequence patterns and amyloidogenic properties. Common modifications include substitution, and incorporation of β-sheet breakers.

In line with the above mentioned modifications, we sought to investigate the effects of retro-inversion on the fibrillation behavior and morphology of hIAPP₂₂₋₂₉. This strategy has been previously exploited for inhibitor design for Aβ. Retro-D- peptides (containing retro-inverso- and retro-enantio -isomers of a template peptide) or analogues are obtained by reversing the assembly pattern of parent or template peptides with a simultaneous substitution of L-amino acids with D-amino acids (Figure 4.1). Theoretically, the side chain orientation in retro-inversed peptides are projected in a similar fashion to their parent peptides, except for situations when it is fixed in special secondary structures. D-amino acids are the stereoisomers of naturally
occurring L-amino acids and are considered unnatural. Some prokaryotic organisms produce and use D-amino acids, but in general D-amino production is during chemical synthesis.²⁶

Figure 4.1 A sample L-peptide and its analogues. An L-peptide (1) sequence has three analogues: the D-enantiomer (3) with the same sequence, the retro L-peptide (4) with the inverted sequence, and the retro-inverso D-peptide (2), with all D-amino acids and the inverted sequence. Note that (1) and (2) have similar side chain positions; one is the retro-inverso sequence of the other. The same applies to (3) and (4). https://commons.wikimedia.org/wiki/File:L-peptideD-peptideAnalogues.png

In the present study, eight retro-analogues of hIAPP₂₂-₂₉ including four (4) retro-inverso analogues and four (4) retro-analogues with alternating L and D were designed, and their aggregation propensity and amyloid morphology were systematically characterized using transmission electron microscopy (TEM), Thioflavin T (ThT) fluorescence assay, Congo red Spectrophotometric assay, Kinetic aggregation assay and Circular dichroism (CD). We also evaluated the inhibitory potential of these peptides on hIAPP amyloid aggregation.
Table 4.1 Peptide sequences of designed retro-peptides.

<table>
<thead>
<tr>
<th>Retro - peptides</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>RG-sSIIaGfN-GR</td>
</tr>
<tr>
<td>r2</td>
<td>Ac-RG-sSIIaGfN-GR</td>
</tr>
<tr>
<td>r3</td>
<td>RG-NfGallSs-GR</td>
</tr>
<tr>
<td>r4</td>
<td>Ac-RG-NfGallSs-GR</td>
</tr>
<tr>
<td>r5</td>
<td>rG-nfgailss-Gr</td>
</tr>
<tr>
<td>r6</td>
<td>Ac-rG-nfgailss-Gr</td>
</tr>
<tr>
<td>r7</td>
<td>rG- ssliaGfn-Gr</td>
</tr>
<tr>
<td>r8</td>
<td>Ac-rG- ssliaGfn-Gr</td>
</tr>
<tr>
<td>hIAPP22-29</td>
<td>NFGAILSS</td>
</tr>
</tbody>
</table>

4.2 Results and Discussion

In this work, we sought to determine the effect of D-amino acid substitution and retro inversion on the self-assembly behavior and fibril morphology of peptides derived from hIAPP22-29. hIAPP22-29 was previously reported to form fibrils with similar morphological features as the full length hIAPP1-37.

At first, we investigated the presence of amyloid fiber in our retro-peptides. Since the peptides were derived from an amyloid-prone region of full length hIAPP1-37, we hypothesized that they should possess inherent self-aggregation properties. We employed various amyloid-detecting strategies including fluorophore binding – Congo red and ThT, and kinetic aggregation assay to verify our hypothesis.

Congo red is an amyloidogenic dye with interesting spectrophotometric properties. In aqueous solution, its maximum absorption wavelength is 490nm. Congo red is able to bind various
amyloid morphologies ranging from innocuous soluble monomers to toxic mature fibrils. When bound to amyloid fibrils that are rich in β-sheet, it assumes an orientation which induces torsional restrictions with a consequent increase in absorption and a red – shift in the maximum absorption from 490nm to 540nm. We observed a gradual red shift in absorbance maxima for our retro-peptides over 43 hours (Figure 4.2, Figure 4.3, and Figure 4.4). This indicates the presence of some amyloid fibers, most especially in peptides comprising alternating L- and D-amino acids. However, this red-shift is accompanied by an increase in absorption in r1, r8, r2, and r4.

