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ABSTRACT 

 

This thesis presents a comprehensive exploratory analysis of truck route choice diversity 

in the state of Florida, for both long-haul and short-haul truck travel segments. We employ six 

metrics to measure three different dimensions of diversity in truck route choice between any given 

origin-destination (OD) pair. These dimensions are: (1) number of distinct routes used to travel 

between the OD pair, (2) the extent of overlap (or lack thereof) among the routes, and (3) the 

evenness (or the dominance) of the usage of different unique routes. The diversity metrics were 

utilized to examine truck route choice diversity from over 73,000 truck trips that were derived 

from over 200 million GPS records of a large truck fleet. Descriptive analysis and statistical 

modeling of the diversity metrics offered insights on the determinants of various dimensions of 

truck route choice diversity between an OD pair. The results could be used to improve choice set 

generation algorithms for truck route choice modeling as well as in planning truck route policies 

and investments.   
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

Highway freight mobility is critical to a region’s economic growth. An essential step 

toward enhancing highway freight mobility is to improve our understanding of freight movement. 

Analyzing truck routes can help design short-term truck routing policies aimed at mitigating 

congestion and improving travel time reliability. Due to limited data on truck movements, 

however, truck route choice has been an understudied dimension of freight movement. The recent 

availability of global positioning systems (GPS) data has started to fill this gap. A few studies have 

used GPS data to understand route choice behaviors of freight trucks or to derive freight 

performance measures (Brown and Racca, 2012; Liao, 2014; Wang et al., 2016; Woodard et al., 

2017). However, not much attention has been paid to gain a better understanding of the truck travel 

patterns, particularly on the degree of diversity among truck routes. 

Analyses of the degree of truck route diversity have important applications in both planning 

and modeling practices. Transportation planners can use route variability measures to evaluate the 

performance of transportation networks, particularly for the demand of designated truck routes or 

toll roads. More diversity in the chosen routes implies higher resiliency of the roadway system, 

especially for routine infrastructure maintenance and rebuilding efforts for emergency recovery. 

Identifying OD pairs with higher diversity can help trucking companies in optimizing routing 

strategies. For modeling applications, route diversity measures, such as the number of expected 

routes and their amount of route overlap, can be useful criteria to guide route choice set generation 

algorithms, and subsequently improve the generated routes. 
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1.2 Literature Review 

The availability of GPS-data in recent years has offered three major venues for route choice 

research, such as building route choice models, examining the choice set algorithms, and analyzing 

behaviors of the chosen routes. Route choice research has utilized the recently available GPS-data 

to build route choice models, examine the choice set algorithms, and analyze behaviors of the 

chosen routes. Several advanced route choice models have utilized this rich GPS data collected to 

analyze routes taken by automobiles (Levinson and Zhu, 2013). There are still limited route choice 

models build for truck mode. Hess et al., 2015 is the only recent study that explored a large set of 

truck-GPS data collected in a dense urbanized network. Generating a sensible and exhaustive route 

choice set is the focus of not only the algorithm itself but also on the robustness of the route choice 

model estimates (e.g.: Bekhor et al., 2006; Bliemer and Bovy, 2008). Bovy, 2009 suggested four 

aspects of the choice set: (1) the sufficient number of route alternatives, (2) the inclusion of 

observed routes, (3) the plausibility of the route hierarchical sequence, and the (4) diversity of the 

generated routes. Those criteria need to be determined by a model that can estimate the reasonable 

number of diverse alternatives for any given OD pair. 

In addition to developing route choice models, researchers have deployed GPS data to 

analyze the route deviation or the variability of observed routes. Jan et al., 2000 concluded that 

most chosen routes differed from the shortest time path by comparing matches of few similar OD 

pairs. Papinski et al. 2009 estimated that up to 20% of travelers deviated from their planned route. 

