Photocatalytic Reduction of CO2 with Tunable Bandgap and Bandedge Materials

Thuhuong T. Ngo
University of South Florida, kassie.ngo@gmail.com

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the Chemical Engineering Commons, Chemistry Commons, and the Electrical and Computer Engineering Commons

Scholar Commons Citation
http://scholarcommons.usf.edu/etd/6551

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.
Photocatalytic Reduction of CO_2 with Tunable Bandgap and Bandedge Materials

by

ThuHuong T. Ngo

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Engineering
Department of Chemical and Biomedical Engineering
College of Engineering
University of South Florida

Co-Major Professor: Babu Joseph, Ph.D.
Co-Major Professor: Venkat Bhethanabolta, Ph.D.
 John Kuhn, Ph.D.
 Shengqian Ma, Ph.D.
 Arash Takshi, Ph.D.

Date of Approval:
November 7, 2016

Keywords: CO_2 conversion, photocatalyst, metal-organic-framework (MOF), perovskite, photosynthesis

Copyright © 2016, ThuHuong T. Ngo
DEDICATION

I would like to dedicate this manuscript to my husband, Marc C Moore, for always inspiring and supporting me throughout my Ph.D study.
ACKNOWLEDGMENTS

I wish to thank the members of my committees, Dr. Joseph, Dr. Bhethanabotla, Dr. Ma, Dr. Kuhn, Dr. Takshi for their support and direction. I would like to express my appreciation to my advisors, Dr. Babu Joseph and Dr. Venkat Bhethanabotla for their support and guidance throughout the course of my dissertation. Dr. Joseph has been supportive, and has acted as a great mentor to me throughout my PhD studies. Dr. Bhethanabotla has been motivating and has given me assistance through the course of my degree. Together they have been a great team.

Additionally, I would like to thank Dr. Ma and Wenyang Gao for their collaboration on the MOF section of this dissertation. Dr. Ma has allowed me to use his laboratory resources, and provided me with intellectual support. I am also grateful to Dr. Kuhn and his group who have provided me with materials, equipment, and guidance which have made this dissertation possible.

I am extremely thankful to my labmates, graduate students, and postdocs for all their assistance and support - especially Chita Yang and Xianhui Zhao. Throughout my graduate career, they have provided me with guidance and motivated me. I will miss their company in my office and laboratory.

Furthermore, I would like to thank all undergraduate students who I have worked with including Trang Tran and Matthew Khaselic for their persistence, hard work, and cheerful spirit. It has been a pleasure to provide them with laboratory skills and mentor them. I appreciate their commitment to the projects described in this dissertation.
Finally, I am thankful to my family – including my mom, dad, brother. They have provided me with love, support, and have constantly encouraged me throughout my PhD. Especially, I am grateful to my husband who has always been the greatest believer, and provided me with unwavering support.
TABLE OF CONTENTS

LIST OF TABLES.. iii

LIST OF FIGURES... iv

ABSTRACT ... vii

CHAPTER 1: INTRODUCTION... 1
 1.1 Harvest Solar Energy and Photocatalysis ... 1
 1.2 CO₂ Photoreduction with H₂O ... 5
 1.3 Metal-Organic-Frame Work (MOF) ... 8
 1.4 ABO₃-Type Perovskite Oxides .. 10

CHAPTER 2: METHODOLOGY .. 12
 2.1 Preparation of Materials .. 12
 2.1.1 Synthesis of Metal-Organic-Framework .. 12
 2.1.2 Synthesis of Perovskite Oxides ... 13
 2.1.2.1 The Pechini Synthesis Method .. 13
 2.1.2.2 Synthesis of LaCr₁₋ₓFeₓO₃ .. 14
 2.2 Characterization Techniques for Photocatalysts .. 14
 2.2.1 N₂ Isotherm and Surface Area Determination by Gas Adsorption 14
 2.2.2 X-ray Powder Diffraction (XRD) for Crystal Structure Characterization 15
 2.2.3 Morphology Characterization ... 16
 2.2.4 Bandgap Determination by DRS-UV-Vis Spectroscopy 17
 2.2.5 Conduction Band and Valence Band Determination by Electrochemical Method ... 19
 2.3 CO₂ Photoreduction Reactor ... 23

CHAPTER 3: Ti-MOF-525 FOR VISIBLE-LIGHT INDUCED REDUCTION OF CO₂ TO CH₄ ... 27
 3.1 Introduction ... 27
 3.2 Methods Used .. 30
 3.2.1 Material Characterization ... 30
 3.2.2 Photocatalytic Reactivity for CO₂ Reduction with H₂O 32
 3.3 Results and Discussion ... 34
 3.3.1 Structural and Optical Characterization ... 34
 3.4 Conclusions .. 43
CHAPTER 4: STABILITY STUDY OF Ti/Zr-MOF-525 PHOTOCATALYST

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>47</td>
</tr>
<tr>
<td>4.2 Experimental Section</td>
<td>48</td>
</tr>
<tr>
<td>4.2.1 Procedure to Regenerate MOFs</td>
<td>48</td>
</tr>
<tr>
<td>4.2.2 Characterization</td>
<td>49</td>
</tr>
<tr>
<td>4.2.3 Photocatalytic Reactivity for CO₂ Reduction with H₂O</td>
<td>50</td>
</tr>
<tr>
<td>4.3 Results and Discussion</td>
<td>51</td>
</tr>
<tr>
<td>4.3.1 Structural and Morphological Changes</td>
<td>51</td>
</tr>
<tr>
<td>4.3.2 Photocatalytic Reactivity Results</td>
<td>57</td>
</tr>
<tr>
<td>4.4 Conclusion</td>
<td>58</td>
</tr>
</tbody>
</table>

CHAPTER 5: CO₂ PHOTOREDUCTION STUDIES USING LACR₁ₓFeₓO₃ PEROVSKITES: THE EFFECTS OF METAL RATIOS IN B SITE ON BANDGAPS AND BANDEDGES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>59</td>
</tr>
<tr>
<td>5.2 Experimental Set Up and Characterization</td>
<td>60</td>
</tr>
<tr>
<td>5.2.1 Synthesis of the Perovskite Photocatalysts</td>
<td>60</td>
</tr>
<tr>
<td>5.2.2 Structural and Composition Characterizations</td>
<td>61</td>
</tr>
<tr>
<td>5.2.3 Optical Bandgap and Conduction Band Edge Measurements</td>
<td>62</td>
</tr>
<tr>
<td>5.2.4 CO₂ Photoreduction Reactivity</td>
<td>63</td>
</tr>
<tr>
<td>5.3 Results and Discussion</td>
<td>64</td>
</tr>
<tr>
<td>5.3.1 Crystal Structure and Physical Properties</td>
<td>64</td>
</tr>
<tr>
<td>5.3.2 Optical Bandgap and Positions of Conduction and Valence Band Potentials</td>
<td>77</td>
</tr>
<tr>
<td>5.3.3 CO₂ Photoreactivity</td>
<td>85</td>
</tr>
<tr>
<td>5.4 Conclusion</td>
<td>86</td>
</tr>
</tbody>
</table>

CHAPTER 6: CONCLUSION AND FUTURE WORK

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Conclusion</td>
<td>90</td>
</tr>
<tr>
<td>6.2 Future Work</td>
<td>90</td>
</tr>
<tr>
<td>6.2.1 A Theoretical Study of Perovskites Bandgap and Bandedges</td>
<td>91</td>
</tr>
<tr>
<td>6.2.2 Increase Surface Area for Perovskites</td>
<td>91</td>
</tr>
</tbody>
</table>

REFERENCES ... 93

APPENDIX A: CO₂ PHOTOREDUCTION PRODUCT ANALYSIS 104

APPENDIX B: SUPPORTING CALCULATIONS .. 106
<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1 Conversion of ppm to µmol</td>
<td>106</td>
</tr>
</tbody>
</table>

ABOUT THE AUTHOR.. END PAGE
LIST OF TABLES

Table 1: Physiochemical properties and measured band gaps and band edges of synthesized Zr-MOF-525 and Ti/Zr-MOF-525 ... 37

Table 2: Physiochemical properties and measured band gaps of fresh and used Ti/Zr-MOF-525 .. 54

Table 3: Crystallographic properties, metal compositions and Brunauer-Emmett-Teller surface areas of synthesized perovskite photocatalysts 74
LIST OF FIGURES

Figure 1: Pictorial abstract of the dissertation ... 3

Figure 2: Solar spectrum with the x-axis in wavelength (nm) unit and in energy (eV) unit .. 4

Figure 3: Photocatalyst properties and photocatalytic process 5

Figure 4: CO$_2$ photoreduction bandedge requirement and several photocatalysts band energy alignment .. 7

Figure 5: Scheme of metal-organic-framework photocatalyst .. 9

Figure 6: Scheme of ABO$_3$-type perovskite photocatalyst ... 11

Figure 7: Optical bandgap measurement and Tauc plot example of TiO$_2$-P25 to obtain optical bandgap .. 19

Figure 8: Mott-Schottky plot and experiment set up to obtain flat band potentials 22

Figure 9: CO$_2$ reactor design .. 25

Figure 10: System diagram of CO$_2$ photocatalytic reaction .. 25

Figure 11: Picture of the CO$_2$ photorection system .. 26

Figure 12: Light spectrum measured at the catalyst surface without filter and with filter .. 26

Figure 13: Metal-organic-framework .. 29

Figure 14: MOF PXRD results ... 35

Figure 15: N$_2$ isotherm results of synthesized Zr-MOF-525 and Ti/Zr-MOF-525 36

Figure 16: EDS results of Ti/Zr-MOF-525 ... 38

Figure 17: Optical bandgap measurement and conduction band potential experiment results .. 39

Figure 18: CO$_2$ photoreduction reactivities of MOF-525 ... 44
Figure 19: Diagram to explain the Ti/Zr-MOF-525 photoreactivity for CO\textsubscript{2} reduction with water .. 45

Figure 20: Overall CO\textsubscript{2} photoreduction mechanism by MOF photocatalyst 46

Figure 21: Ti/Zr-MOF-525 reactivity stability study procedure diagram 48

Figure 22: PXRD of fresh and used Ti/Zr-MOF-525 after each reaction cycle 52

Figure 23: N\textsubscript{2} isotherm results of fresh and used Ti/Zr-MOF-525 after each reaction cycled... 53

Figure 24: SEM images of fresh and used Ti/Zr-MOF-525 after each reaction cycle 55

Figure 25: DRS_UVvis spectra of fresh and used Ti/Zr-MOF-525 before and after each reaction cycles ... 56

Figure 26: Washing solvent characterization .. 56

Figure 27: Total product yield of CO\textsubscript{2} photoreduction by Ti/Zr-MOF-525 on each reaction cycle... 58

Figure 28: Perovskites' PXRD results ... 67

Figure 29: N\textsubscript{2} adsorption isotherms of LaCr\textsubscript{1-x}Fe\textsubscript{x}O\textsubscript{3} ... 68

Figure 30: EDS result at one spot of LaFeO\textsubscript{3} sample ... 69

Figure 31: EDS result at one spot of LaCr\textsubscript{0.25}Fe\textsubscript{0.75}O\textsubscript{3} sample 70

Figure 32: EDS result at one spot of LaCr\textsubscript{0.5}Fe\textsubscript{0.5}O\textsubscript{3} sample ... 71

Figure 33: EDS result at one spot of LaCr\textsubscript{0.75}Fe\textsubscript{0.25}O\textsubscript{3} sample 72

Figure 34: EDS result at one spot of LaFeO\textsubscript{3} sample .. 73

Figure 35: SEM images provides morphology of synthesized perovskites 75

Figure 36: TEM images of five perovskites .. 76

Figure 37: DRS-UVvis measurement of LaCr\textsubscript{1-x}Fe\textsubscript{x}O\textsubscript{3} ... 80

Figure 38: The Mott-Schottky plots for obtaining the conduction band potentials for five perovskites ... 81

Figure 39: Summary of perovskites bandgaps and flat-band potential results 84
Figure 40: CO$_2$ photoreduction products of LaCr$_{1-x}$Fe$_x$O$_3$ after 4 hours illuminated by visible-light-cut-off solar simulator ($\lambda > 400$nm) 88

Figure 41: Overall summary of perovskites photocatalytic properties in regards to CO$_2$-H$_2$O redox reaction ... 89

Figure A.1: Calibration line for CH$_4$ and CO concentration using gas chromatography-mass spectroscopy (selected ion method-SIM) 104

Figure A.2: Calibration line for CH$_4$ and CO concentration using TCD detector 105
ABSTRACT

Solar energy is a sustainable resource which has substantial potential to meet the increasing demand for renewable energy. Though there has been some success in harvesting solar energy for electricity production, converting solar energy to chemical energy as fuels is still a challenge due to low efficiency.

Since the discovery of TiO$_2$ photocatalysts for splitting water (4) and reducing CO$_2$ (5) to form useful chemical feedstock such as H$_2$, CO and CH$_4$, much research has been done to increase the efficiency of photocatalysts. However, the current conversion efficiency of photocatalysts remains low (~5%) (6, 7). Issues being addressed include the wide bandgap and mismatched band edge for reactions (thermodynamic energy for reaction), poor quantum efficiency of the photon collector systems, high recombination of e$^-$/h$^+$ pairs and limitation in the rate of charge transfer from photocatalyst to reactants.

This work focuses on improving efficiency of photocatalysts for fuel production through several approaches: (1) engineering a metal-organic-framework (MOF) to have proper band gaps and band edges for targeted reactions and for enhancing photoadsorption in the visible light range, (2) tuning an ABO$_3$-type perovskite for desired bandgaps and thermodynamically favored bandedges for CO$_2$ reduction with water in visible light range.

A porphyrin-based Ti-MOF is studied for CO$_2$ photoreduction to gaseous chemical fuels such as CH$_4$ and CO. The porphyrin linkers allow porphyrin-based MOF-525 to achieve narrow bandgap (E$_g$ = ~1.7eV) to absorb visible light, indicating its
ability to harvest more solar energy than conventional TiO\textsubscript{2}. Ti/Zr-MOF-525 also exhibited the appropriate energy level alignment for CO\textsubscript{2} and H\textsubscript{2}O redox reaction for CO and CH\textsubscript{4} production. Its CO\textsubscript{2} photoreactivity under visible light was demonstrated in a photoreaction, illuminated by 150W Xenon solar simulator. Interestingly, Ti/Zr-MOF-525 demonstrates a selectivity toward CH\textsubscript{4}, a more valuable fuels than CO. The gas phase reaction condition is an advance over liquid photoreaction. The catalyst stability was also studied and presented. After 3 cycles of reactions, Ti/Zr-MOF-525 is relatively stable for CO\textsubscript{2} photoreduction and able to maintain its photoreactivity at about 60-65% of fresh catalyst. The reduction of reactivity is due to a less stable fresh catalyst.