In order to fully understand the aggregation potential of the various retro-peptides, and the effect of chirality on aggregation patterns, we performed a turbidity assay, using hIAPP22-29 as a control. The turbidity of the peptide solutions was monitored in a kinetic aggregation assay by monitoring the absorbance at 405nm as a function of time (Figure 4.10). hIAPP22-29 displayed higher absorption, which is indicative of the presence of amyloid. Retro-peptides r5, and r7 exhibited a nucleation-dependent aggregation mechanism while r6, displayed a seeded aggregation kinetics with a maximum absorption similar to hIAPP22-29. However, hIAPP22-29 is non-nucleation-dependent. We observed that the retro-inverso peptides r5, r6, r7 and, r8 consisting mainly of D-amino acids showed a higher aggregation potential than peptides comprising alternating L- and D- amino acids.

Amyloid formation kinetics is a multi-step process comprising many distinctive features including a lag phase, rapid growth/elongation phase and steady state/equilibrium phase. In a bid to confirm our results on Kinetic aggregation and Congo red assays, we performed Thioflavin T fluorescence assay to assess the time-dependence of the aggregation of the retro-peptides.
The curve obtained for the ThT assay for the retro-peptides showed that hIAPP$_{22-29}$, r$_5$ and r$_6$ displayed a seeded aggregation kinetics consisting of a short elongation phase leading to the steady state. hIAPP$_{22-29}$ showed a higher fluorescent signal than the retro-peptides (Figure 4.5)

Amyloid fibrils consist majorly of β-sheet conformation, hence, UV Circular Dichroism studies proves useful in determination of the secondary structure of the retro-peptides. A CD signal around 195nm typically indicates random coil. The signal is negative if it’s due to L-amino acids and positive for D-amino acids. The presence of a maximum and minimum near 195nm and 215 nm respectively signals the presence of a β-sheet. As seen in Figure 4.7, the spectra acquired for peptides r$_1$ and r$_2$ revealed that both retropeptides have some β-character, with a characteristic maximum around 200nm and a corresponding minimum at 220nm. r$_1$ and r$_2$ are composed of alternating units of L- and D- amino acids in a retroinversed arrangement, and an acetylated N-terminus in r$_2$. Surprisingly, r$_3$ and r$_4$ comprising of alternating units of L- and D-amino acids, but with no retro inversion, exhibited characteristic β-sheets spectra with maxima around 200nm and minima of 220nm (Figure 4.7). Peptides r$_5$, r$_6$, r$_7$ and r$_8$, which are all D-peptides displayed positive signals around 200nm (Figure 4.8 and Figure 4.9). This is very typical unstructured conformers termed random coils. The CD result corroborates previous findings that d-amino acids possess inherent secondary structure destabilizing properties.

Having confirmed the amyloidogenic potential of our designed retro-peptides, we decided to investigate the morphological features of the aggregates formed. We obtained TEM micrographs of all our retropeptides and hIAPP$_{22-29}$. In line with previous reports, hIAPP$_{22-29}$ formed mature fibrillar bundles similar to full length hIAPP$_{1-37}$ (Figure 4.6). r$_1$ formed amorphous aggregates while r$_2$, r$_3$, and r$_4$ formed protofibrillar structures (Figure 4.6), however, hIAPP monomers were seen in r$_5$, r$_6$ and r$_8$.

58
Encouraged by these results, we proceeded to evaluate the possibility of inhibition of hIAPP\textsubscript{1-37} amyloid fibrillation by our designed peptides, using Thioflavin T assay. 0.6-, 2.5-, and 10-fold molar excesses of peptides r1 – r8, 15\textmu{}M ThT and 10\textmu{}M hIAPP\textsubscript{1-37} were added to sample wells (black 96-well plates), and the relative rise in fluorescent intensity was recorded. The measurement was done in duplicates. r1 exhibited a dose-dependent relationship, in which the lowest suppression of fluorescent signal was observed with 10-fold molar excess of peptide. r5 is suspected to promote aggregation due to an increase in the observed fluorescence signal. At all concentrations tested, r5 showed similar or higher fluorescent signal than hIAPP\textsubscript{1-37}. Results also revealed r6 and r7 inhibited hIAPP\textsubscript{1-37} fibril formation at 10-fold and 0.6-fold molar excess respectively. r2 also displayed some inhibitory effect at 2.5- and 0.6-fold molar excesses, whereas r3 showed moderate inhibition at all peptide concentrations tested. r8 exhibited weak inhibition at 2.5-fold molar excess and a strong inhibitory effect at 10- and 0.6-fold molar excess. At 10- and 2.5-fold molar excesses, r4 also showed strong inhibitory effect. Contrary to previous reports, hIAPP\textsubscript{22-29} promoted aggregation at all concentrations tested13.
Figure 4.2 Congo red spectra of retro-peptides at time t = 0h

