Applications of Molecular Modelling and Structure Based Drug Design in Drug Discovery

Sreya Mukherjee
University of South Florida, smukherjee@mail.usf.edu

Follow this and additional works at: http://scholarcommons.usf.edu/etd
Part of the Chemistry Commons

Scholar Commons Citation
Mukherjee, Sreya, "Applications of Molecular Modelling and Structure Based Drug Design in Drug Discovery" (2016). Graduate Theses and Dissertations.
http://scholarcommons.usf.edu/etd/6331

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.
Applications of Molecular Modelling and Structure Based
Drug Design in Drug Discovery

by

Sreya Mukherjee

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Chemistry
College of Arts and Sciences
University of South Florida

Major Professor: Wayne Guida, Ph.D.
Abdul Malik, Ph.D.
Kenyon Daniel, Ph.D.
Jianfeng Cai, Ph.D.
Wesley Brooks, Ph.D.

Date of Approval:
June 10, 2016

Keywords: STIM1, Cruzain, Proteasome, ApoE4, cocrystals.

Copyright © 2016, Sreya Mukherjee
DEDICATION

To my parents, husband and brother.
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my professor, Dr. Wayne Guida for giving me the opportunity to conduct research under his guidance and supervision. I am sure that this will help me achieve much more in the future.

I would also like to thank my committee members, Dr. Wesley Brooks, Dr. Abdul Malik, Dr. Mark McLaughlin and Dr. Kenyon Daniel for their valuable time, feedback, suggestions and help.

I thank Department of Chemistry, University of South Florida for giving me the opportunity for this education. My lab mates were always a constant support and their role demands a big thanks from me too.

I also thank my parents and family for their support. Without them, this would not be possible.

And last but not the least, a huge thanks to my husband, Biplob, without whose constant love and support this would not be complete and my daughter Atyaani, who helped me find myself which lead to finding my passion towards drug discovery.
TABLE OF CONTENTS

LIST OF FIGURES .. iv
LIST OF TABLES ... x
LIST OF SCHEMES ... xi
ABBREVIATIONS ... xii
ABSTRACT.. xiii

CHAPTER ONE: INTRODUCTION .. 1
 1.1. Introduction .. 1
 1.1.1 Structure Based Drug Design ... 1
 1.1.2. Protein and Peptide mimics ... 4
 1.2. References .. 9

CHAPTER TWO: STROMAL INTERACTION MOLECULES AS IMPORTANT THERAPEUTIC TARGETS IN DISEASES WITH DYSREGULATED CALCIUM FLUX .. 11
 2.1. Introduction ... 11
 2.2. Calcium flux ... 12
 2.2.1. Calcium dependent processes .. 12
 2.2.2. Calcium storage and release .. 12
 2.2.3. Entry of extracellular Ca\(^{2+}\) .. 16
 2.3. STIM/ORAI Interactions ... 18
 2.3.1. CRAC channel activation ... 18
 2.3.2. STIM1 and STIM2 ... 19
 2.4. STIM involvement in diseases with calcium dysregulation 22
 2.4.1. Alzheimer’s Disease .. 23
 2.4.2. Cancers ... 24
 2.4.2.1. Colorectal cancer. ... 24
 2.4.2.2. Hepatocellular carcinoma .. 25
 2.4.2.3. Cervical cancer .. 25
 2.4.2.4. Glioblastoma multiforme .. 26
 2.4.3. Immunology .. 26
 2.4.4. Other diseases and abnormal states .. 29
 2.5. Conclusions .. 30
 2.6. References .. 32
CHAPTER EIGHT: COMPARATIVE STUDY OF COCRYSTAL SCREENING METHODOLOGIES: SLURRY VS SOLUTION EVAPORATION VS MECHANOCHEMISTRY .. 151
 8.1. Introduction .. 151
 8.2. Experimental Section .. 154
 8.2.1. Materials .. 154
 8.2.2. Synthesis of Cocrytsals .. 154
 8.2.3. Preparation of cocrytsals via slurring 156
 8.2.4. Preparation of cocrytsals via liquid assisted grinding 158
 8.2.5. Preparation of cocrytsals via neat grinding 158
 8.2.6. Solution crystallization .. 158
 8.2.7. Characterization of Crystal Forms 165
 8.2.7.1. Differential scanning calorimetry (DSC) 165
 8.2.7.2. Thermogravimetric analysis (TGA) 166
 8.2.7.3. Infrared spectroscopy (FT-IR) 166
 8.2.7.4. Powder X-ray diffraction (PXRD) 166
 8.2.7.5. Single-Crystal X-ray Data Collection and Structure Determinations .. 166
 8.3. Results and Discussion .. 167
 8.3.1. Crystal Engineering .. 167
 8.3.2. Crystal forms of gallic, ferulic , caffeic , coumaric and ellagic acid 169
 8.3.3. Hydrochlorothiazide crystals 197
 8.3.3.1. CSD statistics .. 198
 8.3.4. Mechanochemistry ... 204
 8.3.5. Trends amongst Cocrytsal formers for grinding experiments 209
 8.3.6. Slurry experiments .. 210
 8.4. Conclusion ... 212
 8.5. References .. 212
APPENDIX A: JOURNAL PERMISSIONS ... 222
LIST OF FIGURES

Figure 1.1. β Hairpin structure ... 6
Figure 1.2. AApeptide a new class of peptidomimetics which was used as ligands against ApoE4 ... 8
Figure 2.1. Peptidyl Arginine Deiminase 4 .. 15
Figure 2.2. Deimination Reaction of PAD4. .. 16
Figure 2.3. STIM1 Activation Schematic ... 20
Figure 2.4. StoreOperatedCalciumEntry ... 22
Figure 3.1. Events that occur when STIM1 acts to initiate calcium flux 47
Figure 3.2. The structure built prior to insertion into membrane showing the N-terminal of STIM1 positioned in the ER luminal portion ... 52
Figure 3.3. The luminal part of the protein (in purple) with the transmembrane part embedded in the POPC membrane .. 53
Figure 3.4. Different domains of STIM1 N-terminal luminal portion present inside the Endoplasmic reticulum .. 55
Figure 3.5. Superimposition of the crystal structure (depicted in blue ribbons) with the simulated model in the presence of calcium (depicted with orange ribbons) shows almost exact similarities in the structure after dynamics 56
Figure 3.6. STIM1 with calcium ion bound to the negatively charged residues. For clarity purposes, Asp 77 and Glu 87 have been shown here ... 57
Figure 3.7. Graph showing trajectory frames (X-axis vs Distance in Å (Y-axis)) 58
Figure 3.8. Calcium ion held together by a few negatively charged residues which rest in between alpha helices and beta turn in EF hand 1 depicted in orange. 61
Figure 3.9. Cascade of events occurring during oligomerization 63
Figure 4.1. Luminal portion of STIM1, EF hand is colored in magenta and SAM domain in cyan .. 74

Figure 4.2. ER luminal portion of STIM1 embedded in a POPC membrane 76

Figure 4.3. ER lumenal portion of STIM1 embedded in a POPC membrane viewed at an angle to show the lumenal surface of the membrane .. 77

Figure 4.4. RMSD (Å) shown for (a) non-mutated protein containing E152 and (b) mutated protein containing K152 ... 79

Figure 4.5. Partial charges are shown in the surface depictions where red denotes negative charges, blue denotes positive charges and white is neutral) 80

Figure 4.6. Hydrophobic residues which help in unfolding of STIM1 seen in (a) non-mutated version and (b) mutated version of the protein. 81

Figure 4.7. (a) E152 colored in pink in the wild type human STIM1 shows consistent hydrogen bonding with neighboring R155 in the helix and extends to interactions between R155 and D153. (b) K152 colored in blue in the mutant human STIM1 extends independently outward from the protein and E151 interacts with R155 thereby providing a flexible cationic site in the SAM domain. ... 82

Figure 4.8. Rg computed for the whole trajectory shows that the non-mutant protein (a) has a lower Rg than the mutated protein (b) .. 83

Figure 4.9. H-bonds which were calculated every 100 frames show that the non-mutated protein (a) has fewer H-bonds than the mutated protein (b) 84

Figure 4.10. Propka run on MD trajectory showcases deprotonation of Glu152 and protonation pka of Lys 152 at around 6.5 and 8.5 respectively 85

Figure 5.1. β4 (green), β5 (magenta) and β6 (blue) subunits of 20S proteasome 93

Figure 5.2. Compounds that show proteasome inhibition .. 97

Figure 5.3. The purified protein dose response curve for NSC 34708 showing copper alone (blue), compound alone (black), and compound with copper (red) depicts a dramatic improvement of percent inhibition by the compound in the presence of sub-micromolar copper .. 98

Figure 5.4. GLIDE SP-docking pose of NSC 37408 (shown as green tubes) bound to copper (shown in cyan) in the active of site ... 100
Figure 5.5. NSC 37408 (shown in green) bound to copper (shown in cyan) fits into a well-defined pocket between the residues THR21, THR1 and GLY47 in the β5 subunit of the catalytic site of the proteasome. 100

Figure 6.1. Lifecycle of Trypanosoma cruzi ... 105

Figure 6.2. Chemical structures of drugs for Chagas disease. 106

Figure 6.3. Crystal structure of cruzain showcasing some of the important residues required for the enzymatic activity. ... 109

Figure 6.4. Surface view of cruzain, depicting the active site of cruzain containing Cys 25 (blue), Asn 182 and His 152 (in green) ... 110

Figure 6.5. Peptoid structure to be used as the inhibitor for cruzain 115

Figure 6.6. Hydroxymethyl ketones: Reversible inhibitors for Cruzain 115

Figure 6.7. Compounds to be used as warheads onto the peptoid scaffold 116

Figure 6.8. a) Initial conformations before any macromodel search was conducted. b) Stable conformations taken by the beta hairpin structure following constraints show that peptoid retains this conformation only after the constraints are placed. ... 119

Figure 6.9. Cyclic peptide-peptoid hybrid scaffold containing the hydroxymethyl ketone warhead ... 120

Figure 6.10. RMSD plot displaying results of Molecular Dynamics equilibrated over 25ns .. 121

Figure 6.11. The crystal structure of the protein depicted with blue ribbon with the ligand depicted in grey ... 122

Figure 6.12. (a) [2-(4-fluorophenyl)-propylamine] containing peptoid containing the warhead. (b) The surface view of peptoid positioned after molecular dynamics; bound to the important residue, Cys 25 depicted in cyan .. 123

Figure 6.13. The interactions of the peptoid with the neighboring residues in the binding site .. 124

Figure 6.14. The comparative alignment of the peptoid (left) as compared to the ligand (right) show that the effective binding of the peptoid onto the protein 124

Figure 6.15. RMSD plot displaying results of Molecular Dynamics equilibrated over 25ns .. 125
Figure 6.16. (a) [2-(4-fluorophenyl)-propylamine] containing peptoid containing the warhead. (b) The surface view of peptoid positioned after molecular dynamics; bound to the important residue, Cys 25 depicted in cyan.............. 126

Figure 6.17. The interactions of the peptoid with the neighboring residues in the binding site.. 126

Figure 6.18. The comparative alignment of the peptoid (left) as compared to the ligand (right) show that the effective binding of the peptoid onto the protein. .. 127

Figure 6.19. RMSD plot of the peptoid shows that the structure attained equilibration with the 15 ns of its run.. 127

Figure 6.20. (a) 4-Methoxyphenethylamine containing peptoid containing the warhead. (b) The surface view of peptoid positioned after molecular dynamics; bound to the important residue, Cys 25 depicted in cyan......................... 128

Figure 6.21. The interactions of the peptoid with the neighboring residues in the binding site.. 129

Figure 6.22. RMSD plot displaying results of Molecular Dynamics equilibrated over .. 129

Figure 6.23. The comparative alignment of the peptoid (left) as compared to the ligand (right) show that the effective binding of the peptoid onto the protein .. 130

Figure 7.1. The structures of apoE3 and apoE4 differ in the significance of the structure domain interaction .. 136

Figure 7.2. An Aα-peptide.. 140

Figure 7.3. The library designed after the first docking using the top ligands. 140

Figure 7.4. The portions of ligands based on functional groups they contained that were used as R groups in designing the peptide library based on the docking of NCI diversity set.. 143

Figure 7.5. Ligand 1 shown to dock onto ApoE4 .. 144

Figure 7.6. The phosphate group interacts via H-bonds and pi interactions with the Arg 112 and 61.. 145

Figure 7.7. Ligand 2 shown to dock onto ApoE4 .. 146
Figure 7.8. The phosphate group interacts via H-bonds and pi interactions with the Arg 112 and 61. The peptide vertically aligns with the helices

Figure 7.9. Ligand 3 shown to dock onto ApoE4

Figure 7.10. The phosphate group interacts via H-bonds and pi interactions with the Arg 112 and 61

Figure 8.1. Illustration of intermolecular hydrogen bonding in CFAINM•2H2O

Figure 8.2. Illustration of the supramolecular sheet generated by intermolecular interactions between adjacent hydrogen bonded tapes in CFAINZ

Figure 8.3. (a) Crystal packing in GALINZ reveals form H-bonded tapes that are sustained by COOH…Narom supramolecular heterosynthons (b) Illustration of bilayers of GALINZ sheets

Figure 8.4. (a) Phenolic homodimers of GAL molecules acts as a donor and an acceptor to DMP molecules (b) trimeric motif involving two GAL molecules and a DMP molecule (c) Crystal packing in GALDMP reveals a 2D network of GAL and DMP molecules

Figure 8.5. Crystal packing in GALADN reveals form H-bonded interactions between the carboxylic acid moiety of GAL molecules and the aminopyridine moiety of ADN molecules

Figure 8.6. (a) Crystal packing in GALGAH reveals undulating tapes sustained by dimers of GAL molecules linked by GAH molecules to form sheets (b) Illustration of sheets interconnected by homodimers of GAH molecules

Figure 8.7. (a) Crystal packing in GALGAH reveals undulating tapes sustained by dimers of GAL molecules linked by GAH molecules to form sheets (b) Illustration of sheets interconnected by homodimers of GAH molecules

Figure 8.8. Crystal packing of FERADN is that of a 3D interpenetrated network

Figure 8.9. (a) Crystal packing in FERINZ sustained by COOH…Narom supramolecular heterosynthons (b) Herring bone pattern of FERINZ

Figure 8.10. Crystal packing in FERURE reveals amide-amide supramolecular homosynthons between URE molecules to generate tapes that are interconnected by FER molecules
Figure 8.11. Crystal packing in FERGAH reveals molecular tapes of amide-amide supramolecular homosynths between GAH molecules interconnected by FER molecules ... 181

Figure 8.12. Crystal packing of FERTBR. H2O reveals that FERTBR heterodimers are connected by water molecules .. 182

Figure 8.13. (a) The COUNAM dimers which form a zig-zag chain (b) The overall structure of COUNAM ... 183

Figure 8.14. The overall crystal structure of COUURE ... 184

Figure 8.15. Overall corrugated sheet of COUINZ ... 184

Figure 8.16. Supramolecular sheet of COUINM-I ... 185

Figure 8.17. The overall hydrogen bonding resulting in the formation of zig-zag tapes in COUTBR ... 186

Figure 8.18. Supramolecular heterocatemers of ELACAP ... 186

Figure 8.19. Trimeric interaction linking the zigzag chains together to yield the overall crystal packing for ELANAM ... 187

Figure 8.20. Interactions between ELA and DMP ... 188

Figure 8.21. Intermolecular interactions between ELA and THP ... 188

Figure 8.22. (a) Intermolecular hydrogen bonds in HCTNAM (b) Overall H-bonding in HCTNAM ... 202

Figure 8.23. (a) Intramolecular hydrogen bonding in the tape formed in HCTNAC. (b) Lateral interactions of HCT molecules on HCTNAC (c) Overall hydrogen bonding as seen in HCTNAC which shows the formation of corrugated tapes ... 203

Figure 8.24. (a) Hydrogen bonding between HCT and DMG in HCTDMG. (b) Overall H-bonding in HCTDMG. HCT molecules are colored in green, while two independent DMG molecules are colored in magenta and red 205
LIST OF TABLES

Table 2.1. Some Diseases with Possible STIM Involvement. ..31
Table 8.1. Melting point of crystal forms used herein. ...164
Table 8.2. CSD statistics of supramolecular synthons in the literature.168
Table 8.3. Crystallographic data and structure refinement parameters for the cocrystals ...189
Table 8.4. Crystallographic data and structure refinement parameters for the cocrystals ...193
Table 8.5. Crystallographic data and structure refinement parameters for the cocrystals ...194
Table 8.6. Crystallographic data and structure refinement parameters for the cocrystals ...196
Table 8.7. Possible supramolecular heterosynthons for HCT with other functionalities ...199
Table 8.8. CSD statistics of supramolecular synthons in HCT with different functionalities ...200
Table 8.9. Crystallographic data and structure refinement parameters for the cocrystals ...200
Table 8.10. Table showing the comparison of the screening techniques206
LIST OF SCHEMES

Scheme 8.1. Chemical structures of compounds used herein...157

Scheme 8.2. The principle synthons observed by the phenolic compounds169

Scheme 8.3. Moieties used during CSD searches for HCT..198
ABBREVIATIONS

STIM1- Stromal Interaction Molecule 1
PAD - Peptidyl Arginine Deiminase
SOCE- store-operated calcium entry
ER- Endoplasmic Reticulum
SAM- Sterile-Alpha Motif
CTL- Chymotrypsin-Like
VS- Virtual Screening
MD- Molecular Dynamics
Calcium ions have important roles in cellular processes including intracellular signaling, protein folding, enzyme activation and initiation of programmed cell death. Cells maintain low levels of calcium in their cytosol in order to regulate these processes. When activation of calcium-dependent processes is needed, cells can release calcium stored in the endoplasmic reticulum (ER) into the cytosol to initiate the processes. This can also initiate formation of plasma membrane channels that allow entry of additional calcium from the extracellular milieu. The change in calcium levels is referred to as calcium flux. A key protein involved in initiation of calcium flux is Stromal Interaction Molecule 1 (STIM1), which has recently been identified as a sensor of ER calcium levels. STIM1 is an ER transmembrane protein that is activated by a drop in ER calcium levels. Upon activation, STIM1 oligomerizes with a plasma membrane protein, ORA1, to form calcium-selective plasma membrane channels. Dysregulation of calcium flux has been reported in cancers, autoimmune diseases and other diseases. STIM1 is a promising target in drug discovery due to its key role early in calcium flux. Here we review the involvement and importance of STIM1 in diseases and we discuss STIM1 as a viable target for drug discovery using computational chemistry methods to rapidly identify new molecules to target STIM1. Herein, computational techniques were used to understand the mechanistic role of STIM1 and virtual screening is in process to discover potential inhibitors of STIM1 activity. Also mutational analysis on STIM1 was performed computationally to see the effect it had on the protein computationally.
It has been found that tumor cells and tissues, compared to normal cells, have higher levels of copper and possibly other metal ions. This presents a potential vulnerability of tumor cells that can serve as a physiological difference between cancer cells and normal cells and allows design of compounds that selectively target tumor cells while sparing normal cells. Recently we have identified compounds that have potential to inhibit the proteasome in tumor cells and induce cell death by mobilizing endogenous tumor copper resulting in \textit{in cellulo} activation of the compound. These compounds hence act as pro-drugs, becoming active drugs in tumor cells with high copper content but remaining essentially inactive in normal cells, thereby greatly reducing adverse effects in patients. Such use would be of significant benefit in early detection and treatment of cancers, in particular, aggressive cancers such as pancreatic cancer which is usually not detected until it has reached an advanced stage. Six compounds were identified following virtual screening of the NCI Diversity Set with our proteasome computer model followed by confirmation with a biochemical assay that showed significant inhibition of the proteasome by the compounds in the presence of copper ions. In a dose response assay, NSC 37408 (6, 7-dihydroxy-1-benzofuran-3-one), our best compound, exhibited an IC$_{50}$ of 3µM in the presence of 100 nM copper.

Chagas’ Disease, a parasitic disease caused by the parasite \textit{Trypanosma Cruzi}, is endemic to Latin America. The disease manifests itself in a short acute phase and a long chronic phase. Current treatments are effective only in the acute phase and are not used in the chronic phase due to toxicity of the drugs. Hence a new drug discovery approach was chosen for this disease. Cruzain is the major etiologic enzyme involved in the disease and is only present in the parasite. It is also an enzyme expressed by the parasite in both phases. Herein, a novel peptoid library containing hydromethylketones was constructed and screened against a virtual structure of cruzain. The peptoids thus found through this drug discovery effort can be used as potential drug candidates.
against cruzain. Computational techniques will help achieve a high degree of specificity and aid in proposing assays for determining compounds with high activity.

Alzheimer disease is the most common form of dementia. Its pathogenesis incorporates many potential targets for treatment. Among the targets identified, Apolipoprotein E4 (apoE4) is especially interesting due to its catalytic role in the degradation and clearance of amyloid beta (Aβ), a risk factor for Alzheimer disease. ApoE exists in 3 isoforms which directly impact its functionality in the body. There are characteristic structural differences between them. In ApoE4, ionic interactions exist between Arg-61 and Glu-255 residues, unlike the other isoforms. Hence interruption of this interaction by inhibitors may change the structure of apoE4 to a more linear structure as observed in the other isoforms. Virtual screening of the NCI diversity set on an energy minimized protein virtual structure was performed to identify potential small molecule inhibitors and to gain further understanding of interactions that can be targeted to inhibit this protein. From the top ligands in the NCI diversity set, a peptide library was designed to target the protein.

Previous research has indicated that liquid assisted grinding (LAG) is efficient and reliable for cocrystal formation when compared to solvent crystallization and dimethyl formamide is the best solvent for grinding. Herein, we report the comparison of four screening processes: Slurry, solvent crystallization, LAG and dry grinding. Thirty-eight crystal forms containing the N_{arom}···COOH, N_{arom}···OH supramolecular heterosynthons were screened in the process, and it was observed that slurry methodology is as efficient and reliable in forming cocrystals as solution crystallization. Twenty-four new crystal forms were also isolated herein. LAG was found to be more efficient as compared to dry grinding and was successful in the formation of twenty-five crystal forms of the thirty-eight screened. Dimethyl formamide still remains the best solvent for LAG. All our slurry experiments were performed in water and it was found that water can be used reliably for this
method for compounds within a wide range of solubility, thereby increasing the versatility and usability of this method for future screening procedures.
CHAPTER ONE: INTRODUCTION.

1.1. Introduction.

1.1.1. Structure Based Drug Design.

Structure-based drug design is an important part of industrial drug discovery and is also the major subject of research for many academic laboratories. This ability to rationally design drugs using protein structures was unfathomable in the 1980’s. ¹ And now with the advent of technology and programming, with the completion of the human genome project and advent of newer fields such as bioinformatics helped fuel structure-based drug design to aid in the discovery of new drug leads. Advances in high-throughput crystallography, and structure determination using nuclear magnetic resonance (NMR) has also seen a number of advances in the past years leading to the progress in this field. ², ³

Structure-based drug design is powerful when part of an entire drug discovery process. The combination of combinatorial chemistry and structure-based design can lead to the synthesis of enriched libraries which can be used as leads for a particular disease. ⁴ This process is iterative and proceeds through multiple cycles before an optimized lead goes into phase I clinical trials.

One of the foremost steps in this process is the choice of a drug target which is governed by the disease in question. Drug targets are usually proteins with defined binding pockets and sometimes not. These proteins could be membrane associated. They could also be receptors such as G-protein
coupled receptors or others. Small molecules can modulate the function of ion channels, proteases, and kinases etc as drug targets. Small molecules are also designed to act as competitive or non-competitive inhibitors to modulate protein activity. The goal is finally to modulate the function of the human protein. For parasitic targets, enzymes are often excellent drug targets because compounds can be designed to fit within the protein active site pocket. If the protein is unique to the microbe or parasite then that offers a great hope of achieving not only specificity but likelihood to not interfering with the human proteins. Cruzain, a cysteine protease found in the body of *Trypanosoma cruzi*, which is the causal agent of a neglected disease called Chagas disease is such a unique enzyme. Drug discovery on this protein has been described in a subsequent chapter herein.

Once a target has been identified, it is necessary to experimentally obtain crystal structures or search the PDB databank, which are the most common source of structural information for drug design. In case of the absence of experimentally determined structure is available, a homology model can be used for drug design.

Using the structural information obtained through the above techniques, the structure is then prepared for drug design programs such as Protein Prep Wizard in Schrodinger by first adding hydrogen atoms, usually absent in crystal structures determined with data at a resolution lower than 1.0 Å.

Next process in this cycle continues with the identification of a potential ligand binding site on the target molecule. Ideally, the target site is a pocket with potential hydrogen bond donors and acceptors, hydrophobic characteristics, and sizes of molecular surfaces. The ligand binding site can be the active site, as in an enzyme, an assembly site with another macromolecule, or an important site necessary in the mechanism of the molecule.
This is followed by use of computer-aided methods such as visual inspection, virtual screening, and drug design to create and screen a library of compounds. In virtual screening, databases of available small molecules are docked into the region of interest and scored based on predicted interactions with the site. Finally, for drug design, small fragments of molecules, which could be functional groups or bioisoteres are positioned in the site, scored, and linked in silico based on the screenings. The final compounds, found are then to be synthesized in the laboratory. For docking, many programs that allow protein flexibility and many do not. Docking also does not take solvent effects in question nevertheless solvent plays an important role in ligand binding. A few things that are done to model the effect of water include making the assumption that the molecules are in a vacuum, i.e., no solvent modeling; using a fixed dielectric constant in estimating electrostatic contributions; and using actual explicit solvation models to see how the protein interacts in a water box. In general, increased accuracy comes with increased computational cost. Sometimes, in the process of drug discovery, it becomes imperative to understand the mechanism of action of the protein before understanding which area would be a good place for targeting. Herein, chapters 1-3 focus on a calcium sensor protein, STIM1 which undergoes oligomerization upon unfolding. Molecular dynamics has been used to study how the process of unfolding begins. Structural changes observed in the beginning of unfolding helps understand which residues play an important role in the process.