When investigating LaCr\textsubscript{1-x}Fe\textsubscript{x}O\textsubscript{3} perovskite oxides for photocatalyst, it was found that when replacing Cr ions at the B sites of LaCrO\textsubscript{3} by Fe ions, the bandgap does not follow a linear trend in regards to metal ratio composition but rather reflects the smaller bandgap of LaFeO\textsubscript{3}. Bandedges were successfully measured for the new synthesized materials. At \(x = 0.25\), the conduction band potential remains similar with \(x = 0\). However, at \(x = 0.75\), the conduction band potential was more negative than either perovskites at \(x = 0\) or \(x = 1\). Future simulation of density of state could address this interesting observation. CO\textsubscript{2} reduction relativities of each perovskites were predicted well by their measured bandgaps and bandedges. Among five studied perovskites, synthesized LaCr\textsubscript{0.25}Fe\textsubscript{0.75}O\textsubscript{3} (\(x = 0.75\)) is the most active for CO\textsubscript{2} photoreduction under visible illumination at room temperature thanks to its small bandgap (2.0 eV) and its suitable bandedges for CO\textsubscript{2} photoreduction.
CHAPTER 1: INTRODUCTION

1.1 Harvest Solar Energy and Photocatalysis

The DOE-BES Workshop on Solar Energy Utilization recently reported that the amount of solar energy that strikes the surface of the earth in one hour is more than enough for human energy assumption for an entire year (8). However, only a small fraction of the current energy consumed by our society is generated through solar technology (8, 9). Furthermore, the current harvesting of solar energy is predominantly limited to produce electricity and for heating, which is not suitable for use in transportation (9). Thus, the challenge to harvest solar energy for direct conversion to fuels has gained much attention in the research community (9). However, low conversion efficiency remains a challenge due to the nature of the photocatalysis process.

Photocatalyst is a material that has two main characters: 1) the semiconductor properties where it can be excited by photons when illuminated and generate electrons/hole (e⁻/h⁺) pairs, and 2) the catalytic properties where it assists the reaction to occur at a lower activated energy from the generated e⁻/h⁺ pairs (Figure 3). When the photocatalyst is illuminated under light, the photons excites the ground state electrons at the valence band (VB) to the conduction band (CB) (Figure 3) and creates e⁻/h⁺ pairs. The energy difference between VB and CB is called the bandgap. To generate e⁻/h⁺ pairs, the energies of absorbed photons have to at least equal to the bandgap energy.
Since the solar spectrum spreads from photons in the UV range where the wavelengths start at ~250nm (equals to photon energy of 4.96 eV) to photons in the IR range where the wavelengths can be 2500nm (equals to photon energy of 0.496 eV) (Figure 2), the smaller the band gap the more light get absorbed and the more e^-/h^+ pairs are generated for the photocatalytic reactions. Photon wavelengths, their frequencies and their energies relationship follows Max Planck's equation (10):

$$E_p = h\nu = \frac{hc}{\lambda} \quad (\text{Equation 1})$$

where E_p is energy of photon, h is Planck’s constant and equals to 6.63×10^{-34} J·s, ν is photon frequency, λ is photon wavelength and c is speed of light and approximately equals to 3.00×10^8 m/s

To enhance the efficiency of the photocatalytic process, we need to (1) improve the photoabsorption and charge separation within photocatalysts, and, (2) increase the catalytic activity of photocatalysts. To improve photoabsorption and charge generation, there have been several techniques proposed for known inorganic semiconductor materials (i.e metal oxides and metal sulfides) such as reducing band gap by doping (1, 11-13) or by applying z-scheme of photocatalysts (14-17). To enhance charge separation one can try to make materials with more perfect crystallinity to reduce defects which promotes recombination. To enhance the charge transfer to reaction sites, one can create electron traps (18, 19) or co-catalyst (19, 20).

However, most of these modifications come at the expense of other properties. For instance, doping to reduce band gap will create more defects which increase recombination. Z-scheme of photocatalyst can absorb broader solar spectrum, however it creates a transition interface between materials, which increases e^-/h^+ recombination.
Overall, techniques to maximize the advantages and minimize the disadvantages to increase photocatalyst activity are still a challenge.

In this work, the photoabsorption ability of photocatalysts was improved by engineering materials for a narrower bandgap. The catalytic reactivity of photocatalysts was increased by employing the materials that have appropriate conduction band and valence band energy alignment for the CO₂ reduction with water (discussed in the following section), and in MOF case is also by increasing the surface area, providing more active site for CO₂ to react.

Figure 1: Pictorial abstract of the dissertation
Figure 2: Solar spectrum with the x-axis in wavelength (nm) unit and in energy (eV) unit. Data was obtained from National Renewable Energy Laboratory (NREL) at link http://rredc.nrel.gov/solar/spectra/am1.5/astmg173/astmg173.html
Figure 3: Photocatalyst properties and photocatalytic process. a) Photocatalytic process of CO$_2$ reduction with H$_2$O by a photocatalyst. b) Bandgap and bandedges determination

1.2 CO$_2$ Photoreduction with H$_2$O

CO$_2$ reduction with H$_2$O follows two main half reactions: the oxidation of water and the reduction of CO$_2$ (5, 21, 22) as presented below.

Photocatalysts → e$^-$ + h$^+$ (Equation 2)

2H$_2$O + 4h$^+$ → O$_2$ + 4H$^+$ E = (Equation 3)

CO$_2$ + 2H$^+$ + 2e$^-$ → CO + H$_2$O. E = -0.53 V vs NHE (Equation 4)

CO$_2$ + 8H$^+$ + 8e$^-$ → CH$_4$ + 2H$_2$O. E = -0.24 vs NHE (Equation 5)

In the photocatalytic process, after e$^-$/h$^+$ pairs are generated from incident photons, they either recombine within the photocatalysts, where no reaction will occur, or they migrate to reaction sites and contribute to the reaction. In the CO$_2$ reduction with H$_2$O, the excited electrons help breaking the CO$_2$ bonds and reduce CO$_2$ to CO or CH$_4$, while the holes interact with H$_2$O and oxidize it to O$_2$ (Figure 3a). Since both halves of
the redox reaction occurs simultaneously, the photocatalysts remain charge neutral, making it able to continue to generate e⁻/h⁺ to catalyze the reaction.

For the reaction to occur, the e⁻/h⁺ pairs have to satisfy the thermodynamic potentials for CO₂ reduction and H₂O oxidation:

\[\text{Photocatalysts} \rightarrow e^- + h^+ \quad \text{(Equation 2-5)} \]

In other words, the excited electrons (e⁻) at the conduction band have to have higher energy than the required thermodynamic potentials of CO₂ reductions, which are -0.53 V versus normal hydrogen electrode (NHE) for CO production and -0.24 V versus NHE for CH₄ production. The holes (h⁺) at the valence band have to have energy lower than the required thermodynamic potentials of H₂O oxidation, which is 0.82 V versus NHE. In general, the bandedges which are defined to be the lowest point of the conduction band and the highest point of the valence band are required to align appropriately for the CO₂ photoreduction with H₂O (Figure 4a).

Figure 4b lists several known heterogeneous photocatalysts with their bandedge positions in regards to CO₂ reduction potentials and H₂O oxidation potential. According to Figure 4b, only TiO₂ and SiC are potential candidates for CO₂ conversion.

In this work, studied photocatalysts are characterized for their bandedges as a criteria to achieve CO₂ photoreduction with H₂O.
Figure 4: CO\textsubscript{2} photoreduction bandedge requirement and several photocatalysts band energy alignment. a) Scheme to explain the bandedge requirement for CO\textsubscript{2} reduction with H\textsubscript{2}O. b) Bandedge potential positions of several photocatalysts in respects to CO\textsubscript{2} reduction and H\textsubscript{2}O oxidation potentials. Information was extracted from Reference (22)
1.3 Metal-Organic-Framework (MOF)

MOF are hybrid-inorganic-organic materials where metal ions or clusters coordinate to organic ligands (Figure 5). Their structures and properties can be tuned and engineered with unlimited possibilities. MOF has been shown to have diverse structures and various associated properties (23-25). Some MOFs have been demonstrated to be stable at high temperatures and in aqueous environments (26, 27). Because of the hybridization between metal-containing cluster and organic ligands, some MOFs acquire semiconductor properties like their metal oxide counterparts (28-30). Their band gaps can be tuned by the choice of their linkers (31) or of their metal clusters (secondary-building-units, SBU) (32, 33). The metal SBUs in MOFs were demonstrated to be more catalytically effective than bulk materials due to the small and limited space within their frameworks (32, 34). The charges transfer process between linkers and metal clusters in MOF has been observed and demonstrated to be beneficial for charge separation (28, 35), which is hypothesized to occur easier because the charge giver (linkers) and receiver (metal clusters) belong to a same framework.

Recently, MOF has been demonstrated to have photocatalytic activity such as for phenol degradation (28) and for CO₂ reduction in solution using sacrificial reducing agent (35, 36). However, these findings have limited useful applications and still require sacrificial reducing agents, which are not applicable in commercial processes.

In this work, we eliminate the sacrificial reducing agents and run the reaction under gas phase.
Figure 5: Scheme of metal-organic-framework photocatalyst
1.4 ABO$_3$-Type Perovskite Oxides

Perovskite oxides are hybrids of two or more metal oxides (Figure 6). Their general formula is ABO$_3$ where A sites are larger metals (i.e. La) and B sites are smaller transition metal (i.e. Fe, Cr etc.) (37-39). Each site A and B can be partially substituted by different metals(39). Because of this flexibility, perovskite is a class of materials which have a wide number of compounds and it can be tailored for desired characters for various applications such as in fuel cells(40), in catalytic converters(41), in photovoltaics(42). The physical and electrochemical properties of such perovskite materials can be modified through doping alkaline-earth elements into the A site and transition-metal elements into the B.

Recently, Luo et al.(42) has reported water splitting by perovskite photovoltaics at 12.3% efficiency, a number makes the solar water splitting efficiency comparable to electricity harvest by solar panels. Since photocatalysts are also semiconductors, materials which are great for photovoltaics are usually attractive candidates for photocatalyst. La-based photocatalyst have been reported for evolution of H$_2$ and O$_2$ from water under Uv irradiaion (43, 44). NiO/NaTaO$_3$:La photocatalyst have high efficiency 50% (12). La-based perovskites are also known to have strong basic sites for CO$_2$ adsorption (45), which potentially enhances CO$_2$ reduction reactivity. LaFeO$_3$ has many applications such as catalytic oxidation. It was also reported to have photocatalytic activity for water splitting(46) or pollutant degradation (47-49) under visible light illumination. Cr-doped metal oxides and perovskites(50) (2, 51) have been reported to be visible-light-driven photocatalysts. LaCrO$_3$ have also been used for fuel cell anodes (52-54).
In this dissertation, LaCr\(_{1-x}\)Fe\(_x\)O\(_3\) was investigated for its changes in bandgap and bandedges when gradually substituted Fe ions for Cr ions. Consequently, its CO\(_2\) photoreactivities were studied in responses to the Fe ion replacement.

Figure 6: Scheme of ABO\(_3\)-type perovskite photocatalyst
CHAPTER 2: METHODOLOGY

2.1 Preparation of Materials

2.1.1 Synthesis of Metal-Organic-Framework

This work is in collaboration with Dr. Ma’s lab. Wenyang Gao synthesized and provided the original materials, both Zr-MOF-525 and Ti/Zr-MOF-525.

MOF-525 materials were chosen partially because of their water stability (27, 55), an important requirement for the CO\(_2\) reduction with H\(_2\)O, and also because of its porphyrin-based linker which enables the MOF to harvest visible light (56). Titanium-based MOF were selected for investigation due to the known photocatalyst reactivity for CO\(_2\) reduction from their metal oxide TiO\(_2\) and from other titanium-based MOF studied previously (35, 57, 58). Reports in literature of active Ti-based MOF for photoreactivity have been documented, though they have either been used for hydrogen production (57), (28, 59) or when for photocatalytic CO\(_2\) reduction, they have either used a UV range illumination or with sacrificial agents (28, 35, 60-62). MOF-525 have free-base meso-tetra (4-carboxyl-phenyl) porphyrin (H\(_2\)TPP) as linkers and Zr or Ti/Zr- mixed metallic clusters (SBUs) and is the first reported to exhibit reactivity for CO\(_2\) photoreduction with H\(_2\)O to produce CH\(_4\) and CO in gas phase and without sacrificial agent.

Briefly, Zr-MOF-525 was prepared using a slightly modified procedure as described in the literature (27). Zirconyl chloride octahydrate (ZrO\(_2\)·8H\(_2\)O, Sigma-
Aldrich, 98% reagent grade) was added to N,N-dimethylformamide (DMF, Sigma-Aldrich, ≥99%) and sonicated for 15 minutes. Then, tetrakis (4-carboxylphenyl) porphyrin (TCPP, Sigma-Aldrich, ≥90%) and acetic acid (Sigma-Aldrich, ≥99%) were added to the solution and further sonicated. The scintillation vial was placed in an oven of 65°C for 3 days. The dark colored powder was collected via centrifugation, then washed 5 times with DMF and with acetone over three days. Zr-MOF-525 was activated by heating at 120°C under vacuum for 24 hours.

The Ti-exchange process of Zr-MOF-525 was carried out in glove box according to the work of Cohen and co-workers (62) using TiCl₄ (THF)₂. The mixture was incubated for 5 days. The solids were separated from the solvent via centrifugation, and washed with fresh DMF and methanol several times. The solids were activated at 120°C under vacuum overnight.

2.1.2 Synthesis of Perovskite Oxides

2.1.2.1 The Pechini Synthesis Method

The Pechini Method uses a carboxylic acid, most commonly citric acid, as a chelating agent to dissolve the salt precursors of metals in perovskites (63). This creates a homogeneous dispersion of cation in the solution, resulting in a well-dispersed single-phase perovskites after the calcination (64). The Pechini Method has high reproducibility and a good precise stoichiometry control of the synthesized perovskites, which is important for this work as the ratio of metal in site B is varied from 0 to 1. The single-phase perovskites are desired for a better charge transfer and preventing charge recombination, which will reduce photo quantum yield.
2.1.2.2 Synthesis of LaCr\textsubscript{1-x}Fe\textsubscript{x}O\textsubscript{3}

LaCr\textsubscript{1-x}Fe\textsubscript{x}O\textsubscript{3} (x = 0, 0.25, 0.5, 0.75, 1) perovskite powders were synthesized using the Pechini Method, similarly described by Popa and Kakihana (65) and followed similar procedures of previously synthesized LaCr\textsubscript{1-x}Fe\textsubscript{x}O\textsubscript{3} by Divya Suresh (66). Briefly, citric acid (Sigma Aldrich, \geq99.5%) was dissolved in 60°C water. Then, appropriate amount of precursors La (NO\textsubscript{3})\textsubscript{3} (Sigma Aldrich, \geq99.9%), Cr (NO\textsubscript{3})\textsubscript{3} (Alfa Aesar, 99.9%) and Fe (NO\textsubscript{3})\textsubscript{3} (Sigma Aldrich, \geq98%) were added to the solution. The mixtures was continuously stirred at 60°C for 2 hrs. After ethylene glycol (Sigma Aldrich, \geq99%) was added, the solution was raised to 90°C and remained at this temperature for 7 hrs while under constant stirring. The gel-like resin was transferred to the oven where it was heated at 450°C for 2 hrs to decompose all the metal precursors, and then at 950°C for 6hrs to form the final perovskite catalysts.

