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Figure 4.1: Nonlinear sampled feedback model of a conventional DLDO.

effects on the transient performance degradation of DLDOs have been investigated in Chapter 3,

aging effects on the steady state performance degradation of DLDOs will be the focus of this chapter.

Furthermore, when a circuit component can tolerate higher degrees of errors, the DLDOs can be

designed with minimal area overhead, achieving heterogeneous power delivery. A voltage regulator

is proposed in this chapter that can be designed at the design time based on the supply noise

resiliency requirement of the circuitry it powers. Since the number of voltage regulators can be as

high as several hundreds in modern processors [64], the area and number of voltage regulators can

be easily scaled thereby to satisfy the diverse needs of systems that house components with varying

degrees of noise tolerance.

The rest of this chapter is organized as follows. The potential side effects of limit cycle

oscillation on the steady state performance of DLDO is studied in Section 4.2. Aging-aware limit

cycle oscillation mitigation technique is investigated in Section 4.3. Effectiveness of the proposed

technique is verified in Section 4.4. Trade-off between area overhead and program output quality is

illustrated in Section 4.5. Concluding remarks are offered in Section 4.6.
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4.2 Limit Cycle Oscillation

In conventional DLDOs, when the shift register turns on/off the pass transistor, the output

voltage of the DLDO cannot change instantaneously due to the output pole of the DLDO. The

delay between the operation of the shift register and fluctuation of the output voltage, together

with the quantization effects of the comparator and the delay between the sampling instant and

the time of pMOS array actuation lead to the occurance of LCO. Such behavior can be examined

by a nonlinear sampled feedback model developed in [131] to determine the possible modes and

amplitudes of LCOs.

The model consists of N(A,ϕ), P (z), S(z), and D(z) as shown in Fig. 4.1, which represent,

respectively, the describing function of the clocked comparator, transfer function of the zero-order

hold (ZOH) together with the pMOS array and load circuit, transfer function of the shift register,

and delay element between the comparator and shift register. A and ϕ stand for the LCO amplitude

and the phase shift of x(t), respectively.

N(A,ϕ), P (z), S(z), and D(z) can be expressed, respectively, as [132, 133]

N(A,ϕ) =
2D

MTA

M−1∑
m=0

sin(
π

2M
+
mπ

M
)∠(

π

2M
− ϕ) (4.1)

P (z) = KOUT
1− e−FlT

Fl(z − e−FlT )
(4.2)

S(z) =
z

z − 1
(4.3)

D(z) = z−1 (4.4)

where KOUT = KDCIpMOS , T = 1/fclk, Fl = 1/(RL||RpMOS)C, and ϕ ∈ (0, π/M). D, Fl, KOUT ,

KDC , RL, and RpMOS are, respectively, the amplitude of comparator output, load pole, gain of

P (z), DC proportional constant, load resistance, resistance of power transistor array.

The mode and amplitude of LCO can be determined by the following Nyquist criterion,

N(A,ϕ)P (ejωT )S(ejωT )D(ejωT ) = 1∠(−π) (4.5)
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Figure 4.2: Schematic of the proposed aging-aware DLDO.

where ω = π/TM is the angular LCO frequency. The phase shift ϕLCO for a steady LCO can thus

be expressed as [132]

ϕLCO =
π

2
− π

2M
− tan−1( π

MTFl
). (4.6)

ϕLCO needs to be within (0, π/M) for mode M to exist.

Transistor aging can lead to increased path delay [134]. Considering BTI induced propaga-

tion delay degradation of the clocked comparator and shift register, the delay element in Fig. 4.1

becomes

D′(z) = z−1z−
tdc
T z−

(tds−tdc )

T = z−1−
tds
T (4.7)

where tdc and tds are, respectively, the degraded propagation delay of the clocked comparator and

shift register. Note that tdc is canceled out in D′(z) and thus the propagation delay of clocked

comparator has negligible effects on the mode of LCO. ϕLCO then becomes

ϕ′LCO =
π

2
− π

2M
− tan−1( π

MTFl
)− πtds

MT
. (4.8)
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The negative effect of the propagation delay of the shift register on LCO can be explained as

follows. If an LCO modeMa exists and the propagation delay of the shift register is not considered,

the phase shift ϕLCO is within (0, π/Ma). That is 0 < π/2 − π/2Ma − tan−1(π/MaTFl) < π/Ma.