Once a small molecule has been identified as potentially binding to the target molecule, it must be evaluated before proceeding with it. Screening scores are usually not indicative of a true binding constant, but can give a very good idea of how well the ligand binds. Both the solvent effect and the effects of target and ligand flexibility are usually imprecisely described and can be accounted for by molecular dynamics which can help understand how the ligand protein complex stabilizes.
in an aqueous condition as in the human body. The Lipinski’s rule of five also helps determine and reject lead, which states that good leads generally have less than five hydrogen bond donors and less than ten hydrogen bond acceptors, a molecular weight less than 500, and a calculated log of the partition coefficient (clogP) less than 5. Another approach in modifying ligands includes rigidifying the lead which imparts a lower binding constant by decreasing the conformational entropy.

The following step after ligand determination, is biochemical evaluation, which helps evaluate which ligands actually have good binding affinities towards the protein. Determination of lead molecules via biochemical assays were performed herein on the proteasome, a cancer target and a few lead compounds with greater than 80% inhibition were found. This has been discussed in details in chapter 5 with the proteasome.

Promising leads reenter the structural determination process to find the exact binding mode and physico-chemical properties and to evaluate any further optimization before processing to clinical trials. Different kinds of compounds such as small molecules under 500 D molecular mass or peptidic compounds or peptoidic compounds, or natural compounds can act as inhibitors of a protein.

1.1.2. Protein and Peptide mimics.

Proteins are the most abundant biological molecules in the body. Most of the biological functions in the cells and effects on the biological pathways and genetic expressions are controlled by proteins. Proteins are built from a set of 20 different amino acids with different side chains. Every amino acid is a α-amino acid which has carboxylic acid, amino group, and its side chain. The presence of carboxylic acid and amino group makes amino acids act as zwitterions. A peptide bond
is formed by removal of water from carboxylic acid of one amino acid and amino group of another amino acid and helps in formation of a dipeptide. When many amino acids bond together, they start forming polypeptides which then result in protein formation. Hence, the primary structure of a protein is the linkage of individual amino acids via peptide bonds. The secondary structure of protein forms when the primary structure starts folding in three different patterns: the \(\alpha \)-helix, the \(\beta \)-pleated sheet, and the \(\beta \)-turn. The tertiary structure of proteins is the three-dimensional formation of these secondary structures to form stable and ordered forms which fold into domains and create binding pockets. The quaternary structure of proteins refers to the arrangement of these subunits in three-dimensional complexes. \(^7,^8\)

The protein-protein interactions (PPIs) plays a key role in aspects of biological processes. Hence, abilities of controlling or inhibiting PPIs can give us advantages like better understanding of biological systems, development of new diagnostic approaches for health or disease, and establishment of novel molecular therapeutics which can efficiently interrupt these interactions. In various proteins, \(\alpha \)-helices which are present in 30 % of all proteins mediate protein-protein interactions. Hence, mimicking \(\alpha \)-helical templates is viable target for drug design. And over the years different types of alpha helix mimetics such as short oligomers, non peptidic molecules and scaffolds have been developed to interact with alpha helices in the body. Nevertheless, peptides are not therapeutically appropriate forms because of their poor transport properties and easy proteolytic cleavage. \(^5,^6,^7\)

\(\beta \)-hairpins like alpha helices are another important secondary structure element and also occur in native polypeptides and proteins like oxytocin and vasopressin and. Based on this, the first \(\beta \)-hairpin model system was built in 1993 as shown in Figure 1. \(^12\)
Figure 1.1. β Hairpin structure.

This resulted in the development of recent well-defined β-β-secondary structures. To prevent proteolytic degradation, peptoids or peptidomimetics, new class of compounds which contain modified side chain positioning from the alpha carbon to the amide nitrogen or repetition of N-substituted glycine units were made in the 1980’s. Nevertheless, due to poor pharmacokinetic properties, developing peptidomimetics close to poly peptide structure with the chemical diversity, spacing of side chains, a polar backbone, and the resistance to proteolysis is one of crucial tasks in drug discovery. This slight change of structures leads to the loss of a hydrogen bond donor (the NH group) and chiral center at the α-carbon and the gain of flexibility. Also, it prevents peptoids from proteolysis. Peptoid mimetics play an important role in drug discovery because of the fast synthesis and structural similarity to polypeptides. Many researchers already have worked on the design and application of peptoid mimics of bioactive molecules and will continue to pursue the same goal.

In late 1990s, the Gellman group introduced the field of foldamers which are unnatural oligomers which can fold in a certain fashion and copy the behaviors like biopolymers. Hybrid peptoid-peptide ligands are examples of peptoids which were first reported in 1994. The research of
peptoid-peptide hybrid structures has been thrived in development of peptidomimetics and will provide more ligands with interesting bioactivities in the future. 13

In pursuing the development of new peptidomimetics and related enabling synthetic technologies, another new class of peptide mimics termed “γ-AApeptides” containing N-acylated Naminoethyl amino acid units derived from γ- PNAs is shown in Figure 2. In each unit (building block), the chiral side chain is from a α-amino acid, and the other side chain can be got through acylation of the backbone nitrogen with various carboxylic acids or acyl chlorides. That is to say, γ-AApeptides essentially project an identical number of functional groups as α-peptides of the same length. γ-AApeptides are highly resistant to proteolytic degradation making them promising candidates for modulation and perturbation of biological processes. For instance, some γ-AApeptides can permeate mammalian cell membranes, modulate p53/ MDM2 protein-protein interactions, and can also selectively disrupt bacterial membranes by mimicking the behavior of natural host-defense peptides. Herein structure based drug design was used on a protein ApoE4 , an Alzheimer’s target to create and screen a library of these peptides to find a suitable ligand to inhibit PPI’s the protein forms.
Figure 1.2. AApeptide a new class of peptidomimetics which was used as ligands against ApoE4.

Cocrystals, a class of compounds for which the principles of crystal engineering are utilized, have gained a lot of recent attention owing to their amenability to design and their ability to tailor physiochemical properties. The arrangement of the atoms in the crystal structure, determine properties of compounds hence designing “crystals with a purpose” and thereby modifying its properties has resulted in the development of this class of compounds. The first cocrystal synthesized was quinhydrone which is a 1:1 cocrystal between benzoquinone and hydroquinone which was made by Wohler in 1844. The radical in developing a cocrystals lies in 1) Choosing the target molecule 2) Finding the complementary functional groups which is capable of forming a hydrogen bond. 3) Methods of Preparation which includes different techniques such as slow evaporation, grinding, slurrying. This is known as the supramolecular synths approach which in conjunction with analysis of the current structural data from the Cambridge Structural Database helps in the discovery of cocrystals. Knowing the exact conditions of crystal formation is nearly impossible yet some methods of cocrystal formation may inevitably always form the crystal form.
Herein, chapter 8 discusses the significance of such a technique, slurrying in water which has been seen to form cocrystals crystallized in various conditions.

1.2. References.

CHAPTER TWO: STROMAL INTERACTION MOLECULES AS IMPORTANT THERAPEUTIC TARGETS IN DISEASES WITH DYSREGULATED CALCIUM FLUX.

From “Stromal interaction molecules as important therapeutic targets in diseases with dysregulated calcium flux,” Sreya Mukherjee, Wesley Brooks 2014, BBA, 1843, 10, 2307-2314. Copyright 2014 by Sreya Mukherjee. (Elsevier Journal)

2.1. Introduction.

Calcium (Ca$^{2+}$) and magnesium (Mg$^{2+}$) ions are useful ubiquitous ions in biology. They both have an oxidation state of +2 which gives them greater strength in interacting with anionic complexes compared to sodium, potassium or other monocations. Therefore, Ca$^{2+}$ and Mg$^{2+}$ fill important roles in processes that require control of larger molecules such as protein folding (Ca$^{2+}$) and coordinating ATP (Mg$^{2+}$). Ca$^{2+}$ and Mg$^{2+}$ have evolved into different functions in cells, sometimes countering each other. Mg$^{2+}$ is the eleventh most abundant element in the body and interacts with phosphates in DNA, RNA, ATP and other phosphate-containing molecules, enhancing the mobility and flexibility of the molecules by countering their anionic charges. Therefore, Mg$^{2+}$ is routinely more ubiquitous in the cell. Ca$^{2+}$, on the other hand, is the fifth most abundant element in the body but 99% of it is sequestered in bone. Among the roles for Ca$^{2+}$, a major role is acting as a secondary signal to convert signals from the extracellular environment into specific intracellular responses. Also, Ca$^{2+}$ is involved in the rapid depolarization of cells in neurons and muscle cells. These actions need to be tightly controlled. Therefore, Ca$^{2+}$ is kept at low levels in the cell’s cytosol until needed. However, in order to rapidly respond when Ca$^{2+}$ is needed, Ca$^{2+}$ is stored in the
endoplasmic reticulum (ER) and mitochondria for quick release that initiates Ca^{2+} dependent actions.

2.2. Calcium flux.

2.2.1. Calcium dependent processes.
Calcium ions play vital roles in a variety of important physiological functions of the cell, including control of cell cycle progression, cell differentiation, mitosis, apoptosis, ETosis, cell mobility, macrophage activation, chromatin packaging & modifications, protein folding and control of potassium & calcium channels. Often Ca^{2+} is serving as a secondary messenger, conveying an external signal received through ligand/receptor binding, into specific responses within the cell. Several of these roles of Ca^{2+} can be exemplified by human peptidyl arginine deiminase 4 (PAD4), a calcium-dependent enzyme. PAD4 is inactive until it binds Ca^{2+} (enzyme activation). The structures of inactive PAD4 and active PAD4 have been published (shown in Figure 1). Comparison of inactive PAD4 and active PAD4 shows stabilization of residues including around the active site (protein folding) (Figure 1). When active, PAD4 can convert arginine residues to citrulline, such as in histones (Figure 2). This reduces the histone-DNA interactions and alters chromatin for gene activation or permanently alters chromatin as part of calcium-dependent programmed cell death (apoptosis and ETosis).

2.2.2. Calcium storage and release.
PAD4 involvement in apoptosis demonstrates a critical need for control of intracellular Ca^{2+} in order to prevent inappropriate activation of calcium-dependent processes. To prevent such aberrant events, the available Ca^{2+} is kept at approximately 100 nM in the cytosol, whereas in the
extracellular environment, Ca\(^{2+}\) is typically at 1 mM or greater. Regulation of intracellular Ca\(^{2+}\) involves: 1) Ca\(^{2+}\) release from intracellular organelles, such as the ER and mitochondria, 2) Ca\(^{2+}\) entry from the extracellular environment, and 3) reestablishment of stored Ca\(^{2+}\) levels and lower cytosolic Ca\(^{2+}\). These processes are referred to as calcium flux. One process that can connect stored Ca\(^{2+}\) release and extracellular Ca\(^{2+}\) entry is called store-operated calcium entry (SOCE). In SOCE an initial event, such as a ligand binding to a receptor, triggers release of stored Ca\(^{2+}\) from the ER. One example is when a G protein-coupled receptor (GPCR) binds its ligand which activates phospholipase C (PLC) to convert phosphatidylinositol 4,5-bisphosphate (PIP\(_2\)) to inositol 1,4,5-trisphosphate (IP\(_3\)). IP\(_3\) then traverses through the cytosol to the ER membrane surface where it activates the IP\(_3\) receptor (IP\(_3\)R). The IP\(_3\)R receptor is a family of ER transmembrane proteins (IP\(_3\)R types I, II and III) that, upon activation, can open as a channel to release Ca\(^{2+}\) into the cytosol. Another family of ER transmembrane proteins, the ryanodine receptor (RyR-1, RyR-2), are also Ca\(^{2+}\) channels for release of ER stored Ca\(^{2+}\). Both IP\(_3\)R and RyR are strongly biased towards Ca\(^{2+}\) release as opposed to monocations. IP\(_3\)R is the dominant responder when ER Ca\(^{2+}\) release is needed. The PLC activation that results in IP\(_3\) which activates IP\(_3\)R can begin from a number of different plasma membrane receptors but GPCRs, with their great variety of sequences and ligands, are very frequently the initiators. RyRs, on the other hand, respond to Ca\(^{2+}\), such as inflow of extracellular Ca\(^{2+}\), which activates RyR opening to release ER stored Ca\(^{2+}\). The actual activation of the IP\(_3\)R and RyR channels is dependent on spatial and temporal differences in the Ca\(^{2+}\) flow and concentrations. For example, within the ER lumen, Ca\(^{2+}\) aids in the folding of nascent proteins that are destined for extracellular exposure and, therefore, there is a focus of Ca\(^{2+}\) in the ER lumen at those sites where signal recognition particle (SRP) receptors are docked with actively translating ribosomes. The spatial and temporal differences in Ca\(^{2+}\) are often referred to as waves or
oscillations and the intensity and persistence of the wave can impact the strength and duration of
the activity of ER Ca2+ channels which then impacts the cytosolic and nuclear Ca2+-dependent
activities. Cytosolic Ca2+ can affect the ER Ca2+ release channels but, as research continues, we
are learning that some proteins can also influence the channels, giving further complexity to the
secondary messenger activity of Ca2+. 10 Another purported ER Ca2+ release channel is presenilin
(PS). This is a family (PS-1, PS-2) of multi-pass ER transmembrane proteins that is purported to
coordinate the expression, induction and activity of IP\textsubscript{3}R and RyR channels in order to control Ca2+
homeostasis. 11. PS may also work to control the IP\textsubscript{3} available that could trigger IP\textsubscript{3}R activation.
In addition, PS has been proposed as a means of controlling the activity of the smooth ER calcium
ATPase (SERCA) channel that pumps Ca2+ into the ER in an energy-dependent process that
restores the ER Ca2+ levels in preparation for the next round of Ca2+ release. And so PS may control
and coordinate the activities of IP\textsubscript{3}R, RyR and SERCA to maintain Ca2+ homeostasis in the ER.
PS is referred to as a slow leak Ca2+ channel since it can allow some Ca2+ movement as it
continually fine-tunes Ca2+ in the ER.
Figure 2.1. Peptidyl Arginine Deiminase 4. A) Structure of PAD4 without calcium ions (based on X-ray data in 1WD8.pdb (1)). B) Structure of PAD4 with calcium ions, shown as 5 pink spheres (based on X-ray data in 1WD9.pdb (1)). Comparing the close-up views (at right) of A & B, note how calcium ions associate with stabilization of: (*1) residues near the active site; (*2) a short stretch of alpha helix; (*3), and a loop of residues. When calcium ions are not present (A), the residues at these sites are too randomly distributed to determine specific 3D coordinates and, therefore, they do not appear in the final pdb file.
2.2.3 Entry of extracellular Ca^{2+}

Cells have several types of channels that are Ca^{2+} permeable and, in some cases, Ca^{2+} selective. Among these channels are: voltage gated channels, transient receptor potential (TRP) channels, and the ORAI channels. The voltage-gated Ca^{2+} channels are a diverse group of multi-subunit transmembrane proteins that react to cell membrane depolarization and facilitate calcium influx \(^{12}\).
These are primarily found in excitable cells such as neurons. Much of the difference in activity of these channels relates to the combinations of subunits incorporated into a particular voltage-gated Ca\(^{2+}\) channel. For example, the transmembrane \(\alpha_1\) subunit has at least 10 different analogs. These subunits can dictate the selectivity and rate of Ca\(^{2+}\) entry. The cytosolic \(\beta\) subunits can affect the duration of channel opening. Both the \(\alpha_1\) and \(\beta\) subunits can be regulated by phosphorylation.

The TRP channels are members of the super family of transient receptor potential channels (subfamilies: TRPC, TRPV, TRPM, TRPA, TRPP, TRPML) that are, in general, Ca\(^{2+}\) permeable but they can also facilitate movement of Na\(^{+}\). Similar TRPs are found across many species and mammals have TRPs from each of the subfamilies except TRPN. These channels can react to a broad range of stimuli including, in the case of the TRPV subfamily, thermal changes. The stimuli can act directly by ligand activation from binding of small molecules (ex. capsacin) or indirectly by PLC that has been activated by receptor tyrosine kinases. As an example of the TRP subfamilies, in the TRPV channels, TRPV5 (found primarily in kidney cells) and TRPV6 (found primarily in the small intestines and to a lesser extent in the esophagus, colon, prostate, and placenta) are the most Ca\(^{2+}\) selective members of the TRPV family. Expression of TRPV5 and TRPV6 is upregulated by vitamin D. There are multiple means of regulating TRPV5 and TRPV6 by both extracellular calcitropic factors (such as increased TRPV5 activity due to Klotho, tissue kallikrein and/or changes in pH in pro-urine) and intracellular factors (such as endosomal recycling to the cell surface of sequestered TRPV5 to increase active TRPV5).

The ORAI channels are highly selective for Ca\(^{2+}\) entry and bring a different approach to initiation of calcium flux. Activation of ORAI channels by STIM requires localization of STIM to the puncta, the region of the ER closest to the plasma membrane, and interaction of STIM with ORAI molecules. The activated ORAI channels consist of two main components: 1) the stromal
interaction molecules (STIM) which are found primarily in the ER membrane as single pass transmembrane proteins and 2) the ORAI molecules which are found in the plasma membrane as multi-pass transmembrane proteins.

2.3. STIM/ORAI Interactions.

2.3.1. CRAC channel activation.

The STIM molecules are most important in the activation of ORAI channels since STIM senses decreases in Ca\(^{2+}\) in the ER lumen. Whereas PAD4 (mentioned above and Figure 1) becomes active when it binds five calcium ions, STIM is in an inactive state with a bound calcium ion, and becomes active when ER stored Ca\(^{2+}\) drops, resulting in loss of the bound calcium ion in STIM. This change to active STIM (described in Figure 2.3) allows for conformational changes that facilitate STIM dimerization and lateral migration in the ER membrane to the puncta, close to the plasma membrane. During this process, STIM interacts with ORAI molecules and, with this formation of interactions between STIM and ORAI, the ORAI pore-forming molecules are able to become an active open channel selective for Ca\(^{2+}\) entry from the extracellular milieu (Figure 2.4). This channel complex is called a calcium release activated calcium (CRAC) channel and demonstrates the basic concept in SOCE. We now know that SOCE activity can be initiated by three mechanisms: 1) activation of IP3 receptors in the ER membrane, 2) blocking SERCA pumps in the ER membrane (ex. thapsigargin is a SERCA inhibitor) or 3) Ca\(^{2+}\) ionophores that permeabilize the ER membrane.
2.3.2 STIM1 and STIM2.

The known STIM proteins, STIM1 (685 residues and maps to chromosome 11p15.5) and STIM2 (746 residues and maps to chromosome 4p15.1), are homologous structures that share the same genomic structure, organization of protein domains, and biochemical features. STIM1 and STIM2 have 53% amino acid identity and high sequence similarity (>65%) \(^{17}\), including the composition of the ER luminal Ca\(^{2+}\)-sensing domains responsible for STIM dimerization and activation of ORAI channels \(^{18-23}\). But there are still differences in the way STIM1 and STIM2 work as Ca\(^{2+}\) sensors and activators of SOCE. For example, the Ca\(^{2+}\)-binding domains are identical except for three residues, but STIM1 is twice as sensitive to Ca\(^{2+}\) changes in the ER compared to STIM2 \(^{19}\). The corresponding ER luminal structures of STIM1 and STIM2 have been determined for residues 58-201 and 62-205, respectively, but the placements, and more importantly, the functions of the missing residues are yet to be determined \(^{24-28}\). These missing residues may have roles in securing the bound calcium ion and/or anchoring of the STIM protein. These may have an effect on the Ca\(^{2+}\) sensitivity. Whether or not these residues are involved in the overall response, as it is, STIM2 is considered to be a slow responder to ER luminal Ca\(^{2+}\) changes compared to STIM1. There are also differences in STIM1 and STIM2 in the furthest portions of the C-terminal end in the cytosolic portions of the proteins. These are
Figure 2.3. STIM1 Activation Schematic. Human STIM1 is a single pass transmembrane protein resident in the ER membrane. STIM1 has an ER luminal portion containing the EF-hand and SAM (sterile α motif) domains. STIM1 also has a cytosolic portion, SOAR (STIM1-ORAI1 activation region) also referred to as CAD (CRAC channel activation domain). The EF-hand domain is a calcium-binding motif frequently found in calcium binding proteins, such as calmodulin with four such sites. Loss of the bound calcium ion leads to conformational changes that are conveyed into the SAM domain, a motif frequently found in protein-protein interactions. The active STIM can then homodimerize with other STIM molecules with interactions primarily in the ER luminal portions. Loss of the calcium ion also leads to conformational changes in the cytosolic portion of STIM. This opens the SOAR to expose the coiled-coil regions (C1, C2, C3) and extends the proline-serine-rich and lysine-rich regions out into the cytosol where interactions with ORAI molecules can occur. This cartoon depicts how STIM1 may change when activated, based roughly on (25) the published structures of inactive STIM1 SOAR (3TEQ.pdb) (26) and ER lumen domains (2K60.pdb) (27).
sites containing much of the STIM/ORAI interactions and these differences could influence the speed and strength of ORAI channel activation. In most cells, STIM1 is predominant in mediating activation of SOCE, believed to be due in part to STIM1’s greater Ca\(^{2+}\) sensitivity whereas STIM2 blocks SOCE if overexpressed, possibly due to STIM1/STIM2 interactions that compete with STIM1 homodimerization upon activation \(^{17}\). Knockdown of STIM2 in most cell types has little to no effect on SOCE but, in neurons and dendritic cells, STIM2 appears to be the predominant mediator of SOCE \(^{17}\). Spatial and temporal differences in STIM1 and STIM2 activation suggest that STIM2 is the weaker activator of ORAI channels. Further knowledge of STIM2 is needed to understand its involvement but, as it is, STIM1 has been deemed more important in activation of SOCE and as a partner of ORAI proteins in non-excitable cells. The full extent of STIM effects on calcium flux are still under intense research since their influence goes beyond ORAI channels. Among the Ca\(^{2+}\) channels, STIM1 has been most closely associated with ORAI channels. However, STIM1 also influences some of the TRPC channels and, thereby, bring the TRPC channels into the realm of SOCE or suggesting roles for STIM1 independent of SOCE \(^{29}\). It is these multiple roles for STIM (STIM1 and STIM2) in calcium flux, along with the fact that STIM activation is one of the early and focal points in SOCE initiation that makes STIM important as a potential therapeutic target in calcium dysregulation diseases. Indeed, there have been a number of calcium dysregulation diseases identified in which STIM1 is a suspect due to under expression, over expression or mutations of STIM1. We will next discuss some of the major diseases that have shown calcium dysregulation and possible STIM involvement. Other recent reviews provide additional insights into the involvement of SOCE, STIMs and ORAI channels in diseases and abnormal states as well as current understanding of the mechanisms and interactions \(^{30-33}\).
2.4. **STIM involvement in diseases with calcium dysregulation.**

We will discuss SOCE involvement, particularly in relation to STIMs, in some major diseases: Alzheimer’s disease, cancers and immunological diseases. Additional diseases and their relation
to STIMs are listed in Table 2.1, but it is not an exhaustive list. We can expect that other diseases will be found in the future to have Ca\(^{2+}\) dysregulation that involves STIMs and SOCE.

2.4.1. Alzheimer’s Disease

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that destroys neurons and causes synapse loss in the hippocampus and cortex which can result in cognitive disorders and dementia. The events leading to AD involve an accumulation of \(\beta\)-amyloid peptide (A\(\beta\)) in plaques which leads to neuron perturbations and eventually degeneration. The A\(\beta\) is generated by cleavage of a membrane protein, \(\beta\)-amyloid precursor protein (APP), by \(\beta\)-secretase and \(\gamma\)-secretase. Accumulation of A\(\beta\) on neurons can induce oxidative stress which then disrupts intracellular Ca\(^{2+}\) homeostasis. The role of Ca\(^{2+}\) in AD pathogenesis has been discussed previously. Since we are continually gaining more knowledge of STIMs in normal calcium flux, we can now consider how STIMs could be useful targets in AD therapeutics. Neuron degeneration in AD is affected by disturbances in the Ca\(^{2+}\) homeostasis in the ER. This is attributed to mutations in the presenilin-1 (PS1) gene in some cases of early onset inherited AD (familial AD, FAD). More than 100 different mutations have been identified in PS1 in relation to FAD. Besides regulating ER Ca\(^{2+}\), PS1 is an aspartyl protease that, as part of the \(\gamma\)-secretase complex, cleaves the APP to produce A\(\beta\). The excessive activity of mutated PS1 in APP cleavage, its impact on IP\(_3\)R and RyR channels in ER Ca\(^{2+}\) release and the resulting oxidative stress from neuron dysregulation can lead to disruption of intracellular Ca\(^{2+}\) homeostasis. In fact, increased intracellular Ca\(^{2+}\) and increased duration of IP\(_3\)R opening has been reported for mutated PS1 in FAD. And as was noted previously, PS1 can increase expression of STIM1 and STIM2. STIMs would be involved by sensing the ER Ca\(^{2+}\) changes and initiating ORAI and TRP channel activity. In addition, in neurons
there are the voltage-dependent Ca2+ channels (VDCC) and NMDA-type glutamate receptors (NMDAR) that have a role in Ca2+ entry. The effect of mutant PS1 is to generate ‘sparks’ of intracellular Ca2+ that disturb normal Ca2+ dependent processes 34. Elevated intracellular Ca2+ in presynaptic axons can increase glutamate release which then can increase Ca2+ entry in postsynaptic dendritic cells by stimulating glutamate receptors and NMDARs in the dendritic cells. Therefore, STIM, as an ER Ca2+ sensor in both the presynaptic axons and postsynaptic dendritic cells, is a potential target for amelioration of AD. We should remember that, as mentioned previously, in neurons STIM2 appears to have a dominant role whereas STIM1 is dominant in other cell types.

\textbf{2.4.2. Cancers.}

Recent reviews of STIM involvement in cancers along with other diseases are available 35,36. Here we will touch on a few cancer types as examples. In cancers, the disruption of Ca2+ homeostasis can be particularly important in induction of transcription, cell metastasis and cell migration/motility.

