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A.3 Permission for Use of Material in Chapter 3 

Below is permission for the use of materials in Chapter 3. 
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A.4 Permission for Use of Material in Chapter 4 

Below is permission for the use of materials in Chapter 4. 
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A.5 Permission for Use of Material in Chapter 5 

Below is permission for the use of materials in Chapter 5. 
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APPENDIX B: SUPPORTING INFORMATION FOR CHAPTER 5 

 

Table B.1 Reaction types, catalysts composition and amounts 

CH4 Steam Reforming 

Total Flow Rate: 75 sccm (0.64%CH4-0.64%H2O-98.7%He) 

Catalyst Composition Notation Catalyst amount (mg) 

Uncoated steam reforming 

catalyst:1.6wt%Ni-1.2wt%Mg/Ce0.6Zr0.4O2 
124 

Uncoated SR 11.3 

51wt% Silicalite-1 zeolite coated composite 

steam reforming catalyst 

SR@ Sil51% 23.6  

51wt% H-β zeolite coated composite steam 

reforming catalyst 141 

SR@ β51% 23.6 

Physical mixture of Silicalite-1 zeolite/SR 

catalyst 

PM-51%Sil/SR 23.6 (11.3 mg SR- 

12.3mg H-β zeolite) 

Silicalite-1 zeolite by itself  12.3 

C7H8 Steam Reforming 

Total Flow Rate: 32.6 sccm (1% C7H8, 7% H2O, 92% He) 

Catalyst Composition Notation Catalyst amount (mg) 

Uncoated steam reforming 

catalyst:1.6wt%Ni-1.2wt%Mg/Ce0.6Zr0.4O2
124 

Uncoated SR 10.3 

51wt% Silicalite-1 zeolite coated composite 

steam reforming catalyst 

SR@ Sil51% 21 

51wt% H-β zeolite coated composite steam 

reforming catalyst 141 

SR@ β51% 21 

Physical mixture of Silicalite-1 /SR catalyst PM-51%Sil/SR 21 (10.3 mg SR- 

10.7mg H-β zeolite) 

H-β zeolite by itself (powder)  10.7 

CH4-C7H8 Steam Reforming A 10-hour time on stream experiment Total Flow Rate: 32.6 

sccm (1% C7H8, 1.5% CH4, 7% H2O, 90.5% He) 

Catalyst Composition Notation Catalyst amount (mg) 

51wt% Silicalite-1 zeolite coated composite 

steam reforming catalyst  

SR@ Sil51% 23.6 

Uncoated steam reforming 

catalyst:1.6wt%Ni-1.2wt%Mg/Ce0.6Zr0.4O2
141 

Uncoated SR 11.3 
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Figure B.1 XRD Patterns of the catalysts. Red and black Miller indices indicate SR catalyst and 

Silicalite-1 zeolite phases, respectively. 

 

Table B.2 Values that were used in the calculations of Weisz−Prater criteria, Thiele moduli, and 

effectiveness factors 

 (rA)obs, 

observed 

reaction rate, 

(kmol/kg cat.s-1) 

Effective 

Diffusivity 

(cm2/s at 

800°C) 

qc, density of 

solid 

catalyst, 

(kg/m3) 

R, radius of 

the catalyst 

particle, 

(m) 

CAs, reactant 

concentration,  

 (kmol/m3  ) 

CH4 

SR 

1.84*10-6 5.6*10-4 626 1.1*10-3 7.27*10-5 

C7H8 

SR 

7.44*10-7 3.9*10-9 760 1.1*10-3 1.16*10-4 

 

 

 

 

 



118 

 

  
Figure B.2 Repeated experiment for simultaneous CH4 and C7H8 steam reforming on SR@ 

Sil51% under the same condition with another batch of catalyst that synthesized same way. (left) 

CH4 steam conversion with TOS and (right) C7H8 conversion with TOS.
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APPENDIX C: INTERNAL DIFFUSION LIMITATIONS CALCULATIONS FOR 

CHAPTER 5 

 

  Weisz-Prater Criterion equation is given below.  