Figure 4.3 Congo red spectra of retro-peptides at time t = 28h
Figure 4.4 Congo red spectra of retro-peptides at time \(t = 43 \)h

Figure 4.5 ThT assay for aggregation of retro-peptides
Figure 4.6 TEM images of hIAPP$_{22-29}$, and peptides r1 – r8
Figure 4.7 CD spectra of peptides consisting of alternating L- and D-amino acid units

Figure 4.8 CD spectra of peptides consisting of all D-amino acid units (r5, r6, and r8)
Figure 4.9 CD spectra of peptides consisting of all D-amino acid units (r7)

Figure 4.10 Kinetic aggregation assay for all peptides.
Figure 4.11 ThT inhibition assay for r1.

Figure 4.12 ThT inhibition assay for r2.
Figure 4.13 ThT inhibition assay for r3.

Figure 4.14 ThT inhibition assay for r4.
Figure 4.15 ThT inhibition assay for r5.

Figure 4.16 ThT inhibition assay for r6.
Figure 4.17 ThT inhibition assay for r7.

Figure 4.18 ThT inhibition assay for r8.
4.3 Conclusion

In this study, we evaluated the effects of alternating L- and D-amino acids, retro-inversion and all D-peptides on the self-aggregation potential and amyloid morphology of peptides derived from hIAPP\textsubscript{22-29}. Our results showed the complete incorporation of D-peptides in hIAPP\textsubscript{22-29} (all D-peptides) dramatically changed the secondary structure from the known cross β-sheet to random coil, whereas alternating L- and D-amino acids did not significantly alter the β-sheet conformation. We also observed that aggregation behavior is strictly dependent on the nature and chirality of constituent amino acids rather than N-terminus acetyl capping.

We anticipate that this strategy may provide a template for the understanding of different amyloid systems, thereby providing insights into the design of novel inhibitors of amyloid aggregation for various amyloidogenic diseases.
4.4 General information
Peptide Synthesis

All peptides used in this study were synthesized by the standard Fmoc-based solid phase peptide synthesis protocol using the Burrell Wrist-Action shaker. All Fmoc protected α-L-amino acids, α-D-amino acids, and Rink amide resin (0.7mmol/g, 200-400 mesh) were purchased from Chem-Impex International, Inc. All other Solvents and reagents were purchased from either Sigma Aldrich or Fisher Scientific and used without further purification.

For each amino acid coupling, 2 equivalents of Fmoc-amino acid, 4 equivalents each of DIC and HOBt were used and the coupling cycle was repeated, followed by capping with 1 equivalent of acetic anhydride and 2 equivalents of pyridine. Fmoc-deprotection was done with 20% piperidine in DMF. The final peptide was cleaved from the resin using a cleavage cocktail: 95% TFA, 2.5% TIS, 2.5% Water for 3h. TFA was removed by evaporation and the crude peptide was dissolved in acetonitrile and water. The peptides were analyzed and purified on a Waters Breeze 2 HPLC System, and then lyophilized on a Labconco Lyophilizer.

Congo red binding assay.

Congo red was dissolved in PBS buffer (X 1) to make a stock solution of 100µM. The stock solution was sonicated and filtered through a 0.4 micron filter membrane to remove any insoluble aggregate. 20µM Congo red solution was then incubated with 1mM retro-peptides in duplicate wells in a clear 96-well plate for 30 minutes at room temperature before measurement. The absorption spectra was acquired at a wavelength range of 400nm – 700nm using a Biotek Synergy H1 hybrid plate reader. The reaction solution in each well was mixed with a pipette before measurement.
Circular Dichroism studies.
Circular dichroism (CD) spectra were measured on an Aviv 215 circular dichroism spectrometer using a 1 nm bandwidth and 1nm step resolution from 200 to 260nm at 25°C. 3 scans were averaged for each sample. Control water blank scans were run, averaged and then subtracted from the sample spectra. Retro-peptide solutions were prepared in water to a final concentration of 200µM and allowed to age for 5 days at 37°C. The samples were loaded in a 1mm path length quartz cell, and the CD spectra were acquired with an averaging time of 1s, Settling time of 0.333s and multi-scan wait time of 1s. The data unit was converted from machine units (millidegree, θ) into mean residue ellipticity [θ].