\textbf{2.4.2.1. Colorectal cancer.}

Chronic inflammation is a driving force in development and progression of colorectal cancer. EGF has an important role in the metastasis that can occur. EGF-mediated signals induce SOCE which, in turn, activates transcription factors (such as CREB/NFAT) that invoke increased transcription of genes 37. In cases of colorectal cancer, allelic imbalances at chromosome 4p15 have been associated with tumor growth but no genes were identified. STIM2 is located at locus 4p15.2 and previously it has been proposed as a candidate gene in glioblastoma multiforme. Using xenograft analysis, STIM2 overexpression in colorectal cancer was found to be a frequent trait in
colorectal cancer that results in suppression of cell growth. It has been proposed that increased STIM2 may interfere with the tumor suppressor effect of STIM1-mediated induction of apoptosis and, as a result, tumor progression and metastasis occur.

2.4.2.2. Hepatocellular carcinoma.

In Hepatocellular carcinoma (HCC) cells, Ca2+ influx was demonstrated to be involved in liver oncogenesis. STIM1 has been found to have a higher expression in hepatoma tissues compared to precancerous tissues of the same patients and compared to a normal hepatocyte cell line. HCC-LM3 cells, which have a higher migration ability, expressed STIM1 at a level five times higher than other HCC cell lines.

2.4.2.3. Cervical cancer.

STIM1-dependent signaling plays a vital role in cervical cancer cell proliferation, migration, and angiogenesis. Overexpression of STIM1 in tumor tissue is seen in 71% of cases with early-stage cervical cancer. Cancer cell migration stimulated by EGF involves expression of STIM1 and EGF increases the interactions between STIM1 and ORAI1 in the puncta, thereby inducing Ca2+ influx. Another study used SOCE inhibitors, SKF96365, 2-APB and YM-58483, and found that they inhibited cervical cancer cell migration akin to STIM1 silencing and STIM1 overexpression significantly enhanced cervical cancer cell migration. STIM1 was found to play a role in controlling cell migration by regulating actomyosin.
2.4.2.4 Glioblastoma multiforme

The prognosis of glioblastoma multiforme (GBM) is poor and new therapeutics are drastically needed. GBM (World Health Organization classification (WHO) grade IV astrocytoma) is the most frequent type of brain tumor in adults. The median survival rarely exceeds 12 months (48). One study used real time PCR for gene expression analysis and found 18 overexpressed proteins one of which was STIM1. Ca$^{2+}$ entry in GBM tumor cell proliferation and survival was studied in glioblastoma cell lines, C6 (rat) and U251 (human). It was seen that ORAI1 and STIM1 expressions using siRNA significantly inhibited C6 cell proliferation and SOCE compared to control cells, more significantly in cells with ORAI1 siRNA knockdown than in STIM1-treated cells showing that Ca$^{2+}$ entry via ORAI1 and CRAC channels is important for GBM proliferation and survival. Gene silencing techniques deduced that STIM1 and ORAI1 play a vital role in GBM and down regulation of both proteins decreased the invasiveness of the cancer cells as compared to the control. Another study used three glioblastoma cell lines (U251, U87 and U373). STIM1 function was lost in U251 cells and it was seen that cell cycle arrest occurred in the GO/G1 phase confirming the role of STIM1 in GBM.

2.4.3 Immunology.

Reviews of SOCE mediation of a variety of immune responses have been published previously. Here, we will discuss some of the recent discoveries in this area. Needless to say, the immune system has some of the most complicated Ca$^{2+}$ signaling and functions since immune cells need: to be activated into rapid proliferation without slipping into a cancerous state; to be motile on occasions to move to sites of inflammation; to act as suppressors such as suppressor T cells; to enter apoptosis or NETosis when necessary for protection of the host against pathogens or...
autoimmune reactions.

SOCE is the main Ca\(^{2+}\) flux pathway in immune cells following any antigen stimulation. One of the most important roles of the STIM proteins in immune cells is the regulation of gene expression via transcription factors like NFAT. Table 1 shows a few of the diseases that are caused by immune cells due to abnormalities associated with SOCE. Calcium ions function as second messengers in immune cells for e.g. T cells, B cells, mast cells, NK cells, dendritic cells. Patients with inherited defects in SOCE due to mutations in genes of the ORAI channel complex suffer from a severe form of immunodeficiency due to defects in its function, but not the development of the cells. Ca\(^{2+}\) ions also regulate lymphocyte activation and differentiation among other functions. It is seen that various protein tyrosine kinases, such as Lck, Syk or zeta-chain-associated protein kinase70 (ZAP-70), are activated by antigen binding in T and B cells which results in the phosphorylation of proteins such as LAT, SLP-76, B cell linker protein (BLNK) and Tec kinases IL-2–inducible T cell kinase (ITK) and Bruton’s tyrosine kinase (BTK). These can, in turn, result in the activation of PLC (in T cells) or PLC 2 in B cells) and hence the generation of inositol 1,4,5-triphosphate (IP3) which triggers Ca\(^{2+}\) release from the ER and subsequent SOCE\(^{57}\). STIM1 and STIM2 are both required for SOCE in T cells and loss of function or null mutations in the human STIM1 gene stops Ca\(^{2+}\) influx in T cells and causes immunodeficiencies in affected patients. STIM1 and STIM2 deficiencies have been found in a variety of immune system-related diseases. STIM1 deficiency was studied in two patients with a homozygous R429C point mutation in STIM1 which completely abolished SOCE in T cells. But it was found that SOCE is not limiting for many aspects of these immune functions but the combination of partially impaired T cell activation and other effector functions with defects in other lymphocyte populations causes immunodeficiency with immune dysregulation\(^{58}\). T cells and B cells have differences in expression of STIM1 proteins. T cells have
been found to express up to 4 times the amount of STIM1 compared to B cells. Dendritic cells (DCs) are the antigen-presenting cells linking innate and adaptive immunity whose maturation and migration depend on alterations of cytosolic Ca\(^{2+}\) concentrations. Ca\(^{2+}\) entry, which is in part accomplished by SOCE, is found to be partially mediated through SGK3-dependent up-regulation of STIM2 expression.

Phagocytosis, which is one of the most important innate immune responses to eliminate invading pathogenic agents, is accompanied by the activation of antimicrobial enzymes, to allow for the production of reactive oxygen species (ROS), leading to the destruction of ingested microorganisms including granulocytes, dendritic cells, and macrophages, and possess specific receptors which, on triggering, engulf pathogenic material and secrete proinflammatory mediators involved in the adaptive immune response. SOCE is required for phagocytosis via STIM/ORAI1 with the help of S100A8–A9 as a Ca\(^{2+}\) sensor. SOCE deficient patients with mutations in STIM1 or ORAI1 genes are found to be susceptible to recurrent viral infections, potentially due to impaired CD8 \(\uparrow\) T cell function and elimination of virus infected cells such as Epstein Barr virus (EBV) positive B cell lymphoma and Human herpes virus (HHV) 8 associated Kaposi sarcoma.

Cerebral vasospasm (CVS) which is a component of subarachnoid hemorrhage (SAH), can be reduced by endothelin receptor antagonists. Development of cerebral vasoplasam takes 5-7 days and elevated mRNA and protein expressions of ORAI1 and STIM1 were detected after SAH and peaked on days 5 and 7 suggesting their role in the disease progression. Kaposi sarcoma (KS), is exceedingly rare in children from the Mediterranean Basin, despite high prevalence of human herpesvirus-8 (HHV-8) infection in this region. Whole-exome sequencing revealed a homozygous splice-site mutation in STIM1, which led to the development of lethal KS upon infection with HHV-8.
Primary Sjögren's syndrome (pSS) is an autoimmune disease that involves glands, tissue damage, and secretory defects in salivary and exocrine glands. Mice with T-cells that have deleted STIM1 and STIM2 developed spontaneous and severe pSS-like autoimmune disease. Sjögren's syndrome autoantibodies were also detected in the serum, showing that deficiency of STIM1 and STIM2 proteins in T cells are associated with salivary gland autoimmunopathy in pSS patients 65. STIM1 and STIM2 have also shown roles in multiple sclerosis (MS). T-cell-specific deletion of STIM1 or STIM2 in mice did not develop experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, as they failed to produce the proinflammatory cytokines IL-17 and IFN-gamma 66. Similarly, in another study, in which T cell function was assessed in mice that lacked STIM1 or STIM2 in a model of myelin-oligodendrocyte glycoprotein (MOG) involvement in MS, there was less induction of EAE. STIM1 deficiency has been found to significantly impair generation of neuroantigen-specific T cell responses with reduced Th1/Th17 responses, which resulted in no EAE in the mice. Mice lacking STIM2 developed EAE, but to a lesser extent 17.

2.4.4. Other diseases and abnormal states.

SOCE via STIM1 can also play a role in diseases such as hypertension, obesity, diabetes, thrombosis, stroke, fibrosing diseases, infertility and tumor growth due to its activation depending on the expression of serum-and-glucocorticoid-inducible kinase-1 (SGK1) which, though in a low concentration at most times, is found to be elevated during these pathological conditions and is known to mediate a variety of functions including SOCE control 67. SOCE may also be playing a role in acute lung injury which occurs during sepsis and results from activation of innate immune cells and endothelial cells by endotoxins, leading to systemic inflammation 68.
2.5. Conclusions.

It is hoped that the reader has gained an appreciation for the importance of calcium dysregulation in a broad range of diseases. The importance, in particular, of STIM1 and STIM2 in calcium flux cannot be overstated since they are key early participants in SOCE as well as affecting other routes than just the ORAI channels. With this importance in diseases, STIM1 and STIM2 are excellent targets for new therapeutics with the caveat that there is still much to learn about these proteins and their interactions. The 3D coordinates are available for the important SOAR, EF hand and SAM domains so this can aid in computational studies and virtual screening for drug candidates. There are numerous questions to be answered but, foremost, would be: 1) What other interactions do these proteins have? 2) What functions are served by the N-terminal residues that have not been crystallized? Do those residues participate in reinforcing calcium binding? Do those residues help anchor STIM at some point? 3) What actions could be occurring with the noted extracellular exposure of STIM1? Is this a means of rebinding Ca$^{2+}$ to inactivate STIM and then recycle it to the ER or does it provide other functions for STIM1? We look forward to further developments in this exciting area.
Table 2.1. Some Diseases with Possible STIM Involvement.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Issue</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alzheimer’s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alzheimer's disease</td>
<td>SOCE affects major enzymes</td>
<td>(36) (38) (69) (70) (71)</td>
</tr>
<tr>
<td>Cancer related diseases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melanoma</td>
<td>Mutation of STIM1/ORAII1</td>
<td>(45)</td>
</tr>
<tr>
<td>Melanogenesis</td>
<td>Overexpression of STIM2</td>
<td>(47)</td>
</tr>
<tr>
<td>Glioblastoma</td>
<td>STIM1/ORAII1 overexpression</td>
<td>(49) (50) (51) (72)</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>Overexpression of STIM1</td>
<td>(74)</td>
</tr>
<tr>
<td>Neuroblastoma</td>
<td>Overexpression of STIM1</td>
<td>(73)</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>Orai/STIM2 expression, STIM1 overexpression.</td>
<td>(39) (40) (41)</td>
</tr>
<tr>
<td>Cervical cancer</td>
<td>Overexpression of STIM2</td>
<td>(43) (44)</td>
</tr>
<tr>
<td>Non-small cell lung cancer</td>
<td>Overexpression of STIM1</td>
<td>(75)</td>
</tr>
<tr>
<td>Hepatocellular carcinoma</td>
<td>Overexpression of STIM1</td>
<td>(42)</td>
</tr>
<tr>
<td>Prostate cancer</td>
<td>Overexpression of STIM1</td>
<td>(76) (77)</td>
</tr>
<tr>
<td>Renal cell cancer</td>
<td>Overexpression of STIM1</td>
<td>(78)</td>
</tr>
<tr>
<td>Immunity related diseases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe immunodeficiency</td>
<td>STIM1, STIM2, ORAI1 deficiencies.</td>
<td>(56) (57) (58) (46)</td>
</tr>
<tr>
<td>Kaposi Sarcoma</td>
<td>Mutation of STIM1</td>
<td>(64)</td>
</tr>
<tr>
<td>Thalassemia</td>
<td>STIM1 presence</td>
<td>(61)</td>
</tr>
<tr>
<td>Systemic lupus erythematos</td>
<td>STIM1 expression</td>
<td>(62) (79)</td>
</tr>
<tr>
<td>Cerebral vasospasm</td>
<td>Higher levels of STIM1/ORAII</td>
<td>(63)</td>
</tr>
<tr>
<td>Sjögen’s Syndrome</td>
<td>Depressed levels of STIM1, STIM2.</td>
<td>(65)</td>
</tr>
<tr>
<td>Multiple sclerosis</td>
<td>STIM1/STIM2 deletion/depression.</td>
<td>(66)</td>
</tr>
<tr>
<td>Other diseases and abnormal states</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension, obesity, diabetes</td>
<td>Overexpression of SGK1/STIM1</td>
<td>(67)</td>
</tr>
<tr>
<td>Acute lung injury/sepsis</td>
<td>STIM1 expression</td>
<td>(68)</td>
</tr>
</tbody>
</table>
2.6. References

(3) B. Zhivotovsky, S. Orrenius. ‘Calcium and cell death mechanisms: A perspective from the cell death community’ Cell Calcium 50 (2011) 211-221.

(21) J.W. Putney. ‘Recent breakthroughs in the molecular mechanism of capacitative calcium entry (with thoughts on how we got here)’ Cell Calcium 42 (2007) 103–110.

(40) S. Yang, J.J. Zhang, X.Y. Huang. ‘Orai1 and STIM1 are critical for breast tumor cell migration and metastasis’ Cancer Cell 15 (2009) 124-134.

(50) H. Liu, J.D. Hughes, S. Rollins, B. Chen, E. Perkins. ‘Calcium entry via ORAI1 regulates glioblastoma cell proliferation and apoptosis’ Exp. Mol. Pathol. 91 (2011) 753-760.

(54) Y. Baba, T. Kurosaki. ‘Impact of Ca2+ signaling on B cell function’ Trends in Immunology 32 (2011) 589-594

CHAPTER THREE: MOLECULAR DYNAMICS SIMULATIONS OF MEMBRANE BOUND STIM1 TO INVESTIGATE CONFORMATIONAL CHANGES DURING STIM1 ACTIVATION UPON CALCIUM RELEASE.

To be used in publication for Journal of Chem Informatics and Modelling. (ACS Journal)

3.1. Introduction.

Calcium ions (Ca$^{+2}$) play an important role in many cellular functions including major involvement of Ca$^{+2}$ as a secondary signal in intracellular signaling pathways and as cofactors in enzyme activation. Some of the many events controlled by Ca$^{+2}$ include: cell replication and cell division via calcium/calmodulin-stimulated protein kinases I and II 1; cell death (such as apoptosis and NETosis) 2; activation of T cells 3; activation of mast cells 4; and protein folding 5. In order to prevent inappropriate calcium-dependent enzyme activation and signaling due to its role in such important cellular processes, Ca$^{+2}$ is kept at low concentrations (~100-200 nM) in the cytosol and nucleus. Nevertheless there is Ca$^{+2}$ stored in the endoplasmic reticulum (ER) at ~800 nM available for rapid release into the cytosol to trigger calcium-dependent actions. This release can be initiated by cell membrane receptors that convert an external stimulus to an intracellular signal by, for example, receptor-associated phospholipase C activation that generates inositol triphosphate (IP$_3$). IP$_3$ then induces opening of inositol triphosphate (IP$_3$)-responsive calcium channels in the ER membrane. 6
Figure 3.1. Events that occur when STIM1 acts to initiate calcium flux. a) An external signal triggers intracellular IP3 signaling which opens ER channels to release stored Ca^{2+}. b) Release of stored ER Ca^{2+} ions to cytosol leads to loss of bound Ca^{2+} from STIM1 and dimerization of STIM1. c) STIM1 interacts with ORAI1 to open CRAC (calcium release activated calcium) channels to increase intracellular Ca^{2+}. d) Storage of Ca^{2+} in the ER is reestablished by SERCA channels. Red spheres represent calcium ions.

Stromal Interacting Molecule 1 (STIM1) is a single-pass transmembrane protein containing 685 amino acids that is located in the ER membrane and extends into both the ER lumen and the cytosol. STIM1 has been established as the main calcium ion sensor in non-excitable cells making it a key component early in many intracellular calcium signaling pathways. Figure 1 depicts the cycle of events that occur from initiation of intracellular calcium signaling. The ER luminal portion of STIM1 (N-terminal domain of STIM1) has two major domains: the EF hand and a SAM (Sterile-Alpha Motif) domain. In its inactive state STIM1 has a single Ca^{2+} ion bound in the EF-hand domain, the EF-hand being a frequently used helix-loop-helix calcium-binding motif in proteins. But, as the stored Ca^{2+} ions are released from the ER lumen through IP3-responsive channels, (as mentioned above), STIM1 loses its bound Ca^{2+} and becomes active. Active STIM1 then undergoes...
conformational changes both in the cytosolic portion and in the ER lumen portion. In the cytosol (C-terminal of STIM1), the STIM1-ORAI1 Activating Region (SOAR), a section of STIM1 that was folded in inactive STIM1, extends outward towards the cell’s plasma membrane (PM) upon STIM1 activation. At the end of the SOAR is a lysine-rich sequence which, when SOAR is extended, can interact with cytosolic and cell membrane proteins, such as the ORAI1 transmembrane protein. ORAI1 forms calcium channels in the cell membrane to facilitate entry of extracellular Ca\(^{+2}\) into the cell when STIM1 and ORAI1 interact. The cell will then use ATP to pump the Ca\(^{+2}\) back into the ER through SERCA channels to reestablish the stored Ca\(^{+2}\) levels in preparation for the next round. STIM1 is reported to have an association with SERCA in modulating the rate of this replenishment of ER Ca\(^{+2}\) levels.\(^8,9\) Variations in the strength of the stimulation, the receptors receiving the ligand stimulation, the intracellular signal pathway (ex. IP\(_3\)), the STIM1 partners, the persistence of the signals, the ATP levels, and other factors help determine the actual intracellular targets and the resulting effect of the calcium flux.

The underlying mechanism by which active STIM1 effects calcium flux originates in the conformational changes in its EF-hand (calcium binding) domain and its Sterile-Alpha Motif (SAM) domain. SAM domains are protein-protein interaction motifs in general. The EF-hand and SAM domains (EF-SAM) are vital to storage operated calcium entry (SOCE) regulation, since Ca\(^{+2}\)-binding mutants (i.e. EF hand alteration) form punctae (sites where the cell membrane and ER membrane are in close proximity) and activate SOCE independent of Ca\(^{+2}\) and SAM deletion mutants lack the ability to form inducible punctae. Loss of the bound Ca\(^{+2}\) ion allows conformational changes in the STIM1 lumen portion and an, as yet unknown, transduction through the ER membrane invoking cytosolic conformational changes in STIM1 including extension of the SOAR portion of STIM1.\(^6\)
Aberrant calcium activity has been associated with lupus, such as overly sensitive T cell activation. Also, association of over-expression of STIM1 with abnormal calcium flux in T and B cells in lupus has also been reported. Such abnormal activity could potentially lead to loss of tolerance of endogenous material due to dysregulation of T and B cells. In addition, NETosis, an innate immune response process which involves calcium-activation of chromatin modifying enzymes in neutrophils, is believed to be dysregulated in lupus. In NETosis, neutrophils that are drawn to infection sites are induced to modify their chromatin by deimination of positive arginine residues, converting them to neutral citrulline, and the modified chromatin is expelled from the neutrophil to act as neutrophil extracellular traps (NETs) that bind up pathogens and debris, making it easier for macrophages to clear the infection. We have proposed previously that NETosis is a means by which endogenous intracellular molecules can be exposed to the immune system, potentially invoking an autoimmune response. In addition, abnormal STIM1 activity, such as over-expression of STIM1, can cause abnormalities in intracellular Ca\(^{+2}\) levels and calcium flux that lead to, among other things, aberrant T and/or B cell activation and possible increase in NETosis in neutrophils or ETosis in other cell types (ex. mast cells). The facts: that STIM1 has a key role in calcium flux; that STIM1 abnormalities have been associated with numerous diseases; and that STIM1 over-expression appears to be involved in abnormal T and B cell activation in lupus, suggest that STIM1 is a promising target for drug discovery to develop new therapeutics for lupus and possibly other diseases. In order to understand the mechanism of STIM1 unfolding, creating an \textit{in vivo}-like model of STIM1 with which we can follow STIM1 structural changes during activation is very important. The luminal portion of STIM1 contains two EF-hand’s. The first EF hand (hEF1) holds the calcium ion and the “hidden” EF-hand (hEF2) stabilizes the canonical EF-hand via hydrogen bonding by forming a small antiparallel \(\beta\) sheet between the helices. The
interaction between the EF and SAM domains is chiefly hydrophobic in nature, holding EF-SAM as a single entity. The hypothesis, that the collective solvent exposure of EF-hand 2 and also the α10 helix of the SAM domain leads to an unstable state of STIM1, can be confirmed via molecular dynamics. 6,31

Molecular dynamics (MD) is a powerful tool that can model the motion of atoms of a molecular system and provide computational depictions of phenomena that are difficult to view experimentally. There are a variety of MD programs that are used such as CHARMM, AMBER, NAMD, DESMOND and GROMACS. 18-20 Interpretation of experimental data and validating such with the help of MD improves the quality of data and can assure a robust structure that can be used for further parallel studies and can improve computational drug discovery efforts. 21 Since conditions required for successful crystallization of a protein can vary from the actual in vivo conditions, such as dense protein stacking and high salt concentrations, and some of the resulting data may be incomplete, such as missing or distorted amino acid side chains, computational methods are needed to refine the models towards more in vivo-like states. Here we report development of refined computational models of STIM1 followed by MD simulations to model STIM1 such that it is closer to putative in vivo states through relaxation of the model. This will assist us in understanding the mechanisms by which STIM1 unfolds upon calcium loss which can then be key in determining the most probable sites to target on the protein for drug discovery.

The luminal portion of human STIM1 (containing residues 58 to 201, includes the EF-hand calcium binding domain and the SAM domain) as determined from NMR data by Stathopulos, et
This partial STIM1 structure is the bulk of the ER luminal portion of STIM1 but it is missing the N-terminal 57 residues for which structure could not be discerned from the NMR data due to either random positioning during NMR or loss of the residues during preparation. These missing residues may, in fact, have importance in STIM1 functions, interactions and structure but that will remain to be determined from future analysis when sufficient experimental and structural data are available to define the missing residues. MD simulations were performed on this structure in the presence and absence of calcium to relax them into more in vivo-like conformations. This was expected to give relaxed protein conformations that accommodate the residues while minimizing the overall energy of the protein in simulated physiological conditions. Schrodinger Suite 2014-3 was used to prepare the protein structures initially. Since STIM1 is a transmembrane protein which spans through the ER membrane to the cytosol, residues 202-236 were added to provide the transmembrane residues modelled as an alpha helix using Schrodinger’s Prime as shown in Figure 2 so that the structure could be placed in a simulated membrane which, in the in vivo environment, anchors the protein and restricts the direction and extent of protein structural fluctuations. An initial simulated membrane was created and the protein was inserted into it as a single pass transmembrane protein as depicted in Figure 3. This virtual complex was in a virtual box and the box was filled with water and ions. The MD simulation box then contained over 170,000 atoms. Iterations of the MD simulation repositioned each atom based on the forces acting on it from all the other atoms proceeding towards a minimization of overall energy in the box. MD was run until each structure converged meaning that frames (protein conformations) were repeating and the RMSD (root mean square deviation, shown in Appendix 3.1) values had stabilized with minimal variations.
Figure 3.2. The structure built prior to insertion into membrane showing the N-terminal of STIM1 positioned in the ER luminal portion. It consists of the EF hand harboring the calcium ion and the SAM domain connected to the transmembrane portion. The cytosolic part is not shown here.

MD simulations were run using the NAMD package 2.7 and were used with the Charmm++ parallel programming model. The protein was prepared for MD using Visual Molecular Dynamics (VMD). The VMD membrane plugin tool was used to setup a POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane and the protein was embedded into it with VMD as well. Periodic boundary conditions were set with TIP3 water, and sodium and chlorine ions were added to neutralize and ionize the system to a final concentration of 0.2 mol/L.
Figure 3.3. The luminal part of the protein (in purple) with the transmembrane part embedded in the POPC membrane.

10^7 iterations of step energy minimization were carried out to minimize the system’s energy following which the system was equilibrated for 5×10^7 psec and the integration time was set to 2 fsec. A partial-mesh Ewald algorithm was used to treat long range electrostatics with a grid spacing of 0.8 for Van der Waals and short range electrostatic interactions. The simulation was run at a temperature of 310 K in the NPT (constant number of particles, pressure, and temperature). RMSD (Root mean square deviation), RMSF (Root mean square fluctuations) and Rg (Radius of gyration) were analyzed on the whole trajectory using Wordom. Intramolecular H-bonds were studied on every 100 frames using the VMD timeline tool. All graphs were made using the GRACE program. On convergence, depicted by RMSD in Figure 1(Appendix 3.1), the simulations were clustered using Wordom to find the most common protein conformations. The top 3 clustered conformations were used for structural analysis. VMD Tooline, was used for secondary structure assessment of the trajectory.
Schrodinger Suite 2014-3 was used to prepare protein structures. Maestro, which is the graphical user interface of Schrodinger, was also used to depict electrostatic surfaces and other functions thereafter.

3.3. Results.

The first part of the study involved building the model of the luminal portion together with the transmembrane portion. Since STIM1 contains EF-hand and SAM domains joined to the cytosolic portion via a transmembrane region, modeling the transmembrane portion is imperative to understanding how flexible the SAM domain residues are with respect to any conformational changes in the absence of calcium.