The molar ratios of materials used was La: citric acid: ethylene glycol = 1:10:40 as described in Yolanda et al. (67). The amounts of Cr (NO\textsubscript{3})\textsubscript{3} and Fe(NO\textsubscript{3})\textsubscript{3} precursors used were determined to target the metal molar ratios in LaCr\textsubscript{1-x}Fe\textsubscript{x}O\textsubscript{3} where x = 0, 0.25, 0.5, 0.75, 1.

2.2 Characterization Techniques for Photocatalysts

2.2.1 N\textsubscript{2} Isotherm and Surface Area Determination by Gas Adsorption

The method used to determine the surface area and other porosity properties of materials is by gas adsorption, particularly using N\textsubscript{2} adsorption and desorption isotherm. In the process of adsorption, adsorbate (N\textsubscript{2}) adsorbs on adsorbent (the interested photocatalyst materials). After saturation pressure P_s, the adsorption does not occur
anymore and no more adsorbates are added on the adsorbents. At this point, all the sites on the absorbent are occupied and the adsorption graph becomes independent of pressure. Different theories were developed to explain the phenomena such as Freundlich, Langmuir and BET adsorption isotherms. In 1938, Brunauer, Emmett and Teller successfully explained the physical adsorption isotherm that at high pressure and low temperature, thermal energy of gaseous molecules decreases and the multilayer formation of gas adsorbed occurs (68, 69). The BET equation is

\[
\frac{P}{V_{\text{total}}(P-P_0)} = \frac{1}{V_{\text{mono}}} C + \frac{C-1}{V_{\text{mono}} C (P/P_0)} \quad (\text{Equation 6})
\]

where \(V_{\text{mono}}\) is the adsorbed volume of gas at high pressure conditions so as to cover the surface with a monolayer of gaseous molecules.

Thus, the monolayer adsorbed volume of \(N_2\) gas can be extracted from the slope and the intercept of the graph \(P/(V_{\text{total}} * (P_0-P))\) versus \(P/P_0\). Knowing the molecular dimension of \(N_2\), one can easily calculate the surface area of absorbent from the monolayer of adsorbed \(N_2\). Note that BET method is accurate in the \(P/P_0\) range of 0.05-0.3, it is important to obtain the surface area at this range only (68).

2.2.2 X-ray Powder Diffraction (XRD) for Crystal Structure Characterization

X-ray powder diffraction (XRD) is an analytical technique, which is widely used for analyzing crystal structure of crystalline materials. The method can provide information on the unit cell dimensions as well as the lattice parameters. In this study, XRD method was used to characterize the material crystal structures, to determine sample purity and the existence of different metal oxide phases in perovskite.
Max von Laue, 1912, (70) was first to discover that under expose to X-ray, crystalline structures respond similar to the spacing of planes in a crystal lattice. The interaction of the incident X-rays with the studied samples follows Bragg’s law ($n\lambda=2d\sin\theta$) for constructive interference (71, 72). This relates the wavelength of electromagnetic radiation to the lattice spacing in a crystalline sample and to its diffraction angle. Because each crystalline material has a set of unique crystal lattice spacing (d-spacings), conversion of the diffraction peaks over a scanning angle range of 2θ to d-spacing allows the materials identified. Since materials used in this work already have known crystal structures, their X-ray diffraction patterns are usually analyzed against a standard. For MOF, it is from previous literature *.cis file. For perovskites, they are compared to XRD Inorganic Crystal Structure Database (ICSD).

2.2.3 Morphology Characterization

Scanning electron microscopy (SEM) is a microscopy technique which uses high-energy electron beam to generate information of the solid material surfaces. SEM generated signals are seen as an image of the specimen surfaces which made of electron responses rather than of photo as in normal photographs (73).

The principle of the technique depends on the electron-sample interactions. During the process, a high-energy accelerated electron beam scans the sample, and transfers its energy to secondary electrons, backscattering electrons or X-ray photons (73). This electrons and photons coming from the sample surface carry information of the samples. In this work, SEM is mainly used for morphology and topography which are generated from the secondary electrons. Different energy and amount of secondary
electrons from the specimen surface yields different contrast and brightness in the image, which presents a feeling on surface morphology in black and white pictures.

The X-ray photons coming from the surface carry characteristic energy of the outer shell of elements at the surface of the samples. This information provide insight of chemical composition of the specimens. This method is called Energy-Dispersive X-ray Spectroscopy (EDS). The limitation of EDS for composition analysis is that it only accounts for 1-2µm depth (74).

Transmission electron microscopy (TEM) operates on a similar basic principles of the scanning electron microscopy (75-77) as it also uses electron beam to bombard the samples. However, while the SEM uses a focused electron beam to scan the sample line by line and detects the scattering or secondary electrons, TEM uses a broad static beam and detects the transmitted electrons. This differences makes the images in TEM opposites color to in SEM, which means generally what appears to be lighter color in SEM will appear to be darker in TEM images. In addition, SEM shows the surface morphology of the samples while TEM shows internal structure of particles. In this study, TEM was used as an extra technique to confirm the particle sizes and shapes of perovskites.

2.2.4 Bandgap Determination by DRS-UV-Vis Spectroscopy

As discussed above, the more e⁻/h⁺ pairs generated by photocatalysts when excited by incident light, the better the photocatalysts. To absorb more portion of the light and generate more e⁻/h⁺ pairs, the energy difference between conduction band and valence band (bandgap, Eg) is desired to be small. The bandgap energy can be converted to wavelength using the equation 1 (E₉=hc/λ), to determine the lowest energy
photo, it can excite photocatalyst and generate charges for reaction. To adsorb all the UV range light, materials should have a bandgap of 3.1eV (~400nm). To adsorb UV light and some visible light upto 500nm, the bandgap should be 2.48 eV. The smaller the bandgap, the more energy the materials can harvest from the sun and more charges are produced.

Diffused reflectance spectroscopy (DRS) is a common and simple technique for obtaining the band gap energy (29) by extracting its diffuse reflectance spectrum through Tauc plots (30, 31). Under the incident light of the DRS, the electronic transitions between the highest occupied valence band and the lowest unoccupied conduction band will yield a high absorption band or a low reflectance spectrum. When the incident photo has small energy (or large wavelength), no excitation occurs and yield low absorption or high reflectance. Band gap energy and the absorption relationship is established through Tauc relation (32, 33)

\[\alpha h\nu = A(h\nu - E_g)^n \] (Equation 7)

where \(\alpha \), \(\nu \), \(A \), and \(E_g \) are the absorption coefficient, incident light frequency, proportionality constant and band gap, respectively. \(n = 1/2 \) for direct transition and \(n = 2 \) for indirect band transition. Perovskites and MOF both display direct band transition, therefore \(n = 1/2 \).

The reflectance spectrum collected from DRS can be described in terms of absorption coefficient from Kubelka-Munk theory (40, 41).

\[F(R) \equiv \frac{(1-R)^2}{2R} = \frac{k}{s} \] (Equation 8)

where the ratio of effective absorption coefficient \(k \) versus the scattering coefficient \(s \) is the true absorption coefficient \(\alpha \) of the powder. Thus, Kubelka-Munk function \(F(R) \)
equals to the absorption coefficient α in the Tauc equation $ah\nu = A(h\nu - E_g)^n$ (Equation 7). For direct bandgap materials, which is the case of MOFs and perovskites, $n = 1/2$, and the bandgap E_g is the interception of the slope with x-axis when plotting $[F(R)\cdot h\nu]^2$ as a function of $E = h\nu$.

![Tauc Plot](image)

Optical band gap theory:
- Kubelka-Munk function:
 $$F(R) = \alpha = (1-R)^2/(2R)$$
 where R: percentage of reflected light.
 α: absorption coefficient
- Tauc Plot:
 $$F(R)^* h\nu = \alpha h\nu = A(h\nu - E_g)^{1/2}$$ direct bandgap
 $$F(R)^* h\nu = \alpha h\nu = A(h\nu - E_g)^2$$ indirect bandgap

Figure 7: Optical bandgap measurement and Tauc plot example of TiO$_2$-P25 to obtain optical bandgap. TiO$_2$-P25 has indirect bandgap (1-3), therefore $n = 2$ in equation 7.

2.2.5 Conduction Band and Valence Band Determination by Electrochemical Method

For CO$_2$ photoreduction to occur, the photocatalyst is required to have a suitable conduction band and valence band, which are thermodynamically favorable for CO$_2$ conversion. Their conduction band potentials were measured and compared with that of TiO$_2$-P25. The band energy levels of photocatalyst were investigated using the flat band potential (Vfb) measurement by Mott-Schottky (M.S) plot.
Mott-Schottky plot is a simple and common electrochemical method used to determine the conduction band potentials of semiconductors. When semiconductor electrodes are in contact with electrolytes, at the interface between solid and solvent, the valence and conduction band edges of the semiconductor curved to make its Fermi level in equilibrium with the electrolyte Fermi level (78) as electrons transfer between electrolyte and the semiconductor. This phenomena is called charge depletion at the semiconductor-electrolyte interface.

Figure 8 shows a p-type semiconductor’s energy levels and an electrolyte redox potential. In this case, the Fermi level (Ef) is below the redox potential of the electrolyte. At the electrochemical equilibrium when two medium are in contact, electrons from the electrolyte solution transfer to the semiconductor creating a space charge region. This negative space charge region causes a downward bending of the band edges.

For an n-type semiconductor, things happen in an opposite direction. The Fermi level of the semiconductor is more negative than the electrolyte redox potential. Electrons transfer from the semiconductor to electrolyte causes a positive space charge region to form an upward bending of the band edges.

Applying the bias voltage on the semiconductor artificially by a potentiostat separates the Fermi levels of semiconductor and the electrolyte and lessen the level of band bending. When the applied bias voltage magnitude is large enough that there is no band bending or charge depletion, the semiconductor achieves its flat-band potential, Vfb. The Vfb and applied bias voltage (V) relation is described by the Mott-Schottky equation (78, 79)

$$\frac{1}{C^2} = \frac{2}{\varepsilon \varepsilon_0 A^2 e N_D} \left(V - V_{fb} - \frac{k_B T}{e} \right)$$ \hspace{1cm} (Equation 9)
where C is the interfacial capacitance, V the applied bias voltage. From equation 9, a plot of $1/C^2$ against V should yield a straight line and V_{fb} is the intercept of the line with the V axis. The determined V_{fb} approximately equals to the conduction band edge (ECB) of an n-type semiconductor or the valence band edge (EVB) for a p-type semiconductor [44]. From the determined band edge from the Mott-Schottky plot and the bandgap from the Uv-vis DRS measurement, the other band edge can be determined by equation 10.

$$E_{CB} - E_{VB} = E_g \text{ (Equation 10)}$$

The Mott Schottky (M.S) plot electrochemical method used for band edges determination is valid when it satisfies the assumptions that the bulk semiconductor's resistivity and the capacitances of the space charge layers are negligible (45). This means that the dielectric coefficient ε is independent of the test frequency. Consequently, the band edges measurement using Mott-Schottky plot is measured at a range of frequency and the obtained V_{fb} from different frequency should be close to each other enough to make the measurement valid.
Figure 8: Mott-Schottky plot and experiment set up to obtain flat band potentials. a) Example of Mott-Schottky plot to obtain conduction band potential. b) Electrochemical cell setup. c) Flatband diagram and Mott-Schottky equation.
2.3 CO₂ Photoreduction Reactor

CO₂ photoreduction experiments were performed using a setup described previously(80). The reaction was carried out in a stainless steel batch reactor with a quartz window on top.

The CO₂ photoreactor was designed in 2012 and was made at the USF College of Engineering machine shop ENG 118 in spring 2013 (Figure 9). It was made of stainless steel with three parts. Part 1 is the base of the reactor where the photocatalyst sits. Part 2 is the body of the reactor which contains a quartz window with the diameter of 1 inch. Part 3 is the top piece which secures the quartz top window seal especially when operating at higher pressure. Figure 9a shows details and dimension of these three parts. Though all the work done in this dissertation were done at 20 psi, the reactor was tested to operate at 60 psi. Higher pressure is possible, however, it was not tested. There is an o-ring between part 1 and part 2 of the reactor which keeps the reactor airtight during operation. Part 2 also includes a water flowing channel around the reactor area to uniformly cool or heat the reactor. Hot place could be placed under reactor to heat the reactor. Since the o-ring is temperature rated at 200°C, it is recommended to operate within this temperature limit unless different o-ring is in use. Later, part 1 also modified to have inlet and outlet connections for reactants. Therefore, the reactor has capability to operate at a range of temperature and pressure and either in batch or flow reaction condition. To load photocatalysts, four screws at four corners was loosen to separate part 1 and 2 of the reactor.

Typically, 50mg of catalysts was uniformly spread on a 1 in² base area of the reactor. Gaseous 99.99% CO₂ (Airgas) was bubbled through DI water at room
temperature before introduction to the reactor (Figure 10 and 11). The amount of water vapor in the gaseous mixture was calculated to be 3% based on Raoult’s law. Before the experiment, the reactor was evacuated. Then, water saturated CO₂ was flowed through at 2ml/min for 30 mins to achieve stability. The reaction was carried out at 20 psi, under irradiation of 150W Xenon light equipped with 1.5AM filter and a visible long pass filter (λ >400nm) for 6 hrs. Light intensities and spectrum at the catalyst surface were recorded using a Li-200R Pyranometer (active from 400-1100nm, Li-COR) and a UV-Vis-NIR spectroscopy respectively (Figure 12). The reactor was cooled by flowing water to maintain isothermal reaction temperature at 40°C. Control runs were performed under the following conditions and no CO or CH₄ formation was observed: 1) under dark condition, and 2) with only N₂ and H₂O vapor when under irradiation. 80µl gas samples were periodically removed by gastight syringe (Hamilton, 100ul) for analysis by gas chromatography (Agilent 6970C) with a thermal conductivity detector (TCD), equipped with a HP-Plot column. The limitation of detection is ~40ppm for both CO and CH₄. CO and CH₄ quantitative analysis by GC-TCD and GCMS was calibrated detailed in the Appendices.
Figure 9: CO$_2$ reactor design. a) Diagrams of the three parts of the CO2 photoreactor. b) Picture of the assembled photoreactor.