For a larger LCO mode Ma + 1 to exist, the following condition needs to be satisfied

0 <
π

2
− π

2(Ma + 1)
− tan−1( π

(Ma + 1)TFl
) < π/(Ma + 1). (4.9)

Typically
π

2
− π

2(Ma + 1)
− tan−1( π

(Ma + 1)TFl
) >

π

2
− π

2Ma
− tan−1( π

MaTFl
) (4.10)

and if π/2− π/2Ma − tan−1(π/MaTFl) is very close to π/Ma, it is likely that

ϕLCO|M=Ma+1 =
π

2
− π

2(Ma + 1)
− tan−1( π

(Ma + 1)TFl
) > π/Ma > π/(Ma + 1) (4.11)

such that LCO mode Ma + 1 can not exist as (4.9) is violated.

However, if the propagation delay of the shift register is included, for LCO mode Ma + 1,

ϕLCO becomes

ϕ′LCO|M=Ma+1 =
π

2
− π

2(Ma + 1)
− tan−1( π

(Ma + 1)TFl
)− πtds

(Ma + 1)T
. (4.12)

The contribution of πtds/(Ma + 1)T term may push ϕ′LCO|M=Ma+1 to be within the range of

(0, π/(Ma + 1)), making a larger LCO mode Ma + 1 possible. This demonstrates the potential

negative effect of the propagation delay of the shift register on LCO.

4.3 Reduced Clock Pulse Width

Dual clock edge triggering has been employed in [133, 135] to reduce the control signal delay,

where the clocked comparator and shift register are triggered at the rising and falling edge of the

clock signal, respectively. Considering the potential side effect of the control loop delay element

D′(z) on LCO, a reduced clock pulse width tc, as shown in Fig. 4.2, is proposed to minimize the

delay element. With dual clock edge triggering implementation of the control loop, the following
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Table 4.1: TFF Setup Time, Logic Delay, and Comparator Delay Before and After a Five-Year
Aging Period

TFF setup time Logic delay Comparator delay
Fresh (ps) 170 209.6 171.5
Aged 5 yrs (ps) 180 227.4 225
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Figure 4.3: Maximum LCO mode with simulation results superimposed for conventional and aging-
aware DLDO under different load current conditions after a five-year aging period.

condition needs to be satisfied regarding tc for proper operation of the uDSR based DLDO

tc > tdc + tdl + tstt (4.13)

where tdl and tstt are, respectively, the total propagation delay of the logic gates connected to the

first stage TFF within the uDSR and the setup time of the TFF. Aging induced degradation of tdc ,

tdl , and t
st
t needs to be considered with the targeted lifetime to decide the value of tc. The one-shot

pulse generator in [98] can be leveraged for reduced pulse width clock generation.

Within the proposed aging-aware DLDO, ϕLCO becomes

ϕ′′LCO =
π

2
+

π

2M
− tan−1( π

MTFl
)− π(tds + tc)

MT
. (4.14)
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Table 4.2: Maximum LCO Mode under Different Sampling Clock Frequency and Load Current
Condition for Conventional Dual Edge (CDE) and Aging-Aware (AA) DLDO

CDE/AA LCO mode Sampling clock frequency fclk (MHz)
Iload (mA) 10 50 100 300 500

10 4/2 8/6 11/9 20/18 27/27
100 3/2 3/2 4/3 6/6 8/8
500 3/2 3/2 3/2 3/3 4/4

4.4 LCO Mitigation with Proposed Aging-Aware DLDO

To verify the benefits of the proposed reduced clock pulse width DLDO regarding LCO mit-

igation, the theoretical maximum LCO mode for dual edge triggered and reduced clock pulse width

DLDO with uDSR implementation are respectively examined by considering BTI induced threshold

voltage degradation of the control loop. An average IBM POWER8 microprocessor temperature

profile of 70oC is utilized for Vth degradation evaluation. NBTI and PBTI are considered as the

major Vth degradation factor for pMOS and nMOS transistors in the control loop, respectively.