The model built herein included the luminal portion used from PDB 2K60 (an NMR structure) and the transmembrane portion using Prime and data from PDB 3SR7 with 68% similarity. The cytosolic portion was not added in order to reduce the overall computation time and resources. Figure 3 (below) depicts the different domains of the STIM1 N-terminal luminal portion. As mentioned above, the transmembrane portion was embedded in the POPC membrane and then the structure was allowed to equilibrate for 100 nsecs. The RMSD data shows that the protein was equilibrated after the run.
Figure 3.4. Different domains of STIM1 N-terminal luminal portion present inside the Endoplasmic reticulum. EF Hand 1 is depicted in green which harbors the Ca ion, EF hand 2 is depicted in orange and the SAM domain helices are depicted in blue. The transmembrane helix has been omitted in this figure.

The simulation, when run in the presence of calcium in the protein, takes on a form very similar to what is observed in the crystal structure, as seen in Figure 4 (below). There is very little change observed after equilibration of the protein, especially in the secondary structure elements and motions observed throughout the trajectory. The top clustered pose was superimposed onto the original wild type structure in Maestro as shown in Figure 4. The original structure from the Protein Data Bank is depicted with blue ribbons and the one after equilibration is depicted with orange ribbons. The EF hand as well as SAM domain after being connected to the transmembrane portion are held together in the same fashion as seen in the original crystal structure suggesting the robustness of this model. The only area of flexibility seems to be around the tail portion which harbors the missing amino acid residues. This also shows that the role of the calcium ion in holding the luminal portion of STIM1 and the transmembrane portion together, with the help of the interactions between the metal and neighboring residues and also hydrophobic forces amongst the
residues of closely situated domains, is vital. The key for maintaining STIM1 in its inactive state in vivo definitely involves these interactions in the flexible domains of the structure.

Figure 3.5. Superimposition of the crystal structure (depicted in blue ribbons) with the simulated model in the presence of calcium (depicted with orange ribbons) shows almost exact similarities in the structure after dynamics. The helices and interactions are sustained through the trajectory showing robustness of the model.

The simulations of STIM1 in the absence of calcium depict the process of unfolding of STIM1 via a few important conformational changes which can be important in therapeutic targeting of the protein. The canonical EF hand1, which is in the form of a helix-beta-loop-helix motif, holds the calcium ion with the help of six negatively charged amino acid residues which are on the beta loop. Upon removal of the calcium ion, that negatively charged patch is now available for interaction with residues in the neighboring helices and does so. The residues involved in interacting with calcium due to increased flexibility and concurrent hydrogen bonding now start to deviate from
the beta strand (β1 and β2) to an organized complete alpha helix (α2) and loop variation. Referring to STIM1 structural geometry in Stapleton et al., the α2 helix seemingly becomes a much longer and ordered helix using residues from the beta turn (residue number 82-83), which is also discerned by distance calculations run throughout the trajectory. The small α2 helix holding residues 89-97 forms a much more stable helix through the trajectory. Secondary structure assessment shows that residues 83-97 change from turns and coils to a helix. On monitoring the size of the alpha helix, it is seen to change from 33 Å to an average of 60 Å stabilized over the trajectory as depicted in Figure 5(a) and (b). All the distances between these helices have been quantified by Wordom throughout the trajectory.

Figure 3.6. (a) STIM1 with calcium ion bound to the negatively charged residues. For clarity purposes, Asp 77 and Glu 87 have been shown here. Val 117, Phe 108, Glu 94 and a few of the hydrophobic residues on EF hand 2 are seen to form the packed conformation. (b) STIM1 in the absence of calcium. The negatively charged residues Asp 77 and Glu 87 are further apart.

The α2 helix changes from 33 to 60Å. The next change occurs when α3 and 4, which form part of the EF hand 2, are seen to fall apart. Residues making up those helices show a lot of movement; some up to 7 Å or more. We observed movement of EF hand 2 away from EF hand 1 helices, in
turn, exposing the hydrophobic residues. Residues Phe 108 in α3 and Glu 94 in α2 move from almost 38 Å to 64 Å, around 26 Å away following the stability of the α2. Movement between β3 and α3, quantified by the distance between Val 117 and Phe 108 is around 7 Å. The graphs in Figure 6 clearly suggest the movement of the above mentioned helices with respect to each other and showcase the beginning of the structural change.

![Graphs showing trajectory frames](image)

Figure 3.7. Graph showing trajectory frames (X-axis vs Distance in Å (Y-axis). (a) Distance graph between Asp 95 and 85 sustaining the helix (b) Distance graph between Val 117 and Phe 108. (c) Distance graph between Glu 94 and Phe 108. (d) Distance between alpha helix 7 and 6 in the SAM domain stabilizes. These graphs demonstrate that the helices in the luminal portion show significant motion which stabilizes through the trajectory.
The opening of STIM1 in the absence of calcium is thereby seen to be mediated through EF hand 2. Due to the connectivity of the protein this change should then translate to the next portion of the protein; the SAM domain. The SAM domain in STIM1 consists of five helices. The SAM domain helices in STIM1, although playing a part in oligomerization, nevertheless are attached on the other side through the transmembrane portion to the cytosolic part of STIM1. What is clearly evident in the simulations is that α10 residues, which are a part of the SAM domain, seem to move away, around 7 Å, from the EF hand zone by interacting with the other helices of the SAM domain as depicted in Figure 5. Also alpha helix 9, is seen to have uncoiled in the process and secondary structure analysis shows that helix 9 residues and part of helix 10 unfold from a helix to a beta turn. α10 of SAM domain, which is most closely associated to the EF hand 2’s secondary structure change to a beta turn, could help in its uncoiling and aid in oligomerization. What we did not observe is the complete movement of helix 10 away from the protein but understanding that EF hand 2 shows direct movement due to hydrophobic exposure, the SAM domain’s movement through alpha 10 can be fairly well predicted if oligomerization has to take place.

Different analytical studies on these specific motions across the domains have been taken into consideration. Our simulations depict clearly the start of the process of STIM1 unfolding and oligomerization. Two places of major structural change are the EF hand 2 and α10 SAM domain helix. Postulating how this oligomerization is driven in the absence of calcium hence becomes clearer. One of the sites is prominent in the EF hand 1 zone and the other is in the SAM domain between helices 6 and 7.
3.4. Discussion.

Understanding the mechanism by which any protein may work can be key to understanding how to target it for drug discovery. Proteins are able to form intrinsically disordered conformations to allow coupling of distant domains for cooperativity. \(^{33,34}\) STIM1 and other proteins such as adenovirus protein E1A, and other EF hand containing proteins are seen to do this. \(^{33,35}\) By binding to a ligand or Ca\(^{+2}\) ion in the case of EF hand containing proteins, domain interactions are established which leads to an ordered state and hence various functions are achieved. Another example of this is a neuronal calcium sensor, the NCS1 protein, which is activated by binding three Ca\(^{+2}\) ions which induces restructuring of the domains to form a pocket where binding of neuronal receptors occurs. \(^{36}\) In STIM1, disordering of the structure allows STIM1 molecules to oligomerize which cascades into other actions along the entire length of STIM1 for puncta formation and reestablishing stored calcium in the ER. To target such a complicated cascade of events, the MD simulations provide us a very detailed idea of the process. To our knowledge this is the first time the luminal portion with the transmembrane portion were modelled together to study the mechanism of action in absence/presence of calcium.

The results hint at the conformational changes which occur in the absence of the calcium ion binding that could lead to an unstable disordered state. Major changes observed are centered on EF hands and followed by SAM \(\alpha10\) helices. The negatively charged residues ; Asp 78, Asn 80, Asp 76 , Gly 87, Asp 82 present on EF hand 1 that form a hexagonal chelate around calcium, in its absence are seen to move towards an alpha helical form as demonstrated through the secondary structure assessment (Appendix 3.2).
Figure 3.8. Calcium ion held together by a few negatively charged residues which rest in between alpha helices and beta turn in EF hand 1 depicted in orange.

This drive of secondary structure change allows for the helices which form EF hand 2; α3 (103-108) and α4 (117-126), along with the beta turn loop β2, changes into a coil and start moving apart from EF hand 1 due to increased flexibility in the absence of the electrostatic charges from calcium. From the simulations, it is evident that the EF hand 2 change is most likely the start of the oligomerization process. The hydrophobic residues buried inside EF hand 2, which in the wild type simulation are tightly packed and not exposed to the outer side of the protein; such as Phe 108, Ile 115, Leu 120, Leu 74, Ile 71, Lys 104, Val 68, as shown in Figure 5, are seen to become more solvent exposed and the residues are now much further apart than when in the presence of calcium. The amount of solvent accessible surface area for this form is increased to 6888.041 Å as opposed to 6381.440 Å as deduced from SASA calculations performed with Maestro. 37

The transmembrane portion may be the reason why some parts of the SAM domain are not very flexible but the transmembrane itself is also seen to change during the simulation. In the presence of calcium, the transmembrane is seen to be in the same form as the model prepared but the absence of calcium makes the residues in it interact with the membrane more and few residues are seen to contort from the helix which signifies that signal transduction occurs in the absence of calcium via
the mechanism postulated. Since the transmembrane is the key to translating this change through
towards the cytosolic part, understanding changes in that will also help us understand the role of
the various domains in signal transduction. During the simulation, since the transmembrane
portion was attached to the protein which forms a single pass membrane attached on the other end
to the cytosolic portion and on the other end to the SAM domain helix 10, a huge amount of energy
would be required to move alpha helix 10 away. Nevertheless what we do see is the beginning of
this unfolding via EF hand 2 which then translates to some other portions of the SAM domain
which should, in turn, allow unfolding.

Hence the EF hand and SAM domains are both seen to participate in the oligomerization process,
as discussed above. We have ascertained a short phase between the equilibrated and non-
equilibrated protein structure which is seen to translate to the more open structure. Figure 8
(below) depicts these series of changes that putatively occur during this process with the presence
of a short medium phase (green) where the beta turn has not changed to a helix yet.
Figure 3.9. Cascade of events occurring during oligomerization. The process starts with the loss of calcium followed by movement around the EF hand 1 to change into a proper helix which pulls the other domains in a way such that the hydrophobic residues are exposed.

STIM1’s EF hand most closely resembles C-CAM \(^{38}\) and the SAM domain that of the EphB2 receptor \(^{39}\). Usually opening of the EF hand exposes hydrophobic surfaces which help in binding of target ligands or sequences. Here, the exposure of the residues helps unfold the protein. SAM domains are known to unfold for oligomerization in three different ways. \(^{40}\) As predicted earlier, and as seen from the simulations, the oligomerization could occur via the non-polar surfaces of the helix close to the C-terminal and the mid loop.\(^6\)
From our modelling and dynamics study, we have unraveled the secondary structure change from a beta strand to an alpha helix that could potentially lead to the opening of the hydrophobic residues of the STIM1 luminal portion which precedes the oligomerization. These observed changes also bring into focus the importance of the transmembrane portion of STIM1 since the activation must be conveyed to the cytosolic part of STIM1. Our simulations show only the ER luminal portion of STIM1. The luminal portion starts unpacking and then the cytosolic part begins to unravel as well. Our future work will focus on determining how the entire protein structure changes upon activation.

As mentioned above, understanding mechanisms by which proteins unfold helps in figuring out potential sites to be targeted for drug discovery. We now understand that the calcium binding zone and some portions of the SAM domain are key to mediating the oligomerization, hence this is the best area which can be optimized for screening potential drugs to prevent the oligomerization occurring after activation of STIM1 in cells overly expressing STIM1 in lupus patients.

3.5. Conclusions.

From this MD study, exposure of hydrophobic residues in the EF-hand domain, which we believe are important in dimerization along with neighboring conformational changes that allow such exposure, were seen. This study was done with inclusion of the transmembrane portion of STIM1 which helped in discovering these conformation changes. The change from a beta turn towards an alpha helix appears to be the key trigger to the conformational changes occurring allowing the EF hand and the SAM domain, which are close together, to start exposing the hydrophobic residues to begin oligomerization. Understanding these changes has been helpful in identifying potential
druggable sites for drug discovery targeting STIM1. Future work will involve MD simulations of two STIM1 molecules in close proximity to study their binding during homodimerization. We will also incorporate the cytosolic portion of STIM1 when there is sufficient experimental data to assist in the computational modeling of the cytosolic changes in STIM1 during activation.

3.6. References.

(28) Seeber, M ; Cecchini, M; Rao,F; Settanni, G ; Caflisch , A; Bioinformatics, 2007, 19, 2625-2627

CHAPTER FOUR: MUTATION IN EF-SAM DOMAIN OF STIM1 Deregulates
CA$^{2+}$ Signaling Contributing to Chronic Pancreatitis.

Text to be used in a future publication.

4.1. Introduction.

Chronic pancreatitis (CP) is a long-term inflammation of the pancreas that modifies its normal structure and functions. This is understood to be due to prematurely activated trypsin within the pancreas has been thought to play a pivotal role in the etiology of chronic pancreatitis. Genetic studies of chronic pancreatitis in the past decade, have confirmed that mutations in the Spink1, PRSS1, CFTR, CASR, and CPA1 genes, contribute to the development of the disease.1,2 Acute pancreatitis (AP) is also an inflammatory disease triggered by auto digestion due to trypsin activation within the cell leading to cell death. CA$^{2+}$ signaling regulation in pancreatic acinar cells is essential for the cell homeostasis and correct response to extracellular agonists. For instance, a typical physiological response occurs when pancreatic exocrine cells respond to low dose of agonists such as the hormone cholecystokinin (CCK). After fixation on its receptor, an intracellular CA$^{2+}$ increase is induced which in turn drives to the extrusion of zymogen granules containing enzymes in its inactive form. If this CA$^{2+}$ regulated process is impaired as in the case of sustained CA$^{2+}$ signals induced by high dose of agonists, bile acids, fat or alcohol, reduced zymogen granules secretion combined with trypsin auto-activation inside the cells will drive to pancreatic cell degradation and to acute pancreatitis. Hence a critical feature in AP is the aberrant CA$^{2+}$signaling observed in pancreatic acinar cells leading to stress conditions and cell degradation. The excessive
intracellular Ca2+ signals elicited by combinations of fat and alcohol or bile acids can be due to an excessive release of endoplasmic reticulum (ER) stores or to an increase in extracellular Ca2+ influx such as SOCE (Store Operated Calcium Entry). These aberrant Ca2+ signals initiate intracellular protease activation that causes auto digestion and appears to be totally dependent on a sustained Ca2+ increase.3,4

In most non-excitable cells, SOCE supported by STIM1 and Ca2+ channels encoded by Orai and TRPC proteins is the main activated pathway after agonist activation of the IP3-R (Inositol Triphosphate Receptor) leading to pronounced and sustained ER calcium store release.5 STIM1 which is the single-pass transmembrane protein and is mainly localized in the ER membrane has been established as the main ER Ca2+ sensor in non-excitable cells, controlling the opening of calcium channels formed by Orai or TRPC proteins. The EF-hand domain of STIM1 which is located in the luminal region of the ER acts as a sensor of Ca2+ changes to initiate SOCE. After ER Ca2+ store depletion, STIM1 oligomerizes and subsequently translocates from a homogenous distribution in the ER membrane to sites that are in close apposition to the PM (ER–PM junctions)6,7. At ER–PM junctions, the oligomerized STIM1 interacts with Ca2+ channels to allow channel opening and Ca2+ influx (SOCE)8,9.

It has been now clearly established in pancreatic acinar cells that SOC channels, encoded by Orais and TRPC and STIM1, are involved in sustained Ca2+ signals elicited by such a profound store depletion. Pharmacological SOCE blockade is able to effectively prevent toxic intracellular Ca2+ elevation, trypsin/protease activity and pancreatic acinar cell necrosis occurring after severe store depletion by thapsigargin or palmitoleic acid ethyl ester.10

Herein the study focused onto link a STIM1 mutation found in chronic pancreatitis patients with specific changes in Ca2+ homeostasis leading to enhanced trypsin intracellular activation and cell
death. A number of mutations in the STIM1 protein were identified. Two of these mutations are located in the EF-SAM domain (EF hand / Sterile Alpha Motif). The major mutation observed was E152K or Glu from Lys at position 152 which has been enunciated via experimental studies elsewhere and computational techniques herein.

4.2. Experimental studies performed on characterization of the mutation.

These studies have been performed by our research collaborators.

STIM1 gene polymorphism in a pancreatitis was tested in French cohorts to test the hypothesis that the gain of function mutations of STIM1 may induce Ca\(^{2+}\) signaling modification and therefore potentially contribute to CP. Several missense mutations were discovered in different domains of the STIM1 protein among which most variations were situated in the ER luminal portion of STIM1. The main portion of the ER STIM1 luminal domains folds into a primarily α-helical protein and consists of a canonical EF hand motif (α1-β1-α2 secondary structures) followed by a non-canonical EF-hand (α3-β2-α4 components) and a Sterile Alfa motif (SAM) domain (α5 to α10). Different mutations in the EF hand domain were previously reported and linked to Tubular-Aggregate Myopathy. Moreover, the EF-hand (residues 63–200) together with SAM domain (i.e., EF–SAM) is highly conserved from lower to higher order eukaryotes and the importance of EF–SAM oligomerization to the function of STIM1 has been clearly demonstrated. Amino acids changes which challenge the EF-hand-SAM domain interface also induce constitutive STIM1 oligomerization and SOCE activation without affecting Ca\(^{2+}\)-binding properties of EF–SAM. In view of all these findings, the first focus of the exploration was on the functional consequences of the observed STIM1 mutations in CP cohort, on variations located in the EF–SAM domain of this protein. Two contiguous variations in this domain, E152K and T153I, both clustered inside the 7th
α-helix of the SAM domain affecting highly conserved amino acids. Two families affected by ICP and with individuals carrying the E152K mutation at the heterozygous state. This mutation was present in all CP affected members and absent in the unaffected members, confirming autosomal-dominant inheritance.

As this E152K mutation is located in the EF-SAM domain, oligomerization properties of mutated STIM1 were next explored using a FRET approach between constructs carrying the WT (Wild type), E152K and T153I STIM1 proteins. Expression of the T153I STIM1 along with WT STIM1 does not induce any modification of FRET signals compared to WT confirming once more that this mutation does not change STIM1 function. However a significant decrease in STIM1 multimerization is observed when E152K YFP STIM1 is expressed with WT CFP STIM1 suggesting a defect of STIM1 multimerisation. However a significantly higher interaction level between E152K CFP/E152K YFP was detected in comparison with the WT CFP/WT YFP. This latter result suggests that E152K mutation leads to a higher efficiency of STIM1 oligomerization.

Analysis of conformational stability of the STIM1 EF-SAM domains was assessed by monitoring the WT or mutated domains thermal melts by far-UV- circular dichroism (CD) at 225 nm. In the presence of Ca\(^{2+}\), E152K EF-SAM domain is markedly destabilized compared to WT, suggesting a higher potency to form multimers. In the absence of Ca\(^{2+}\), the E152K EF-SAM domain thermal melt curve exhibits less cooperativity in the unfolding compared to WT. To further characterize the possible differences in biophysical properties between WT and mutated STIM1 EF–SAM domains, the far-UV-CD spectra of these different domains at different Ca\(^{2+}\) concentrations was measured. E152K mutant appears to undergo a smaller structural transformation upon Ca\(^{2+}\) binding than WT suggesting that E152K may display a slower reversibility in the oligomerization compared to WT. As reported in different studies, EF–SAM oligomerization is an important
initiation mechanism for STIM1 full-length physiological function of STIM1 activation, and SAM domain is a key determinant of EF-SAM oligomerization propensity.

All together these data suggest that E152K EF-SAM mutant displays wild-type-like Ca$^{2+}$ characteristics in term of secondary structure and oligomerization both in the presence and absence of Ca$^{2+}$. However, differences in stability of mutated STIM1 oligomers have been observed.

4.3. Computational Modeling of the STIM1 wild type and E152K mutant.

These experimental findings were corroborated with computational modeling of WT human STIM1 and the E152K mutant to visualize possible changes in the structure that may occur with the mutation. Since the E152K mutation site is in the STIM1 Sterile Alpha Motif (SAM) domain, and SAM is a protein-protein interaction motif, it is conceivable that the mutation alters STIM1 interactions with putative STIM1 partners such as SERCA, STIM2 and/or other STIM1 proteins.

We used the structure of wild type human STIM1 determined from NMR data by Stathopulos, et al. 11 available as PDB entry 2K60 from the Protein Data Bank. 16 This entry, containing residues 58 to 201, includes the EF-hand calcium binding domain and the SAM domain. This partial STIM1 structure is the bulk of the ER luminal portion of STIM1 but it is missing the N-terminal 57 residues for which structure could not be discerned from the NMR data due to either random positioning during NMR or loss of the residues during preparation. These missing residues may, in fact, have importance in STIM1 functions, interactions and structure but that will remain to be determined from future analysis when sufficient experimental and structural data are available. We created the virtual mutant structure by converting the E152 residue to a lysine using Schrödinger’s Maestro. Figure 4.1 depicts the wild type and mutant protein.
Figure 4.1. Luminal portion of STIM1, EF hand is colored in magenta and SAM domain in cyan. E152/K152 is depicted as tube sidechain in cyan as seen in (a) non-mutated and (top) mutated protein. The calcium binding site in EF hand is the residues depicted with tube sidechains and colored in magenta as seen in both mutant and wild type.
Crystallographic conditions used in structure determination can vary from the actual *in vivo* conditions. Molecular dynamics (MD) is a powerful tool that can model the motion of atoms of a molecular system and provide computational depictions of phenomena that are difficult to view experimentally. There are a variety of MD programs that are used such as CHARMM, AMBER, NAMD, DESMOND and GROMACS. Interpretations of experimental data and validating such with the help of MD improves the quality of data and can assure a robust structure that can be used for further parallel studies. Therefore, we performed MD simulations on the wild type and mutant structures to relax them into more *in vivo*-like conformations. This is expected to give relaxed protein conformations that accommodate the residues while minimizing the overall energy of the protein in simulated physiological conditions.

4.3.2. Methods.

We added residues 202-236 to provide the transmembrane residues modelled as an alpha helix using Schrodinger’s Prime so that the structure could be placed in a simulated membrane which, in the *in vivo* environment, anchors the protein and restricts the direction and extent of protein structural fluctuations. An initial simulated membrane was created (Figure 4.2 and 4.3) and the protein was inserted into it as a single pass transmembrane protein.
Figure 4.2. ER luminal portion of STIM1 embedded in a POPC membrane. The EF hand portion is depicted in magenta and the SAM domain depicted in blue containing E152 in pink. The transmembrane portion is colored green.
Figure 4.3. ER lumenal portion of STIM1 embedded in a POPC membrane viewed at an angle to show the lumenal surface of the membrane. The EF hand portion is depicted in magenta and the SAM domain depicted in blue containing E152 (pink). The transmembrane portion is colored green.

This virtual complex was in a virtual box and the box was filled with water and ions. The MD simulation box then contained over 170,000 atoms. Iterations of the MD simulation repositioned each atom based on the forces acting on it from all the other atoms proceeding towards a minimization of overall energy in the box. MD was run until each structure converged meaning that frames (protein conformations) were repeating and the RMSD (root mean square deviation) values had stabilized with minimal variations.
MD simulation was done using the NAMD package 2.7 and was used with the Charmm++ parallel programming model.20 The protein was prepared for MD using Visual Molecular Dynamics (VMD).21 The VMD membrane plugin tool was used to setup a POPC membrane22 and the protein was embedded into it with VMD as well. Periodic boundary conditions were set with TIP3 water and sodium and chlorine ions added to neutralize and ionize the system to a final concentration of 0.2 mol/L. 10,000,000 steps of step energy minimization were carried out to minimize the system’s energy following which the system was equilibrated for 50,000,000 psec and integration time was set to 2 fsec. A partial-mesh Ewald algorithm was used to treat long range electrostatics with a grid spacing of 0.8 for Van der Waals and short range electrostatic interactions. The simulation was run at a temperature of 310 K in the NVT (constant number of particles, volume, and temperature) RMSD, RMSF and Rg were analyzed on the whole trajectory using Wordom.23 Intramolecular H-bonds were studied on every 100 frames using the VMD timeline tool. All graphs were made using the GRACE program.24

On convergence, depicted by root mean square deviations (rmsd) in Figure 4.4, the simulations were clustered25 using Wordom to find the most common protein conformations. The top 3 clustered conformations were used for structural analysis. To ensure and understand the pka environment of the point mutation site, Propka26, which is an empirical tool for pka analysis obtained from the propka server, was used. Initially 28 Å of water was allowed around the residue and then Python 3.2 was used to run Propka on the entire trajectory to ensure suitable solvation of the residue.
Figure 4.4. RMSD (Å) shown for mutated protein containing K152. The proteins have equilibrated during the 100 nsec equilibration run as seen above.

4.3.3. Results and Discussion.

The converged structures for wild type and the mutant proteins had differences in appearance in that the partial charge surface depictions depicted in Figure 4.5 showed that residue side chains could move freely while similarities in the underlying alpha helices did not remain as illustrated in Figure 4.6. As a result, there were distinct differences in the proteins around the residue 152 site. Considering that the charges are better distributed in this scenario with R155, K156 and E151 surrounding E152, E152 is seen to be nested at the protein surface with internal H-bonds to R155 which is seen to be more exposed as compared to the crystal structure.
Figure 4.5. Partial charges are shown in the surface depictions where red denotes negative charges, blue denotes positive charges and white is neutral). Note the faint red spot of E152 in the wild type (left) and the strong blue of K152 in the mutant.
Figure 4.6. Hydrophobic residues which help in unfolding of STIM1 seen in (a) non-mutated version and (b) mutated version of the protein. The distinct differences in the conformation of protein and helices are seen. These differences may hint at the differences observed experimentally between the mutated and non mutated proteins. In the case of the mutation, the hydrophobic residues are seen to begin unfolding but are still different compared to the wild type.
R155 interacts more with the second helix especially D153, and Y150 is seen to point inwards into the helix while the E152 remains just at or below the protein surface (the cationic K152 residue in the mutant STIM1 did not show hydrogen bonding and stuck out from the protein surface as did the K156 residue). R155 was sticking out towards the environment between E151 and participating in an H-bond with it and K152 giving an additional cationic side chain exposed to the environment. This gives a distinct visible difference in the local partial charges. Y150 here is seen to point outwards and is solvent exposed. As a result, the mutant STIM1 shows a strong cationic surface around the K152 site while the wild type E152 site is neutral to slightly anionic. This difference in local charges and the accessibility of the K152, K156 and sometimes R155 could affect protein-protein interactions of the SAM domain as shown in Figure 4.7.