Figure 10: System diagram of CO$_2$ photocatalytic reaction
Figure 11: Picture of the CO$_2$ photoreaction system. In the picture, the water bubbler sits on the right and the reactor with the light above sits on the left.

Figure 12: Light spectrum measured at the catalyst surface without filter and with filter
CHAPTER 3: Ti-MOF-525 FOR VISIBLE-LIGHT INDUCED REDUCTION OF CO$_2$ TO CH$_4$

3.1 Introduction

Harvesting solar energy for CO$_2$ conversion to the products of energy-rich chemicals such as H$_2$, CH$_4$ and HCOOH has drawn significant attention recently (22, 28, 81, 82) as this approach addresses problems of increased amount of CO2 in the atmosphere due to industrialization and the need for renewable energy sources. Conventional photoactive materials typically lack either a suitable band gap to absorb a broad section of solar spectrum (i.e TiO$_2$) or the appropriate band edges for CO$_2$ reduction, thus they are limited in yield efficiency. Recent work has shown that a relatively new class of materials, metal-organic-frameworks (MOFs), can be tailored to exhibit semi-conductivity and photoactivity properties (28, 30, 31, 82) by employing appropriate organic ligands and metal-containing nodes (or secondary building units, SBUs). MOF photocatalysts have seen more interest in CO$_2$ photoconversion and have become more robust than the 1$^{\text{st}}$ generation of MOF photocatalyst where they were tested for dye degradation. However, most of these studies occur in aqueous solution (83) or employ sacrificial agent such as TEOA (62, 82) in organic solvent such as DMF (55). Since the reaction occurs in solution, the main products evolved are HCOOH (82) and CO (55), which have low value as fuels and have to be further converted to useful fuels such as H$_2$ with the assistance of a suitable catalyst. The use of MOF as
photocatalyst for CO₂ reduction to create ready chemical fuels such as CH₄ has received relatively little attention in literature.

The objective of this work was to investigate the potential of metal-organic-frameworks (MOFs) for CO₂ photoreduction in gaseous phase using visible light, without any sacrificial agent present, to produce chemical fuels, especially CH₄. Previously, we showed that MOFs can be tuned for their band gap by proper selection of linkers or ligands (31). In this work, we demonstrate that when a MOF material is constructed by proper linkers (porphyrin-based) to absorb a broader portion of solar spectrum (visible range), and by metal-containing clusters (or secondary building unit, SBU) which are optimal for CO₂ reduction to CH₄, it benefits positively toward CO₂ photoreduction capability, and thus advances the plausibility of designing MOF photocatalysts for larger scale applications.

MOF materials investigated in this study, Zr-MOF-525 and its Ti-ion exchanged MOF-525 (Ti/Zr-MOF-525) were synthesized by W. Gao in Dr. Ma’s lab based on a modified procedure from previous reports (27). These MOFs have free-base meso-tetra (4-carboxyl-phenyl) porphyrin (H₂TCPP) as linkers and Zr or Ti/Zr mixed metallic clusters (SBUs) (Figure 13). MOF-525 materials were chosen in part because of their water stability (27, 55), an important requirement for the CO₂ reduction with H₂O, and also because of its porphyrin-based linker which enables the MOF to harvest visible light (56). Titanium-based MOF were selected for investigation due to their known photocatalyst reactivity for CO₂ reduction from their metal oxide TiO₂ and from other titanium-based MOF studied previously (35, 57, 58). Reports in literature of active Ti-based MOF for photoreactivity have been documented, although they have either been
used for hydrogen production \((57),(28, 59)\) or when used for photocatalytic \(CO_2\) reduction, they have either been used in a wide-spectrum UV illumination range (outside of the visible solar spectrum) or with the aid of sacrificial agents \((28, 35, 60-62)\). Ti-MOF-525 is the first reported to reduce \(CO_2\) in water vapor directly to gaseous fuels \(CH_4\) and \(CO\) without the use of sacrificial agents. Ti-based MOF was synthesized by ion exchanging precursor Zr-MOF-525 with TiCl\(_4\)(THF)\(_2\).

![Metal-organic-framework](image)

Figure 13: Metal-organic-framework. The image was done with the help of Wenyang who provided the draw of MOF crystal structure
3.2 Methods Used

3.2.1 Material Characterization

The phase purity of catalysts was determined by Powder X-ray diffraction (PXRD) measurement on powder samples at room temperature using a Bruker D8 Advance X-ray diffractometer. The X-ray source was Cu Kα radiation (λ = 1.5406 Å). Diffraction patterns was recorded at a scan speed of 0.5 s/step (6°/min) and a step size of 0.05° in the 2θ range of 5° to 30°. The accelerating voltage and applied current were 20 kV and 5 mA, respectively. The simulated XPD patterns were produced using Mercury 3.6 software.

N₂ gas adsorption isotherms were collected at 77K using the Micromeritics Surface Area and Porosity Analyzer ASAP-2020. Before the measurements, the samples were washed with methanol several times for 3 days. All the samples are degassed at 120°C for 10 hours. The specific surface area was obtained by a multipoint BET method using the adsorption data in the relative pressure (P/P0) range of 0.05–0.3. Pore size distribution were determined by the density functional theory method (DFT).

Morphological observations were carried out on a Hitachi S-800 field emission scanning electron microscope (SEM, Hitachi, Japan). To investigate the distribution of Ti and Zr inside the MOF crystals, average atomic composition analysis is done on three different locations of samples by the Energy dispersive X-ray spectroscopy (EDS), which is equipped with the Hitachi S-800 SEM. The accelerating voltage was 20 kV. To prevent electron charging, samples were gold-palladium coated by a Hummer X sputter coater for 45 seconds before SEM-EDS measurement.
It is well known that TiO$_2$-P25 has an indirect bandgap (86, 87). Therefore, from Eq. 1, $n = \frac{1}{2}$ and plotting $[F(R)\cdot h\nu]^{1/2}$ as a function of $E = h\nu$ will deliver a slope intercepting x-axis at the bandgap E_g of TiO$_2$-P25. Similarly, for direct bandgap materials, $n = 2$, and bandgap E_g is the interception of the slope with x-axis when plotting $[F(R)\cdot h\nu]^2$ as a function of $E = h\nu$. For MOFs, since it is a hybrid material which contains both inorganic (metal-containing SBU) and organic parts (linkers), it is generally considered to have a direct bandgap (31, 88).

Conduction band potentials of MOF photocatalysts were measured using photoelectrochemical method to obtain the flat-band potential (V_{fb}) (89, 90). The photovoltaic cells were constructed similar to a Gratzel cell but without dye to avoid interaction of MOF with the dye as has been previously described in literature (28, 32, 91, 92). The working electrode was fabricated by depositing a paste of photocatalysts (TiO$_2$-P25, Zr-MOF or Ti/Zr-MOF) in 200-proof ethanol (Sigma Aldrich) on a cleaned transparent fluorine doped tin oxide (FTO) glass by via doctor blading technique. Sticky tape was used to control the layer area and the thickness of the working electrode (1×1cm2 area and 25µm thickness). The electrode was then dried in vacuum oven at 100°C for 30 minutes. The platinum counter electrode was made by dropcasting 2mg/ml H$_2$PtCl$_6$ (99.9% Sigma Aldrich) in ethanol on a FTO glass and then was annealed in oven at 425°C for 1hr. Two electrodes were sealed together by a sealant (Solaronix) with a thickness of 50µm. I$_3$/I3 electrolyte was injected between two electrodes. The current-voltage (I-V) curve was recorded by 600 Reference Gamry potentiostat. A 150W Xenon lamp was used to illuminate the cells. To make sure the measured open-circuit voltages corresponding with the flat-band voltages, which happens when the light
intensity is high enough (89, 90, 93), The light intensity was varied from 50%-100% by metal wire gauzes. At higher 80% light intensity, the open-voltage did not change for all tested photocatalysts, which indicates the measured open-voltage to be close to the flat-band potential. Thus, all I-V curves were reported at 100% light intensity. The potential data are plotted relative to the normal hydrogen electrode (NHE).

Calculation of FF (fill factor): \(FF = \frac{P_{\text{MAX}}}{I_{\text{SC}}V_{\text{OC}}} \)

where \(P_{\text{MAX}} \) is maximum power, which is the largest value of measured current times applied voltage, \(I_{\text{SC}} \) is short-circuit current, \(V_{\text{OC}} \) is open-circuit voltage.

3.2.2 Photocatalytic Reactivity for CO\(_2\) Reduction with H\(_2\)O

The reaction was carried out in a stainless steel batch reactor with a quartz window on top. Typically, 50mg of catalysts was uniformly spread on a 1 in\(^2\) base area of the reactor. Gaseous 99.99\% CO\(_2\) (Airgas) was bubbled through DI water at room temperature before introduction to the reactor. The amount of water vapor in the gaseous mixture was calculated to be 3\% based on Raoult’s law. Before the experiment, the reactor was evacuated. Then, water saturated CO\(_2\) was flowed through at 2ml/min for 30 mins to achieve stability. The reaction was carried out at 20 psi, under irradiation of 150W Xenon light equipped with 1.5AM filter and a visible long pass filter (\(\lambda >400\text{nm} \)) for 6 hrs. Light intensities and spectrum at the catalyst surface were recorded using a blab la and blab Sensor and blab al respectively. The reactor was cooled by flowing water to maintain isothermal reaction temperature at 40\(^\circ\)C. Control runs were performed under the following conditions and no CO or CH\(_4\) formation was observed: 1) under dark condition, and 2) with only N\(_2\) and H\(_2\)O vapor when under
irradiation. 80µl gas samples were periodically removed by gastight syringe (Hamilton, 100ul) for analysis by gas chromatography (Agilent 6970C) with a thermal conductivity detector (TCD), equipped with a HP-Plot column. The limitation of detection is ~40ppm for both CO and CH₄.

The photochemical quantum yields (η %) of CO₂ reduction to CO and CH₄ under solar irradiation were calculated using the following equation(94):

$$\eta_{\text{CO or CH}_4} (\%) = \frac{n \times \text{moles of reduction products (CO or CH}_4)}{\text{moles of photon incident on catalyst}} \times 100\%$$

where n is the number of electrons required to convert CO₂ to CO or CH₄, which are two and eight, respectively.

The number of photons for each wavelength from λ = 400nm-1100nm irradiated on the catalyst surface per second per unit area was calculated from the light intensity (~56 mW.cm⁻²) measured by Li-200R Pyranometer (active from 400-1100nm, Li-COR) and the 150W Xenon light spectrum measured with filter at the catalyst surface (Figure 12). Because the IR section of the 150W Xenon light spectrum (λ> 750nm) generates heat and its effect was eliminated by controlling the reaction at a constant temperature (40°C), and the long filter glass used in the experiment setup evokes any light wavelength at λ < 400nm (Ehv > 3.1eV), only photons with the wavelength in the visible range λ = 400nm-750nm are accounted for generating unbound electron–hole pairs in the Ti/Zr-MOF-525 photocatalyst and were used to calculate the quantum yield. This value was then compared to TiO₂-P25 efficiency found in literature.
3.3 Results and Discussion

3.3.1 Structural and Optical Characterization

The molar ratio of Ti:Zr in Ti/Zr-MOF-525 is 90:10, measuring by energy-dispersive X-ray Spectroscopy (EDS) (Figure 16). Power XRD (Figure 14) confirm the synthesized material structures as predicted in simulations (Mercury 3.3). Both precursor Zr-MOF-525 and its Ti-ion exchanged MOF-525, Ti/Zr-MOF-525 are highly porous. Their BET surface areas (Table 1) are 2492m²/g and 2780m²/g respectively, and their Langmuir surface areas 3134m²/g and 4202m²/g, respectively, which are comparable to that reported in the literature (27). The similarity of XRD results and surface areas between Zr-MOF-525 and Ti/Zr-MOF-525 confirm that the Ti atoms replaced Zr atoms in the SBU after the ion exchange process rather than blocking the pores of MOFs. Solid state Uv-vis absorbance shows MOFs optical properties are highly regulated by their porphyrin linkers (Figure 17). The absorption bands ranging from 400nm-750nm imply the MOFs ability to absorb light deep in the visible range. Signature spectra of four Q bands as expected from the π- π* transitions in metal-free porphyrin (56, 95) are also observable in Zr-MOF-525 and Ti/Zr-MOF-525 at a range from 490nm-670nm. These Q bands of porphyrin in MOFs are more defined and intense than from pure porphyrin (95), indicating a high number of π- π* transitions in MOF frameworks. This enhances the adsorption of visible light range in MOF. Significantly high intensity of porphyrin Q-bands in MOF structures in comparison with molecular porphyrin was also observed elsewhere in literature (56), though it is less eminent than in our Zr-MOF-525 and Ti/Zr-MOF-525. Two broad bands at 370nm and
450nm are assigned for the Soret band (S0-S2 absorption process), a characteristic band of free-base porphyrin (95).

To estimate the ability of MOF-525 to absorb visible light, optical band gaps were calculated from the UV-Vis solid-state absorption spectra of these MOFs by plotting the Kubelka-Munk function versus the energy of incident light in eV (Inserted in Figure 17). The bandgaps of Zr-MOF-525 and Ti/Zr-MOF-525 are extrapolated to be 1.7 eV (729 nm). The narrow bandgaps in MOFs are influenced strongly by the ligand. In the case of MOF-525, the measured bandgaps (1.7 eV) closely resemble the optical absorbance spectrum of free base meso-tetra (4-carboxylphenyl) porphyrin (TCPP) which has a UV-vis absorption band (a Q band) at 645 nm or 1.9 eV (95)(96). The values are red-shifted in respect to the free-base porphyrin ligand (H2TCPP), due to the influence from coordinating with metal ions forming SBUs. This small band gap value allows Zr-MOF-525 and Ti/Zr-MOF-525 to be excited in the visible spectrum.