Mean Residue Ellipticity [θ] (deg.cm².dmol⁻¹) was calculated using the equation:

\[[\theta] = \frac{\theta_{\text{obs}}}{(p \times c \times 10 \times n)} \]

Where \(\theta_{\text{obs}} \) is the measured ellipticity in millidegrees, while \(p \) is the path length in centimeter, \(n \) is the number of side chains and \(c \) is the concentration of the peptide in Molar.

Thioflavin T Fluorescence Assay
Detection of amyloid fiber 1mM peptide concentrations were incubated with 15µM ThT in duplicate wells in a 96-well black plate at a total volume of 100µL. Time-dependent fluorescent change was monitored for 24h by the Biotek Synergy H1 hybrid plate reader at excitation and emission wavelengths of 435 and 490 nm respectively.

Inhibition of hIAPP aggregate formation Different peptide concentrations were made in PBS (x1, pH 7.4). hIAPP stock solution (40µM) was also prepared as described above. The peptide, hIAPP and 15µM ThT were added into a 96-well black plate. Each reaction solution was duplicated. Equal volume of hIAPP solution was added into the 96-well black plate to make the final concentration of hIAPP in each well to be 10µM. Time-dependent fluorescent change was monitored for 24h by
the Biotek Synergy H1 hybrid plate reader at excitation and emission wavelengths of 435 and 490 nm respectively.

Transmission Electron Microscopy (TEM)

10µL of 1mM retro peptide solution was placed on carbon-coated 200-mesh copper grid. After 10 mins, excess solution was wicked away and the grid was allowed to dry. This is then followed by the addition of 2% uranyl acetate solution (10µL) which was allowed to float for 5min. The excess solution was then removed using the blotting paper. The copper grid was left to dry at room temperature before imaging with FEI Morgagni 268D TEM operated at 60kV.

Kinetic aggregation assay

Freshly prepared 3mM stock of retro-peptides were used in the assay. The stock solution was sonicated and a volume equivalent to 1mM retro-peptide was added to clear 96-well plate. PBS (X1) buffer was added to make the total volume 100µL. The absorption spectra was acquired for 3h 30min at 30 min interval, and at a wavelength of 405nm, using a Biotek Synergy H1 hybrid plate reader.
Table 4.2 Molecular weight of peptides and their percent yield.

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Molecular Mass [M+H]+ (expected/observed)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>1233.6738/1233.8107</td>
<td>90</td>
</tr>
<tr>
<td>r2</td>
<td>1275.6844/1275.8912</td>
<td>89</td>
</tr>
<tr>
<td>r3</td>
<td>1233.6738/1233.8312</td>
<td>92</td>
</tr>
<tr>
<td>r4</td>
<td>1275.6844/1275.7228</td>
<td>91</td>
</tr>
<tr>
<td>r5</td>
<td>1233.6738/1233.8624</td>
<td>89</td>
</tr>
<tr>
<td>r6</td>
<td>1275.6844/1275.8861</td>
<td>93</td>
</tr>
<tr>
<td>r7</td>
<td>1233.6738/1233.7389</td>
<td>90</td>
</tr>
<tr>
<td>r8</td>
<td>1275.6844/1275.7449</td>
<td>95</td>
</tr>
</tbody>
</table>

4.5 References

https://commons.wikimedia.org/wiki/File:L-peptideD-peptideAnalogues.png
CHAPTER 5: DEVELOPMENT OF POTENT CHEMICAL PROBES TARGETING MPP8-H3K9ME INTERACTION.