Papinski and Scott, 2009 found that the observed routes are longer than both shortest time and 

shortest distance routes because travelers also consider many other route characteristics. Spissu et 

al., 2011 quantified the time and distance that the observed routes deviated from minimum-cost 

routes, while examining the variability of daily routes chosen by same or different individuals. 
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Zhu and Levinson’s empirical test of the user-optimal equilibrium principle in trip assignment 

using all chosen routes is the latest study on the extent of route variability. Among those few 

studies, the datasets were limited by the size of only tens or hundreds of observed routes. Only a 

few indices were applied to quantify the extent of route deviation or route variability, such as 

path/time/distance deviation index and overlapping index (Jan et al., 2000; Spissu et al., 2011). 

1.3 Research Objectives 

Based on the available datasets of truck routes derived for two FDOT projects, the objective 

of this thesis is to conduct a comprehensive exploratory analysis of truck route choice diversity in 

Florida for both long-haul and short-haul travel segments. The term diversity is used to 

characterize the differences in observed routes used by trucks along three different dimensions: 

(1) the number of different routes used by trucks for travel between an OD pair, (2) the amount of 

overlap/similarity among different routes used between an OD pair, and (3) the evenness (or, 

otherwise, the dominance) in usage of different routes. Specifically, the study addresses two broad 

questions: (1) How to measure the degree of diversity in the routes trucks use to travel between an 

OD pair? (2) What factors influence the diversity of truck route choice between an OD pair? To 

this end, six metrics were used to measure the following three different dimensions of diversity in 

route choice between a given OD pair: (1) number of different routes used between the OD pair, 

(2) extent of overlap (or lack thereof) among the routes, and (3) evenness (or the dominance) of 

the use of different unique routes between that OD pair. These metrics were applied to quantify 

truck route choice diversity using large streams of more than 200 million GPS records. Next, 

statistical models were estimated to explore the influence of various determinants on the three 

dimensions of route choice diversity between different OD pairs. The models provided insights 



4 

 

into the influence of truck travel characteristics, OD location characteristics, and network structure 

characteristics between an OD pair on the diversity of route choice between that OD pair.  

1.4 Thesis Organization 

Chapter 2 describes the truck-GPS data and the derived route datasets used in this thesis. 

Chapter 3 describes the metrics used to quantify diversity in truck route choice. The statistical 

models used in this thesis and empirical results are presented in Chapter 4. Chapter 5 documents 

descriptive analysis of diversity metrics and explanatory variables. Chapter 6 summaries empirical 

findings from statistical models on the determinants of diversity. Chapter 7 concludes this thesis 

with findings and recommendations for future research.   
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CHAPTER 2: DATASETS 

 

2.1 Raw Truck GPS Data 

The truck-GPS data used in this thesis was obtained from the American Transportation 

Research Institute (ATRI) for two Florida Department of Transportation (FDOT) funded projects 

(Pinjari et al., 2014; Tahlyan et al., 2017). The data used to derive long-haul truck trips (trips longer 

than 50 miles) comprised more than 145 million GPS records corresponding to a fleet of nearly 

50,000 freight trucks. The long-haul GPS data spanned spatially over the state of Florida and 

temporally over a four-month period (March–June 2010). The data used to derive short-haul trips 

(trips shorter than 50 miles) comprised more than 96 million GPS records corresponding to a fleet 

of nearly 110,000 freight trucks and spanned six counties of the Tampa Bay region in Florida. 

Temporally, the short-haul data corresponded to first 15 days in October 2015, December 2015, 

April 2016, and June 2016. 

2.2 Deriving Truck Routes 

2.2.1 Converting Truck-GPS Data to Truck Trips 

The raw truck-GPS data were first converted into a database of truck-trips using algorithms 

developed by Thakur et al. (2015) and later refined by Pinjari et al. (2015) for the same data. The 

overall procedure to convert ATRI’s truck-GPS data into a database of truck trips is summarized 

in the following three broad steps:  

1. Clean, read, and sort raw GPS data in chronological order for each truck ID. At the end 

of this step, all GPS data belonging to each truck ID are grouped together in chronological 

order.  
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2. Identify an initial set of truck trip stops (i.e., trip ends) based on spatial movement, time 

gap, and speed between consecutive GPS points. In this step, a truck is considered to have 

stopped at a destination if it stops (i.e., if the average travel speed between two consecutive 

GPS points is less than 5 mph) for at least 5 minutes. A truck stop of less than 5-minute 

duration is considered to be a traffic stop (i.e., not a valid destination) and, therefore, is 

considered part of the travel between origin and destination. 