Figure 14: MOF PXRD results. a) of synthesized Zr-MOF-525 and Ti/Zr-MOF-525 versus that of simulated Zr-MOF-525
Figure 15: \(\text{N}_2 \) isotherm results of synthesized Zr-MOF-525 and Ti/Zr-MOF-525
Table 1: Physiochemical properties and measured band gaps and band edges of synthesized Zr-MOF-525 and Ti/Zr-MOF-525

<table>
<thead>
<tr>
<th>Sample</th>
<th>Molar ratios (^a) Zr:Ti</th>
<th>BET SA (^b) (m(^2)/g)</th>
<th>Langmuir SA (^b) (m(^2)/g)</th>
<th>Bandgap (^c) (eV)</th>
<th>Conduction band Potential (^d) Vs. NHE (eV)</th>
<th>Valence band Potential (^f) Vs. NHE (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr-MOF-525</td>
<td>100 : 0</td>
<td>2492 ± 53</td>
<td>3134 ± 50</td>
<td>1.7</td>
<td>-0.26</td>
<td>1.44</td>
</tr>
<tr>
<td>Ti/Zr-MOF-525</td>
<td>10 : 90</td>
<td>2780 ± 30</td>
<td>4202 ± 73</td>
<td>1.7</td>
<td>-0.52</td>
<td>1.18</td>
</tr>
</tbody>
</table>

\(^a\) Determined by EDS results on three locations and then, averaged
\(^b\) Determined by \(N_2\) physisorption
\(^c\) Determined by DRS_UVvis spectroscopy
\(^d\) Determined by conduction band potential measurement experiment
\(^f\) Calculated from bandgap and conduction band potentials
Figure 16: EDS results of Ti/Zr-MOF-525

<table>
<thead>
<tr>
<th>Element</th>
<th>Wt %</th>
<th>At %</th>
<th>K-Ratio</th>
<th>Z</th>
<th>A</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiL</td>
<td>81.42</td>
<td>89.30</td>
<td>0.4353</td>
<td>1.0116</td>
<td>0.5285</td>
<td>1.0001</td>
</tr>
<tr>
<td>ZrL</td>
<td>18.58</td>
<td>10.70</td>
<td>0.1576</td>
<td>0.9450</td>
<td>0.8871</td>
<td>1.0115</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>100.00</td>
<td>0.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Net Inte.</th>
<th>Bkgd Inte.</th>
<th>Inte. Error</th>
<th>P/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiL</td>
<td>18.52</td>
<td>2.15</td>
<td>3.05</td>
<td>8.60</td>
</tr>
<tr>
<td>ZrL</td>
<td>83.62</td>
<td>11.05</td>
<td>1.45</td>
<td>7.57</td>
</tr>
</tbody>
</table>
Figure 17: Optical bandgap measurement and conduction band potential experiment results. a) UV-vis solid-state absorption spectra of Zr-MOF and Ti/Zr-MOF. Insert shows the optical band gap energies of Zr-MOF-525 and Ti/Zr-MOF-525 which equal to 1.7 eV. b) I-V curves obtained for the photovoltaic solar cell prepared from TiO$_2$-P25, Zr-MOF-525, and Ti/Zr-MOF-525. Cells were irradiated with an AM 1.5-filtered Xenon lamp (150W) at radiation power of \sim 100W/m2.
For CO$_2$ photoreduction to occur, the catalyst is required to have a suitable conduction band and valence band, which are thermodynamically favorable for CO$_2$ conversion. Their open circuit potentials were measured and compared with that of TiO$_2$-P25. For n-type semiconductors, when illuminated under sufficiently high-intensity light, the quasi-Fermi level (measured as its open-circuit potential, V_{OC}) becomes close to the potential of the conduction band (93),(89, 90). This open-circuit potential is also called flat-band potential (E_{FB}) due to the elimination of conduction and valence band bending at the interface of electrolyte-semiconductor. The conduction bands of two MOFs were determined by comparing the open circuit voltages of photovoltaic cells made of Zr-MOF-525 or Ti/Zr-MOF-525 with the TiO$_2$-P25 cell (28, 32). In Figure 17b, the V_{OC} of Zr-MOF-525 and Ti/Zr-MOF-525 are 0.3 eV and 0.05 eV less than that of TiO$_2$-P25. After accounting for the conduction band of TiO$_2$-P25, which is -0.56eV versus NHE (pH = 7) (97), the conduction band edge of Zr-MOF-525 and Ti/Zr-MOF-525 were calculated to be -0.26 eV and -0.51 eV (versus NHE, pH = 7), respectively. While the bandgaps in our MOFs are clearly dictated by their ligands, they have relatively close band edge energies despite the differences in band edge positions of the metal oxides (ZrO$_2$ and TiO$_2$) (98). Simulation studies have shown that the band edges depend significantly on the configuration between the organic ligands and the SBUs (33, 99). Valence band potentials (V_{VB}) were then calculated from the conduction bands (V_{CB}) and bandgap (E_g) by applying the equation $V_{VB} = V_{CB} + E_g$ and are shown in Figure 19.

In Figure 17b, both MOFs generate much smaller photocurrent density than TiO$_2$-P25 in the I-V experiment. We interpret these data to suggest that these MOFs deliver
less charge carriers to the interface of the photocatalysts and electrolyte. This limitation lowers the efficiency of their photoreactions as observed in CO$_2$ photoreduction reactivity experiments.

CO$_2$ photoreduction were carried out in a batch reaction under irradiation using a 150 W Xenon lamp with a visible long pass filter ($\lambda >$400nm). The CO$_2$ photoreduction results of Zr-MOF-525 and Ti/Zr-MOF-525 with the generation of CH$_4$ and CO are shown in Figure 18a. Background experiments included a blank run of catalysts with only N$_2$ and H$_2$O vapor under irradiation, a control run of catalysts with CO$_2$ and H$_2$O under dark conditions and a test run of free base porphyrin (H$_2$TCPP) under the CO$_2$ photoreduction conditions. No formation of CO or CH$_4$ was observed for these controls, which validated our observed CO and CH$_4$ formation using MOF-525 during CO$_2$ photoreduction experiments. The reactivity of TiO$_2$-P25 was also included for comparison due to its common use as photocatalyst for CO$_2$ reduction with H$_2$O. Negligible production of CH$_4$ occurred over TiO$_2$-P25, which is in agreement with a previous report.(80) This lack of activity was attributed to the large band gap (3.1 eV) of TiO$_2$-P25. In the 1st half hour, the production rate of Ti/Zr-MOF-525 is 1.52 µmol.hr$^{-1}$.g$^{-1}$ CH$_4$ (2865ppm.hr$^{-1}$.g$^{-1}$) and 0.33 µmol.hr$^{-1}$.g$^{-1}$ CO (630ppm.hr$^{-1}$.g$^{-1}$). The overall production of CH$_4$ and CO after six hours under visible-light irradiation by Zr-MOF-525 was measured at 437 ppm g$^{-1}$ and 333 ppm g$^{-1}$. Likewise, Ti/Zr-MOF-525 showed 4119 ppm g$^{-1}$ CH$_4$ and 1423 ppm g$^{-1}$ CO, respectively. The overall photocatalytic activity of Ti/Zr-MOF-525 for CH$_4$ is 9.5 times higher than the parent Zr-MOF-525. Ti/Zr-MOF-525 reactivity showed high selectivity toward CH$_4$ than CO. Since CH$_4$ is much more energy-valuable than CO, Ti/Zr-MOF-525 presents a beneficial impact forward in the search for
better photocatalysts. The photochemical quantum efficiency for CH₄ and CO of Ti/Zr-MOF-525 catalyst was calculated to be 0.0203% and 0.0011%, respectively. The total quantum efficiency (ηCO + ηCH₄) under only visible light is 0.0214%. These results are comparable to TiO₂-P25 under full solar spectrum irradiation (80, 100).

The energy level alignment for TiO₂-P25, Zr-MOF-525 and Ti/Zr-MOF-525 were illustrated in Figure 18b and this represents the observed photoreactivity results from CO₂ reduction. TiO₂-P25 was not photo active under visible light to generate the electron-hole (e⁻/h⁺) pair. Zr-MOF-525 has a suitable band gap (1.7 eV, 729nm) to absorb visible light and it possibly generated the e⁻/h⁺ pair under visible light; however, its band edge positions are not thermodynamically suitable for CO₂ reduction. Consequently, we observed some reactivity, but its photocatalytic activity toward CO and CH₄ production is substantially inferior to Ti/Zr-MOF-525. Finally, Ti-MOF-525 exhibited proper bandgap and band edge positions for CO₂ photoreduction synthesis of CO and CH₄.

The CO₂ photoreduction mechanism remains a complicated topic in the literature. A proposed mechanism for MOF catalyzed CO₂ and H₂O conversion into CO and CH₄ in Figure 19. After absorbing visible light, the porphyrin ligands generate the associated excited electrons (56), which migrate and transfer to the metal-containing SBUs nearby through a linker-to-cluster-charge-transfer process (28) to reduce Ti⁴⁺ in the Ti-O cluster to Ti³⁺ (35, 58, 101). This separation process of generated e⁻/h⁺ pair in a MOF has been proven to benefit the reactivity during photocatalysis (35, 82). Then, CO₂ molecules adsorbed in the MOF pores are readily reduced by Ti³⁺ to form adsorbed CO species, which desorb into free CO or further react with H⁺ generated from the oxidation
of H₂O to form CH₄ (3, 35). The porphyrin ligands remain positively charged and oxidize water (102, 103). Because CO tends to adsorb strongly to the metal cluster (104), it is more likely to remain adsorbed and some would react further to form CH₄ and O₂, a reaction that requires lower energy to occur. This agrees well with what is observed in Figure 18a, where CH₄ formed 3 times as much as the CO product. Over time, strong CO adsorption would block active sites and could be the reason for the decline in CH₄ production after 2 hours of illumination. The low reactivity can also be explained by a slow process of transferring e⁻ and H⁺ from the porphyrin ligands to the metal-containing nodes. Nonetheless, future detailed mechanistic studies to probe the intermediates during the CO₂ reduction is needed to verify these hypotheses.

3.4 Conclusions

We have demonstrated, for the first time, the ability of porphyrin-based Ti/Zr-MOF-525 to reduce CO₂ in H₂O to gaseous chemical fuels (CH₄ and CO) without the presence of any sacrificial agents and using only visible light. The results show the tunability of MOF by using suitable linkers and metals in secondary-building-units in order to obtain desired bandgap and band edges for effective photocatalytic reactions. The reaction produces selectively more CH₄ versus CO and no sacrificial reagents are required.

While the yields are low, the approach shows great potential for designing linkers and nodes that can lead to much enhanced photoreduction capability.
Figure 18: CO₂ photoreduction reactivities of MOF-525. (a) CH₄ and (b) CO production using Zr-MOF-525, Ti/Zr-MOF-525, TiO₂-P25 and H₂-TCPP under visible light illumination (λ>400nm) of a 150 W Xenon lamp at 40°C, 20psi. TiO₂-P25 reactivity was included for comparison.
Figure 19: Diagram to explain the Ti/Zr-MOF-525 photoreactivity for CO$_2$ reduction with water. a) TiO$_2$-P25 has a large bandgap, therefore when illuminated under visible light (λ>400nm), it is not active. However, when illuminated under UV light (λ<400nm), TiO$_2$-P25’s proper aligned energy levels (CB and VB) allows its reactivity for CO$_2$ photoreduction with water. b) Similarly, results from Figure 18 suggests that Ti/Zr-MOF-525 has suitable energy level alignment for CO$_2$ reduction with water under illumination.
Figure 20: Overall CO$_2$ photoreduction mechanism by MOF photocatalyst. a) Scheme of charge transferred process within MOF when excited by illumination. b) Proposed CO$_2$ photoreduction mechanism catalyzed by Ti/Zr-MOF-525. c) Overall reaction of CO$_2$ reduction with H$_2$O to CH$_4$ and CO.
CHAPTER 4: STABILITY STUDY OF Ti/Zr-MOF-525 PHOTOCATALYST

4.1 Introduction

Metal-organic-frameworks have received intensive research interest thanks to their aesthetic framework structure and its flexibility to engineer for different applications such as gas storages and catalysis. Due to the nature of MOF, hybrid compounds between metal oxides and organic ligands, their biggest weakness is their stability under thermal effects or under guest solvent removal (105-107).

CO$_2$ photocatalytic reduction process exposes MOF photocatalysts to water, to light, and to radicals and charges either generated by the incident light or as byproducts during the reaction occurs. This potentially affects the structure and the reactivity of MOF photocatalysts. In an ideal world, the photocatalyst should continue to make products as long as it is illuminated. In addition, it should be able to be regenerated and recycled after used.

In the previous chapter, Ti/Zr-MOF-525 proves to be an advanced photocatalyst over its precursor Zr-MOF-525 and the gold standard photocatalyst TiO$_2$-P25. However, after 2 hours, the production of CH$_4$ reaches a plateau value, indicating a reduction of photocatalytic activity of the catalyst. In this chapter, MOF photocatalyst is further investigated for its ability for regeneration and its reactivity after recycling. Ti/Zr-MOF-525 fresh and used are characterized utilizing multiple techniques.
4.2 Experimental Section

4.2.1 Procedure to Regenerate MOFs

To study the stability of Ti/Zr-MOF-525 photocatalysts, the samples were reused 3 times for CO₂ reaction (Figure 20). After each reaction, the samples were washed with ethanol and acetone several times to remove possible contamination and reaction residual, and then dried in vacuum oven at 120°C overnight and were characterized before and after the reaction.

![Ti/Zr-MOF-525 Reactivity Stability Study](image)

Figure 21: Ti/Zr-MOF-525 reactivity stability study procedure diagram
4.2.2 Characterization

The phase purity of catalysts was verified by Powder X-ray diffraction (PXRD) measurement on powder samples at room temperature using a Bruker D8 Advance X-ray diffractometer. The X-ray source was Cu Kα radiation (λ = 1.5406 Å). Diffraction patterns were recorded at a scan speed of 0.5 s/step (6°/min) and a step size of 0.05° in the 2θ range of 5° to 30°. The accelerating voltage and applied current were 20 kV and 5 mA, respectively. The simulated XPD patterns were produced using Mercury 3.6 software.

N₂ gas adsorption isotherms were collected at 77K using the Micromeritics Surface Area and Porosity Analyzer ASAP-2020. All the samples are degassed at 120°C for 10 hours. The specific surface area was obtained by a multipoint BET method using the adsorption data in the relative pressure (P/P₀) range of 0.05–0.3. Pore size distribution were determined by the density functional theory method (DFT).

Morphological observations were carried out on a Hitachi S-800 field emission scanning electron microscope (SEM, Hitachi, Japan). To investigate the distribution of Ti and Zr inside the MOF crystals, average atomic composition analysis is done on three different locations of samples by the Energy dispersive X-ray spectroscopy (EDS), which is equipped with the Hitachi S-800 SEM. The accelerating voltage was 20 kV. To prevent electron charging, samples were gold-palladium coated by a Hummer X sputter coater for 45 seconds before SEM-EDS measurement.

To study optical properties and measure the bandgap, the diffused reflectance spectrum (DRS) of catalysts were measured by a JASCO V-670 UV-vis-NIR spectrophotometer with the 60mm integrating sphere attachment at a wavelength range...
from 200nm to 1100nm with a scan speed of 100nm.min⁻¹. Samples were spread in a thin layer and sandwiched between two microscopy glass slides.

The diffused reflectance UV-Vis spectra were used to calculate the Kubelka–Munk function, \(F(R) = \frac{(1 - R)}{2R} \), where \(R \) is the percentage of reflected light\(^\text{(84)}\). The incident photon energy \(E = h\nu \) and the optical bandgap energy \(E_\text{g} \) are related to the transformed Kubelka–Munk function in the following equation

\[
[F(R) \cdot h\nu]^n = A (h\nu - E_\text{g})
\]

where \(A \) is the constant depending on transition probability and \(n = \frac{1}{2} \) or 2 for indirect or direct bandgaps, respectively \(^\text{(84, 85)}\).