5.1 Introduction

Cancer is a process of multistep cellular transformation, which consequently lead to abnormal and uncontrolled cell growth.\(^1\) It is mostly characterized by a series of alterations in the genome and epigenetic network. In higher organisms, the epigenetic network can undergo four major modifications including chromatin remodeling, microRNAs, DNA methylation and histones posttranslational modifications (acetylation, methylation, ubiquitination, phosphorylation, sumoylation and so on).\(^2\) Being a major player in the regulation of the chromatin, histone octamers wrapped with 147 base pairs of DNA, forming the nucleosome. The nucleosome is also subjected to various post-translational modifications (PTM) such as acetylation and methylation.\(^3\) These posttranslational modifications are collectively known as the histone code which is identified by histone “PTM-reader” protein complexes.\(^4\)-\(^6\)

Over the past few decades, lysine methylation of histone tails has attracted tremendous attention in drug discovery research.\(^7\)-\(^8\) Histone methylation mostly occurs on Lysine and Arginine residues and can be easily identified by effector protein complexes bearing different binding domains for methylated histones. Previous studies have reported some of these binding motifs including chromodomain, tudor domain, WD40 repeat domain, MBT domain PHD fingers and ankyrin-repeats domain, PWWP domain and chromobarrel domain.\(^9\)-\(^17\) The common code for recognition by these domains is the coordination of methylated lysine residue via a conserved aromatic cage. The first identified example of the chromodomain binding motif was in Drosophia
melanogaster namely heterochromatin protein-1 (HP-1) and Polycomb. The HP-1 proteins identifies H3K9me (histone 3 that is methylated at Lysine 9) through its N-terminal domain. The Polycomb chromodomain recognizes H3K27me (Histone 3 that is methylated at Lysine at position 27).18-20

Recently, more research efforts has been invested in understanding the diverse function of H3K9 methylation and identifying more H3K9me-binding chromodomain. MPP8 (M-Phase Phosphoprotein 8) has been identified and characterized as a novel methyl-H3K9 binding protein.21, 22 Using their chromodomain, MPP8 binds tri- and di-methylated lysines 9 on histone 3. MPP8 level is elevated in several human primary tumor tissues, while knockdown of MPP8 in metastatic tumor cells leads to a regain of epithelial characteristics accompanied by a significant reduction of cell motility and invasiveness, suggesting that MPP8 contributes to EMT and tumor malignant progression. Mechanistic characterization revealed that MPP8 represses transcription of E-cadherin by directly binding to methyl-H3K9 marks on the promoter of this key EMT regulator.

Based on the importance of methyl-H3K9 binding by MPP8 in E-cadherin gene silencing and EMT as well as the potential druggability of its “cavity insertion” binding mode, we hypothesized that specifically inhibiting MPP8-H3K9me interaction could have therapeutic value in cancer treatment. To explore this possibility, we developed several chemical probes, among which two compounds displayed potential to antagonize methyl-H3K9 binding by MPP8 in our initial characterization.
Figure 5.1 Peptides designed to disrupt H3K9me3-MPP8 interaction (PJ-164-1 – PJ-164-8)
Figure 5.2 Peptides designed to disrupt H3K9me3-MPP8 interaction (PJ-164-9 – PJ-164-17)
Figure 5.3 Western blot from cell fractionation studies (PJ-164-13 – PJ-164-17).
5.2 Results and Discussion

Because EMT is very important in converting early stage tumors into invasive malignancies, and a major obstacle to successful anti-cancer therapy, previous works suggest that blocking MPP8-H3K9me interactions could have potential therapeutic value. The crystal structure of MPP8/H3K9me3 complex showed that the major interaction points are on K9me3 in the aromatic cage of MPP8 chromodomain, including side chain N-CH$_3$ groups projected toward the three rings, dimethyl group toward Asp87, and trimethyl group to the open side of the cage. There are some other residues from H3, which have direct interactions with MPP8, including Gln5, Thr6, Ala7 and Arg8. Based on these reported structural data and the predicted relatively
high druggability of chromodomain among different methylated lysine binding motifs,25 we designed and synthesized 24 compounds (Figure 5.1, Figure 5.2, Figure 5.4, and Figure 5.5) which are expected to reproduce the hydrophobic and charged interactions described and thus bind to the aromatic cage of MPP8 chromodomain.

The design of these compounds was based on the core binding region of histone 3(H3), 5QTARKS10.

\textbf{Figure 5.5} Structure of designed cyclic peptides.
This site contains Lysine 9 (K9), which is one of the preferential methylation sites for histone 3. We introduced various modifications on Lysine 9 including methylation (di- and tri-methylation), acetylation (di-, and tri-acetylation), or a combination of both.