3. Conduct quality checks and refine or eliminate trips that do not satisfy quality criteria. 

2.2.2 Deriving Truck Routes from Truck Trips 

To derive the chosen route for each long-haul trip, raw GPS records corresponding to each 

trip were map-matched using the procedure developed by Kamali et al. (2016) to high-resolution 

NAVTEQ roadway networks provided by FDOT. The long-haul truck routes were derived by 

Kamali et al. (2016). The 2010 NAVTEQ network used to derive long-haul routes comprised more 

than 1.5 million links and 5.8 million nodes. To match the time frame when the GPS data was 

collected, the 2015 NAVTEQ network used for short-haul routes comprised over 1.8 million links 

and more than 6.9 million nodes. The short-haul truck routes were derived by the author and her 

colleagues as one of the main tasks in the report “Development and Analysis of Truck Route 

Choice Data for the Tampa Bay Region using GPS Data” (Tahlyan et al., 2017). The procedure 

for deriving routes using GPS data consisted of three broad steps: 1) map-matching data set 

preparation, 2) map-matching process, and 3) route generation. Section 2.2.2.1 documents the 

improvements of the first two steps of the map-matching procedure developed by Kamali et al. 

(2016) to better suit the nature of short-haul truck trips. 
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2.2.2.1 Improving Map-matching Procedure for Short-haul Routes 

1. Map-matching data set preparation: The raw GPS data of each trip were refined based 

on the following criteria: a) Removing GPS coordinates within a 1,000-ft radius of the 

origin or destination of each trip. For trips that started or ended in urban areas with a high 

density of highway network links, it was not easy to accurately map-match the raw GPS 

data because of the absence of many minor roadway network links in the Navteq network 

used in the study. Mismatching these GPS points would lead to loops (circuitous 

maneuvers) in the generated routes. As this step also removes the origin and destination 

GPS points, these points were later added back to the set of GPS points corresponding to a 

trip. b) Space-sampling the remaining GPS coordinates to be at least 1,000 ft apart. This 

was done to eliminate GPS points that were too close to each other and did not help enhance 

the accuracy of matching the points to the road network. The space-sampling approach is 

different from the time-sampling approach mentioned in Kamali et al. (2016), but space 

sampling helps to keep consistency across the spatial distribution of the consecutive GPS 

points. In the time-sampling approach, GPS points can still be very close to each other after 

a period of time (e.g., 1 or 2 minutes when a truck stops at a traffic light, etc.). c) Based on 

the remaining GPS points in each trip, removing trips with less than 5 GPS points, as the 

number of GPS points in those trips was considered below the number needed to accurately 

derive the travel route.  

2. Map-matching process: Map-matching is a technique that uses a combination of GPS 

location data and roadway network data to identify the correct link that has been traversed 

by the vehicle on the network. The author modified the map-matching procedure used in 

Kamali et al. (2016), which was originally proposed by Yang et al. (2005). 
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First, all the GPS points that were within 500-ft buffer around the highway interchanges 

were removed. Points close to highway interchanges are difficult to map-match and can lead to 

major detours from the actual route. This was done by drawing a 500-ft buffer around the highway 

interchanges; these interchanges were identified using the attributes present in the Navteq network 

that indicated if a network link belongs to a highway interchange. The GPS points falling within 

the 500-ft buffer were identified by intersecting the GPS data layer with the 500-ft buffer layer 

around the highway interchanges.  

Second, the distance of each GPS point from the first nearest link in the network was 

calculated. This distance was denoted as D1, and all GPS points where D1 > 500 ft were removed. 

Subsequently, distance of each GPS point from the second nearest link in the network was 

calculated and denoted as D2. This was done using the “Generate Near Distance Table” tool in the 

ArcGIS environment.  