4.2.3 Photocatalytic Reactivity for CO\(_2\) Reduction with H\(_2\)O

The reaction was carried out in a stainless steel batch reactor with a quartz window on top. Typically, 50mg of catalysts was uniformly spread on a 1 in\(^2\) base area of the reactor. Gaseous 99.99% CO\(_2\) (Airgas) was bubbled through DI water at room temperature before introduction to the reactor. The amount of water vapor in the gaseous mixture was calculated to be 3% based on Raoult’s law. Before the experiment, the reactor was evacuated. Then, water saturated CO\(_2\) was flowed through at 2ml/min for 30 mins to achieve stability. The reaction was carried out at 20 psi, under irradiation of 150W Xenon light equipped with 1.5AM filter and a visible long pass filter \((\lambda >400\text{nm}) \) for 6 hrs. Light intensities and spectrum at the catalyst surface were recorded using a blab la and blab Sensor and blab al respectively. The reactor was cooled by flowing water to maintain isothermal reaction temperature at 40°C. Control runs were performed under the following conditions and no CO or CH\(_4\) formation was observed: 1) under dark condition, and 2) with only N\(_2\) and H\(_2\)O vapor when under irradiation. 80µl gas samples were periodically removed by gastight syringe (Hamilton,
100ul) for analysis by gas chromatography (Agilent 6970C) with a thermal conductivity detector (TCD), equipped with a HP-Plot column. The limitation of detection is ~40ppm for both CO and CH₄.

4.3 Results and Discussion

4.3.1 Structural and Morphological Changes

Characterization of the catalysts before and after each reaction recycle shows that no significant change in the solid-state UV-vis absorbance spectra and negligible change in XRD measurement were observed in the fresh and used photocatalysts (Figure 25 and Figure 22). This confirms that the Ti/Zr-MOF-525 structures and their electronic properties are preserved during the reaction. However, N₂ isotherm adsorption study (Figure 23) shows that photocatalyst surface area has reduced by half after the 1ˢᵗ reaction cycle and then remains relatively unchanged in 2ⁿᵈ and 3ʳᵈ cycles, agreeing with the observation of the reactivity behavior in Figure 27. The changes after the 1ˢᵗ cycles are also observed in the morphology as shown by SEM images, which indicate a reduction in particle size. Washing solvents of the used catalyst after the 1ˢᵗ cycle also contain a small amount of porphyrin, implying a leeching of the linker. All of these changes alleviate after the 1ˢᵗ cycle, marking the end of the framework breakdown. Used photocatalysts become relatively stable during 2ⁿᵈ and 3ʳᵈ cycles. After the 1ˢᵗ cycle, Ti/Zr-MOF-525 remained relatively stable, as observed by the lack of framework disruption and the maintenance of productivity at about 60-65% of its freshly prepared catalyst. Further catalytic investigation will bring insight to the mechanism and
pathway of CO₂ photoreduction in MOF, which will assist the design of future photocatalyst with improved stability and product selectivity.

Figure 22: PXRD of fresh and used Ti/Zr-MOF-525 after each reaction cycle
Figure 23: N_2 isotherm results of fresh and used Ti/Zr-MOF-525 after each reaction cycled.
Table 2: Physiochemical properties and measured band gaps of fresh and used Ti/Zr-MOF-525

<table>
<thead>
<tr>
<th>Sample</th>
<th>Molar ratios<sup>a</sup> Zr:Ti</th>
<th>BET SA<sup>b</sup> (m<sup>2</sup>/g)</th>
<th>Langmuir SA<sup>b</sup> (m<sup>2</sup>/g)</th>
<th>Bandgap<sup>c</sup> (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti/Zr-MOF-525</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fresh</td>
<td>10 : 90</td>
<td>2780 ± 30</td>
<td>4202 ± 73</td>
<td>1.7</td>
</tr>
<tr>
<td>Used 1</td>
<td>11 : 89</td>
<td>1216 ± 18</td>
<td>1489 ± 19</td>
<td>1.8</td>
</tr>
<tr>
<td>Used 2</td>
<td>11 : 89</td>
<td>1070 ± 16</td>
<td>1256 ± 17</td>
<td>1.8</td>
</tr>
<tr>
<td>Used 3</td>
<td>11 : 89</td>
<td>970 ± 14</td>
<td>1171 ± 11</td>
<td>1.8</td>
</tr>
</tbody>
</table>

^aDetermined by EDS
^bDetermined by N₂ isotherm
^cDetermined by DRS-UVvis spectroscopy
Figure 24: SEM images of fresh and used Ti/Zr-MOF-525 after each reaction cycle
Figure 25: DRS UVvis spectra of fresh and used Ti/Zr-MOF-525 before and after each reaction cycles. Inserted is the Tauc plot to measure the bandgaps.

Figure 26: Washing solvent characterization. a) Liquid UV-vis spectroscopy results of washing solvents. b) Picture of washing solvents
4.3.2 Photocatalytic Reactivity Results

As seen in Figure 26, the photoreactivity of used Ti/Zr-MOF-525 has reduced on average about 34% for CH₄ production and 40% for CO production in compared to fresh catalyst. However, after the 1st cycle, the photocatalyst maintains its reactivity in the 2nd and 3rd cycles, producing approximately 1.343 ± 0.035 µmol.gr⁻¹ (~2534 ± 66 ppm.gr⁻¹) CH₄ and 0.479± 0.063 µmol.gr⁻¹ (~904 ± 118 ppm.gr⁻¹) CO after 6 hours of visible light illumination.

The second-cycled catalyst produces ~40% less CH₄ and CO than the fresh catalyst. The third cycled photocatalyst maintained similar reactivity with the second cycle, producing 1.255 ± 0.033 µmol.gr⁻¹ (~2366 ± 61 ppm.gr⁻¹) CH₄ and 0.451± 0.038 µmol.gr⁻¹ (~849 ± 72 ppm.gr⁻¹) CO after six hours of irradiation. Ti/Zr-MOF-525 maintained its structure as demonstrated in the solid-state UV-Vis absorbance spectra and PXRD patterns (Figures 21 and 22) between the fresh and recycled photocatalysts. This confirmed that the Ti/Zr-MOF-525 structures and its electronic properties are preserved during reaction. However, N₂ isotherm adsorption study showed that the photocatalyst surface area reduced by half after the first reaction cycle and third cycles. This reduced surface area corresponded with the reduced reactivity behavior. Physical changes after the first cycle were observed in the morphology as shown in SEM images (Figure 23), which showed a reduction in particle size. The washing solvents contained porphyrin molecules from the MOF catalyst after the first cycle (Figure 25). We interpreted these observations to the breakdown of the material during photocatalysis, but the deterioration alleviates after the 1st cycle.
4.4 Conclusion

Ti/Zr-MOF-525 showed a ~34-40% deactivation after the first run, however it stabilized after that and subsequent regeneration steps were able to restore the activity. The surface area reduces significantly after the 1st cycle of reaction. However, the Ti-MOF photocatalyst maintains its surface area during 2nd and 3rd cycles of reaction. The production yields remain similarly in regards to its surface area, implying that intact MOF preserves its reactivity.
CHAPTER 5: CO₂ PHOTOREDUCTION STUDIES USING LACR₁₋ₓFEₓO₃
PEROVSKITES: THE EFFECTS OF METAL RATIOS IN B SITE ON BANDGAPS AND BANDEDGES

5.1 Introduction

The ABO₃-type perovskite can have the B site modified by partially substitute B with a similar B’ cations. Modified perovskites can have altered electrical and chemical properties. This tunability of perovskites makes them a great material for engineering the bandgap, conduction, and valence band potentials for photocatalytic applications.

In addition, perovskites have thermal and chemical stabilities which are similar to regular metal oxides, making them comparable to TiO₂-P25 for reuse and photocatalyst applications under aqueous conditions.

LaCrO₃ has a conduction band potential negative enough for CO₂ conversion but it has a large bandgap (3.09eV) (108), making it less effective for absorbing solar energy. On the other hand, LaFeO₃ has a small bandgap due to its Fe-O bonds but an overly positive conduction band potential for CO₂ conversion. Thus, a combination of these two perovskites will provide insight into the effects of site B substitution on chemical and electronic properties of the mixed perovskites.

In this study, LaCr₁₋ₓFeₓO₃ was investigated for its changes in bandgap and bandedge when gradually substituted Fe ions for Cr ions. Five perovskites with
different Cr/Fe ratios was synthesized where $x = 0, 0.25, 0.5, 0.75, 1$. Consequently, their CO$_2$ photoreactivities were studied in responses to Fe ion replacement.

Previously, Divya Suresh, a Master graduate student in our research laboratory has synthesized four LaCr$_{1-x}$Fe$_x$O$_3$ and tried to measured their bandgaps and bandedges (66). She observed a narrowing of band gap energy when increasing iron concentration. The band edges were also measured. However, the study is incomplete as only four samples with $x = 0, 0.25, 0.5, 1$ (missing $x = 0.75$) were synthesized and reported. Also, the Mott-Schottky plots were generated using only two frequencies (50Hz and 100Hz). As discussed on the methodology chapter (Chapter 2), it is important to obtain the Vfb over a range of frequencies. Therefore, the experimental limitations of the previous study were addressed and improved in this work. In particular, five perovskites with different Cr/Fe ratios were synthesized, where $x = 0, 0.25, 0.5, 0.75, 1$. Mott-Schottky plots were obtained at least three frequencies.

5.2 Experimental Set Up and Characterization

5.2.1 Synthesis of the Perovskite Photocatalysts

LaCr$_{1-x}$Fe$_x$O$_3$ ($x = 0, 0.25, 0.5, 0.75, 1$) perovskite powders were synthesized using Pechini method, similarly described by Popa and Kakihana (65). Briefly, citric acid (Sigma Aldrich, ≥99.5%) was dissolved in 60°C water. Then, appropriate amount of precursors La(NO$_3$)$_3$ (Sigma Aldrich, ≥99.9%), Cr(NO$_3$)$_3$ (Alfa Aesar, 99.9%) and Fe(NO$_3$)$_3$ (Sigma Aldrich, ≥98%) were added to the solution. The mixtures was continuously stirred at 60°C for 2 hrs. After ethylene glycol (Sigma Aldrich, ≥99%) was added, the solution was raised to 90°C and remained at this temperature for 7 hrs while
under constant stirring. The gel-like resin was transferred to the oven where it was heated at 450°C for 2 hrs to decompose all the metal precursors, and then at 950°C for 6hrs to form the final perovskite catalysts.

The molar ratios of materials used was La: citric acid: ethylene glycol = 1:10:40 as described in Yolanda et al. (67). The amounts of Cr(NO₃)₃ and Fe(NO₃)₃ precursors used were determined to target the metal molar ratios in LaCr₁₋ₓFeₓO₃ where x = 0, 0.25, 0.5, 0.75, 1.

5.2.2 Structural and Composition Characterizations

Synthesized perovskites were characterized for their surface area, porosity, crystal structures, morphology, and compositions. The phase purity of catalysts was verified by Powder X-ray diffraction (PXRD) measurement on powder samples at room temperature using a Bruker D8 Advance X-ray diffractometer. The X-ray source was Cu Kα radiation (λ = 1.5406 Å). Diffraction patterns was recorded in the 2θ range of 20° to 80° with a step size of 0.01° and an average time per step of 1s. The accelerating voltage and applied current were 20 kV and 5 mA, respectively.

N₂ gas adsorption isotherms were collected at T = 77K using a Quantachrome Autosorb IQ. Approximately 150mg of each perovskites were used for the measurement. The samples were outgassed at T = 250°C for 10 hours to remove all water and other light volatile organic compounds during the washing process. The specific surface area was obtained by a multipoint BET method using the adsorption data in the relative pressure (P/P₀) range of 0.05–0.3. The BET (Brunauer-Emmett-Teller) method (69) considers both multilayer and monolayer adsorption.
Morphological observations were carried out on a Hitachi S-800 field emission scanning electron microscope (SEM, Hitachi, Japan). To investigate the distribution of metals, average atomic composition analysis is done on three different locations of samples by the Energy dispersive X-ray spectroscopy (EDS), which is equipped with the Hitachi S-800 SEM. The accelerating voltage was 20 kV. To prevent electron charging, samples were gold-palladium coated by a Hummer X sputter coater for 45 seconds before SEM-EDS measurement.

The FTIR spectra of the catalysts were obtained using a Nicolet IS50 Spectrometer in an attenuated total reflection (ATR) mode.

5.2.3 Optical Bandgap and Conduction Band Edge Measurements

To study optical properties and to measure the bandgap, the diffused reflectance spectrum (DRS) of catalysts were measured by a JASCO V-670 UV-vis-NIR spectrophotometer with the 60mm integrating sphere attachment at a wavelength range from 200nm to 1100nm with a scan speed of 100nm.min\(^{-1}\). Samples were spread in a thin layer on the quartz window side of the powder sample holder cell (Jasco, PSH-002). A white Spectralon plate was used as reflectance standard background. The reflectance spectra were converted into Kubelka-Munk function (F(R)) which is proportional to the absorption co-efficient for low values of F(R).

Band edge potentials of photocatalysts were measured using Electrochemical Impedance Spectroscopy (EIS) to generate Mott-Schottsky plots for the flat-band potential (\(V_{fb}\)). To make the working electrodes, the powder catalysts were first grounded, mixed with ethanol and water, and sonicated for 30 minutes to yield a thick slurry. Then, the mixtures were spread via the doctor blade technique on a 2.5x1.5cm\(^2\)
pure titanium foil (Sigma Aldrich). The samples were then oven dried at 250°C for 5 hrs to yield a smooth thin film on the foil. A 2ml plastic tube was glued on the foil to hold electrolytes. The catalyst electrode area is 0.625cm². Titanium wire was used as reference and platinum wire as counter electrodes. The potential of the titanium wire reference electrode was later calibrated against Saturated Calomel Electrode (SCE) and it is +0.155V versus SCE. 0.1M Na₂SO₄ (pH ~7) was used as electrolyte. A potentiostat/galvanostat model Gamry 600 was utilized for the measurements using the EIS software from Gamry. Mott-Schottsky plots were obtained at several frequencies (1000Hz-2500Hz). Flatband potentials were determined by plotting inverse capacitance squared (1/C²) as a function of voltage, which was found to be independent of frequencies for all samples. Conduction band edges (CB) were determined using standard equations from these flat band potentials. Valance bands (VB) are then calculated from measured bandgap (Eg) and conduction band (CB) using the equation:

\[\text{VB} = \text{CB} - \text{Eg} \]

5.2.4 CO₂ Photoreduction Reactivity

CO₂ photoreduction experiments were performed using a setup described previously(80). The reaction was carried out in a stainless steel batch reactor with a quartz window on top. Typically, 50mg of catalysts was uniformly spread on a 1 in² base area of the reactor. Gaseous 99.99% CO₂ (Airgas) was bubbled through DI water at room temperature before introduction to the reactor. The amount of water vapor in the gaseous mixture was calculated to be 3% based on Raoult’s law. Before the experiment, the reactor was evacuated. Then, water saturated CO₂ was flowed through at 2ml/min for 30 mins to achieve stability before two valves at inlet and outlet of the
reactor were closed for a batch reaction. The reaction was carried out at 20 psi, under irradiation of 150W Xenon light equipped with 1.5AM filter and a visible long pass filter (λ >400nm) for 6 hrs. Light intensities and spectrum at the catalyst surface were Li-200R Pyranometer (active from 400-1100nm, Li-COR). The reactor was cooled by flowing water to maintain isothermal reaction temperature at 40°C. Control runs were performed under the following conditions to ensure that the gas products CO and CH₄ are not from non-photo-catalyzed reactions: 1) under dark condition, and 2) with N₂ and H₂O vapor under irradiation. 80µl gas samples were periodically removed by gastight syringe (Hamilton, 100ul) for analysis by gas chromatography (Agilent 6970C) with a thermal conductivity detector (TCD), equipped with a HP-Plot column. The limitation of detection is ~40ppm for both CO and CH₄.