Figure 4.7. (a) E152 colored in pink in the wild type human STIM1 shows consistent hydrogen bonding with neighboring R155 in the helix and extends to interactions between R155 and D153. (b) K152 colored in blue in the mutant human STIM1 extends independently outward from the protein and E151 interacts with R155 thereby providing a flexible cationic site in the SAM domain.
Radius of gyration (Rg) indicates the level of compaction in a protein structure. From Figure 4.8, the Rg is higher in the non-mutant suggesting the structure is more unfolded as compared to the wild type protein.

Figure 4.8. Rg computed for the whole trajectory shows that the non-mutant protein (a) has a lower Rg than the mutated protein (b). This indicates that the protein unfolding is much less for the mutated protein than the wild type signifying defects in protein folding with the mutation.
This signifies the distinct difference between the mutant and the wild type protein. The wild type shows more unfolding than the mutant which may be due to the mutation at Lys 152. \(^\text{26}\)

Also H-bond analysis depicted in Figure 4.9 performed every 100 frame suggests that there are more H-bonds in the mutant than in the wild type possibly due to more unfolding in a different pattern observed there as compared to the mutant which appears more compact.

![Figure 4.9](image1.png)

Figure 4.9. H-bonds which were calculated every 100 frames show that the non-mutated protein (a) has fewer H-bonds than the mutated protein (b). Considering that the protein unfolding (as seen in Fig 6) shows that the wild type unfolds more than the mutated protein, more H-bonds signifies the protein is packed more tightly compared to the non-mutated protein.
Figure 4.10. Propka run on MD trajectory showcases deprotonation of Glu152 and protonation pka of Lys 152 at around 6.5 and 8.5 respectively.

Propka was run on the entire trajectory which showed that the E152 is indeed deprotonated and K152 is protonated as would be expected when these residues are solvent exposed depicted in Figure 4.10.

Protein structural stability analysis was also done using two different approaches. We started with SDM (Site Directed Mutator) a statistical potential energy function which predicts the effect of a mutation on the stability of the protein using conformationally constrained specific substitution tables (ESST’s) to find differences in folded and unfolded states for wild and mutant types. Secondly, the Cologne University Protein Stability Analysis Tool (CUPSAT), which uses coarse grained atom potentials and angles to predict stability of a protein on mutation, was used. And finally MuPro, which predicts protein stability using support vector machines (SVM) and neural networks using both sequence and structural information for stability changes, was used. All the methods used above have shown that the mutation will be destabilizing and hence not beneficial in vivo.
4.3.4. Protein stability analysis.

Stability of the protein upon mutation was tested using SDM, CUPSAT and MuPro. SDM predicts if the mutation has a stabilizing effect on the protein and calculates free energy value changes or pseudo delta delta G (ΔΔG) values. Herein, the ΔΔG value calculated corresponds to -3.27 kcal/mole signifying destabilization. MuPro, on the other hand, predicts the increase or decrease of stability with a confidence score. If the confidence score is <0 then the mutation is destabilizing and vice versa. Both SVM and neural network methods give negative confidence scores of -0.528 and -0.798 % showing that the mutation is not stable. Also CUPSTAT, which gives free energy change values, depicts that, upon mutation to lysine, there will be a destabilizing effect with a negative predicted ΔΔG. The stability analysis hypothetically signifies that the mutation would have deleterious effects on the protein conformation and activity.

4.4. Conclusion.

A number of previous experimental studies suggested that auto-activation of trypsin inside pancreatic acinar cells is the main cause of cell degradation and death. Here the effect of CCK stimulation on cell degradation in cells expressing a WT or E152K mutated STIM1 by measuring cytotoxicity at different time points after treatment was investigated. In all experiments, basal level of toxicity was always significantly higher in cells expressing E152K STIM1 compared to cells transfected with an empty vector, WT STIM1 or T1531 STIM1. Stimulation with CCK induced an increase in toxicity in all experiment conditions. All together, the data suggest that deregulation in Ca^{2+} signaling induced by the expression of E152K STIM1 leads to an increase in trypsin auto-activation inside the cells, even with a physiological stimulation, which can lead to cell death and
contributes to the pancreatitis in patients carrying the E152K STIM1 mutation both experimentally and computationally.

4.5. References.

(24) [link](http://plasma-gate.weizmann.ac.il/Grace/doc/UsersGuide.html).

CHAPTER 5: CUPRIPHILIC COMPOUNDS TO AID IN PROTEASOME INHIBITION.

From “Cuprophilic compounds to aid in proteasome inhibition,” Sreya Mukherjee, Robert Sparks · Rainer Metcalf · Wesley Brooks · Kenyon Daniel · Wayne Guida. 2016, BMCL, Available online. Copyright 2016 by Sreya Mukherjee. (Elsevier Journal)

5.1. Introduction.

In cancer, therapy can be as debilitating as the disease itself considering that current treatments are often accompanied by severe toxicities in patients. These toxicities prompt continuing investigation into new therapies with reduced, or preferably, no toxic effects. Whereas treating cancer cells without toxicity in normal cells is the ultimate goal of drug discovery, this task has met with limited success due in large part to the difficulty of finding therapeutics that can distinguish cancer cells from normal cells.

Copper, which has the ability to adopt both oxidized (Cu\(^{2+}\)) and reduced (Cu\(^{1+}\)) states, is an essential trace element for various metabolic processes in living organisms.\(^1\) There are several enzymes that use copper for processes necessary for carcinogenesis such as extracellular matrix degradation, endothelial cell proliferation, and migration mediated by integrins.\(^2,3\) Due to its role in important physiologic processes, including metabolism, the concentration of copper in organisms is tightly regulated.\(^4,5\) Copper is an element that plays an essential role in tumor development, angiogenesis, and metastasis.\(^6-10\) Experimental evidence exists that shows tumor
tissues possess both elevated copper and altered copper/zinc ratios in a stage dependent manner across multiple types of carcinomas. However, these studies of the disposition of trace metals within cancer patients comparing normal tissues to cancerous tissues have been limited. In most of the studies focusing on copper, zinc, iron, and selenium, it has been observed that the copper concentrations, as opposed to other metals, were almost always found to be elevated compared to age matched samples from normal tissue. For example, elevated serum copper levels in cancer patients have been reported in a wide variety of tumors in the following tissues: breast, cervical, ovarian, lung, prostate, and stomach.

The biomolecular target of the present study, the proteasome, contains a 700 kDa barrel-shaped core particle formed by four axially stacked heptameric rings. These rings include the β subunits that possess six proteases whose active sites face an interior lumen where proteolysis occurs. These active sites further possess a catalytic region (S1) which includes the catalytic THR1 residue and recognition region (S3). The 20S proteasome, which is the proteolytic core of the 26S proteasome complex, contains multiple peptidase activities including the chymotrypsin-like (CTL), trypsin-like (TL), and peptidylglutamyl peptide hydrolyzing (PGPH) or caspase-like activities. The proteasome is involved in oncogenic events such as up-regulation of cellular proliferation, angiogenesis, down regulation of apoptosis, and drug resistance. Pursuing proteasome inhibition is a clinically validated therapeutic strategy. For example, proteasome inhibition is believed to result in buildup of abnormal or damaged proteins that triggers apoptosis. Figure 5.1 depicts the 20S proteasome containing β subunits 4, 5, and 6 which are important in mediating the CTL activity of the proteasome. Copper is placed here in cyan based on quantum calculations discussed later.
Figure 5.1. β4 (green), β5 (magenta) and β6 (blue) subunits of 20S proteasome. Copper is depicted in cyan. The three subunits play an important role in mediating the CTL activity in the proteasome.

Experiments performed by Daniel et al. have shown that addition of copper complexing compounds (independent of the salt form) to copper, had similar potency to inorganic copper salts in purified protein assays. However, these compounds displayed substantially increased potency on human leukemia cancer cell lines. Thus, treatment of Jurkat T-cells with an 8-hydroxyquinoline copper mixture induced loss of viability in cell cultures. This effect was not observed upon treatment of Jurkat T-cells with 8-hydroxyquinoline alone or copper alone.

We also performed experiments on immortalized MCF-10A, premalignant MCF10AT1K.cl2, malignant MCF10DCIS.com and normal MDA-MB-231 breast cell lines, which were treated with copper complexing compounds clioquinol or pyrrolidine dithiocarbamate, in the presence and absence of copper, followed by measurement of cell survival rate. CTL activity of proteasome
inhibition and apoptosis were also determined by levels of the ubiquitinated proteins in protein extracts of the treated cells and showed that clioquinol or pyrrolidine dithiocarbamate become active proteasome inhibitors and breast cancer cell killers in the presence of copper. These prior literature and experimental facts have brought to light the possibility of targeting tumor growth, angiogenesis, and metastasis with cupriphilic compounds. In an attempt to do so, our lab is using small molecules with a propensity to bind copper, cost effective synthesis, and a high potential for rational synthesis of analogues.

With elevated copper levels as a marker, we hypothesize that our compounds can be used specifically against tumor cells with minimal impact on normal cells and may alleviate toxicities seen in current chemotherapeutic treatments.

Previous studies show that in cellulo assembled copper-activated proteasome inhibitors have apoptosis-inducing effects on a wide array of solid tumors and no measurable effect on normal cells. Yet, the field of copper-activated proteasome inhibitors has stalled due to lack of therapeutically suitable compounds. Only a very small number of organic scaffolds have been studied with respect to complexation with copper for proteasome inhibition in cancer cells, including: pyrrolidine dithiocarbamate, 8-hydroxyquinoline (8-HQ), clioquinol (CQ), and disulfiram. Prior studies have shown that these compounds have differential effects in immortalized, pre-malignant, and malignant breast cancer cells.

In the present study, our lab has utilized computational screening followed by experimental testing in an in vitro biochemical assay to discover a new set of compounds that, according to the hypothesized mode of action, should be selective for induction of apoptosis in tumor cells via proteasome inhibition. The compounds identified presumably could act as pro-drugs, becoming an
active drug in the presence of copper in tumor cells, and then inducing apoptosis by proteasome inhibition.

5.2. Methods.

Virtual screening was performed on compounds contained within the NCI Diversity Set 3 against the 20S proteasome model. Schrödinger’s Maestro 9.3.5 was used as the primary graphical user interface for molecule structure preparation and Schrödinger applications were used for analysis. Quantum mechanical refinement of copper interactions with the THR1 in the active site using Q-site and Jaguar with B3LYP / LACVP* allowed for placement of copper and the assignment of partial charges on THR1 and the copper ion. The virtual screening method employed the modified yeast 20S proteasome crystal structure derived from PDB ID: 1IRU. Ligands from the NCI Diversity Set 3 were prepared with LigPrep and metal binding sites were added for generation of appropriate ligand states to interact with the copper ion. The standard precision (SP) setting in GLIDE was used for docking to incorporate metal binding sites. Out of 1597 compounds, 62 were selected by the virtual screening method, which were then tested at 10 µM in the presence of 1 µM copper.

A Beckman Coulter Biomek FXP Lab Automation Workstation was used for the automated assay runs. The assay was performed in 384-well black Nunc plates. The process involved the addition of 2 µL compound in DMSO added to 28 µL buffer (50 mM Tris; pH 7.6, 37°C), with 20 µM, 10 µL 20S proteasome, and 10 µL of suc-leu-leu-val-tyr-AMC substrate and the rate of substrate cleavage/20S proteasome activity was determined. The assay in the presence of copper chloride solution involved addition of 3 µL of the copper solution and decrease in the amount of buffer solution to 25 µL. To allow chelation of copper to the compound, the plate was allowed to sit for
40 minutes with gentle shaking. The overall volume per well was kept constant at 50 μL. The compounds and substrate were initially dissolved in 100% DMSO, but the final concentration of DMSO per well plate was brought down to below 2% following subsequent dilutions. Plates were incubated at 37°C for 2 hours. A Perkin Elmer 2102 multi-label plate reader was used for fluorescence measurement. The plates were read using 340 nm excitation and 460 nm emission filters. All liquid transfers to the plates were performed using the Biomek workstation. Six lead compounds, depicted in Figure 5.2, exhibited greater than 80% proteasome inhibition in the presence of 1μM copper. Disulfiram, a well-known copper chelating compound, and copper alone were used as controls in the experiment. For dose-response curves, the concentrations of copper chloride and compound were varied to find the greatest percent inhibition and results have been reported herein.

To understand whether other metals were interacting with the compound, a solution of metals such as nickel, calcium, iron, zinc and copper chloride were taken and tested in the same way as mentioned above with the compound. The inhibition of proteasome was to the same order as that for copper chloride for the same conditions suggesting that this is a copper specific phenomenon. Hence prior literature of compound complexing and inhibiting the CTL activity of the proteasome as well as experiments confirm that these molecules bind to copper only.
5.3. Results and Discussion

A series of novel copper-activated proteasome inhibitors was identified from NCI Diversity Set 3 that exhibited greater than 80% inhibition of the 20S proteasome when assayed at 10 µM in the presence of 1 µM copper. In a dose-response assay, NSC 37408 gave the best results with an IC$_{50}$ of 3 µM in presence of 100 nM copper.
Figure 5.3. The purified protein dose response curve for NSC 34708 showing copper alone (blue), compound alone (black), and compound with copper (red) depicts a dramatic improvement of percent inhibition by the compound in the presence of sub-micromolar copper. Copper alone at that concentration exhibits little to no observable inhibitory activity (each experiment was done in triplicate, relative error < 10% for all 3 experiments).

Figure 5.3 depicts the dose-response curves for proteasome inhibition with copper alone, compound alone, and compound with 100 nM copper. This shows a dramatic improvement with the compound in the presence of 100 nM copper, while copper alone or compound alone at that concentration exhibits nominal activity.

The hypothesis considered for building the proteasome model is that Cu (II) coordinates to the NH$_2$ and OH groups of THR1 in the active site, followed by binding of our compounds to this complex. Assuming coordination of Cu (II) with THR1, quantum mechanical modeling of Cu (II) interactions with THR1 was done using Q-Site, which assisted in the placement of copper into the β5 active site and the assignment of appropriate partial charges on THR1 and copper. Virtual screening conducted on the ligands from NCI Diversity Set 3 allowed the selection of top-ranking compounds that were then assayed for inhibition of the CTL activity against purified 20S proteasome. Each compound was tested in the presence and absence of copper chloride; 6 were
found to inhibit the proteasome with greater inhibition at 10 µM when assayed in the presence of 100 nM copper and no or sometimes minimal inhibition was observed without copper. As previously known, copper alone can serve as a weak inhibitor of the proteasome under our assay conditions and, therefore, was included as a control in the experiment.

Disulfiram, a known copper chelating compound, was used as a positive control which exhibited 92% inhibition of CTL activity at 10 µM when assayed in the presence of 1 µM copper, whereas NSC 37408, showed 80% inhibition at 10 µM with 1 µM copper. This compound is being pursued because it is amenable to lead optimization and it possesses a unique chemical scaffold compared to previously used cupriphilic proteasome inhibitors. Many of the top-ranking compounds, as depicted in Figure 3, have phenolic hydroxyl groups and carboxylic acids moieties which have the propensity for copper binding. The coordination of these functional groups to copper is well understood in the chemical literature. As demonstrated by the assay, this class of cupriphilic compounds has the ability to bind copper and enhance proteasome inhibition, even in the submicromolar range. Figures 5.4 and 5.5 demonstrate a possible mode of action and binding sites of these compounds in the active site of the proteasome. As per our model and docking methods used for NSC 37408, the C7 phenolic hydroxyl group (7-OH) and the ether moiety are expected to coordinate with copper. pKa calculations with Jaguar suggest a pKa of 3.9 for the 7-OH substituent, consistent with a vinylogous carboxylic acid as shown in Figure 5.5. Additionally, the β5 subunit has a well-defined binding pocket formed between THR1, THR21 and GLY47 which could potentially harbor the copper complex.
Figure 5.4. GLIDE SP-docking pose of NSC 37408 (shown as green tubes) bound to copper (shown in cyan) in the active of site. The β5 subunit of the proteasome is shown in magenta.

Figure 5.5. NSC 37408 (shown in green) bound to copper (shown in cyan) fits into a well-defined pocket between the residues THR21, THR1 and GLY47 in the β5 subunit of the catalytic site of the proteasome.
5.4. Conclusions.

In conclusion, rational drug discovery methods resulted in the successful identification of compounds that inhibit the CTL activity of the proteasome following their coordination to copper as suggested by the computational and biochemical assay results. The computational methods helped remove 96% of the compounds (only 62 compounds out of 1597 were tested) and the biochemical assay was able to detect decoys and further remove 90% of false positives from the virtual screen (6 true positives out of 62). The compound pursued (NSC 37408) exhibited a 3 µM IC\textsubscript{50} against the proteasome in the presence of 100 nM copper (with nominal inhibition in the absence of copper), and further SAR studies on this compound are planned to showcase its amenability to design of analogues with better \textit{in vitro} and \textit{in vivo} properties. Determination of inhibition of other subunits of the proteasome will be pursued with further experiments.

5.5. References.

(22) Dou, Q.P.; Goldfarb, R.H. IDrugs, 2002, 5, 828-834.

(36) http://dtp.nci.nih.gov/branches/dscb/diversity_explanation.html
CHAPTER SIX: DETERMINATION OF NOVEL INHIBITORS OF CRUZAIN USING STRUCTURE BASES DRUG DESIGN.

6.1. Introduction.

Chagas Disease (American Trypanosomiasis), is a life threatening disease categorized as a neglected disease by the WHO, that is endemic to Latin America but also found in parts of North America, Europe and Western Pacific countries. Presently, estimated to infect 7-8 million people in the world,¹ this disease is caused by the protozoan parasite, *Trypanosoma cruzi* with the triatomine bug serving as the vector for spreading the disease and being the causal agent of infection. Chagas disease is spread to different parts of the world mainly due to the migration of patients with the disease. There are other trypanosomids such as *Trypanosoma brucei* which causes African sleeping sickness disease, and others causing disease in animals in cattle’s, horses etc. Trypanosomids are characterized by them being unicellular and flagellates with various hosts in the life cycle.

T. cruzi has one of the most complex life cycles involving various developmental stages found in vertebrates and invertebrates hosts and also bloodstream of the hosts. The lifecycle is depicted in Figure 6.1 below.
The cycle starts with the insects belonging to the Reduviidae family such as the triatomine bugs taking a blood meal from an infected human host containing the infected trypomastigote form in the bloodstream. The ingested trypomastigotes are mostly digested in the gut of the bug but the remaining ones escape to the intestine and transform into the epimastigote form which attach onto the interstitial cells of the midgut. This adhesion to the midgut helps in transforming the epimastigotes into the infective trypomastigotes which are then released together with feces and urine. The bugs can take in the infected forms via feeding and the same cycle repeats in the gut of the bug. When taking a blood meal in the human the bug then defecates which contains the infected trypomastigotes and then reaches the human body via following three stages including adhesion.
and recognition of the molecules on the human cells, signaling and finally invasion into the body. Once into the body, the macrophages form a parasitophorous vacuole around the infective form which inside the vacuole differentiates into an amastigote form which differentiates via binary fission rapidly. Finally it releases enzymes to release the trypomastigotes which rapidly invade the other organelles in the body.

Two major drugs approved by the WHO for use in the acute phase of the disease are Benznidazole and Nifurtimox, chemical structures of which are shown in Figure 6.2.

The acute phase usually is the shortest phase of the disease and is known to not be very symptomatic. The usual symptoms are fever, mild rash, cold etc ones that are easily mistaken to be not crucial. The phase lasts for two months and then the parasites move onto a undefined indeterminate phase which can last for some time and then moves onto the chronic phase lasting sometimes up to 10-20 years.

![Chemical structures of drugs for Chagas disease](image)

Figure 6.2. Chemical structures of drugs for Chagas disease

6.1.1. Cysteine protease.

Cysteine proteases are divided into 20 families and grouped into 3 clans. The first clan or the ‘papain like proteases’ comprises of C1, C2 and C10 families. Cathepsins B, F, K, and L belonging
to this clan are involved in rheumatoid arthritis, cancer, osteoporosis, and atherosclerosis while falciparin, cruzain and rhodesain are targets against malaria, chagas and sleeping sickness. Various studies over the years have focused on finding the most important etiologic agent in the progression of the disease. Cruzain or Cruzipain a cathepsin L –type cysteine protease found only in the Trypanosoma cruzi, is involved in essential functions of the growth and is indeed important for its survival by helping in the growth of extracellular epimastigotes, the intracellular amastigotes and also the transformation of epimastigotes to trypomastigotes. Cruzain is the major etiologic agent against Chagas disease and is required by the parasite for its survival. Thus targeting this enzyme illustrated in Figure 3, provides a means for controlling the disease. Cruzain is a GP 57/51 which is the most abundant member of the papain C1 family.

Also cruzain is homologous to cathepsin-L, an enzyme which is located deep into the lysosomes, an area which is not accessible to drugs making cruzain an excellent target. Some of the important residues have been highlighted in Figure 6.3. Considering the importance of this enzyme, various research groups have focused on finding an inhibitor for this enzyme to be used for the acute phase of the disease.
The Cruzain active site contains a catalytic triad Cys25, His162 and Asn182 depicted in Figure 6.4 (in green). The mechanism of the triad is as follows: The Asn182 hydrogen bonds with the His 162 enabling the formation of an imidazole-thiolate ion pair between Cys25 and His162. Another amino acid Gln19 stabilizes the acyl-enzyme intermediate by forming a hydrogen bond between amine group in Gln 19 and the substrate. The mechanism of the enzymatic activity has 3 main postulates. The first is that the serine-protease like mechanism where the first step is the nucleophilic attack on the substrate by the thiolate followed by its stabilization of the transition state of the reaction via hydrogen bond between substrate and backbone NH of Cys25 and finally stabilization of the tetrahedral intermediate via hydrogen bonding between Gln 19 and the ligand.3

The second mechanism is a proton transfer from the imidazole to the amide to form acyl-enzyme complex followed by attack of water which deacylates the complex yielding the final product.

A third proposed mechanism entails the protonation of oxygen or nitrogen in substrate via proton transfer between His 162 prior to or in concretion to the nucleophilic attack. 3

Thereby, it is understood that electrophilic groups in ligands can aid in formation of the covalent bond that needs to form initially for the triad mechanism. Vinyl sulfones, aziridines, nitriles ketone based etc. have shown good activity against cruzain.6, 7 but inhibition of cruzain via different classes of compounds contained in a peptoid have not been studied theoretically or experimentally.
Figure 6.3. Crystal structure of cruzain showcasing some of the important residues required for the enzymatic activity.
Considering the importance of this enzyme, various research groups have focused on finding an inhibitor for this enzyme to be used for the acute phase of the disease. Considering that protein-protein interactions are difficult to interrupt, various cysteine protease small molecule inhibitors have been designed to block the activity of cruzain (PDB id. 1ME4, res. 1.10 Å) and are still not effectively helping in cure of the disease. Peptidomimetics can play a vital role to overcome issues that small molecules cannot effectively counter. Building modified peptide structures or peptoids can not only prevent recognition and proteolysis of these molecules but also provide metabolic stability, better bioavailability and long duration of action along with specificity.
inhibitors various classes of small molecules have been discovered but not with very good activity. Peptidic inhibitors containing sulfones, ketones and diazomethane (irreversible) and also aryl urea, ketone based, nitrile based ones (reversible) have been made. But none have been studied clinically. Herein it has been shown that peptoids containing ketones can be suitable candidates for drug discovery of cruzain via the development of a reversible inhibitor for this enzyme that will help in control of the disease considering that irreversible inhibitors have their own share of toxicity and side effects associated with them.

Development of a drug molecule is an extensive process and is getting tougher by the day due to cost, time and efficacy issues. A drug molecule is one that forms a complex with a biomolecule in order to conduct a specific purpose as a substrates or signal transmitters. They can be noncovalent or covalent in mature. Covalent inhibitors react with the active site of the target protein in order to form a covalent complex that impedes protein function, though it can be reversible or irreversible, depending on the reverse reaction rate. The most notable adverse reactions associated with metabolic reactions that result in the formation of chemically reactive intermediates, such as free radicals, that may alter and covalently bind to host cell DNA or proteins. The need for new drugs is always there and thus advances have been seen in the field of medicinal chemistry in the arena of combinatorial chemistry, high throughput screening and virtual screening. Compared to traditional screening which may take a very long time and involves long hours of synthesis by a chemist followed by assays to determine efficacy, and also HTS experiments which are tremendously costly, Virtual Screening (‘VS’, a.k.a. *in silico* or computer-based screening) used here as a starting point and is also maturing as the hit identification strategy. VS is a process
where a large number of compounds usually termed as the virtual library is reduced to a smaller number of enriched compounds via computer algorithms which are further tested experimentally. Via the computer program compounds are scored or prioritized based on their predicted activity and then finally manual selection of compounds leads to proposal of compounds for experiments. Virtual Screening has been incorporated into drug discovery campaigns as a means of reducing costs.

Knowledge of the receptor protein is critical for a good VS and can be obtained from X-ray, NMR, homology modeling etc. Molecular dynamics is a powerful tool that can model the motion of atoms of a molecular system and serve as a computational microscope to view phenomena that are difficult to view experimentally. There are various MD program that are used such as CHARMM, AMBER, NAMD, DESMOND and GROMACS. In this case our studies were done using Desmond developed by D.E Shaw research. Interpretations of experimental data and validating such with the help of MD improves the quality of data and can assure a robust structure that can be used for further parallel studies. A structure which is in agreement with an MD relaxed protein can be considered a good starting point. But there are reports in the literature where these data sometimes have been false positives, and MD studies have been shown to be incorporated can give rise to more reliable protein-ligand complexes. The drawbacks in the docking programs are the lack of flexibility of the protein in question which in vivo is typically very flexible. Thus, by not permitting it to move can result in conformation of ligand binding which may not be reliable. In our case, cruzain was equilibrated for 25ns using Schrodinger’s DESMOND in a water containing ions environment to reach its stable form and that structure which was then further used for docking studies. The published 3D structures available from the protein data bank has 91,761 structures as of June 25, 2013 and resolutions of ≤2.0 Å are preferred so the position of individual atoms are

112
discernible.