Third, the angle between the geographic north and a perpendicular line drawn from each 

GPS point to the first- and second-nearest links in the network was calculated. If the location of 

the link was east of the location of the GPS point, the angle was measured in the clockwise 

direction; if the location of the link was west of the GPS point, the angle was measured in the anti-

clockwise direction. These angles were denoted as A1 and A2. If 170° < (A1 + A2) < 190°, the 

GPS point was supposedly between two parallel roads and was difficult to be map-matched 

accurately. All such GPS points were removed from the dataset. Of the points that were removed, 

those that fell within the 65-ft buffer of just one roadway intersection were retained and were map-

matched to the intersections instead of the links.   

Finally, all trips with fewer than five GPS points were removed, as these trips did not have 

enough GPS points for accurate route determination. 
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2.3 Database of Truck Routes for Diversity Analysis 

To analyze route choice and the diversity therein, it is useful to aggregate trip end locations 

to larger spatial units to observe a sufficient number of trips to get an uncensored view of the 

various routes trucks choose between two locations. Even if a substantial number of trips was 

observed between disaggregate OD locations, it might not exhibit the complete alternatives in 

route choice due to lack of diversity in the truck drivers, operators and/or nature of the trucking 

businesses. Furthermore, practical implementations of route choice analysis and modeling 

consider spatially-aggregated units such as traffic analysis zones (TAZs). There are 5,403 TAZs 

in the Florida statewide travel demand model (FLSWM). The size of each TAZs varies based on 

each region’s traffic, population, and employment densities. Therefore, in this thesis, all trip end 

locations were aggregated to the TAZs defined in Florida’s statewide travel demand model.  

Based on empirical observations, TAZ OD pairs that had at least 50 trips for long-haul data 

and at least 30 trips for short-haul data were selected, as OD pairs with fewer trips might not offer 

a complete picture of truck route diversity. Table 2.1 summarizes the attributes and selection 

criteria for both long-haul and short-haul truck trips. All subsequent analyses were built parallel 

for both datasets to compare and contrast the degree of route diversity for long-haul and short-haul 

trips. From a set of more than 78,000 routes, the final long-haul dataset used in this analysis 

comprised 277 TAZ OD pairs with a total of 30,263 routes that were longer than 50 miles as shown 

in Figure 2.1. Thakur et al., 2015 estimated that ATRI GPS data only cover about 10% of truck 

traffic volumes in Florida. Figure 2.2 shows the geographical distribution for 527 short-haul OD 

pairs comprising 42,884 routes refined from a set of more than 230,000 routes. As trips shorter 

than 5 miles would not have many route choice options for truck travel, all short-haul routes are 

between 5 and 50 miles long.  
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Figure 2.1 Geographical Distribution of all Long-haul Truck Routes 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Geographical Distribution of all Short-haul Truck Routes 
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Table 2.1 Dataset Summary 

Attributes Long-haul Short-haul 

Original datasets 

Collected period 
March, April, May and June 

2010 

October, December 2015 and 

April, June 2016 

Coverage region Entire State of Florida 
Six counties in the Tampa 

Bay (mid-west of Florida) 

Number of raw GPS 

records 
96 million 145 million 

Number of derived routes 78,381 233,329 

Selection criteria for route diversity analysis 

Minimum trip length 50 miles 5 miles 

Minimum number of 

trips per OD pair 
50 30 

Refined datasets for route diversity analysis 

Number of truck routes 30,263 42,884 

Number of OD pairs 277 527 

 

As all selected truck trips have their corresponding traversed routes along the road network, 

the terms “trip” and “route” are used interchangeably. Figure 2.3 presents the trip length 

distribution of the trips selected for analyzing truck route diversity. More than half of long-haul 

trips are between 50 and 100 miles long, with the maximum trip length of 470 miles. The trip time 

distribution shown in Figure 2.4 indicates that the average truck speed is less than 60 miles per 

hour, especially for long-haul trips.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 

 

0%

10%

20%

30%

40%

50%

60%

[5-10) [10-20) [20-30) [30-40) [40-50) [50-100) [100-150)[150-200)[200-250) [250+)