5.3 Results and Discussion

5.3.1 Crystal Structure and Physical Properties

The powder X-ray diffraction (PXRD) patterns of the synthesized perovskites are shown in Figure 27. LaFeO₃ and LaCrO₃ crystal structures match with the JCPDS X-ray pattern files (ICCD 01-088-0641 reference code for LaFeO₃ and ICCD reference code 00-026-0817 for LaCrO₃). All synthesized perovskites have orthorhombic crystal structures and are single phase which agrees with previous finding (109) when Pechini synthesis method is used. Das et al.(109) reported that LaMO₃ (where M is metal) synthesized by Pechini routes always yield single phase and have orthorhombic crystal structure. Kato and Kudo(110) observed that orthorhombic phases in perovskite ABO₃ type accelerates the charge transfer of photogenerated e⁻/h⁺ pairs within crystals. This
is also the reason why Pechini method was chosen to synthesize the perovskite photocatalysts, to target single phase for suppression of e^-/h^+ pairs recombination and to promote orthorhombic structures for charge transfer. Orthorhombic structure is common for ABO_3 perovskite oxides due to the distortion caused by mismatch cation size in A and B sites from the ideal cubic structure (111). The clean XRD patterns indicate a high crystallinity of all five samples which promotes change mobility. Less defects from single phase and high crystallized materials also discourage charge recombination, which will lead to better photoreactivity (112, 113).

The calculated lattice constants from the XRD data are given in Table 3. The lattice parameters and unit cell volumes of perovskite increased with x (enriching Fe content) as the ionic radii of Fe is larger than Cr. This was also observed by others (67) when Fe replaces smaller metal atoms. XRD patterns at the major diffraction line (Miller indices [121]) in Figure 27b clearly display a peak shift toward smaller angle for Fe-enriching samples. No minor peaks observed at 2theta of 36.59°, 38.42° or 39.6°, indicate no extra phases of La_2O_3, Fe$_2$O$_3$ and Fe$_3$O$_4$ (46) existed in these perovskites. The gradual change in lattice parameter and unit cell from LaCrO_3 to LaFeO_3, the consistency of single-phase orthorhombic structure, and the absence of metal oxide (La_2O_3, Fe$_2$O$_3$ and Fe$_3$O$_4$) peaks suggest that when x increases from 0 to 1, Fe replaces Cr sites on the B site rather than creating extra crystal structure or phases.

BET surface areas (Figure 28 and Table 3) are small across all five materials, which are observed in previous studies for perovskites when activated at high temperature (46, 67). They are strictly non-porous and homogeneous in size and shape.
The low surface area reduces the adsorption ability and therefore will affect the reactivity of perovskite as discussed below.

The metal compositions determined by EDS are within ±10% of the target ratios (Figures 29-33). EDS was taken at several spots and averaged to assure the representative of the data. The metal ratio variations between spots within a sample are small, around ~3% of the values, indicating the homogeneity of the sample composition.

The IR spectra of perovskite nanoparticles synthesized at different ratios of Fe/Cr in the crystal structures are shown in Figure 34. No observed peak at about 1500 cm\(^{-1}\) which was ascribed to –COOH wag vibrations of the oxygen group carbonate (24), demonstrates that the sample do not contain a significant amount of impurity. The IR peaks at about 400 and 560 cm\(^{-1}\) are close related to the bending vibration of O–Fe–O and the stretching vibration of Fe–O, respectively (47, 49). These bands are characteristic of the octahedral FeO\(_6\) group in LaFeO\(_3\). No broad band observed at about 3400 cm\(^{-1}\) which is normally attributed to the stretching vibration of O–H of adsorbed water molecules indicates that the samples are certainly dry.
Figure 28: Perovskites’ PXRD results. a) PXRD patterns of as-prepared five perovskites. b) Detailed PXRD patterns of the strongest diffraction peaks at around 2θ = 32° - 33°
Figure 29: N_2 adsorption isotherms of $\text{LaCr}_{1-x}\text{Fe}_x\text{O}_3$
Element Wt % At % K-Ratio Z A F

C K 1.82 11.25 0.0077 1.3523 0.313 1.0001
O K 4.64 21.47 0.0327 1.3227 0.5317 1.0009
LaL 71.52 38.11 0.6629 0.9094 1.0098 1.0094
FeK 22.02 29.18 0.2381 1.147 0.9429 1
Total 100 100

Element Net Inte. Bkgd Inte. Inte. Error P/B

C K 25.91 18.88 3.65 1.37
O K 261.74 85.31 0.94 3.07
LaL 686.48 0 0.45 686.48
FeK 271.04 0 0.72 271.04

Figure 30: EDS result at one spot of LaFeO₃ sample
<table>
<thead>
<tr>
<th>Element</th>
<th>Wt %</th>
<th>At %</th>
<th>K-Ratio</th>
<th>Z</th>
<th>A</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.90</td>
<td>5.49</td>
<td>0.005</td>
<td>1.3395</td>
<td>0.0954</td>
<td>1</td>
</tr>
<tr>
<td>O</td>
<td>3.60</td>
<td>21</td>
<td>0.0382</td>
<td>1.3102</td>
<td>0.364</td>
<td>1.001</td>
</tr>
<tr>
<td>LaL</td>
<td>70.60</td>
<td>37.41</td>
<td>0.3712</td>
<td>0.8994</td>
<td>1.0111</td>
<td>1.001</td>
</tr>
<tr>
<td>FeK</td>
<td>19.15</td>
<td>26.31</td>
<td>0.2409</td>
<td>1.1258</td>
<td>0.9865</td>
<td>1.059</td>
</tr>
<tr>
<td>CrK</td>
<td>5.96</td>
<td>9.79</td>
<td>0.0923</td>
<td>1.1335</td>
<td>0.9442</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 31: EDS result at one spot of LaCr$_{0.25}$Fe$_{0.75}$O$_{3}$ sample
<table>
<thead>
<tr>
<th>Element</th>
<th>Wt %</th>
<th>At %</th>
<th>K-Ratio</th>
<th>Z</th>
<th>A</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1.30</td>
<td>7.9</td>
<td>0.0075</td>
<td>1.3395</td>
<td>0.2354</td>
<td>1</td>
</tr>
<tr>
<td>O</td>
<td>4.60</td>
<td>21</td>
<td>0.0382</td>
<td>1.3102</td>
<td>0.54</td>
<td>1.001</td>
</tr>
<tr>
<td>LaL</td>
<td>67.67</td>
<td>35.34</td>
<td>0.6212</td>
<td>0.8994</td>
<td>1.0111</td>
<td>1.003</td>
</tr>
<tr>
<td>CrK</td>
<td>14.09</td>
<td>18.39</td>
<td>0.1409</td>
<td>1.1258</td>
<td>0.9865</td>
<td>1.0159</td>
</tr>
<tr>
<td>FeK</td>
<td>12.35</td>
<td>17.37</td>
<td>0.123</td>
<td>1.1335</td>
<td>0.9442</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 32: EDS result at one spot of LaCr$_{0.5}$Fe$_{0.5}$O$_3$ sample
<table>
<thead>
<tr>
<th>Element</th>
<th>Wt %</th>
<th>At %</th>
<th>K-Ratio</th>
<th>Z</th>
<th>A</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1.29</td>
<td>7.89</td>
<td>0.0014</td>
<td>1.595</td>
<td>0.0954</td>
<td>1</td>
</tr>
<tr>
<td>O</td>
<td>4.38</td>
<td>20</td>
<td>0.0458</td>
<td>1.102</td>
<td>0.364</td>
<td>1.001</td>
</tr>
<tr>
<td>LaL</td>
<td>69.02</td>
<td>36.41</td>
<td>0.3602</td>
<td>0.947</td>
<td>1.011</td>
<td>1.001</td>
</tr>
<tr>
<td>FeK</td>
<td>6.52</td>
<td>8.51</td>
<td>0.0709</td>
<td>1.178</td>
<td>0.965</td>
<td>1.059</td>
</tr>
<tr>
<td>CrK</td>
<td>19.04</td>
<td>27.19</td>
<td>0.2345</td>
<td>1.0335</td>
<td>0.972</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>0.2345</td>
<td>1.0335</td>
<td>0.972</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 33: EDS result at one spot of LaCr\textsubscript{0.75}Fe\textsubscript{0.25}O\textsubscript{3} sample
Figure 34: EDS result at one spot of LaFeO3 sample

<table>
<thead>
<tr>
<th>Element</th>
<th>Wt %</th>
<th>At %</th>
<th>K-Ratio</th>
<th>Z</th>
<th>A</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>2.86</td>
<td>11.35</td>
<td>0.001</td>
<td>1.950</td>
<td>0.054</td>
<td>1</td>
</tr>
<tr>
<td>O</td>
<td>7.91</td>
<td>27</td>
<td>0.0248</td>
<td>1.102</td>
<td>0.364</td>
<td>1.001</td>
</tr>
<tr>
<td>LaL</td>
<td>63.21</td>
<td>30.4</td>
<td>0.6302</td>
<td>0.947</td>
<td>1.011</td>
<td>1.001</td>
</tr>
<tr>
<td>CrK</td>
<td>26.23</td>
<td>31.25</td>
<td>0.2425</td>
<td>1.035</td>
<td>0.972</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Crystallographic properties, metal compositions and Brunauer-Emmett-Teller surface areas of synthesized perovskite photocatalysts

<table>
<thead>
<tr>
<th>Sample</th>
<th>Molar ratios<sup>a</sup> Cr : Fe</th>
<th>BET SA<sup>b</sup> (m<sup>2</sup>/g)</th>
<th>Crystal Structure<sup>c</sup></th>
<th>Lattice parameters (Å)<sup>c</sup></th>
<th>Unit cell volume (Å<sup>3</sup>)<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><sup>a</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>LaCrO<sub>3</sub></td>
<td>100 : 0</td>
<td>2.3</td>
<td>Orthorhombic</td>
<td>5.47</td>
<td>5.47</td>
</tr>
<tr>
<td>LaFe<sub>0.25</sub>Cr<sub>0.75</sub>O<sub>3</sub></td>
<td>76.7 : 23.6 (±1.1)</td>
<td>3.0</td>
<td>Orthorhombic</td>
<td>5.50</td>
<td>5.51</td>
</tr>
<tr>
<td>LaFe<sub>0.5</sub>Cr<sub>0.5</sub>O<sub>2</sub></td>
<td>52.2 : 47.8 (±1.8)</td>
<td>3.2</td>
<td>Orthorhombic</td>
<td>5.51</td>
<td>5.52</td>
</tr>
<tr>
<td>LaFe<sub>0.75</sub>Cr<sub>0.25</sub>O<sub>3</sub></td>
<td>26.8 : 73.2 (±0.5)</td>
<td>3.1</td>
<td>Orthorhombic</td>
<td>5.53</td>
<td>5.54</td>
</tr>
<tr>
<td>LaFeO<sub>3</sub></td>
<td>0 : 100</td>
<td>2.1</td>
<td>Orthorhombic</td>
<td>5.56</td>
<td>5.55</td>
</tr>
</tbody>
</table>

^a Determined by EDS Scan, ^bDetermined by N₂ physisorption, ^cDetermined by XRD
Figure 35: SEM images provides morphology of synthesized perovskites.
Figure 36: TEM images of five perovskites
5.3.2 Optical Bandgap and Positions of Conduction and Valence Band Potentials

Figure 37a shows the optical absorption spectra of five synthesized perovskites. The diffused reflectance Uv-vis spectra were used to calculate the Kubelka − Munk function (84), \(F(R) = \frac{(1 - R)^2}{2R} \), where R is the percentage of reflected light (84). LaFeO\(_3\) cuts off its light absorption at around \(\sim 550 \)nm. It has a small adsorption band at 720nm, indicates a mid-band stage within the bandgap. This band was also observed for nanocystal LaFeO\(_3\) calcined at 500-950°C (46, 47, 114). It is known that LaFeO\(_3\) UV-Vis spectra reflects the Fe-O bond excitation (47, 115) and is similar to Fe\(_2\)O\(_3\) (47). This attributes to the electronic transition of O\(_2p\) from the valence band to Fe-3d conduction band (116). Most literature reports DRS-UV-Vis spectra of LaFeO\(_3\) ending at 700 nm, thus, they did not observe the extra band at 720nm as reported here. LaCrO\(_3\) adsorbs till 380nm. It exhibits small absorption bands at 460nm and at 600nm. A theory study of LaCrO\(_3\) electronic band structures (117) points out that LaCrO\(_3\) conduction band consisted of Cr3d unoccupied orbitals and its valence band consisted of Cr3d partial occupied orbitals and O2p orbitals. Therefore, 2 small bands at around 650nm and 400nm represent Cr d-d transition and partial occupied Cr3d -O2p transition. The true bandgap is recognized as the cation-anion charge transfer (CT). In this case, it is the unoccupied Cr3d-O2p transition at 380nm. These small absorption bands at 460 and 650nm are similarly observed in Cr\(_2\)O\(_3\) oxide (118) revealing the influent of Cr-O bonds in the LaCrO\(_3\) perovskite electronic structure. Interestingly, the UVvis spectra of mixed perovskites (\(x = 0.25, 0.5, 0.75 \)) display characters closer to LaFeO\(_3\) than to LaCrO\(_3\).
Figure 37b shows the optical bandgaps (E_g) of five synthesized perovskites generated from the UV-vis spectra. The incident photon energy ($E = h\nu$) and the optical bandgap energy (E_g) are related to the transformed Kubelka–Munk function ($F(R)$) in the following equation \([F(R) \cdot h\nu]^n = A (h\nu - E_g)\), where A is the constant depending on transition probability and $n = \frac{1}{2}$ or 2 for indirect or direct bandgaps, respectively\((84, 85)\). For direct bandgap materials, which is the case of LaCrO$_3$ and LaFeO$_3$\((117, 119)\), $n = 2$, and bandgap E_g is the interception of the slope with x-axis when plotting $[F(R) \cdot h\nu]^2$ as a function of $E = h\nu$.