The scaffold for computational use has been shown in Figure 6.5. This peptoid structure would be synthesized using primary amines. The R2, R3 groups as seen would be part of the R groups on the primary amines and would be prepared computationally manually and with Combiglide 14, a Schrodinger Suite program was used to build the combinatorial library. 180 primary amines were chosen from Scifinder with H2N-CH-C restraints and the primary amines which contained extra nucleophilic groups such as amides, acids and anilines were rejected. The R4 group was used to increase the solubility of the peptoid.

Following this, LigPrep 15 was used to generate the different tautomers, stereoisomers, and ionic states of these groups. These prepared structures, were then used for the docking studies. As mentioned before molecular dynamics was performed on the 1ME4 cruzain structure prior to docking to equilibrate the protein for 25ns till equilibration was achieved. All-atom structures of the cruzain were constructed using the Maestro Protonation states were assigned to ionizable residues according to the pKa based on pH = 5.5 using the Protein Preparation workflow in Maestro and the Epik module considering that cruzain is contained in a reservosome which stores cruzain is at that pH.

The protein was then placed in a cubic cell, with size adjusted to maintain a minimum distance of 10Å to the cell boundary, and soaked with a pre-equilibrated box of water using the System Builder module of the Desmond 16 package. All overlapping solvent molecules were removed and an appropriate number of counter ions were added to maintain charge neutrality and the final concentration was increased to 0.2 mol/L (in vivo condition). All molecular dynamics (MD) simulations were performed using the Desmond package. The OPLS 2005 force field was used to model all peptide interactions, and the TIP3P model was used for water. The particle-mesh Ewald
method (PME) was used to calculate long-range electrostatic interactions with a grid spacing of 0.8. Van der Waals and short range electrostatic interactions was smoothly truncated at 13.0. Nose–Hoover thermostats was utilized to maintain the constant simulation temperature and the Martina–Tobias–Klein method was used to control the pressure. The equations of motion was integrated using an inner time step of 2fs for bonded interactions and non-bonded interactions within the short range cutoff. The system was equilibrated with the default protocol provided in Desmond, which consists of a series of restrained minimizations and molecular dynamics simulations designed to slowly relax the system, while not deviating substantially from the initial protein co-ordinates. The simulation was run at a temperature of 310 K in the NVT (constant number of particles, volume, and temperature) ensemble with solute heavy atoms restrained with force constant of 50 kcal/mol. The relaxed protein was then used for further docking. Here, the peptide docking program was used for docking the ligands. As standard, Glide docking studies use a rigid receptor, which in reality is not the case, hence, to accommodate the altering of the receptor binding site to conform to the shape and binding mode of the peptoid ligand peptide docking was used. Glide uses a Monte Carlo algorithm. For peptide docking, Glide scores the ligands based on their MM-GBSA scores which it translates to a G-score parameter. Following VS, visual analysis of the top ranking ‘hits’ (~top 10%) was done to proceed towards further minimization and simulations discussed later.
Figure 6.5. Peptoid structure to be used as the inhibitor for cruzain.

For virtual screening, Glide limits molecules to ≤ 50 rotatable atoms, and due to the time required for screening very large libraries, development of the large entries were a definite concern. To keep the Glide docking fast and effective, the size of the underlying scaffold to a workable scaffold subunit and restrict its flexibility to control the range of poses tested for each entry. Combiglide was used to complete the entire peptoid structure. As mentioned, the ketone based group which will be used onto the peptoid as R1 group. Herein a few inhibitors (reversible) warheads were taken from the literature which would be added on to the peptoid mainly because, there is already evidence that these compounds are potential small molecule inhibitors. Hydromethylketones which is a class of compounds that were synthesized as potent reversible inhibitors of cruzain was used as warheads. 24 The structures chosen herein are depicted in Figure 6.6.

Figure 6.6. Hydroxymethyl ketones : Reversible inhibitors for Cruzain.
The compounds in Figure 6.6 would act as the R₁ and R₂ groups as they are potent inhibitors of cruzain. The other groups attached in the X position as seen in Figure 6.7, were also found to be contributors to cruzain inhibition as per literature. Thus these compounds were to be used as warheads as well on the peptoid scaffold as shown in the Figure 6.7.

Figure 6.7. Compounds to be used as warheads onto the peptoid scaffold.
As mentioned previously, Glide docking keeps the receptor rigid and docks the different conformations of the ligand docked and when this library was screened, the peptoid was seen to dock without maintaining the structure as expected. The beta peptoid structure was too flexible and was not forming the entire beta peptoid with the intramolecular hydrogen bonds as shown in Figure 6.5. Hence a conformational search was conducted using Schrodinger Macromodel to conclude on the secondary structure formation of the peptoid.

6.2.1. Conformational Search performed on the peptoid.

The word ergodic is a mixture of two Greek words: ergon which means work and odos which means path. The ergodic theory states that “it is the study of the long term average behavior of systems evolving in time. The collection of all states of the system form a space X,” 25 hence the importance of sampling cannot be stressed enough. To ensure that ergodicity of a molecule is well explored, a variety of sampling procedures were used. Schrodinger’s MacroModel conformational searches typically cycle through the process of generating a new structure, minimizing it, and then determining if the structure should be retained. A few types of searches included Monte Carlo Multiple Minimum (MCMM) which is great in performing global searching and exploring close as well as distant areas of the potential energy surface. 26

Low-Mode Conformational Search Methods (LCMS) is a great method if there is little or no prior knowledge of the system to be searched. And the Mixed MCMM/Low-Mode Conformational Search Methods combines both MCMM and LMCS methods to perform the search. 26

The peptoid herein is a beta peptoid structure as discussed in chapter one 27 where intramolecular hydrogen bonds are expected to hold the structure together. To explore this, a conformational search with two approaches were looked into. In the first stance, the peptoid was subjected to an
unconstrained macromodel minimization and followed by unconstrained and constrained conformational search respectively on the unconstrained peptoid structure with the constraints being 2.1 Å intramolecular distance and H-bond angle of 120 + 10°; and then followed by assessing the structures to find the lowest energy structure from the resulting searches. In the second stance, the peptoid was subjected to a constrained macromodel minimization with same constraints as discussed above and then followed by both constrained and unconstrained searches. The energy windows varied here ranged from 15KJ, 21 KJ and 100KJ. The lowest energy structures generated from these were checked to understand what the stable conformation could possibly be. Low mode and also Mixed MCMM/Lowmode searches were performed. From all the different variations of searches performed, it was observed that most of the conformations did not retain the beta hairpin structure. Only when the structure was constrained for minimization and then constrained during the conformational sampling using distance of 2.1 Å H-bond distance and H-bond angle of 120 + 10° with lowmode search gave the beta form as the lowest energy structures, a few of which are depicted in Figure 6.8 below.
Figure 6.8. a) Initial conformations before any macromodel search was conducted. b) Stable conformations taken by the beta hairpin structure following constraints show that peptoid retains this conformation only after the constraints are placed.

It was concluded that the peptoid scaffold possibly does not take the beta hairpin conformation which was also shown experimentally via NMR studies. Hence a second hybrid-cyclic peptoid structure was considered instead of the previous non cyclic peptoid. The hybrid peptide –peptoid cyclic structure is depicted in Figure 6.9 below. This cyclic peptoid still contained the hydroxymethyl ketone warhead and instead of two other R groups, it had only one position for the R group which would contain side chain of the primary amines. And to increase the solubility of the peptoid, a serine moiety was added onto the other end.
Figure 6.9. Cyclic peptide-peptoid hybrid scaffold containing the hydromethyl ketone warhead.

Combiglide was used to prepare the library of peptoids with the different R groups from the primary amines selected earlier attached, to the nitrogen group on the chain. This library was then prepared with Ligprep to include tautomer’s and different protonation states of the ligands. The peptide docking function of Glide was used for docking the compounds and then the top 200 compounds were then minimized using Macromodel’s embrace function.

Macromodel’s Embrace (MBAE) or Multi-ligand Bimolecular Association with Energetics is a method for automatically minimizing or performing conformational searches on prepositioned ligands in the active site of a protein and obtaining energetic information related to the association of the ligands with the protein and was used for minimizing the protein after the peptide docking was completed. This program was used for further minimization of the ligand in the receptor.
6.3. Results.

The prepared protein structure after being subjected to molecular dynamics for 25ns was clustered using Desmond. The clustered pose of the protein, that is the most commonly occurring conformation after equilibration was then analyzed. The RMSD analyses in Figure 6.10 show that the protein was equilibrated over its run of 25 ns.

![RMSD plot displaying results of Molecular Dynamics equilibrated over 25ns.](image)

Figure 6.10. RMSD plot displaying results of Molecular Dynamics equilibrated over 25ns.

The hydroxymethyl ketone ligand in the crystal structure was docked in place onto the protein ligand binding site with the help of Glide and the poses were analyzed and on superimposing the top most scored pose with the original crystal structure was found to be dock in the same way as seen in the crystal structure as depicted in Figure 6.11.
Figure 6.11. The crystal structure of the protein depicted with blue ribbon with the ligand depicted in grey. The post molecular dynamics structure is depicted in orange ribbons with the ligand colored green. The superimposed structures show almost similar conformations.

This shows that the binding pocket was remarkably stable and hence was deemed stable for the further studies.

The entire peptoid library after screening with peptide docking where the top ligands which are scored with the help of MM-GBSA in this program were enriched manually from the set, the top 200 ligands were minimized using Macromodel’s Embrace. These ligands were then analyzed manually and the top 5 ligands under the 2 Kcal/mol range were analyzed and the ones with best interactions with the active site was chosen and then short molecular dynamics were run on each of them. The best peptoid structures have been discussed below.
6.3.1. [2-(4-fluorophenyl)-propylamine] containing peptoid.

The cyclic peptoid containing 2-(4-fluorophenyl)-propylamine as depicted in Figure 6.12 (a) when docked with a docking score of -8.88 kcal/mol and finally minimized and equilibrated for 15ns is seen to occupy the active site completely. The ketone warhead is seen to fit into the S1 site containing the catalytic triad and interact with Cys 25 and His 159. Also interactions are seen with Leu 67 and 70 as well as Asp 158. The detailed interactions are shown in Figure 6.13. On superimposing the peptoid containing protein onto the equilibrated crystal structure it is seen that the pocket harboring S1 site doesn’t seem to have opened up immensely. Rather the pocket is still stable and the peptoid is seen to anchor on the site and will probably hold its own and prevent enzymatic action of the peptoid, depicted in Figure 6.14. The residues that play a major role in substrate recognition and specificity are seen to be interacting with the multiple parts of the peptoid. The RMSD of the equilibration is shown in Figure 6.15.

Figure 6.12 (a) [2-(4-fluorophenyl)-propylamine] containing peptoid containing the warhead. (b) The surface view of peptoid positioned after molecular dynamics; bound to the important residue, Cys 25 depicted in cyan.
Figure 6.13. The interactions of the peptoid with the neighboring residues in the binding site. Interactions with His 159 in the S1 site, Leu 67 in the S3 site show promising binding.

Figure 6.14. The comparative alignment of the peptoid (left) as compared to the ligand (right) show that the effective binding of the peptoid onto the protein.
6.3.2. [3-Chloro-4fluorobenzylamine containing peptoid.]

The cyclic peptoid containing 3-Chloro-4fluorobenzylamine as depicted in Figure 6.16 when docked with a docking score of -8.62 kcal/mol and finally minimized and equilibrated for 15ns is seen to occupy the active site completely. The ketone warhead is seen to fit into the S1 site containing the catalytic triad and interact with Cys 22 and Asp 158. The detailed interactions are shown in Figure 6.17. On superimposing the peptoid containing protein onto the equilibrated crystal structure it is seen that the pocket harboring S1 site doesn’t seem to have opened up immensely. Rather the pocket is still stable and the peptoid is seen to anchor on the site and will probably hold its own and prevent enzymatic action of the peptoid as seen in Figure 6.17. The RMSD of the equilibration is shown in Figure 6.18.
Figure 6.16 (a) [2-(4-fluorophenyl)-propylamine] containing peptoid containing the warhead. (b) The surface view of peptoid positioned after molecular dynamics; bound to the important residue, Cys 25 depicted in cyan.

Figure 6.17. The interactions of the peptoid with the neighboring residues in the binding site. Interactions with Asp 158 in the S2 site, Cys25 in the S1 site show promising binding.
Figure 6.18. The comparative alignment of the peptoid (left) as compared to the ligand (right) show that the effective binding of the peptoid onto the protein.

Figure 6.19. RMSD plot of the peptoid shows that the structure attained equilibration with the 15 ns of its run.
6.3.3. 4-Methoxyphenethylamine containing peptoid.

The cyclic peptoid containing 4-Methoxyphenethylamine as depicted in Figure 6.20 when docked with a docking score of -8.62 kcal/mol and finally minimized and equilibrated for 15ns is seen to occupy the active site completely. The ketone warhead is seen to fit into the S1 site containing the catalytic triad and interact with Asp 158 and Asn 70 among few residues. The detailed interactions are shown in Figure 6.21. On superimposing the peptoid containing protein onto the equilibrated crystal structure it is seen that the pocket harboring S1 site doesn’t seem to have opened up immensely. Rather the pocket is still stable and the peptoid is seen to anchor on the site and will probably hold its own and prevent enzymatic action of the peptoid as seen in Figure 6.23. The residues that play a major role in substrate recognition and specificity are seen to be interacting with the multiple parts of the peptoid. The RMSD of the equilibration is shown in Figure 6.22.

Figure 6.20 (a) 4-Methoxyphenethylamine containing peptoid containing the warhead. (b) The surface view of peptoid positioned after molecular dynamics; bound to the important residue, Cys 25 depicted in cyan.
Figure 6.21. The interactions of the peptoid with the neighboring residues in the binding site. Interactions with Leu 67 in the S3 site and Asn 70 show promising binding.

Figure 6.22. RMSD plot of the peptoid shows that the structure attained equilibration with the 15 ns of its run.
6.4. Conclusions.

The process of developing lead molecules, has lot of pitfalls which can arise in any part of the process. Peptoids are a great choice in interrupting protein-protein interactions. Herein, cruzain is a cysteine protease which has 6 substrate sites, S1-S3 and S1’-S3’. Hence this peptide-peptoid hybrid scaffold has the capacity to fit into the whole pocket and interrupt the activity of this important protease. The docking methodology utilized herein successfully docked the ligands onto the protein followed by proper conformational stabilization by further programs. This methodology has successfully showed that peptoids of this nature can be studied computationally and can give us a lot of idea of using structure based drug design to successfully create ligands for other proteins as well. Residues such a Histidine 159, Aspartate 158, Leu 67 and Cys 25 were few of the common residues seen to interact with the majority of the ligands. Further biomedical assays
will need to be conducted on the ligands both computationally and in the laboratory in order to further discover and optimize its binding affinity and specificity to cruzain.

6.5. References.

1. World Health Organization

2. Center for Food security and Public Health
 <http://www.cfsph.iastate.edu/Factsheets/pdfs/trypanosomiasis_american.pdf>.

CHAPTER SEVEN: STRUCTURE MODIFICATION OF APOLIPOPROTEIN E4 TO DIMINISH CHARACTERISTIC STRUCTURAL DOMAIN INTERACTION AND RESTORE FUNCTION NORMALITY

7.1. Introduction.

Apolipoprotein E (apoE) is an apoprotein on lipoproteins that functions in many diverse biological roles. ApoE primarily transports cholesterol and other molecules throughout the body including the brain, linking it to many neurological pathways as an important lipid transporter in the central nervous system. One key aspect of ApoE function is that it is isoform-dependent. There are three variants of apoE: ε2, ε3, ε4. ApoE2 functions properly and is protective against Alzheimer disease. ApoE3 is also protective against the disease, although to a lesser extent than apoE2. The ε4 variant is an important risk factor for late-onset Alzheimer disease because of its interaction with the peptide amyloid beta. \(^1\)\(^-\)\(^2\)

Alzheimer disease (AD) is the most common form of dementia and without a cure it worsens as the disease progresses until death. AD is characterized by an imbalance in the production and clearance of amyloid beta (Aβ) which causes an abnormal accumulation of this peptide in the brain. Aβ are peptides produced from the amyloid precursor protein (APP) and they aggregate to form oligomers which can form the plaques associated with Alzheimer disease.
Early onset AD is most commonly due to an overproduction of Aβ which is due to a mutated APP gene which leads to abnormalities in the amyloid precursor protein (APP). More relevant to apoE, however, is late-onset AD. Late-onset AD is due to general impairment of Aβ clearance which can also contribute and add to the progression of early onset AD. 7

Apolipoprotein E typically catalyzes the break-down of Aβ which facilitates the clearance and elimination of Aβ from the brain. ApoE degradation of Aβ is dependent on which isoform of the protein is present. The ε4 variant is not as effective at degrading Aβ peptides and therefore accumulation is more common in people with the ε4 allele. The presence of the ε4 allele has been shown to expedite the progression of AD so that symptoms are observed at a younger age.

ApoE4 plays other roles in the Alzheimer disease pathogenesis via mechanisms that are independent of amyloid beta. ApoE4 causes loss of synaptic function, glucose metabolism, neurogenesis, vascular function, mitochondrial function, and lipid/cholesterol metabolism. ApoE4 also causes gain of toxic function such as an increase in brain atrophy, neuronal toxicity, tangle formation, and aberrant brain activity.

The role of apoE4 in the progression of Alzheimer disease makes it a good target for inhibition as well as structure correcting. It has been shown that certain small molecule structure correctors can change the structure of apoE4 to resemble the other isoforms of the apolipoprotein which could help to diminish the negative effects of apoE4 on the body.

ApoE4 function directly affects the amyloid beta-peptide pathway in two ways: decreased clearance of Aβ and increased production of Aβ. Many pathways and variable factors impact amyloid beta aggregation but one possible pathway which is explored here has Aβ clearance across the blood-brain barrier (BBB). 3 The specific apoE Aβ interaction and pathway of clearance is
unclear as well and the apoE/ Aβ complex is a topic of ongoing study. One explanation is that the apoE4 is less lipidated than the other isoforms which means that the apoE/Aβ complex is less stable which reduces the clearance of the peptide.

The structural differences between the apoE isoforms can explain their functional differences. Specifically, apoE4 has an interaction between its two major structural domains. ApoE3 does demonstrate some structural domain interaction, but this interaction in negligible when compared to the same interaction in ApoE4. The two major domains that are interacting are the amino-terminal domain (residues 1-191) and the carboxyl-terminal domain (residues 244-272).

Figure 7.1. The structures of apoE3 and apoE4 differ in the significance of the structure domain interaction. The isoforms also have a different amino acid at the 112 position as seen in the figure.

The important residues on the apoE4 include Arg-61, Glu-255 and Arg-112. Among these, apoE3 differs only in the 112-position where a cysteine is present instead of arginine. The amino terminal of the protein interacts with the LDL receptor and the carboxy terminal with the rest of the lipoprotein binding determinants. The role of Arg 61 in determining the affinity of ApoE4 for VLDL preference has been shown already. And the presence of Arg 112 instead of Cys 112 as in ApoE3 allows for rapid association with the Aβ peptide. The domain interaction is caused by
ionic interaction between Arg-61 and Glu-255. This domain interaction can be interrupted to mimic a apoE3-like structure. Mutation of either residue that is important to the interaction can create a molecule that is more like apoE3, diminishing the toxic function of the apoE4 isoform.

ApoE4 is essentially a protein consisting of 4 alpha helices in the amino terminal with another long helix as the carboxy terminal. Since protein-protein interactions are difficult to interrupt, and considering the mass of alpha helices, a helical AAα-peptoid was designed which is linear and would have negatively charged groups on it to counter the positive charge on the arginine’s present on the helices containing Arg 61 and 112.

Structure based drug design was performed to design a library of peptoids that could be successfully synthesized and used as structure modifiers of ApoE4.

7.2. Methods.

As discussed in previous chapters, finding the right ligand for a protein with the aid of computational programs was done in a similar way. The x-ray crystal structure of the ApoE4 (PDB identification code: 1GS9) was selected from the protein data bank which contained residues of the amino terminal of the protein and was prepared using Protein Prep Wizard program of Schrödinger. Protein prep adds hydrogen to the protein, fix the structure, delete unwanted water molecules, to name a few things it does. This structure has been used before and includes all the important sites with a resolution of 1.7 Å which is sufficient for these purposes. ApoE3 and apoE2 were also protein prepped using the PDB IDs 1NFN and 1NFO, respectively. Molecular dynamics simulation was run on this protein structure for 30 ns in a water box containing ions at 0.2. mol/L concentration, to achieve equilibration and the final structure was then used for further work. As
mentioned before molecular dynamics was done prior to docking to equilibrate the protein for 30ns initially and checked to see if equilibration was achieved. All-atom structures of the protein was constructed using the Maestro Protonation states were assigned to ionizable residues according to the pKa based on pH = 7.0 using the Protein Preparation workflow in Maestro and the Epik module. Each peptide will then be placed in a cubic cell, with size adjusted to maintain a minimum distance of 10Å to the cell boundary, and soaked with a pre-equilibrated box of water using the System Builder module of the Desmond package. All overlapping solvent molecules removed and an appropriate number of counter ions were added to maintain charge neutrality. All molecular dynamics (MD) simulations will be performed using the Desmond package. The OPLS 2005 force field will be used to model all peptide interactions, and the TIP3P model will be used for water. The particle-mesh Ewald method (PME) will be used to calculate long-range electrostatic interactions with a grid spacing of 0.8. Van der Waals and short range electrostatic interactions will be smoothly truncated at 13.0. Nose–Hoover thermostats will be utilized to maintain the constant simulation temperature and the Martina–Tobias–Klein method was used to control the pressure. The equations of motion was integrated using an inner time step of 30ns for bonded interactions and non-bonded interactions within the short range cutoff. The system will be equilibrated with the default protocol provided in Desmond, which consists of a series of restrained minimizations and molecular dynamics simulations designed to slowly relax the system, while not deviating substantially from the initial protein co-ordinates. The simulation were run at a temperature of 310 K in the NPT (constant number of particles, pressure, and temperature) ensemble with solute heavy atoms restrained with force constant of 50 kcal/mol. The relaxed protein was used for docking.
Initially, apoE4 was screened against NCI Diversity Set IV, the National Cancer Institute library containing around 1500 compounds of different functionalities using GLIDE (grid-based ligand docking from Schrödinger). The important residues identified previously were the target of this docking procedure with the goal of modifying the structure of apoE4 to mimic apoE3 via conformation changes especially less structure domain interaction via the Arg-61 and Glu-255 ionic interactions.

While the molecules must bind to the active site of apoE4, they should not interfere with the function of the other apoE isoforms and so the top structures were also docked to the apoE2 and apoE3 to observe how these structures are affected by the identified structures. The best structures for apoE4 are those with high docking scores and selectivity for the E4 isomer, meaning they do not exhibit significant interaction with E2 or E3.

For the docking procedure, SP (Standard Precision) docking was followed by the more rigorous XP (Extra Precision) docking and the scores were recorded and the structures studied. The top structures were identified from the docking.

Peptidomimetics are considered as replacements for peptides as therapeutic agents, due to the fact that they have greatly enhanced invivo stability and unlimited structural diversity and have been extensively investigated, yielding many valuable bioactive agents. Recently, Cai and group developed a new class of peptidomimetics, termed as γ- AApeptides. They contain N-acylated-N-aminoethyl amino acid units derived from chiral γ-PNA as shown in Figure 2 below. Previous studies have demonstrated that γ-AApeptides are not only highly resistant to proteolysis, but can mimic bioactive peptides. 3 and can be ideal candidates for the identification and development of novel molecular probes and drug candidates.
Figure 7.2. An Aαα-peptide.

Using the top ligands from the NCI diversity set as core structures, a peptide library was then created as seen in Figure 7.3. This library was then prepared using Combiglide[^11^] and used for further docking. As seen in Figure 3 below the peptide-peptoid structure was kept at a short length containing R groups in four positions. Considering that Arg is positively charged, some of the groups placed were negatively charged such as ones containing sulfonates and phosphates and carbonyl functional moieties. The total library size is predicted to be 11520 combinations.

Figure 7.3. The library designed after the first docking using the top ligands. This set of ligands was then used for further docking.
The NCI Diversity Set II showed some selective interaction with the apolipoprotein E4. The interaction with the docking site suggests that the structure of apoE4 may be modified to mimic the linear structure of apoE3 via conformation changes. Combiglide was used to prepare the library followed by Ligprep \(^\text{12}\) to generate tautomer’s and different protonation states of the ligands. This library was then seen to increase to around 10,000 structures. To aid in efficiently and quickly screen compounds, the HTVS or high throughput virtual screening method of GLIDE was used to screen the best fitting compounds. HTVS is less stringent as compared to SP or XP docking. The top 300 compounds were then subjected to peptide docking function of GLIDE. Peptide docking \(^\text{13}\) is a new addition of glide and takes the rotation of peptide backbone into account before docking onto the protein. The top 100 compounds, based on the Glide G-Scores were then subjected to Macromodel Embrace \(^\text{14}\) which minimizes the energy of the protein-ligand complex after searching different conformations and allowing both to move flexibly to an extent to get the most feasible minimized pose for the complex. The top most compounds with best fit and top G-Scores were then subjected to Prime’s MM-GBSA \(^\text{15}\) which helped in determining binding energy of the ligand to the protein in an environment containing water (VSGB solvent model). MM-GBSA is used to estimate relative binding affinity for a list of ligands (reported in kcal/mol). Prime MMGBSA DG bind", the binding free energy, is calculated with the equation:

\[
\Delta G(\text{bind}) = E_{\text{complex(minimized)}} - (E_{\text{ligand (minimized)}} + E_{\text{receptor(minimized)}})
\]

Using MM-GBSA methods, relative binding affinities for a set of ligands to a given target can often be reproduced with good accuracy and considerable less computational effort compared to full-scale molecular dynamics simulations. Hence for these peptoids, binding energy were computed.
7.3. Results

The crystal structure, 1GS9 was simulated in a water box at 0.2 mol/L. After 30 ns, the structure was analyzed and equilibrium had been attained as seen from the rmsd variations. The most stable form of the protein following clustering was used for docking studies. Also following initial docking, the ligands with the most negative Glide scores (highest ranking) were looked into. In ApoE4, Arg 61 is the residue that forms the salt bridge with the Glu 255 on the carboxy terminal, hence moieties that interact or have the propensity of interaction with the group were considered in the library design of the peptoid. Figure 7.4 below shows few of the ligands docked onto ApoE4. The propensity of the phosphate groups to form H-bonds with the Arg 61 was observed hence included in the library of R groups.
Figure 7.4. The portions of ligands based on functional groups they contained that were used as R groups in designing the peptide library based on the docking of NCI diversity set.
Following the design of library, peptide docking function of Glide was used and the resulting peptides were docked onto the site containing Glu 109, Arg 112 and Arg 61 as the centroid residues. Following the docking, the top 2% of the ligands were minimized using macromodel’s EMBRACE function where the conformations of the peptide were explored and the final minimized complex was analyzed.