At first, we assessed the antagonistic effects of our designed alkylated lysine variants on H3K9me-MPP8 interaction, using cell fractionation assay followed by western blot analysis.

Myc-MPP8-wt or W80A was first expressed in 293T cells. Cell fractionation was then performed on the transfected cells and cytoplasmic (cyto), nuclear extract (NE) and Nuclear pellet (NP) fractions were collected by a previously described protocol. Because the localization of MPP8 in the cell is in the Chromatin-bound Nuclear Pellet fraction (NP), the potency of the compounds is strongly correlated to their ability to dissociate MPP8 from the NP into the NE.

The western blot of the cell fractionation assay for our first set of designed compounds revealed that compounds PJ-164-1, PJ-164-8, PJ-164-11, and PJ-164-12 were able to dislodge...
MPP8 from the nuclear pellet into the nuclear extract (Figure 5.3 and Figure 5.6). This implies that these compounds could compete for MPP8 binding with the wild type H3K9me.

Encouraged by our initial attempt, we further modified our design to include the cyclic variants of active compounds and we added some arginine residues to the N-terminus to enhance cell penetration. Interestingly, compounds PJ-164-18, PJ-164-19, PJ-164-21 and PJ-164-24 were also able to increase the band intensity due to its interaction with MPP8 (Figure 5.6).

5.3 Conclusion
Modulation of H3K9me3 signalling with small molecules has been a subject of intense research. Inhibitors that could antagonize the methyl reading function of MPP8 may be next generation anti-cancer agents.

5.4 General information
Peptide Synthesis
All peptides used in this study were synthesized by the standard Fmoc-based solid phase peptide synthesis protocol using the Burrell Wrist-Action shaker. All Fmoc protected α-L-amino acids, and Rink amide resin (0.7mmol/g, 200-400 mesh) and 2-Chlorotrityl chloride resin (0.98 mmol/g, 100-200 mesh) were purchased from Chem-Impex International, Inc. All other Solvents and reagents were purchased from either Sigma Aldrich or Fisher Scientific and used without further purification.

For each amino acid coupling, 2 equivalents of Fmoc-amino acid, 4 equivalents each of DIC and HOBT were used and the coupling cycle was repeated, followed by capping with 1 equivalent of acetic anhydride and 2 equivalents of pyridine. Fmoc-deprotection was done with 20% piperidine in DMF. The final peptide was cleaved from the resin using a cleavage cocktail: 95% TFA, 2.5% TIS, 2.5% Water for 3h. TFA was removed by evaporation and the crude
peptide was dissolved in acetonitrile and water. The peptides were analyzed and purified on a Waters Breeze 2 HPLC System, and then lyophilized on a Labconco Lyophilizer.

For cyclic peptides, Fmoc-Cys (Trt)-OH was added to the N- and C- termini during synthesis. Cyclization of the fully deprotected lyophilized peptide was achieved in solution-H2O/Acetonitrile (1:1) with 2 equivalents of N-Chlorosuccinimide (NCS).27 The reaction was allowed to stir for 15mins and then lyophilized.

For peptides synthesized on 2-chlorotrityl chloride resin, 2 equivalents of the second Fmoc-amino acid residue (synthesis starts at the C-terminus), and 6 equivalents each of DIPEA were reacted in DCM for 2 hours, followed by Fmoc-deprotection. The next amino acid was then added and the cycle described above was repeated to achieve the synthesis of the desired sequence. After capping, the cleavage cocktail -Acetic acid/Trifluoroethanol/DCM in 1:1:8 ratio was added and the peptidyl- resin was allowed to shake for 2h after which the peptide solution was concentrated by vacuum and Acetic acid was removed by co-evaporation with hexane. By using this strategy, the protection group on the side chains are preserved for further coupling reactions in solution.

To obtain the desired complete sequence for peptides synthesized on Chlorotrityl chloride resin, we converted the C-terminus to a methyl ester of Serine. The protected peptide obtained after evaporation (1 eq.) and H-Ser-(OtBu)-OMe. HCl (1.2 eq.) were dissolved in 10ml DMF. DIPEA (2.2 eq.) and TBTU (1.3 eq.) were added to the stirring solution.28 The reaction was allowed to stir for 2h at room temperature. The reaction was then diluted with brine and extracted with EtOAc. The organic layer was further washed with brine two more times and the then dried over Sodium Sulfate. The solvent was removed by vacuum evaporation and the residue was redissolved in a 95:2.5:2.5 mixture of TFA /TIS/H2O to deprotect all side chain groups. Deprotection reaction was allowed to run for 2h and volatiles were removed under reduced
pressure and the crude peptide was dissolved in acetonitrile and water. The peptides were analyzed and purified on a Waters Breeze 2 HPLC System by gradient elution (0.1% TFA in H2O, 0.1% TFA in Acetonitrile) and then lyophilized on a Labconco Lyophilizer.