Under different load current conditions, the activity factor of each transistor within the control loop

is obtained through Cadence Virtuoso simulations. Equation (3.1) is then leveraged to calculate the

Vth degradation for each transistor within a five-year time frame. The calculated Vth degradation is

embedded in each transistor by adopting the subcircuit model for BTI effect in [136] within Cadence

Virtuoso simulations. The fresh and aged TFF setup time tstt , logic delay tdl , and comparator delay

tdc are summarized in Table 4.1. The aged tstt , tdl , and t
d
c are approximately load current indepen-

dent. tc = 1ns is adopted to satisfy timing constraint in (4.13). The maximum LCO mode for dual

edge triggered and reduced clock pulse width DLDO under different load current conditions after a

five-year aging period is illustrated in Fig. 4.3.

Seen from Fig. 4.3, with reduced clock pulse width considering aging imposed limitations,

maximum LCO mode can be greatly reduced especially at light load conditions. The simulated

steady state output voltages for both conventional dual edge triggered DLDO and the proposed

aging-aware DLDO under 10 mA load current are demonstrated in Fig. 4.4. LCO mode reduction

from 4 to 2 and 3 times output voltage ripple amplitude reduction are achieved. As the minimum

and average Iload can be way smaller than the maximum Iload shown in Table 3.1 especially for LSU,
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Figure 4.4: Simulated output voltage ripple and LCO mode reduction with the proposed aging-
aware DLDO under 10 mA load current.

light and medium load conditions are experienced most of the time such that outstanding benefits

can be achieved with the proposed aging-aware DLDO considering the negligible power and area

overhead induced.

Furthermore, in many applications the clock frequency can be much higher than 10 MHz such

as 1 GHz in [137]. However, the 1 GHz sampling clock sacrifices the quiescent current. Recent work

such as [135] and [138] utilizes a high clock frequency for fast transient and a much lower frequency

for steady state operation. For a better verification of LCO improvement utilizing the proposed

reduced clock pulse width scheme, maximum LCO mode under different sampling clock frequency

and load current condition for both conventional dual edge and aging-aware DLDO is shown in Table

4.2. Seen from the table, the proposed reduced clock pulse width scheme demonstrates maximum

LCO mode reduction under a wide fclk range especially under light load current condition. For a

clock frequency of 1 GHz, there would be no room to further reduce the pulse width due to the

timing constraint. However, as discussed before, clock frequency utilized at steady state operation

is typically much lower.
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Figure 4.5: Percentage area overhead (OH) utilizing conventional DLDO and percentage area
overhead saving (OH_S) utilizing aging-aware DLDO for ∆V degradation mitigation within each
functional unit.
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Figure 4.6: Percentage area overhead utilizing conventional DLDO and percentage area overhead
saving utilizing aging-aware DLDO for ∆V degradation mitigation within LSU under different
temperature profile.

4.5 Trade-Off between Area Overhead and Program Output Quality

Considering aging effects, regulators are typically designed and optimized for the expected

service life of the processor. Deploying regulators optimized for a shorter service life cannot guar-

antee error-free operation, however, if such regulators are confined to feed error-tolerant loads, the
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Figure 4.7: Percentage ∆V degradation mitigation of the proposed aging-aware DLDO as com-
pared to the conventional DLDO design for LSU under all experimented benchmarks and different
temperature profile.

service life can be traded for lower hardware complexity, which almost always directly translates

into area savings. Please note that area represents a scarce on-chip resource for distributed voltage

regulators as many of these regulators are squeezed between various circuit blocks. Such area savings

can enable a higher number of on-chip voltage regulators, hence enhance the scalability of on-chip

voltage regulation. To illustrate this point, the percentage area overhead within each functional unit

to achieve the same fresh ∆V performance utilizing conventional DLDO is examined in Fig. 4.5.