P
er

ce
n
ta

g
e 

o
f 

tr
ip

s

Trip travel time (minutes)

Short-haul (N=42,884);

Average=28.4, SD=14.5

Long-haul (N=30,623);

Average=139, SD=71.3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Trip Length Distributions of Long-haul and Short-haul Trips 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Trip Time Distributions of Long-haul and Short-haul Trips 
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Figure 2.5 presents the locations of all 20 active weigh stations that are distributed along 

or near the Interstate system. The long-haul routes shown in Figure 2.1 pass through 18 out of 20 

weigh stations. The White Springs Weigh-In-Motion Station may have trips going out of / into 

Florida while this analysis only considers routes trips within Florida. Truck trips going through 

the Old Town Static Station may have not been a part of an OD pair with at least 50 trips. Three 

weigh stations—Wildwood, Seffner and Hopewell are within the study boundaries for the short-

haul dataset. 

 
Figure 2.5 Florida Weigh Stations Map 
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Figure 2.6 presents the locations of ten cargo seaports that were visited by long-haul routes. 

Detailed analysis of the route distributions confirms that the Port Tampa Bay and Port Manatee 

are the two popular origins and destinations for short-haul truck trips. It can be observed that 

freight truck is the primary mode to transport goods into and out of seaports. 

 
Figure 2.6 Florida Seaport System 
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CHAPTER 3: DEVELOPMENT OF ROUTE DIVERSITY METRICS 

 

3.1 Introduction 

To measure diversity in truck route choice between a given OD pair, the following six 

metrics were employed: (1) number of unique routes, (2) average commonality factor, (3) average 

path size, (4) non-overlapping index, (5) standardized variance of route usage, and (6) standardized 

Shannon entropy of route usage. The first metric measures the number of unique routes traveled 

by trucks between an OD pair. The next three metrics measure the extent of overlap (or lack 

thereof) among the observed unique routes, which are referred to as the route variability metrics. 

The last two metrics measure the evenness (or, otherwise, dominance) in the usage of the routes 

between the OD pair, which are referred to as the route dominance metrics. These three dimensions 

together provide a complete picture of the diversity in truck route choice between an OD pair.  

3.2 Number of Unique Routes 

Many routes traveled between an OD pair are different by only a few links. To determine 

a set of distinct or unique routes traveled between an OD pair, we used the commonality factor 

proposed by Cascetta et al. (1996). Commonality factor (𝐶𝑖𝑗) between routes 𝑖 and 𝑗 is defined as: 

𝐶𝑖𝑗 = 𝑙𝑖𝑗 √𝐿𝑖𝐿𝑗⁄    (3.1) 

where 𝐿𝑖 and 𝐿𝑗 represent the length of routes 𝑖 and 𝑗, respectively, and 𝑙𝑖𝑗 is the length of the 

shared portion between the two routes. The two routes are referred to as unique from each other if 

the commonality factor between the two routes is below 0.95. To determine the number of unique 

routes observed between an OD pair, all routes between that OD pair are arranged in an ascending 

order of route length. The shortest route is the first unique route. The commonality factor of each 
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subsequent route is computed with respect to all previous unique routes to determine if it is a 

unique route (if 𝐶𝑖𝑗 is less than 0.95). The result of this process is a set of unique routes between 

an OD pair, where the commonality factor between any two unique routes is less than 0.95. The 

size of this unique route set represents the number of unique routes used between that OD pair. As 

a result, the initial large set of routes derived for all trips is reduced to a smaller set of unique routes 

per OD pair as shown in Figure 3.1. It is important to note that even for a large number of unique 

routes between an OD pair, there still may not be many competitive alternative routes since each 

unique route can overlap up to 95% with any other routes.  