Synthesis of Building Blocks

Synthesis of Nα-Fmoc-Nε-diethyl-Lysine (5b)

Compound 5a (2.5g, 5.34 mmol) was dissolved in TFA (20mL) at 0°C and was stirred for 3h at room temperature. TFA was then evaporated and the residue was dissolved in MeOH (50 mL) and stirred on ice bath. Acetaldehyde (3.051mL, 54.32 mmol) was added. After 15 mins, NaCNBH₃ (1.28g, 20.37 mmol) was added and allowed to stir for another 15 mins. After 15 mins, Acetaldehyde and NaCNBH₃ were added again and the reaction mixture was stirred for 2h. TLC was done in MeOH/H₂O (95:5) and a Rf ~ 0.3 confirmed the completion of the reaction. The reaction was acidified with 1M HCl to adjust the pH to about 3 and was then purified with silica gel column using Chloroform/MeOH (19/1, v/v) as eluent. The pure product (5b, 2.2g) was obtained after removal of solvent by vacuum evaporation.

Synthesis of Nα-Fmoc-N, N-diethyl-N-methyl Lysine (5c)

Compound 5b (1.0g, 2.4 mmol) was dissolved in ethanol (10mL) and was stirred at room temperature. NaHCO₃ (0.63g, 7.2 mmol) and CH₃I (733µL, 12.0 mmol) were added and the reaction mixture was sealed and stirred for 2days. Reaction was monitored by TLC (MeOH/DCM 1:7; Rf ~ 0.1). Purification was done with silica gel column using Chloroform/MeOH (19/1, v/v) as eluent. The pure product (5c, 0.3g) was obtained after removal of solvent by vacuum evaporation.
Synthesis of N^α-Fmoc-N^ε-Dimethyl-Lysine (5d)29,30

Compound 5a (2.5g, 5.34 mmol) was dissolved in TFA (20mL) at 0°C and was stirred for 3h at room temperature. TFA was then evaporated and the residue was dissolved in MeOH (50 mL) and stirred on ice bath.37% aqueous Formaldehyde (1.167mL, 14.95 mmol) was added. After 15 mins, NaCNBH$_3$ (1.28g, 20.37 mmol) was added. And allowed to stir for another 15 mins. After 15 mins, Formaldehyde and NaCNBH$_3$ were added again and the reaction mixture was stirred for 2h. TLC was done in MeOH/H$_2$O (95:5) and a Rf ~ 0.4 confirmed the completion of the reaction. The reaction was acidified with 1M HCl to adjust the pH to about 3 and was then purified with silica gel column using Chloroform/MeOH (19/1, v/v) as eluent. The pure product (5d, 2.0g) was obtained after removal of solvent by vacuum evaporation.

Figure 5.7 Synthetic scheme for the reductive alkylation of Lysine.
Synthesis of Nα-Fmoc-Nε–Trimethyl-Lysine (5e)

Compound 5d (1.0g, 2.5 mmol) was dissolved in ethanol (10mL) and was stirred at room temperature. NaHCO₃ (0.63g, 7.5 mmol) and CH₃I (780µL, 12.5 mmol) were added and the reaction mixture was sealed and stirred for 2 days. Reaction was monitored by TLC (MeOH/DCM 1:7; Rf ~ 0.2). Purification was done with silica gel column using Chloroform/MeOH (19/1, v/v) as eluent. The pure product (5e, 0.6g) was obtained after removal of solvent by vacuum evaporation.

Cell fractionation assay

Myc-MPP8-wt or W80A was expressed in 293T cells and the transfected cells were fractionated into cytoplasmic extract (cyto), nuclear extract (NE) and nuclear pellet (NP) with a Dounce homogenizer as was previously described. The different compounds were dissolved in DMSO at a concentration of 10mM and were included during the procedure to a final test concentration of 20µM. The presence of MPP8 in different fractions was then analyzed by western blot. Lysis buffer was used as a control.