Most of the top hits were seen with the phosphate group forming H-bonds and having pi-pi interactions with the Arg 112 and 61. Arg 112 and Glu 109 forms a salt bridge in the original crystal structure and that is seen to be sustained.

7.3.1. Ligand 1.

The peptide with the highest docking score of -8.871 kcal/mol as seen in Figure 5. Since the protein is a mass of alpha helices, this peptide perfectly aligns itself to the helices and the interactions of the phosphate group to the Arg 61 and 112 can possibly prevent the interaction of the residues to form the salt bridge and act as a structure corrector as illustrated in Figure 6.

Figure 7.5. Ligand 1 shown to dock onto ApoE4.
Figure 7.6. The phosphate group interacts via H-bonds and pi interactions with the Arg 112 and 61. The peptide completely linearly aligns with the helices.

7.3.2. Ligand 2.

The peptide has a docking score of -8.092 Kcal/mol as seen in Figure 7. Since the protein is a mass of alpha helices, this peptide takes on a slightly different conformation. The phosphate group interacts with the Arg 61 but the peptide itself is seen to be horizontal instead of vertically aligned but the interactions it forms can possibly prevent the interaction of the residues to form the salt bridge and act as a structure corrector as illustrated in Figure 8.
Figure 7.7. Ligand 2 shown to dock onto ApoE4.

Figure 7.8. The phosphate group interacts via H-bonds and pi interactions with the Arg 112 and 61. The peptide vertically aligns with the helices.
7.3.3. Ligand 3:

The peptide with the highest docking score of -8.082 kcal/mol as seen in Figure 9. Since the protein is a mass of alpha helices, this peptide is again seen to perfectly align itself to the helices and the interactions of the phosphate group to the Arg 61 and 112 can possibly prevent the interaction of the residues to form the salt bridge and act as a structure corrector as shown in Figure 10.

Figure 7.9. Ligand 3 shown to dock onto ApoE4.
7.4. Conclusion.

ApoE4 is a protein that is now postulated to be the strongest genetic risk of Alzheimer’s. Structurally this protein consists of majorly alpha helices and Arg 61 in one of the outer helices of one terminal are known to form a salt bridge with the other terminal of the protein. Correcting the structure by interrupting protein-protein interactions between the terminals has been attempted with the AA peptoids. From the examples shown above, it is clearly evident that these ligands have a great future as ApoE4 structure correctors and also as inhibitors of other diseases.
7.5. References

8.1. Introduction.

The early 1900’s, saw the advent of the field of crystal engineering, resulting in better and wider understanding of the design of viable crystalline forms. Crystal engineering, first defined by Desiraju utilizes the understanding of intermolecular interactions and crystal packing for the design of new crystalline forms. Overtime, crystal form screening of APIs has constituted an essential part of the pharmaceutical industry owing to the inherent stable nature of crystalline forms over amorphous forms. Various crystal forms that can be made include salts, hydrates, solvates, and cocrystals. Cocrystals, a class of compounds for which the principles of crystal engineering are utilized, have gained a lot of recent attention owing to their amenability to design, their ability to tailor physiochemical properties, and also utility in the fields of materials and organic chemistry. The supramolecular synthon approach can be used to successfully discover cocrystals by choosing cocrystal formers by specifically targeting certain functionality on the molecule in conjunction with analysis of currently available structural data from the Cambridge Structural Database (CSD). Pharmaceutical cocrystals, one of the most highly studied subset of cocrystals, affords new crystal forms of APIs and can be defined as, “a multiple component crystal in which at least one
component is molecular and a solid at room temperature and forms a supramolecular synthons with a molecular or ionic API.”

Pharmaceutical cocrystals have been studied in the context of improving physicochemical properties such as modifying the solubility, dissolution rate, stability and bioavailability of the parent API.

Causative, the need for efficient screening methods for this class of compounds becomes imperative considering the wide range of applications of these compounds inadvertently bring in. To date the first report of a cocrystal dates back to the 1800’s with Wohler’s 1:1 quinhydrone experiment. This experiment also entrails the first use of grinding or mechanochemistry in the scientific literature. Over the years, various methods have been used and developed for the synthesis of cocrystals which include neat or dry grinding techniques, solution crystallization, sublimation, melt crystallization, slurry crystallization, antisolvent addition and reaction crystallization. Development of various new techniques such as the use of ultrasound and twin screw extrusion technique using shear forces showcase the importance and also need for an efficient screening process.

Following quinhydrone synthesis, Etter and Curtin’s efforts saw the rise in the scope of this method. Grinding today represents to be a technique superior to the traditional solution crystallization technique as it omits the effects of various solvents and the effects hereafter and showcases production of cocrystals which may have not been afforded by solution crystallization. The mechanism for grinding have been studied in details over the last couple of years and extrapolated to three mechanisms: molecular diffusion, eutectic formation and cocrystallization via an amorphous phase that either by themselves or in complementarity aid in formation of cocrystals. One of the utilities of this technique lies in the arena of C3S3 (Cocrystal controlled solid state chemistry) which garners the transition product which is a cocrystal before the
production of the end product. Improvement of the grinding method was achieved via addition of a small amount of solvent (LAG, Liquid Assisted Grinding) during the grinding process and it was seen that this addition catalytically helped in improvement of kinetics of the reaction via exposure of interfaces which helped in exposing additional degrees of orientational and conformational freedom, thereby leading to faster reactions. The use of solvent in this approach is minimal such that solubility does not affect crystallization as with solution crystallization.18, 25

Solution mediated phase transformation or slurry30 is another technique that has garnered a lot of attention due to its ability for scale up, wherein saturated amounts of the cocrystal components are taken in solvent and stirred for a time period starting from one day up until a week or more to achieve the desired crystal form. This method has previously been used with single component systems to achieve phase transition26, polymorphisms27. Zhang30 et al tested various cocrystal systems to showcase that if a cocrystal phase exists for a system, saturation of the individual components in the solvent can afford a high critical activity owing to the final formation of a cocrystal phase. Various cocrystals have been prepared via the slurry technique.28, 29 Various solvents have also been used in this process. This method is envisaged as one of the most efficient methods for future scale-up procedures of cocrystals in an industrial setup. Also this technique has showcased its utility in various other fronts such as studying the stability of a hydrate or anhydrate form31 and understand the thermodynamic stability relationship among polymorphs27. Recently, this technique was also reported to be done in a small scale vial to address the scale up factor.30(j) High throughput slurry was also studied using Indomethacin as the API and thereby establishing the utility of this methodology.30(h)

In 2009, we investigated the effectiveness of LAG against solution cocrystallization by investigating 17 cocrystals which demonstrated the COOH-\textsubscript{N\textsubscript{arom}} supramolecular heterosynthon
and found that the results were comparable and dimethyl formamide (DMF) should be the solvent of choice for LAG as it achieved the formation of maximum number of cocrystals.

Herein, we have continued to look into the effectiveness of the screening methodologies by comparing four techniques: slurry, solution crystallization, neat and liquid assisted grinding for a set of polyphenol and flavanoid compounds with nutraceutical cocrystal formers (CCF). The grinding experiments compare three solvents water, ethanol and DMF. DMF still remains to be the best solvent for LAG. Dry grinding was found to be less effective than LAG and solution crystallization afforded all the crystal forms. For the slurry experiments, water was used as the solvent. Considering the use of the technique for future scale up procedures, showcasing the utility of water as a solvent will help in not only making the procedure easier in terms of usability but also the process ability of the compounds in the manufacturing front with lower costs of solvent. We have herein reported thirty-eight cocrystals screened via the four techniques and shown that slurry experiments in water for compounds over a wide range of solubility is indeed possible.

8.2. Experimental Section.

8.2.1. Materials. All the chemicals were purchased from commercial suppliers and used without further purification.

8.2.2. Synthesis of Cocrystals. For our studies, polyphenolic acids and flavanoids were targeted with cocrystal formers of various complementary functional groups considering that the supramolecular interactions of the phenolic hydroxyl group have been widely studied in the
literature. Phenols have the capacity to form inherent supramolecular homosynthons to form rings or chains or helices via hydrogen bonding. They also have the capacity to form robust and reliable supramolecular heterosynthons with complementary functional groups such as aromatic nitrogen, amides, carbonyls, carboxylates etc. The compounds of interest (COI) for our study include ellagic acid, gallic acid, coumaric acid, caffeic acid and ferulic acid. All these compounds have phenolic hydroxyl groups along with carboxylic acid moieties. Carboxylic acids represent another set of functional group of predominant nature with the capacity to form supramolecular homosynthons to give rise to catemers or dimers and also supramolecular heterosynthons with aromatic nitrogen, amides, carbonyls etc.\(^{33, 34, 35, 36, 37, 38}\)

In order to validate our study, hydrochlorothiazide, a BCS Class IV drug which contains a sulfonamide and amine moiety, was used. Hydrochlorothiazide is a diuretic drug which has poor aqueous solubility and permeability. The low solubility of the drug gives rise to low overall bioavailability of the drug. The drug belongs to the thiazide class of diuretics and is often prescribed along with losartan.\(^{57}\) Various formulation techniques have been employed to increase the solubility of this drug.\(^{58}\) In this paper we have reported three new crystal forms of this drug.

The various cocrystal formers for this study include amides such as nicotinamide, isonicotinamide, urea, caprolactam; amino acids such as sarcosine, glycine anhydride, dimethyl glycine; purines such as adenine, caffeine, theobromine and theophylline; carboxylic acids such as nicotinic and isonicotinic acid; API’s such as carbamazepine and isoniazid and also 3,5 dimethyl pyrazole. Scheme 1 illustrates the chemical structures of all the compounds used in this study. All the cocrystal formers used were either Generally Regarded as Safe compounds (GRAS) listed\(^{39}\) or included in the Every Added to Food in United States (EAFUS)\(^{40}\) list which establishes their safe usability. The results cocrystallization with the cocrystal formers mentioned via multiple synthetic
methods such as slow evaporation, liquid assisted and neat grinding and also slurring techniques has been shown in Table 14. Single crystals suitable for X ray diffraction studies were also made for the reported crystal forms. Some of the crystal forms though have been previously reported by us. 38, 41

8.2.3. Preparation of cocrystals via slurring. Stoichiometric saturated amounts of starting materials were stirred in water (1 mL) overnight. The undissolved solid was isolated by filtration and characterized using PXRD, DSC and FT-IR. This method yielded crystal forms for all of the COI's except ellagic acid and hydrochlorothiazide. Further experiments were hence conducted considering the low solubility of both the compounds. It was observed that the ellagic acid crystal forms could be successfully reproduced in water overnight, by conducting the experiment at ambient temperatures of 85° C. In case of Hydrochlorothiazide, the same was observed at a temperature of 75 ° C.
Scheme 8.1. Chemical structures of compounds used herein.
8.2.4. *Preparation of cocrystals via liquid assisted grinding.* Stoichiometric amounts of the starting materials were ground in a ball mill following addition of solvent (10μL of solvent per 50 mg of starting materials). The resulting powders were analyzed by diffuse reflectance IR spectroscopy and X-ray powder diffraction.

8.2.5. *Preparation of cocrystals via neat grinding.* Stoichiometric amounts of the starting materials were ground in a ballmill for 15 minutes following addition of solvent (10μL of solvent per 50 mg of starting materials). The resulting powders were analyzed by diffuse reflectance IR spectroscopy and X-ray powder diffraction.

8.2.6. *Solution crystallization.* As depicted in Table 8.14, all of the crystal forms were also made from solution crystallization. The details of the methods used are discussed below.

HCTNAM: 15 mg (0.1000 mmol) of hydrochlorothiazide and 61 mg (0.5000 mmol) of nicotinamide was added to 4 mL of ethyl acetate and heated on a hotplate. The resulting solution was filtered using filter paper and left for slow evaporation which yielded colorless crystals of HCTNAM after two days.

HCTNAC: 15mg (0.050 mmol) of hydrochlorothiazide and 12.1 mg nicotinic acid, (0.100 mmol) were added to 4 mL of 50:50 methanol/water mixture and heated on a hotplate. The resulting solution was left for slow evaporation and colorless crystals of HCTNAC were harvested after two days.
HCTDMG: 300 mg (1.01 mmol) of hydrochlorothiazide and 500 mg (4.85 mmol) of dimethyl glycine were added to 7 mL of ethanol and heated on a hotplate until a clear solution was obtained. The resulting solution left for slow evaporation which yielded colorless crystals of **HCTDMG** after two days.

HCTINM: The synthesis and the structure description of the cocrystal of HCT with isonicotinamide (**HCTINM**) has been reported elsewhere.\(^{41}\)

GALINZ: 17.0 mg (0.100 mmol) of gallic acid and 13.8 mg (0.100 mmol) of *iso*-nicotinic acid hydrazide was dissolved in 2 mL of methanol and heated on a hotplate until a clear solution was obtained. The resulting solution left for slow evaporation which yielded light brown prisms of **GALINZ** after five days.

GALDMP: 59.2 mg (0.348 mmol) of gallic acid and 35.4 mg, (0.368 mmol) of 3,5-dimethylpyrazole were dissolved in 5 mL of methanol until a clear solution was obtained. The solution was left for slow evaporation at 5°C which yielded colorless prisms of **GALDMP** after fourteen days.

GALADN: 17.0 mg (0.100 mmol) of gallic acid and 13.7 mg (0.100 mmol) of adenine were dissolved in a 4 mL water/ethanol mixture in a 1:3 ratio and left for evaporation. Colorless needles of **GALADN** were harvested after three days.

GALURE: 17.1 mg (0.100 mmol) of gallic acid was dissolved in 1 mL of ethanol. This solution was then added to a 1 mL saturated solution of urea and left for slow evaporation at room temperature which yielded colorless needles of **GALURE** after eight days.
GALGAH: 17.0 mg (0.100 mmol) of gallic acid and 12.0 mg (0.105 mmol) glycine anhydride was dissolved in 2mL of 50:50 mixture of water and acetone solution. The solution was left for slow evaporation at 5°C. Colorless needles of **GALGAH** were harvested after seven days.

GALCAF: The synthesis and the structure description of the cocrystal of gallic acid with caffeine (**GALCAF**) has been reported elsewhere.\(^{41}\)

GALINA: The synthesis and the structure description of the cocrystal of gallic acid with isonicotinic acid (**GALINA**) has been reported elsewhere.\(^{38}\)

GALNAM: The synthesis and the structure description of the cocrystal of gallic acid with nicotinamide (**GALNAM**) has been reported elsewhere.\(^{41}\)

GALINM: The synthesis and the structure description of the cocrystal of gallic acid with isonicotinamide (**GALINM**) has been reported elsewhere.\(^{41}\)

GALTBR: The synthesis and the structure description of the cocrystal of gallic acid with theobromine (**GALTBR**) has been reported elsewhere.\(^{41}\)

FERINZ: 19.0 mg of ferulic acid (0.100 mmol) and 13.7 mg of isoniazid (0.100 mmol) were dissolved in 2mL of ethanol and left for slow evaporation at 5°C which yielded colorless needles of **FERINZ** after three days.

FERDMP: 19.4 mg of ferulic acid (0.100 mmol) and 9.6 mg of 3, 5-dimethylpyrazole (0.100 mmol) were dissolved in 5mL of methanol until a clear solution was obtained. The solution was left for slow evaporation at 5°C. Yellow plates of **FERDMP** were harvested after fourteen days.
FERURE: 19.2 mg, (0.100 mmol) of ferulic acid was dissolved in 2 mL of ethanol. This solution was then added to a 1 mL saturated solution of urea and allowed to slowly evaporate at room temperature resulting in colorless needles of **FERURE** which were harvested after eight days.

FERGAH: 19.0 mg of ferulic acid (0.1 mmol) and 79.0 mg of glycine anhydride (0.693 mmol) were dissolved in 2mL of 50:50 mixture of water and acetone solution. The solution was left for slow evaporation at 5°C to yield colorless needles of **FERGAH** after ten days.

FERTBR: 19.0 mg of ferulic acid (0.100 mmol) and 19.0 mg of theobromine (0.693 mmol) were dissolved in 4mL of 50:50 mixture of water and ethanol solution. The solution was left for slow evaporation at room temperature. Colorless needles of **FERTBR** were harvested after fourteen days.

FERNAM: The synthesis and the structure description of the cocrystal of ferulic acid with nicotinamide (**FERNAM**) has been reported elsewhere.41

CFAINZ: 18.0 mg (0.099 mmol) of caffeic acid and 28 mg (0.204 mmol) of isoniazid was dissolved in 3 mL of 50:50 acetone/water mixture and allowed to slowly evaporate in a fume hood to yield light yellow crystals of **CFAINZ** after two days.

CFAINM: 9 mg (0.100 mmol) of caffeic acid, and 30 mg (0.500 mmol) of isonicotinamide, were dissolved in 3 mL of 50:50 methanol/water by heating on a hotplate. The resulting solution allowed to slowly evaporate yielding yellow needle-like crystals after two days.

CFANAM: The synthesis and the structure description of the cocrystal of caffeic acid with nicotinamide (**CFANAM**) has been reported elsewhere.41

ELANAM: 20.0 mg (0.0662 mmol) of ellagic acid and 324.0 mg (2.65 mmol) of nicotinamide were dissolved in 0.5 mL of 1-methyl-2-pyrrolidinone (NMP). Yellow plate-like crystals of
ELANAM were harvested after one week.

ELATHP: 10.0 mg (0.0296 mmol) ellagic acid dihydrate and 27.0 mg (0.149 mmol) anhydrous theophylline were added to 5.00 mL of ethanol and heated on a hotplate. The contents were then cooled to room temperature and filtered to obtain an orange solution, which was allowed to slowly evaporate at room temperature to yield yellow plate-like crystals of ELATHP the next day.

ELADMP: 5.0 mg (0.015 mmol) of ellagic acid was dissolved in 5 mL of hot propylene glycol. 143.0 mg (15 mmol) of 3,5-dimethylpyrazole was added to it and the solution was left for slow evaporation to yield yellow needle-like crystals of ELADMP after two days.

ELACAP: 10.0 mg (0.0296 mmol) of ellagic acid and 268.0 mg (2.37 mmol) of caprolactam was added to 5.00 mL of isopropanol and heated on a hotplate. The contents were cooled to room temperature and filtered to obtain a yellow solution, which on slow evaporation lead to the formation of yellow triangular plate-like crystals after a month.

ELACAF: The synthesis and the structure description of the cocrystal of ellagic acid with caffeine (ELACAF) has been reported elsewhere.41

ELASAR: The synthesis and the structure description of the cocrystal of ellagic acid with sarcosine (ELASAR) has been reported elsewhere.38

ELAINM: The synthesis and the structure description of the cocrystal of ellagic acid with isonicotinamide (ELAINM) has been reported elsewhere.41

COUNAM: 228.1mg (1.380mmol) of p-coumaric acid and 170.2 mg (1.390mmol) of nicotinamide were mixed in 3mL of ethanol and slurried overnight. The resulting solution was
filtered by using a filter paper and on leaving the resulting filtrate for slow evaporation in the hood, colorless crystals of COUNAM were harvested after two days.

COUNM-I: 228.1 mg (1.380 mmol) of p-coumaric acid and 170.2 mg (1.39 mmol) of isonicotinamide, were mixed in 3mL of ethanol and slurried overnight. The resulting solution was filtered by using a filter paper and on leaving the resulting filtrate for slow evaporation in the hood, colorless crystals of COUNM were harvested after two days.

COUTBR.2H₂O: 16.4 mg (0.100 mmol) of p-coumaric acid and 17.0 mg (0.100 mmol) of theobromine were mixed in 3mL of 50:50 ethanol/water mixture. The resulting solution was left for slow evaporation in the hood and colorless crystals of COUTH.2H₂O were harvested after two days.

COUINZ: 16.41 mg (0.1000mmol) of p-coumaric acid and 13.71 mg (0.1000mmol) of isoniazid were dissolved in 3mL of ethanol while heating. The resulting solution was left for slow evaporation. Yellow plate like crystals of COUINZ were harvested after two days.

COUURE: 16.41 mg (0.1000mmol) of p-coumaric acid was dissolved with a saturated solution of urea, in ethanol. The resulting solution was heated on a hotplate and was left at room temperature for slow evaporation to yield colorless crystals of COUURE after two days.

COUTHLP: The synthesis and the structure description of the cocrystal of coumaric acid with theophylline (COUTHLP) has been reported elsewhere.⁶⁴

COUCAF: The synthesis and the structure description of the cocrystal of coumaric acid with caffeine (COUCAF) has been reported elsewhere.⁶⁴
Table 8.1 below lists the melting points of the crystal forms along with the melting points of the cocrystal formers.

Table 8.1. Melting point of crystal forms used herein.

<table>
<thead>
<tr>
<th>CRYSTAL FORM</th>
<th>MELTING POINT (°C)</th>
<th>M.P.Cocrystalformer 1(°C)</th>
<th>M.P.Cocrystal former 2(°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCTDMG</td>
<td>206</td>
<td>275</td>
<td>54</td>
</tr>
<tr>
<td>HCTINM•H₂O</td>
<td>127</td>
<td>275</td>
<td>155</td>
</tr>
<tr>
<td>HCTNAC</td>
<td>268</td>
<td>275</td>
<td>236</td>
</tr>
<tr>
<td>HCTNAM</td>
<td>178</td>
<td>275</td>
<td>128</td>
</tr>
<tr>
<td>COUURE</td>
<td>123.5</td>
<td>214</td>
<td>132</td>
</tr>
<tr>
<td>COUINZ</td>
<td>178</td>
<td>214</td>
<td>171</td>
</tr>
<tr>
<td>COUCAF</td>
<td>184</td>
<td>214</td>
<td>234</td>
</tr>
<tr>
<td>COUNAM</td>
<td>159</td>
<td>214</td>
<td>128</td>
</tr>
<tr>
<td>COUINM</td>
<td>179</td>
<td>214</td>
<td>155</td>
</tr>
<tr>
<td>COUTBR</td>
<td>228</td>
<td>214</td>
<td>345</td>
</tr>
<tr>
<td>COUTHPR</td>
<td>223</td>
<td>214</td>
<td>271</td>
</tr>
<tr>
<td>CFANAM</td>
<td>109</td>
<td>211</td>
<td>128</td>
</tr>
<tr>
<td>CFAINM</td>
<td>152</td>
<td>211</td>
<td>155</td>
</tr>
<tr>
<td>CFAINZ</td>
<td>185</td>
<td>211</td>
<td>171</td>
</tr>
<tr>
<td>GALCAF</td>
<td>202</td>
<td>251</td>
<td>234</td>
</tr>
<tr>
<td>GALTBR</td>
<td>270</td>
<td>251</td>
<td>345</td>
</tr>
<tr>
<td>GALNAM</td>
<td>210</td>
<td>251</td>
<td>128</td>
</tr>
<tr>
<td>GALINM</td>
<td>204</td>
<td>251</td>
<td>155</td>
</tr>
<tr>
<td>GALINA</td>
<td>194</td>
<td>251</td>
<td>300</td>
</tr>
<tr>
<td>GALGAH</td>
<td>260</td>
<td>251</td>
<td>300</td>
</tr>
</tbody>
</table>
Table 8.1. (Continued)

<table>
<thead>
<tr>
<th>CRYSTAL FORM</th>
<th>MELTING POINT (°C)</th>
<th>M.P. Cocystalformer 1(°C)</th>
<th>M.P. Cocystal former 2(°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GALDMP</td>
<td>156</td>
<td>251</td>
<td>106</td>
</tr>
<tr>
<td>GALINZ</td>
<td>226</td>
<td>251</td>
<td>171</td>
</tr>
<tr>
<td>FERNAM</td>
<td>127</td>
<td>169</td>
<td>128</td>
</tr>
<tr>
<td>FERINM</td>
<td>153</td>
<td>169</td>
<td>155</td>
</tr>
<tr>
<td>FERTBR</td>
<td>191</td>
<td>169</td>
<td>345</td>
</tr>
<tr>
<td>FERCAF</td>
<td></td>
<td>169</td>
<td>234</td>
</tr>
<tr>
<td>FERGAH</td>
<td>207</td>
<td>169</td>
<td>300</td>
</tr>
<tr>
<td>FERURE</td>
<td>164</td>
<td>169</td>
<td>132</td>
</tr>
<tr>
<td>ELANAM</td>
<td>288</td>
<td>350</td>
<td>128</td>
</tr>
<tr>
<td>ELAINM</td>
<td>300</td>
<td>350</td>
<td>155</td>
</tr>
<tr>
<td>ELACAF</td>
<td>300</td>
<td>350</td>
<td>234</td>
</tr>
<tr>
<td>ELATHP</td>
<td>326</td>
<td>350</td>
<td>271</td>
</tr>
<tr>
<td>ELASAR</td>
<td>320</td>
<td>350</td>
<td>208</td>
</tr>
<tr>
<td>ELADMP</td>
<td>237</td>
<td>350</td>
<td>106</td>
</tr>
<tr>
<td>ELACAP</td>
<td>276</td>
<td>350</td>
<td>68</td>
</tr>
</tbody>
</table>

8.2.7. Characterization of Crystal Forms.

8.2.7.1. Differential scanning calorimetry (DSC). Thermal analysis was performed on a TA Instruments DSC 2920 Differential Scanning Calorimeter. Aluminum pans were used for all samples and the instrument was calibrated using an indium standard. For reference, an empty pan sealed in the same way as the sample was used. Using inert nitrogen conditions, the samples were
heated in the DSC cell from 30°C to the required temperature (melting point of the cocrystal) at a rate of 10°C/min.