The relative area between pMOS array & shift register and output capacitance is based on the data

in [138] for estimation. Adding extra output capacitance to mitigate ∆V degradation is considered

in the estimation. The percentage area overhead is relative to the original DLDO area including out-

put capacitance designed in an aging-unaware fashion. The percentage area overhead saving within

each functional unit for ∆V degradation mitigation utilizing the proposed aging-aware DLDO is

also demonstrated in Fig. 4.5. As shown in Fig. 4.5, a large area overhead can be introduced

to mitigate aging induced transient voltage noise degradation for conventional DLDOs. Similar to

the trend demonstrated in Fig. 3.3, the area penalty required to compensate for the aging-related

deterioration of ∆V is significant especially in the first two years. The percentage area overhead

also plateaus to within 10% after two years. These trends need to be considered to realize optimal
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Figure 4.8: Percentage area overhead within each functional unit for percentage error rate degra-
dation mitigation utilizing bDSR and uDSR based DLDO.

design based on different application environment and lifetime target. Furthermore, leveraging the

proposed aging-aware DLDO, due to mitigation of aging induced ∆V degradation, significant area

overhead savings compared to the conventional DLDO case can be achieved as shown in Fig. 4.5.

Our proof-of-concept analysis reveals approximately 1% total DLDO area, which corresponds to ∼

36% active DLDO area, savings for per year service life reduction.

The temperature variation effects on percentage area overhead (saving) within LSU is

demonstrated in Fig. 4.6. Seen from the figure, as temperature increases, the percentage area

overhead needed for conventional DLDO to mitigate ∆V degradation increases significantly. The

percentage area overhead saving achieved by the aging-aware DLDO also greatly increases. Although

the relative benefits of aging-aware DLDO do not improve significantly as temperature increases

shown in Fig. 4.7, the area overhead saving is considerable due to the relatively large ratio between

the area of output capacitance and that of active DLDO.

For a proof of concept analysis, considering a five-year aging period, the percentage area

overhead within each functional unit for percentage error rate degradation mitigation utilizing bDSR

and uDSR based DLDO is demonstrated in Fig. 4.8 based on the relationship between error rate and

supply voltage demonstrated in [139, 140]. The percentage error rate degradation mitigation is with
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respect to the degraded error rate utilizing bDSR based DLDO and a 100% error rate degradation

mitigation means the same error rate within each functional unit is achieved as the fresh one after

a five-year aging period. Seen from Fig. 4.8, contrary to the bDSR curves, the uDSR curves do not

start from origin, which means with negligible area overhead, uDSR based DLDO achieves certain

amount of error rate degradation mitigation compared to bDSR based DLDO. Also, for the same

amount of error rate degradation mitigation, the area overhead needed for uDSR based DLDO is

lower than that of bDSR based DLDO.

4.6 Conclusion

As an emerging and essential part of modern processor power delivery network, DLDO

regulators experience serious aging induced performance degradations including IpMOS , TR, and

∆V . In particular, DLDO degradation can increase noise in the supply voltage and further de-

teriorate program output quality. Area overhead needed to fully compensate these degradations

can be significant especially when a conventional DLDO design is utilized. Algorithmic noise toler-

ance of different processor components is leveraged as an area-quality control knob to alleviate the

area overhead requirement through scalable on-chip voltage regulation at design time. Furthermore,

DLDO designed in an aging-aware fashion is proposed to mitigate aging induced performance degra-

dations with negligible power and area overhead. With reduced DLDO performance degradation,

a significantly better area and quality trade-off can be achived due to aging-aware DLDO induced

area overhead savings. Therefore, more efficient scalable on-chip voltage regulation can be realized

with the proposed aging-aware DLDO. Up to 3X steady state DLDO performance improvement as

well as more than 10% area overhead saving can be achieved utilizing the proposed aging-aware

paradigm.
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CHAPTER 5:

CONCLUSIONS

Unbalanced current sharing among distributed on-chip voltage regulators negatively affect

the power conversion efficiency, stability, and reliability of the power delivery network. An effective

balanced current sharing technique is proposed to enhance the power efficiency, stability, and relia-

bility. The proposed technique slightly increases the reference voltages of on-chip voltage regulators

that provide less current and decreases the reference voltages of those providing more current to

balance the overall current sharing. Due to the small effective resistance variations connecting volt-

age regulators at different locations, the reference voltage changes needed to balance the current are

also negligible. Simulation results demonstrate up to 8% regulator power loss saving, several years

of MTTF improvement, and enhanced system stability.