5.5 **References**

CHAPTER 6 : CONCLUSION AND FUTURE OUTLOOK

In this chapter, we will be providing a summary of all the projects and their possible future outlook. We also suggest a way forward for the design of inhibitors of protein-protein interactions in pathological conditions.

An interesting inference from all our studies is a confirmation of the notion of hotspot residues. We have demonstrated that a peptide can be completely changed or modified (except for the position of contact residues), and still retain its minimal function. We have also shown that peptide mimics bearing groups that mimic the functionality of the natural peptide or protein exhibited equal or better activity than the template peptide. For instance, our designed peptidomimetic for HIV-1 fusion inhibition showed better or equal antiviral activity, despite the modifications introduced. However, there is the need to evaluate the effects of varying the modification point along the length of the template peptide. This will help us to evaluate how substitution at those points could modulate the activity of the resulting peptide. This will also provide better structural insights to the design of potent inhibitors and could provide a template for the design of antiviral agents. Also, this strategy could be adapted for other viral systems with similar mode of entry and infection mechanisms.

Talking about the amyloid system, many reported and ongoing research have demonstrated the adoption of same or similar proven strategies across various amyloid systems. For instance, many inhibitors of amyloid fibril formation have been derived from the amyloid foming units, peptide segments, and full length peptide of amyloidogenic proteins, while many others are from
rational design. Although, some dual inhibitors have been discovered through fortuitous means, not many compounds have been developed for dual-action against multiple amyloid systems. Despite the lack of sequence homology in the amyloid forming units of different amyloidogenic proteins, there are great similarities in the morphological features of their amyloid fibers. This implies that intramolecular interactions which promote cross-β-sheet assembly are a major driving force of aggregation. As such, functionalities that could provide such interactions could be considered in the design of such multiple/dual-acting amyloid inhibitor.

Together, these works reveal design patterns and provide deeper insights for the advancement of drug discovery.
APENDIX A: PUBLISHING RIGHTS

Permission/License is Granted for Your Order at No Charge

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because no fee is being charged for your order. Please note the following:

- Permission is granted for your request in both print and electronic formats, and translations.
- If figures and/or tables were requested, they may be adapted or used in part.
- Please print this page for your records and send a copy of it to your publisher/graduate school.
- Appropriate credit for the requested material should be given as follows: "Reprinted (adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the capitalized words.
- One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please submit a new request.

If credit is given to another source for the material you requested, permission must be obtained from that source.
File:L-peptideD-peptide Analogues.png

From Wikimedia Commons, the free media repository

(1) L(Asp-Val-Ser) (2) D(Ser-Val-Asp)

(3) D(Asp-Val-Ser) (4) L(Ser-Val-Asp)

Summary

Description	English: Image used in Peptidomimetics wikipedia page. Figure 2. An L-peptide and its analogues. An L-peptide (1) sequence has three analogues: the D-enantiomer (3) with the same sequence, the retro L-peptide (4) with the inverted sequence, and the retro-inverso D-peptide(2), with all D-amino acids and the inverted sequence. In this image (1) and (3) are shown from C-terminus on the left to N-terminus on the right, while (2) and (4) are shown from N-terminus to C-terminus. Note that (1) and (2) have similar side chain positions; one is the retro-inverso sequence of the other. The same applies to (3) and (4).
Date	26 May 2010
Source	Own work
Licensing

I, the copyright holder of this work, release this work into the **public domain**. This applies worldwide.

In some countries this may not be legally possible; if so:

I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.

File history

Click on a date/time to view the file as it appeared at that time.

<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Thumbnail</th>
<th>Dimensions</th>
<th>User</th>
<th>Comment</th>
</tr>
</thead>
</table>
| current 08:55, 26 May 2010 | ![Image](https://commons.wikimedia.org/wiki/File:L-peptideD-peptideAnalogues.png) | 2,055 × 2,015 (875 KB) | Pablo.gainza | Information

- You cannot overwrite this file.

File usage on Commons

There are no pages that link to this file.

File usage on other wikis

The following other wikis use this file:

- Usage on en.wikipedia.org
- Peptidomimetic
- Usage on hu.wikipedia.org
- Bioinformatika

This page was last edited on 1 January 2018, at 14:34.