 
Figure 3.1 Number of Unique Routes Distribution for Long-haul and Short-haul 

Datasets 

 

Figure 3.2 depicts the number of unique routes as a function of a) number of trips, b) 

number of truck IDs per OD pair, and c) direct OD distance. Each sub-figure shows the Pearson’s 

correlation coefficient to quantify the correlation of the independent and dependent variables. 
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Figure 3.2 Scatter Plots of the Number of Unique Routes versus the                           

a) Number of Trips, b) Number of Truck IDs, and c) Direct OD Distance 
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As shown in Figure 3.2 a), the short-haul dataset has a stronger positive correlation between 

number of trips and unique routes. Figure 3.2 b) shows a relative linearly increasing trend for the 

number of unique routes as the number of truck IDs increases. The negative Pearson correlation 

coefficients in Figure 3.2 c) imply some decrease in the number of unique routes as the distance 

between origin and destination increases. 

3.3 Route Variability Metrics 

3.3.1 Average Commonality Factor 

Average commonality factor for a given OD pair is the mean value of the commonality 

factors computed across all pairs of unique routes between that OD pair. Since the earlier metric 

(number of unique routes) does not consider the extent of overlap (or lack thereof) between the 

unique routes, this metric measures the degree of overlap between all unique routes in an OD pair. 

Ranging between 0 and 1, an average commonality factor value closer to 0 (or 1) represents low 

(or high) overlap between the unique routes.  

3.3.2 Average Path Size 

Path size is a commonly-used metric in the route choice literature to measure the degree of 

overlap of two routes between an OD pair. Proposed by Ben-Akiva and Bierlaire (1999), the path 

size for a unique route 𝑖 is defined as: 

𝑃𝑆𝑖 = ∑ (
𝑙𝑎

𝐿𝑖
)

1

∑ 𝛿𝑎𝑗𝑗𝜖𝑘
𝑎𝜖𝛤𝑖

   (3.2) 

where Γi is the set of all links composing route 𝑖, 𝑙𝑎 is the length of link 𝑎, 𝐿𝑖 is the length of route 

𝑖, and 𝛿𝑎𝑗 is equal to 1 if a route 𝑗 belonging to the unique route set 𝑘 uses link 𝑎, and zero 

otherwise. The maximum possible value of PS is 1, and the minimum value tends to 0. A route 

with no overlap with any other routes has a PS value 1. Average PS in an OD pair is the mean 

value of all PS computed for all unique routes between that OD pair.  
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3.3.3 Non-overlapping Index  

Complementary to the above two metrics, the degree of non-overlap among the unique 

routes between an OD pair is quantified using the non-overlapping index. This index is measured 

as the ratio between the total length of links (on unique routes) that were used only once to the 

total length of all links (on unique routes) that were used at least once. This index ranges between 

0 and 1, where a value closer to 1 represents low overlap among unique routes.  

3.3.4 Illustrations of Route Variability Metrics 

Figure 3.3 demonstrates the distributions of the three aforementioned route variability 

metrics across OD pairs as well as their correlations with the number of unique routes. The degree 

of route variability generally increases for OD pairs with higher number of unique routes shown 

by the decrease of average commonality factor and increase of non-overlapping index. There is a 

strong non-linear relationship between the number of unique routes and average path size. In 

particular, a dense concentration of OD pairs on the top left corner of Figure 3.3 a) indicates that 

many OD pairs with fewer unique routes also have higher average commonality factors, which 

means the majority of OD pairs only have a few alternative routes, and these routes also overlap 

considerably with each other. Figure 3.3 b) shows a sharp decrease of average path size as the 

number of unique routes increases. While there is no apparent correlation between the number of 

unique routes and the non-overlapping index, some OD pairs have the non-overlapping index of 

zero, which means all road links are used by more than one unique route.  
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Figure 3.3 Correlations of a) Average Commonality Factor, b) Average Path Size, c) 

Non-overlapping Index with the Number of Unique Routes 
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3.4 Route Dominance Metrics 

3.4.1 Standardized Variance of Route Usage 

Another dimension of diversity is based on the evenness of the usage of different unique 

routes between an OD pair. The most even usage is when all observed trips between an OD pair 

are equally distributed among the observed unique routes between that OD pair. A complementary 

concept is the degree of dominance, when most trips are observed to have taken only one or a few 

unique routes.  