Cwp=
−𝑟𝐴(𝑜𝑏𝑠)∗𝑞𝑐∗𝑅2

𝐷𝑒∗𝐶𝐴𝑠
 

where –rA (obs) is the observed reaction rate, qc is density of solid catalyst, R is radius of a catalyst 

particle, De is effective diffusion coefficient and CAS is reactant concentration at the surface. 

 

Table C.1 Values that were used in the calculations of Weisz−Prater criteria, Thiele moduli, and 

effectiveness factors  

Sample Reaction Effective 

Diffusivity  

(cm2/s at 

800°C) 

 

-rA 

(kmol/kgcat.s) 

 

Diameter (D) 

of the samples 

(m) 

 

Radius (R) of 

the samples 

(m) 

51wt% CH4 SR 5.6*10-4 1.83819*10-6 2.2*10-3 1.1*10-3 

51 wt % C7H8 SR 3.9*10-9 7.44478*10-7 2.2*10-3 1.1*10-3 



120 

 

–rA (obs) = 1.83819*10-6 kmol/(kg cat.s) 

qc=  
𝑚𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡

𝜋𝐷2

4
∗ℎ

=
23.6∗10−6 𝑘𝑔

𝜋(0.004𝑚)2

4
∗0.003𝑚

= 626.32 
𝑘𝑔

𝑚3 

De=5.6*10-4 cm2/s=5.6*10-8 m2/s 

nCH4=1.962*10-5 mol/minVtotal=75 sccm at 298K (25°C) 

Vtotal=270 sccm at 1073K (800°C) 

CAS=CA(CH4)=
1.962∗10−5

270
=7.265*10-8 mol/cm3=7.265*10-5 kmol/m3 

R51wt%= 1.1*10-3 m 

So, 

Cwp=
(1.83819∗10−6)∗(626.32)∗(1.1∗10−3)2

(5.6∗10−8)∗(7.265∗10−5)
= 342.4 > 1  

There is internal diffusion limitation for 51 wt% CH4 SRR. 

–rA (obs) = 7.44478*10-7 kmol/(kg cat.s) 

qc=  
𝑚𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡

𝜋𝐷2

4
∗ℎ

=
21∗10−6 𝑘𝑔

𝜋(0.004𝑚)2

4
∗0.0022𝑚

= 760 
𝑘𝑔

𝑚3 

De=3.9*10-9cm2/s=3.9*10-13 m2/s 

nC7H8=1.36*10-5 mol/min 

Vtotal=32.6sccm at 298K (25°C) 

Vtotal=117.32sccm at 1073K (800°C) 

CC7H8=
1.36∗10−5

117.32
=1.16*10-7 mol/cm3=1.16*10-4 kmol/m3 

R51wt%= 1.1*10-3 m 

So, 

Cwp=
(7.44478∗10−7)∗(760)∗(1.1∗10−3)2

(3.9∗10−13)∗(1.16∗10−4)
= 1.5 ∗ 107 ≫ 1  

There is internal diffusion limitation for 51 wt% C7H8 SRR. 
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Thiele Modulus (Φn) and Effectiveness Factor (η) calculation is given below for CH4 SRR 

51 wt%. 

𝛷𝑛 = 𝑅 ∗ √
(−𝑟𝐴) ∗ (𝑞𝑐)

(𝐷𝑒) ∗ (𝐶𝐴𝑆)
 

𝛷𝑛 = 1.1 ∗ 10−3 ∗ √
(1.83819∗10−6)∗(626.32 )

(5.6∗10−8)∗(7.265∗10−5)
 =18.5 

𝜂 =
𝟑

𝛷𝑛𝟐
(𝛷𝑛𝑐𝑜𝑡ℎ𝛷𝑛 − 1) 

𝜂 = 0.153 

Thiele Modulus (Φn) and Effectiveness Factor (η) calculation is given below for C7H8 SRR 

51 wt%. 