NBTI leads to the amplitude increase of the threshold voltage and has been demonstrated

to degrade the current supply capability, transient response time, and voltage droop performance of

digital LDOs. Conventional digital LDOs utilizing bidirectional shift register for power transistor

array control impose too much stress on a certain portion of power transistors. The proposed

unidirectional shift register based NBTI-aware digital LDO can more evenly distribute the electrical

stress among all of the power transistors to mitigate NBTI induced performance degradations. Under

practical simulation settings, NBTI-aware digital LDO can achieve up to 42% voltage droop and

43.2% transient response time degradation mitigation.

BTI also leads to control loop degradation of digital LDOs, specifically propagation delay

degradation of the control loop, which is not desirable for steady state performance. It is demon-

strated through simulations that the propagation delay degradation can be small as compared to

half clock cycle of typical digital LDO clock signal such that reduced clock pulse width triggering

can be implemented to further reduce the mode and amplitude of steady state limit cycle oscilla-
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tions especially at light load conditions. Up to three times steady state digital LDO performance

improvement is achieved.

Error rate of a certain functional block is largely affected by the supply voltage level. Aging

can lead to the degradation of on-chip voltage noise profile and further the degradation of error

rate. Algorithmic noise tolerance of different functional blocks can vary. Meanwhile, additional area

overhead is needed to mitigate aging induced on-chip voltage regulator performance degradations.

Higher algorithmic noise tolerance of a certain functional block can be leveraged to reduce area

overhead and allow more on-chip voltage noise degradations. The desired error rate can also be

maintained. Area overhead reduction may further enable increased number of distributed voltage

regulators for functional blocks that may have lower level of algorithmic noise tolerance.
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CHAPTER 6:

FUTURE WORK

6.1 Co-Optimizing Different Design Aspects to Avoid Overdesign

High performance on-chip power delivery network involves different design aspects such

as power conversion efficiency, thermal issue, and reliability. Different application scenarios and

environments may impose different design targets and specifications. Power conversion efficiency,

thermal issue, and reliability can be mutually affected and should be considered as a whole to realize

optimal design and avoid overdesign. For example, power conversion efficiency can be a function

of temperature. Reliability can be largely affected by temperature. Implementation of thermal

mitigation techniques may need to sacrifice power conversion efficiency. Reliability enhancement

techniques can also introduce additional power and area overhead. Depending on the targeted

lifetime, power efficiency requirement, and on-chip temperature profile, appropriate efficiency boost

technique, thermal emergency mitigation technique, and aging mitigation technique need to be

adopted. Furthermore, algorithmic noise tolerance capability of different functional blocks needs to

be considered. A generic design flow considering different design aspects and trade-offs among them

will be considered in our future work.

6.2 NBTI-Aware Digital LDO with Adaptive Gain Scaling Control

Unidirectional shift register that can activate or deactivate a single power transistor per clock

cycle is proposed in our recent work [4, 130] to mitigate NBTI induced digital LDO performance

degradations. Digital LDO with improved transient performance [141] has been proposed to achieve

faster response time by turning on or off more number of power transistors per clock cycle during

the load transient. However, bidirectional shift register is utilized in [141] that can lead to the heavy
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use of a portion of power transistors. The unidirectional shift register proposed in [4, 130] cannot be

directly applied to digital LDOs with adaptive gain scaling control capability. Novel NBTI-aware

digital LDO with adaptive gain scaling control capability will be proposed in our future work to

mitigate NBTI induced performance degradations.
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