To measure the degree of evenness in usage, the distribution of N trips among K different 

unique routes between a given OD pair may be characterized as a multinomial distribution, with 

each trip being allocated to any one of the K different unique routes. If the random variable 

𝑋𝑘 (𝑘 = 1,2,3, … , 𝐾) indicates the number of trips choosing route 𝑘 and 𝑝𝑘 is the proportion of 

trips allocated to route 𝑘, vector 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝐾) follows a multinomial distribution with 

parameters 𝑁 and 𝑝, where 𝑝 = (𝑝1,𝑝2, … , 𝑝𝐾). The variance of such multinomial-distributed 

random variables is 𝑉𝑎𝑟(𝑋𝑘) = 𝑁 ∗ 𝑝𝑘 ∗ (1 − 𝑝𝑘).  

The variance of route usage between an OD pair is defined as the sum of variances of usage 

frequency for each route, as: 𝑁 ∗ ∑ 𝑝𝑘 ∗ (1 − 𝑝𝑘)𝐾
1 . This metric is influenced by three factors: (1) 

total number of unique routes between the OD pair (more routes, higher the variance), (2) total 

number of observed trips between the OD pair (more trips, higher the variance), and (3) evenness 

of the distribution of the observed trips among various unique routes. To measure solely the nature 

of trip distribution without being influenced by the number of observed trips (N) or unique routes 

(K), this metric may be standardized as follows. For a given OD pair with N observed trips and K 

unique routes, the maximum possible value of variance of route usage is: N ∗ K ∗ (1 K)⁄ ∗

(1 − 1 K⁄ ) = N ∗ (1 − 1 K⁄ ), when all trips are evenly distributed among all unique routes. 
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Standardized variance of route usage is the ratio of the variance of usage to the maximum 

possible variance, defined as: 

∑ pk ∗ (1 − pk)K
1

(1 − 1/K)
   (3.3) 

The closer this metric is to its maximum possible value 1, the more evenly-distributed the 

observed trips are among various unique routes. For example, if there are 100 trips using two 

unique routes in an OD pair, the standardized variance of usage for that OD pair would be 1 if 50 

trips take the first route and the other 50 trips take the second route. The value of this metric would 

become 0.36 if 90 trips take the first route and the remaining 10 trips take the second route. 

3.4.2 Standardized Shannon Entropy of Route Usage  

Shannon entropy (Shannon, 2001) is a metric typically-used to measure the evenness of 

distribution of different entities among a given number of categories. Proposed in the field of 

information science, the concept of entropy has been applied widely by transportation researchers 

to quantify the degrees of geodiversity, etc., in a land use context (Brown et al., 2009; Li et al., 

2016; Yabuki et al., 2009). The Shannon entropy of usage of K unique routes between an OD pair 

is defined as ∑ pkln (pk)K
1 , where pk is the proportion of trips taking the kth unique route. The 

maximum value of the Shannon entropy of route usage is K ∗ (1 K⁄ ) ∗ ln(1 K⁄ ) = ln (1 K⁄ ) when 

all trips are equally distributed among the identified unique routes between an OD pair. To 

eliminate the effect of number of unique routes between an OD pair, the standardized Shannon 

entropy of route usage is computed as:  

∑ pkln (pk)K
1

ln(1 K⁄ )
   (3.4) 

The standardized Shannon entropy of route usage has the maximum possible value of 1 

when all trips are evenly distributed among all unique routes.  
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elliptically shaped, referred to as the short ellipse, with the major axis as the difference of straight-

line distance and radius of the circular buffers on each end (see illustration on right in Figure 5.1).  

 
Figure 5.7 Long Ellipse, Short Ellipse, and Circular Buffers 

 

Within these hypothesized areas of influence for each OD pair, densities of various road 

types (major arterials, minor arterials, collectors, and local roads) were computed to characterize 

the network structure between the OD pair. In addition, other facilities along the roadway, such as 

traffic signals, intersections, interchanges, truck rest stops, were counted within long and short 

ellipses and circular buffers.  
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