𝛷𝑛 = 1.1 ∗ 10−3 ∗ √
(7.44478∗10−7)∗(760 )

(3.9∗10−13)∗(1.16∗10−4)
=1.2*106

 

𝜂 =
𝟑

𝛷𝑛𝟐
(𝛷𝑛𝑐𝑜𝑡ℎ𝛷𝑛 − 1) 

𝜂 =0.0000025 

 

Table C.2 Results of Weisz−Prater criteria, Thiele moduli, and effectiveness factors for 

Silicalite-1 zeolite composite catalyst 

Sample Reaction Effective 

Diffusivity 

(cm2/s at 

800°C) 

Internal diffusion 

limitation (Weisz-

Prater Criteria) 

Thiele 

Modulus 

(Φn) 

Effectiveness 

Factor (η) 

51 wt % CH4 SR 5.6*10-4 342.4>1 18.5 0.153 

51 wt % C7H8 SR 3.9*10-9 1.5 ∗ 107 ≫ 1 1.2*106 0.0000025 
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APPENDIX D:  PROPAGATION OF ERROR FOR CH4 CONVERSION 

 

To calculate the propagation of error in CH4 conversion, uncertainties must be known tahat 

effect the conversion calculation. The uncertainty for the flowmeter is ±.04 sccm. The uncertainty 

for the area was ± 26 µV*s (for 51wt% composite catalyst sample at 780°C). The linear 

relationship below was obtained to calibrate CH4 concentration from GC area under the peak. 

A=10362*f 

where A is GC area under peak in μV*s, and f is flow of CH4 in sccm. 

The calibration constant (CCH4) is given below. 

𝐶𝐶𝐻4 =
𝐴

𝑓
 

Error in the CH4 calibration constant can be calculated with the formula below. 

𝜎=√(
𝜕𝐶𝐶𝐻4

𝜕𝐴
)2𝜎𝐴

2 + (
𝜕𝐶𝐶𝐻4

𝜕𝑓
)2𝜎𝑓

2 

𝜕𝐶𝐶𝐻4

𝜕𝐴
=

1

𝑓
  and    

𝜕𝐶𝐶𝐻4

𝜕𝑓
=

−𝐴

𝑓2  

Choosing f to be ±.48 sccm and A to be the average 4597 the uncertainty in the constant 

can be calculated below.  

𝜎𝑐𝐶𝐻4=√(
1

0.48
)2262 + (

−4597

0.482 )20.042=54.5
𝜇𝑉∗𝑠

𝑠𝑐𝑐𝑚
 

The uncertainty in the flow of CH4 given below. 

 𝜎𝑓𝑐𝑎𝑙𝑐=√(
𝜎𝑓𝑐𝑎𝑙𝑐

𝜕𝐴
)2𝜎𝐴

2 + (
𝜎𝑓𝑐𝑎𝑙𝑐

𝜕𝐶𝐶𝐻4
)2𝜎𝐶𝐶𝐻4

2
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𝜎𝑓𝑐𝑎𝑙𝑐

𝜕𝐴
=

1

𝐶𝐶𝐻4
 

𝜎𝑓𝑐𝑎𝑙𝑐

𝜕𝐶𝐶𝐻4
=

−𝐴

𝐶𝐶𝐻4
2 

The average inlet area was 4597, and calculated constant was 10362. Thus, 

𝜎𝑓𝑐𝑎𝑙𝑐=√(
1

10362
)2262 + (

4597

103622)254.52  = 3.42 ∗ 10−3 sccm 

 𝜎𝑛 = √(
𝜕𝑛

𝜕𝑇
)2𝜎𝑇

2 + (
𝜕𝑛

𝜕𝑓𝑐𝑎𝑙𝑐
)𝜎𝑓𝑐𝑎𝑙𝑐

2 

𝑛 =
𝑃𝑓𝑐𝑎𝑙𝑐

𝑅𝑇
 

𝜕𝑛

𝜕𝑇
=

−𝑃𝑓𝑐𝑎𝑙𝑐

𝑅𝑇2
 

𝜕𝑛

𝜕𝑓
=

𝑃

𝑅𝑇
 

where P is 1, 𝑓𝑐𝑎𝑙𝑐 is 0.44364 sccm and T is 323 K (the GC detector column temperature).  