LaCrO$_3$ and LaFeO$_3$ bandgaps are measured at 3.1 eV and 2.0 eV respectively, agreed with reported value \((66, 113, 117)\). Generally, in oxide photocatalysts, the valance band (VB) is determined by O2p orbital and the conduction band (CB) is determined by metal ion electrical state. For example, in LaFeO$_3$, VB is O2p orbital, CB is Fe3d orbital, the bandgap is the electronic transition takes place from O2p to Fe3d. The band gap of LaFeO3 is 2.2eV, in agreement with literature\((46)\). Three new perovskites interestingly all have bandgap similar to LaFeO3 (~2.0-2.1eV) regardless of the difference in percentage of Fe/Cr ratio (x) in the materials. Umezawa\((120)\) recently published a work where lanthanum pervoskites bandgap changed significantly by the oxynitride percentage (x) upto 0.25%. At 25% (or $x = 0.25$), the bandgap alteration progress halted and its value is close to the bandgap at $x = 1$. The shift of the bandgaps versus Fe/Cr ratio is consistent with the transition of the material colors from green to red and deep red, revealing their light adsorption capability moving from UV to visible-light range.
Figure 38 is the Mott-Schottky plots for obtaining the conduction band potentials for five perovskites. The conduction bands measured at different frequencies are all reasonably agreed with each other, with a deviation of less than ±0.04 eV (<10%). This validated a valid measurement under Mott-Schottky assumption.

The bandgap and flat-band potential measurement are summarized in Figure 38. Interestingly, the results differs from our expectations. The hypothesis was that the bandgap will reduce gradually from 3.2 eV to 2 eV as Fe ions replace Cr ions. Instead, the bandgap of LaCr$_{1-x}$Fe$_x$O$_3$ changes suddenly to ~2 eV even at only 25% Fe replacement. This bandgap value remains the same as the Fe ratio increases. Further theoretical studies of the LaCr$_{1-x}$Fe$_x$O$_3$ bandgap are going on within our group to further understand this observation at the molecular electronic level. The conduction band obtained from Mott-Schottky plots also show some unexpected nonlinear behavior.

Umezawa(120) et al. ’s work on simulation of bandedge and bandgap for pervoskites showed that when introducing new metals in the structure, it cohesively changes the band alignments of conduction and valence bands. These changes is not reflected in the Density of States (DOS) of stand-alone individual substituted atoms but by how it interacts within the structures. Similarly, at x = 0.75, LaCr$_{0.25}$Fe$_{0.75}$O$_3$ could potentially see a shift in conduction band potential position, different from the rest of the perovskites. Future simulation studies will address this experimental finding. Lowering symmetry of the crystal structure by introducing foreign elements are also known to shift conduction band minimum upward in pervoskite(120) which is beneficial for CO$_2$ reduction.
Figure 37: DRS-UVvis measurement of LaCr$_{1-x}$Fe$_x$O$_3$. a) UV-vis solidstate absorption spectra of five pervoskites. b) Tauc plot to determine their optical bandgaps
Figure 38: The Mott-Schottky plots for obtaining the conduction band potentials for five perovskites
Figure 38 (continued)
Figure 38 (continued)
Figure 39: Summary of perovskites bandgaps and flat-band potential results
5.3.3 CO$_2$ Photoreactivity

The photoactivity of pervoskites are then tested for CO$_2$ reduction in presence of H$_2$O to make CH$_4$ and CO under visible light (λ >400nm). The CO$_2$ reduction with H$_2$O follows two half reactions: the oxidation of water and the reduction of CO$_2$(5, 21):

LaCr$_x$Fe$_{1-x}$O$_3$ → e$^-$ + h$^+$, 2H$_2$O + 4h$^+$ → O$_2$ + 4H$^+$, CO$_2$ + 2H$^+$ + 2e$^-$ → CO + H$_2$O, CO$_2$ + 8H$^+$ + 8e$^-$ → CH$_4$ + 2H$_2$O. Controlled reaction experiment were carried out to validate the source of C to form CH$_4$ and CO from CO$_2$ rather than from the catalysts or other contamination sources. Figure 39 shows the products (CH$_4$, CO and O$_2$) observed after 4 hours of visible light illumination normalized for the weight of perovskites used. H$_2$ was undetectable or in a negligible amount in compared to three main products above. Longer hydrocarbon compounds such as C$_2$H$_4$, C$_2$H$_6$ while were reported in other photocatalytic studies(121) were not observed in this work. This is because these photocatalytic studies loaded an amount of ~5% Pt on the studied catalysts which usually significantly increase the production yield and the variation of eluted products. Among five studied perovskites, LaCr$_{0.25}$Fe$_{0.75}$O$_3$ (x = 0.75) is the most active photocatalyst and LaCr$_{0.75}$Fe$_{0.25}$O$_3$ (x = 0.25) is 2nd best whereas the rest of the La perovskites show a minimal photocatalytic reactivity. The quantum efficiency was calculated using the following equation.

$$\eta_{\text{CO or CH}_4} (\%) = \frac{n \times \text{moles of reduction products (CO or CH}_4)}{\text{moles of photon incident on catalyst}} \times 100\%$$

This is consistent with previous reports that a long induction period is required as Cr$^{6+}$ species will consume photo-generated electrons and hydrogen evolution is a competitive process with reduction of Cr$^{6+}$ species (51)
The reactivity of synthesized pervoskites are perfectly explained by Figure 39 where the bandgap and bandedges are graphed against NHE or vacuum potentials and in perspective of CO₂-H₂O redox reaction potentials. LaCrO₃ has largest bandgap (Eₕ = 3.20 eV), therefore it does not absorb visible light and do not generate excited enough e⁻/h⁺ pairs to catalyze the reaction. The conduction band potentials were calculated using the following equation: Eₐ = Eₕ + Vfb where the Eₕ is the redox potential of electrolyte in the Mott-Schottky measurement. The electrolyte is 0.1M Na₂SO₄ solution. Because the Eₕ of Na₂SO₄ is larger than water splitting(122), at the working electrode (or the cathode where the photocatalyst is), water is reduced instead of Na⁺. Therefore, Eₕ used in the above equation is Eₕ = Eₕ₊/H₂ = 0 eV vs. NHE.

The conduction band potentials of LaCr₀.₅Fe₀.₅O₃ and LaFeO₃ (x = 0.5 and 1) are not negative enough for CO₂ conversion, thus they are inactive for CO₂ photoreduction. LaCr₀.₂₅Fe₀.₇₅O₃ (x = 0.75) has a small bandgap (Eₕ = 2.0 eV) to absorb photon at wavelength 400nm-620nm and its bandedges are thermodynamically favorable for the redox reaction. Therefore, it has the best photoreactivity out of five samples. This agrees with other studies which also confirm that the photocatalyst reactivity under visible light were dictated by their small bandgaps and suitable band edges.

5.4 Conclusion

When replacing Cr ions at the B sites of LaCrO₃ perovskites by Fe ions, the bandgap does not follow a linear trend in regards to the metal ratio composition. Bandedges were successfully measured for the new synthesized materials. At x = 0.25, the conduction band potential remains similar with x = 0. However, at x = 0.75, the conduction band potential was more negative than either perovskites at x = 0 or x = 1.
Future simulation of the density of states could address this interesting observation. CO$_2$ reduction relativities of each perovskites were predicted accurately by their measured bandgaps and bandedges. Among the five studied perovskites, synthesized LaCr$_{0.25}$Fe$_{0.75}$O$_3$ ($x = 0.75$) was the most active for CO$_2$ photoreduction under visible illumination at room temperature thanks to its small bandgap (2.0 eV) and its suitable bandedges for CO$_2$ photoreduction.
Figure 40: CO$_2$ photoreduction products of LaCr$_{1-x}$Fe$_x$O$_3$ after 4 hours illuminated by visible-light-cut-off solar simulator (λ>400nm)
Figure 41: Overall summary of perovskites photocatalytic properties in regards to CO₂ H₂O redox reaction. The conduction bands were calculated using the equation $E_{CB} = E_{redox} + V_{fb}$.
CHAPTER 6: CONCLUSION AND FUTURE WORK

6.1 Conclusion

Two tunable materials, MOFs and perovskites were investigated for their photocatalytic CO₂ reduction. Both candidates were able to achieve the narrow bandgaps needed for visible light harvesting. Two compounds, Ti/Zr-MOF-525 and LaCr₀.₂₅Fe₀.₇₅O₃ were found to have suitable conduction band potential to drive the CO₂ reduction to CH₄.

Ti/Zr-MOF-525 was demonstrated to reduce CO₂ in H₂O to gaseous chemical fuels (CH₄ and CO) without the presence of any sacrificial agents and using only visible light. Results show the tunability of MOF by using suitable linkers and metals in secondary-building-units in order to obtain desired bandgap and band edges for effective photocatalytic reactions. Though the yield is limited, the reaction produces selectively toward CH₄ versus CO and no sacrificial reagents are required.

The bandgap of LaCr₁₋ₓFeₓO₃ was tuned from 3.2eV to 2.0eV when substituting Cr by Fe metal. The bandgap was narrowed down even at the smallest substitution (25%) level. Among the five studied perovskites, synthesized LaCr₀.₂₅Fe₀.₇₅O₃ (x = 0.75) was the most active for CO₂ photoreduction under visible illumination at room temperature because of its small bandgap (2.0 eV) and its suitable bandedges for CO₂ photoreduction.
This work validates that a small bandgap and suitable bandedges are the main criteria for photocatalytic reaction to occur under visible-light illumination. However, even after satisfying these criteria, the production yield and the quantum efficiencies remain modest (in range of 0.01% quantum efficiency). Therefore, other obstacles such as limiting the recombination process, increasing the photocatalytic stability, and improving the surface area remain for additional investigation.

6.2 Future Work

Several directions for future work are listed below. Besides a proposed detailed study of the catalytic reactivity of these photocatalysts to understand the mechanism of the photocatalytic reaction, this future work section also suggests a theoretical approach to study photocatalytic activity.

6.2.1 A Theoretical Study of Perovskites Bandgap and Bandedges

The findings of the five synthesized perovskites are interesting. A theoretical study using DFT or DFT-U would offer an explanation into the molecular level of the bandgap and bandedge behavior when substituting metals in site B. This could provide a tool for designing better photocatalysts for with targeted bandgap and band edges.

6.2.2 Increase Surface Area for Perovskites

Studied perovskites were synthesized at 950°C to generate high crystallinity but they had low surface area (<5m²/g). High crystallinity decreases charge recombination within the photocatalysts; however, low surface area reduces the reactant adsorption,
thus lowering the catalytic reactivity. Therefore, perovskites with higher surface area would likely increase the reactivity. To increase the surface area, several methods can be utilized. One is to synthesize at a lower temperature (\(600-750^\circ\text{C}\)). At lower synthesized temperature, perovskites can potentially increase surface area from \(\sim5\text{m}^2/\text{g}\) to \(50\text{m}^2/\text{g}\). Another method that has been reported is to high-energy ball milling the perovskite.
REFERENCES

68. Allen T. Particle size measurement: Springer; 2013.

96. Marsh D, Mink L. Microscale synthesis and electronic absorption spectroscopy of tetraphenylporphyrin H2 (TPP) and metalloporphyrins ZnII (TPP) and NiII (TPP). Journal of chemical education. 1996;73(12):1188.

APPENDIX A: CO₂ PHOTOREDUCTION PRODUCT ANALYSIS

CO₂ photoreduction gaseous products in this study are mainly CO, CH₄ and O₂. No other longer chain hydrocarbons such as C₂H₆ or C₂H₄ were detected. CH₃OH and C₂H₅OH were not detected either. H₂ were not detected. CO and CH₄ amount were calibrated externally for both thermal conductivity detector (TCD) and mass spectrometry (MS). The figures below are the calibration line for CO and CH₄ by TCD and MS. The 80 µl of samples with different concentrations (ppm) were used for each calibration data point, which is consistent with injection volume of samples during the experiment.

![CH₄ Calibration-80ul sample-GCMS SIM](image1)

![CO Calibration-80ul sample-GCMS SIM](image2)

Figure A.1: Calibration line for CH₄ and CO concentration using gas chromatography-mass spectroscopy (selected ion method-SIM)
Figure A.2: Calibration line for CH₄ and CO concentration using TCD detector.
APPENDIX B: SUPPORTING CALCULATIONS

A.1 Conversion of ppm to µmol

The CO$_2$ photoreactor volume was measured by pipetting water into the reactor through the outlet valve until it filled up. The total reactor volume is 9905 µl or 9.9 ml in which 6432 µl is the body of the reactor where the catalyst sits and 3473 µl is the external volume from connection tubes, pressure gauge and valves. The concentration ppm (part per million volume) of products (CH$_4$ and CO) was converted to number of µmol applying ideal gas law nRT = PV. Under the reaction temperature and pressure (T= 40°C, P = 20psi), CH$_4$ and CO satisfy the ideal gas behavior. Therefore, the conversion ppm to µmol uses the following equations

$$1 \text{ ppm (V)} = 10^{-6}$$

$$n = \frac{PV}{RT}$$

$$\mu\text{mol}_{\text{CH}_4}/\text{µmol}_{\text{CO}} = \left(\frac{20\text{psi} \times \frac{6894.76\text{Pa}}{\text{psi}}}{8.134\text{m}^3\text{Pa}^{-1}\text{K}^{-1}\text{mol}^{-1}} \times (40\text{oC} + 273.15\text{K}) \times \frac{10^{-6} \text{mol}}{1\text{mol}} \right) \times \frac{9905\text{µl} \times \frac{1\text{m}^3}{10^3\text{µl}}}{1\text{ml}}$$

$$= \left(5.3622E - 4 \frac{\mu\text{mol}}{\text{ppm}} \right) \times X \text{ ppm}$$
ABOUT THE AUTHOR

ThuHuong Ngo was born and raised in Hanoi, Vietnam. She earned her B.S in Chemical Engineering at the University of Tulsa and a M.S at the University of Oklahoma studying novel FTIR catalyst characterization techniques. Thereafter, she joined Dr. Babu Joseph and Dr. Venkat Bhethanabotla’s group at USF for a PhD degree. Her work at USF has focused on photoactive materials for CO$_2$ reduction with H$_2$O to make CH$_4$.