𝜎𝑛 = √(
−1 ∗ 0.44364 

82.0575 ∗ 3232
)252 + (

1

82.0575 ∗ 323
)2(3.42 ∗ 10−3)2 = 2.89 ∗ 10−7

𝑚𝑜𝑙

𝑚𝑖𝑛
 

𝑋 =
𝐹𝐶𝐻4,0 −𝐹𝐶𝐻4

𝐹𝐶𝐻4,0
 

The error in the conversion can be calculated using 𝜎𝑛: 

𝜎𝑋 = √(
𝜕𝑋

𝜕𝐹𝐶𝐻4,0
)2𝜎𝑛

2 + (
𝜕𝑋

𝜕𝐹𝐶𝐻4
)𝜎𝑛

2
𝜕𝑋

𝜕𝐹𝐶𝐻4,0
= −

𝐹𝐶𝐻4

𝐹𝐶𝐻4,0
2 

𝜕𝑋

𝜕𝐹𝐶𝐻4
= −

1

𝐹𝐶𝐻4,0
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For 𝐹𝐶𝐻4,0 = 1.5323*10-5 mol/min (using same experimental conditions) and 𝐹𝐶𝐻4 =

1.17 ∗  10-5 mol/min (the average for all experimental runs), the error in conversion can be 

calculated: 

𝜎𝑋 = √(−
1.17∗ 10−5

1.5323∗10−52)2(2.89 ∗ 10−7)2 + (
−1

1.5323∗10−5)2(2.89 ∗ 10−7)2=0.024 

𝜎𝑋 = ±2.4% 

The uncertainty associated with the catalyst mass was 1% (from scale that was used to 

weigh catalyst). Thus, the final uncertainty (𝜎𝑋𝑓) in conversion is:  

𝜎𝑋𝑓 = ±3.4% 
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APPENDIX E: ASPEN SIMULATION DETAILS 

 

The species of the CH4 and C7H8 steam reforming inlet and outlet streams are given Table 

E1 and Table E2 for temperature 400°C and pressure 1 atm (Using Ideal Thermodynamic Method). 

 

Table E.1 CH4 steam reforming inlet and outlet streams 

Species Inlet 

(kmol/sec) 

Outlet 

(kmol/sec) 

CH4 1 0.903 

H2O 1 0.808 

CO 0 0.004 

H2 0 0.386 

CO2 0 0.094 

 

Table E.2 C7H8 steam reforming inlet and outlet streams 

Species Inlet 

(kmol/sec) 

Outlet 

(kmol/sec) 

C7H8 1 1.1e-16 

H2O 7 1.677 

CO 0 0.094 

H2 0 0.739 

CO2 0 2.614 

CH4 0 4.292 

C6H6 0 3.48e-14 
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The flowsheet for the model is given below: 

 

 
Figure E.1 Flowsheet for the ASPEN model
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APPENDIX F: FLOWCHARTS FOR SYNTHESIS PROCEDURES OF THE 

ENCAPSULATED CATALYSTS 

 

Flowchart is given below for synthesis of H-β Zeolite (Hydrothermal Synthesis Method). 

 

 
Figure F.1 Flowchart for synthesis of H-β zeolite using  

Hydrothermal Synthesis Method 
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Flowchart is given below for synthesis of Silicalite-1 Zeolite (Hydrothermal Synthesis 

Method). 

 

 
Figure F.2 Flowchart for synthesis of silicalite-1 zeolite using  

Hydrothermal Synthesis Method 
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Flowchart is given below for synthesis of 1.6wt%Ni/1.2wt%Mg/Ce0.6Zr0.4O2 steam 

reforming core catalyst. 

 

 
Figure F.3 Flowchart for synthesis of Ce0.6Zr0.4O2 

 support 
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Figure F.4 Flowchart for synthesis of 1.6wt%Ni/1.2wt%Mg/Ce0.6Zr0.4O2 catalyst 
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