8.2.7.2. **Thermogravimetric analysis (TGA).** A Perkin Elmer STA 6000 Simultaneous Thermal Analyzer was used to conduct thermogravimetric analysis. Open alumina crucible is used to heat the sample from 30°C to the required temperature at 10 °C/min scanning rate under nitrogen stream.

8.2.7.3. **Infrared spectroscopy (FT-IR).** To characterize the cocrystals by infrared spectroscopy a Nicolet Avatar 320 FT-IR instrument was used. Sample amounts of 1-2 mg were used and spectra were measured over the range of 4000 – 400cm-1 and analyzed using EZ Omnic software.

8.2.7.4. **Powder X-ray diffraction (PXRD).** A Bruker AXS D8 powder diffractometer was used for all PXRD measurements with experimental parameters as follows: Cu Kα radiation (λ = 1.54056 Å); 40 kV and 30 mA. Scanning interval: 3–40° 2θ; time per step: 0.5 sec. The experimental PXRD patterns and calculated PXRD patterns from single crystal structures were compared to confirm the composition of bulk materials.

8.2.7.5. **Single-Crystal X-ray Data Collection and Structure Determinations.** Crystalline products were examined under a microscope and suitable crystals were selected for single crystal X-ray diffraction. Data were collected on single crystals on a Bruker-AXS SMART APEX 2 CCD diffractometer with monochromatized Cu Kα radiation (λ = 1.54178 Å). The diffractometer was
connected to a KRYO-FLEX low temperature device. Data was collected at 100K. Indexing was performed using SMART v5.625 or using APEX 2008v1-0. Frames were integrated with SaintPlus 7.51 software package. Absorption corrections were performed by multi-scan method implemented in SADABS. The structures were solved using SHELXS-97 and refined using SHELXL-97 (Matrix Non-Linear Least- Squares) contained in SHELXTL v6.10 and WinGX v1.70.01 program packages. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in geometrically calculated positions or found in the Fourier difference map and included in the refinement process using riding model or without constraints. Table 3-10, 13 and 14 contains the crystallographic data and structure refinement parameters for the cocrystals isolated in the present study. 43, 44,45,46,47

8.3. Results and Discussion.

8.3.1. Crystal Engineering. Previously, studies discussing the hierarchy of supramolecular synthons pertaining to carboxylic acids, hydroxyl groups with pyridine nitrogen’s, amides, carbonyl moieties and carboxylates with hydroxyl groups have been done by our research group. These studies which constituted of an independent CSD study followed by experimental validation, have helped conclude that the respective heterosynthons have precedence over the homosynthons. The CSD statistics for the studied supramolecular synthons of current relevance have been tabulated below in Table 2.
<table>
<thead>
<tr>
<th>Supramolecular Synthon</th>
<th>Raw data (in presence of competing functional groups)</th>
<th>Refined data (absence of competing functional groups)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COOH··· N\textsubscript{arom}</td>
<td>77%</td>
<td>98%</td>
</tr>
<tr>
<td>COOH··· COOH</td>
<td>Dimer: 31%</td>
<td>Dimer: 93%</td>
</tr>
<tr>
<td></td>
<td>Catemer: 3%</td>
<td>Catemer: 9%</td>
</tr>
<tr>
<td>COOH··· CONH\textsubscript{2}</td>
<td>57%</td>
<td>84%</td>
</tr>
<tr>
<td>COOH ···C=O</td>
<td>27%</td>
<td>48%</td>
</tr>
<tr>
<td>COOH··· OH</td>
<td>46%</td>
<td>69%</td>
</tr>
<tr>
<td>OH··· N\textsubscript{arom}</td>
<td>53%</td>
<td>78%</td>
</tr>
<tr>
<td>OH ···CONH\textsubscript{2}</td>
<td>50%</td>
<td>90%</td>
</tr>
<tr>
<td>OH··· C=O</td>
<td>43%</td>
<td>65%</td>
</tr>
<tr>
<td>OH··· OH</td>
<td>26%</td>
<td>76%</td>
</tr>
<tr>
<td>COOH, OH··· N\textsubscript{arom}</td>
<td>COOH··· N\textsubscript{arom} 60%</td>
<td>COOH··· N\textsubscript{arom} 73%</td>
</tr>
<tr>
<td></td>
<td>OH··· N\textsubscript{arom} 38%</td>
<td>OH··· N\textsubscript{arom} 53%</td>
</tr>
<tr>
<td>COOH, OH··· CONH\textsubscript{2}</td>
<td>COOH ···CONH\textsubscript{2} 50%</td>
<td>COOH ···CONH\textsubscript{2} 32%</td>
</tr>
<tr>
<td>COOH, OH··· C=O</td>
<td>COOH··· C=O 14%</td>
<td>COOH··· C=O 19%</td>
</tr>
<tr>
<td></td>
<td>OH··· C=O 25%</td>
<td>OH··· C=O 30%</td>
</tr>
<tr>
<td>COO···OH</td>
<td>56%</td>
<td></td>
</tr>
</tbody>
</table>

Our current study, comprises of the COI's that majorly contain hydroxyl, carboxylic acid, amide moieties and thus our discussion here majorly focuses on whether the COI’s behave according to the above mentioned statistics. Hydrochlorothiazide, on the other hand displays sulfonamide and
amine moieties and has been discussed in detail later on. The principle synthons observed by the phenolic compounds have been depicted below in Scheme 2.

![Scheme 8.2. The principle synthons observed by the phenolic compounds.](image)

8.3.2. Crystal forms of gallic, ferulic, caffeic, coumaric, and ellagic acid. These COI’s are broadly classified as nutraceuticals \(^{48, 49}\) which includes amino acids, vitamins and dietary polyphenols. Dietary polyphenols which are principally secondary plant metabolites, represent a wide variety of compounds that occur in fruits, vegetables, wine, tea, and cocoa products. They
are mostly derivatives and/or isomers of flavonoids, stilbenes, catechins, and phenolic acids. They exhibit many biologically significant functions, such as protection against oxidative stress and degenerative diseases, due to their antioxidant properties.50 In our COI’s, coumaric, caffeic and ferulic acids belongs to the class of hydroxycinnamic acids51; ellagic acid in flavanoids and gallic acid belongs to the class of catechins. All of these have various effects on the body such as gallic acid is shown to have antiviral and antifungal as well as anticancer properties; ferulic acid principally extracted from fruit and vegetate peel is known for its antioxidant properties. Caffeic acid, coumaric and ellagic acid on the other hand is also known for their antioxidant properties.52, 53, 54, 55, 56

All the COI’s have a carboxylic acid and hydroxy moiety, and it is observed that supramolecular heterosynthons manifest more as compared to homosynthons as has been seen previously in the literature. Herein, the crystal structures of these COI’s have been described. Some of the crystal forms have been already reported in the scientific literature.

\textbf{CFAINM•2H}_2\text{O}: CFA and INM crystallizes in \textit{P}-\textit{I}, resulting in a dihydrate of CFAINM. The CFA molecules are observed to be disordered in the cocystal. From the crystal structure, four water molecules are observed to be present between the pairs of CFA molecules, resulting in the formation of a 4+2 hexamer. The carboxylic acid moiety of each CFA hydrogen bonds to the N\textsubscript{arom} moiety of INM via COOH···N\textsubscript{arom} hydrogen bond at distance of 2.733 (1) \text{Å}. The amide moieties of INM molecules form amide dimers, N-H···O hydrogen bond distances of 2.935 (2) \text{Å}. The interactions between CFA, water and INM molecules result in the generation of a linear tape which are sandwiched by adjacent tapes. Each tape interacts with adjacent tapes via two types of interactions (a) the OH of the carboxylic acid of CFA forms a hydrogen bond with water, O-H···O: 2.838 (6) \text{Å}; (b) the anti-hydrogen of the amide of INM molecule hydrogen bonds to the carbonyl
moiety of CFA molecule, N-H···O : 2.994 (7) Å. The overall hydrogen bonding is illustrated in Figure 8.1.

Figure 8.1. Illustration of intermolecular hydrogen bonding in CFAINM•2H₂O

CFAINZ: CFAINZ crystallizes in $P-1$ with one molecule of each in the asymmetric unit. From the crystal structure, it is seen that the cocrystal is sustained by the catechol dimer, (O···O: 2.748 (3) Å). INZ molecules hydrogen bond to the catechol dimer peripherally via anti-hydrogen atoms of the hydroxyl moieties (O···O: 2.666 (3) Å, O···N: 2.977 (3) Å). The carboxylic acid moiety of CFA molecules hydrogen bonds to the N$_{arom}$ moiety of INZ molecules (O···N : 2.616 (3) Å) which results in the formation of linear tapes. The tapes in CFAINZ are linked through interactions between the carbonyl moiety of CFA and the anti-hydrogen atoms of hydrazine moieties (O···N : (2.886 (3) Å) leading to the formation of a supramolecular sheet as illustrated in Figure 8.2.
Figure 8.2. Illustration of the supramolecular sheet generated by intermolecular interactions between adjacent hydrogen bonded tapes in CFAINZ.

GALINZ: GAL and INZ crystallizes in P-1. Each asymmetric unit contains two molecules of GAL and two molecules of INZ. Phenolic supramolecular homosynthon ($O \cdots O$: 2.757(1), $O \cdots O$: 2.805 (1) Å) is observed between two GAL molecules in the crystal structure. This homodimer in turn hydrogen bonds to the hydrazide moieties of two molecules of INZ to form four component supramolecular assemblies of GAL and INZ molecules. This four component supramolecular assembly in turn forms H-bonded tapes sustained by COOH\cdotsN$_{arom}$ supramolecular heterosynthon ($O \cdots N$: 2.636(3) Å), which finally leads to a two dimensional structure as shown in Figure 8.3(a). The carbonyl moiety of one GAL molecule hydrogen bonds with the amine moiety of INZ ($N \cdots O$: 3.044(1) Å) to form bilayers that are sustained by $\pi - \pi$ interactions as shown in Figure 8.3(b).
Figure 8.3. (a) Crystal packing in GALINZ reveals form H-bonded tapes that are sustained by COOH⁻:Narom supramolecular heterosynthons (b) Illustration of bilayers of GALINZ sheets.

GALDMP: GALDMP crystallizes in P-1. Each asymmetric unit consists of one molecule of GAL and two molecules of DMP. The crystal structure of GALDMP reveals that GAL molecules form phenolic supramolecular homosynthons (O⁻:O: 2.741(7) Å) that self-assemble to form tapes along the b axis. The homodimers further hydrogen bond to DMP as shown in Figure 8.4(a). The third hydroxyl moiety of the gallic acid molecule interacts with the aromatic nitrogen of the second DMP molecule and the phenolic moiety of a GAL molecule to generate a trimeric ring motif, as
shown in Figure 4(b) giving rise to a two dimensional network as shown in Figure 8.4(c).

Figure 8.4. (a) Phenolic homodimers of GAL molecules acts as a donor and an acceptor to DMP molecules (b) trimeric motif involving two GAL molecules and a DMP molecule (c) Crystal packing in GALDMP reveals a 2D network of GAL and DMP molecules.

GALADN: GALADN crystallizes in monoclinic space group $P2_1/c$. The crystal structure reveals the formation of supramolecular heterosynthons ($N\cdots O$: 2.880(17) Å; $O\cdots O$: 2.644(78) Å) between carboxylic acid moieties of GAL molecules and the aminopyridine moieties of ADN to generate chains. These chains are further interconnected via the formation of phenolic homodimers of GAL molecules ($O\cdots O$: 2.701(11) Å). In addition, the exterior H-bond donor and acceptor sites of the
phenolic homodimers are exploited by ADN molecules of adjacent chains to generate a 3D network illustrated in Figure 8.5.

![Figure 8.5](image.png)

Figure 8.5. Crystal packing in GALADN reveals form H-bonded interactions between the carboxylic acid moiety of GAL molecules and the aminopyridine moiety of ADN molecules.

GALURE: GAL and URE molecules crystallize in the monoclinic space group $P2_1/c$. Each asymmetric unit consists of one molecule of each. The crystal structure reveals that GAL and URE molecules form carboxylic acid-amide supramolecular heterosynthons ($O\cdots O$ 2.528(1) Å, $N\cdots O$: 2.996(1) Å). These heterodimers are cross linked by NH–OH hydrogen bonds ($N\cdots O$: 3.005(1) Å) to form tapes. The heterodimers are linked to adjacent tapes perpendicularly by via hydrogen bond between the amine and phenolic moieties ($O\cdots O$: 2.701(1) Å; $N\cdots O$: 2.826(1) Å).

Additionally, the phenolic moiety of the GAL molecule from the adjacent tape accepts a bifurcated hydrogen bond from the phenolic moiety of the GAL molecule and the amine moiety of the URE molecule ($O\cdots O$: 2.835(1) Å; $N\cdots O$: 2.984(1) Å) as shown in Figure 8.6.
Figure 8.6. Crystal packing in GALURE reveals molecular tapes of heterodimers of GAL and URE molecules.

GALGAH: From the crystal structure of **GALGAH** is it seen that there are two molecules of **GAH** molecules and one molecule of **GAL** in the unit cell. The **GAL** molecules form undulating chains sustained by carboxylic acid supramolecular homosynthons (O⋯O: 2.610(1) Å) and phenolic supramolecular homosynthons (O⋯O: 2.723(1) Å). This undulating chain of homodimers is absent in both the anhydrous and hydrated forms of **GAL**. **GAH** molecule hydrogen bonds with the phenolic homodimers by forming a tetrameric assembly (NH⋯OH: 2.935(1) Å, OH⋯O: 2.635(1) Å,) which in turn connects each chain, forming a sheet as shown in Figure 8.7(a). The other **GAH** molecule interacts with the **GAL** chains via OH⋯O hydrogen bonds (O⋯O: 2.748(1) Å) and further connect the sheets above and below through amide-amide supramolecular homosynthons (N⋯O: 2.854(1) Å as shown in Figure 8.7(b).
Figure 8.7: (a) Crystal packing in GALGAH reveals undulating tapes sustained by dimers of GAL molecules linked by GAH molecules to form sheets (b) Illustration of sheets interconnected by homodimers of GAH molecules.

FERADN: The crystal structure of FERADN reveals one molecule each of FER and ADN in the unit cell. FER and ADN molecules form two point supramolecular heterosynthons between the acid moiety of FER and the amine and basic nitrogen of the ADN molecule to form 1-D chains (NH–O: 2.839 (1)Å; OH–O: 2.692(1) Å). Adjacent chains are cross linked by hydrogen bonding interactions between one FER molecule and two ADN molecules to result in an interpenetrated three dimensional network as shown in Figure 8.8.
Figure 8.8: Crystal packing of FERADN is that of a 3D interpenetrated network.

FERINZ: FER and INZ crystallize in P-1. The crystal structure reveals two molecules of each component in the asymmetric unit. The crystal structure of **FERINZ** is sustained by COOH···N$_{arom}$ supramolecular heterosynthons (O···N: 2.636(5) Å shown in Figure 8.9(a). The **INZ** molecules interact via NH···O (N···O: 2.968(7) Å) supramolecular homosynthons to form dimers. The intermolecular H-bonding generates a herring bone pattern as shown in Figure 8.9(b).
FERURE: FERURE crystallizes in $P2_1/c$. The crystal structure reveals that FER and URE molecules form a 1:2 adduct. Both URE molecules form the amide-amide supramolecular homosynthons that generate tapes along the b axis. The NH–O bond distances are 2.945(3)Å and 2.936(3)Å for the first URE molecule and 2.982(3) Â and 2.951(3)Å for the second URE molecule. The homodimers are further interconnected through a two point hydrogen bond between the amine moieties of URE and the hydroxyl and methoxyl moieties of FER ((N–O: 2.986(2)Å,
N⋯O: 3.023(2) Å. In addition, the carbonyl moiety of the URE molecule accepts a hydrogen bond from the carboxylic acid moiety of FER as shown in Figure 8.10.

Figure 8.10. Crystal packing in FERURE reveals amide-amide supramolecular homosynthons between URE molecules to generate tapes that are interconnected by FER molecules.

FERGAH: FERGAH crystallizes in Pn. The crystal structure reveals a 2:2 cocrystal of FER and GAH which is sustained by chains of GAH molecules formed via amide-amide supramolecular homosynthons (N⋯O: 2.987(1) Å; N⋯O: 2.225(1) Å). The chains of GAH molecules are interconnected by FER molecules through OH⋯O hydrogen bonding (O⋯O: 2.615(1) Å) resulting in the formation of a sheet as illustrated in Figure 8.11.
Figure 8.11. Crystal packing in FERGAH reveals molecular tapes of amide-amide supramolecular homosynthons between GAH molecules interconnected by FER molecules.

FERTBR: The crystal structure of **FERTBR · H₂O** reveals a 1:1 cocrystal monohydrate which crystallizes in the $C2/c$. The crystal structure consists of **FER** and **TBR** molecules that form acid-imide supramolecular heterosynthons (N–O: 2.858(3) Å, O–O: 2.602(3) Å) interconnected by water molecules to form discrete 6-component supramolecular assemblies as seen in Figure 8.12.
Figure 8.12. Crystal packing of FERTBR · H₂O reveals that FERTBR heterodimers are connected by water molecules.

COUNAM: COUNAM crystallizes in P2₁/c. The crystal structure reveals that COU and NAM molecules form acid-amide dimers, (O···O: 2.5408(15) Å) which are connected to other via Nₐrom···OH; (O···N(11) 2.7049(17) Å) supramolecular heterosynthon. The COUNAM dimers form a zig-zag chain which are linked via lateral hydrogen bonds (NH···CO); (N···O: 2.9106(17) Å) as illustrated in Figure 8.13 (a) and therefore form a corrugated sheet. The overall structure of COUNAM is illustrated in Figure 8.13(b).
Figure 8.13. (a) The COUNAM dimers which form a zig-zag chain (b) The overall structure of COUNAM.

COUURE: COUURE crystallizes in C2/c. The crystal structure reveals that each asymmetric unit consists of one molecule each of COU and URE molecules. The COU molecules are sustained by carboxylic acid homodimers; (OH⋯O: 2.601(1) Å) and the two URE molecules connect two COU molecules through OH⋯CO; (OH⋯O):1: 2.647(1) Å and OH⋯NH; (NH⋯O : 2.984(2) Å) heterosynthons giving rise to zig-zag chains linked by lateral hydrogen bonds to form an overall
corrugated tape. The overall structure of **COUURE** is illustrated in Figure 8.14.

Figure 8.14. The overall crystal structure of COUURE.

COUINZ : COUINZ crystallizes in *P2₁/n*. The crystal structure reveals that each COU and INZ molecules exist as acid-hydrazide dimers O(2)-H(11)···N(13) : 2.5999(15) Å; O(2)-H(11)···N(12): 3.3296(14) Å, which are connected via N-arom···OH , O(1)-H(12)···N(11) : 2.7354(15) Å heterosynthon. The dimers form zig-zag chains which are linked by lateral hydrogen bonds (NH···CO), N(13)-H(13)···O(2): 2.9358(15) Å. The overall network appears as a supramolecular corrugated sheet. The overall structure of **COUINZ** is illustrated in Figure 8.15.

Figure 8.15. Overall corrugated sheet of COUINZ.
COUINM-I: COUINM-I crystallizes in \(P-1 \). The crystal structure reveals that COU and INM molecules exist as acid-amide dimers; O(1)-H(21)...N(11): 2.694(2) Å, O(3)-H(22)⋯O(11): 2.5859(17) Å which are connected to other via N_arom⋯OH, N(12)-H(121)⋯O(2): 3.040(2) Å supramolecular heterosynthon. The COUINM dimers form a linear chain which are linked by lateral hydrogen bonds (NH⋯CO), N(12)-H(122)⋯O: 2.981(2) Å to form a supramolecular sheet. The overall structure of COUINM-I is illustrated in Figure 8.16.

![Figure 8.16. Supramolecular sheet of COUINM-I.](image)

COUTBR.2H2O. The crystal structure reveals that COU and TBR molecules are held together by a dimer which is formed between the C=O and N-H of the imide moiety N(23)-H(23N)⋯O(2): 2.8468(18) Å and the carboxylic acid of COU in the crystal structure. These dimers in turn are connected to other dimers via two water molecules. The overall hydrogen bonding results in the formation of zig-zag tapes as seen in Figure 8.17.
ELACAP: ELACAP crystallizes in $P2_1/n$. The single crystal data reveals that ELACAP consists of two ELA and two CAP molecules in the unit cell. The phenolic hydroxyls hydrogen bonds to the carbonyls of CAP at (O···CO: 2.696(9) Å and 2.724(9) Å.) The carbonyl moiety of ellagic acid hydrogen bonds to the NH (O···NH: 2.90(10) Å) of CAP. Overall it gives rise to a series of heterocatemers as seen in Figure 8.18.
ELANAM: ELANAM crystallizes in *P21/n*. The crystal x-ray structure reveals one ELA molecule and two NAM molecules in the asymmetric unit. NAM interacts with phenolic hydrogen of ELA via supramolecular heterosynthon at a distance of N_{arom}···OH; (OH···N : 2.64 (5) Å). NAM molecules interact via the amide-amide supramolecular homosynthon with a C=O···HN (NH···O: 3.040(7) Å) to form a zigzag chain. The amide dimer also acts as both a hydrogen bond donor and acceptor towards the carbonyl and phenolic hydrogen of ELA to form a trimer. OH···O: 2.694(6) Å, NH···O: 2.953(7) Å. The trimeric interaction links the zigzag chains together to yield the overall crystal packing illustrated in Figure 8.19.

![Diagram of crystal structure](image)

Figure 8.19. Trimeric interaction linking the zigzag chains together to yield the overall crystal packing for ELANAM.

ELADMP: ELADMP crystallizes in *P21/c*. The asymmetric unit reveals a 1:1 cocrystal of ELA and DMP which forms a tetramer (OH···O: 2.649(1) Å and 2.903(2) Å). The ammonium moiety of *N,N*-dimethylglycine interacts with hydroxyl group of ELA (NH···O: 2.887(2) Å) also the ELA molecules are sustained via π-stacking in a staggered orientation shown in Figure 8.20.
ELATHP. The single crystal x-ray structural analysis reveals that **ELATHP** contains two **ELA** molecules, four **THP** molecules and water in the asymmetric unit. **THP** molecules form dimers via C=O···HN interactions (N-H•••O: 2.714(2) Å). Other carbonyls from the dimer interact with the hydroxyl moieties of **ELA** (OH•••O: 2.757(2) Å) to form a straight chain which interacts with adjacent straight chains via bifurcated hydrogen bonding between the hydroxyl moieties of **ELA** (OH•••O: 2.757(2) Å) and pyridine of **THP** (N-H•••O: 2.711(2) Å). The water molecules interact with the carbonyls of **ELA** (OH•••O: 2.611 Å) and **THP** (OH•••O: 2.785 Å). The overall crystal packing resembles crossed ribbons as illustrated in Figure 8.21.

Figure 8.20. Interactions between ELA and DMP.

![Figure 8.20](image_url)

Figure 8.21. Intermolecular interactions between ELA and THP.

![Figure 8.21](image_url)
Table 8.3. Crystallographic data and structure refinement parameters for the cocrystals.

<table>
<thead>
<tr>
<th></th>
<th>COUURE</th>
<th>COUINZ</th>
<th>COUNAM</th>
<th>COUINM</th>
<th>COUTBR.2H2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C_{19}H_{20}N_{2}O_{7}</td>
<td>C_{20}H_{20}N_{4}O_{5} .33</td>
<td>C_{15}H_{14}N_{2}O_{4}</td>
<td>C_{15}H_{14}N_{2}O_{4}</td>
<td>C_{16}H_{20}N_{4}O_{7}</td>
</tr>
<tr>
<td>MW</td>
<td>224</td>
<td>401.73</td>
<td>286.28</td>
<td>286.28</td>
<td>380.36</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>Monoclinic,</td>
<td>Monoclinic</td>
<td>Triclinic</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>C2/c</td>
<td>P21/n</td>
<td>P2_1/c</td>
<td>P-1</td>
<td>P-1</td>
</tr>
<tr>
<td>a (Å)</td>
<td>16.0219(3)Å</td>
<td>7.3854(2)Å</td>
<td>15.5635(5)Å</td>
<td>6.9663(3)Å</td>
<td>15.3236(4)Å</td>
</tr>
<tr>
<td>b (Å)</td>
<td>6.11800(10)Å</td>
<td>5.70390(10)Å</td>
<td>6.3162(2)Å</td>
<td>7.3890(5)Å</td>
<td>8.8959(2)Å</td>
</tr>
<tr>
<td>c (Å)</td>
<td>19.9780(3)Å</td>
<td>32.6563(6)Å</td>
<td>14.1472(5)Å</td>
<td>14.6499(7)Å</td>
<td>12.9598(4)Å</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>91.135(4)</td>
<td>90</td>
</tr>
<tr>
<td>β (deg)</td>
<td>110.9110(10)°</td>
<td>92.7760(10)°</td>
<td>106.043(2)°</td>
<td>99.602(3)</td>
<td>102.781(2)°</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>118.103(3)</td>
<td>90</td>
</tr>
<tr>
<td>V / Å³</td>
<td>1829.3(5)Å³</td>
<td>1374.05(5)Å³</td>
<td>1336.54(8)Å³</td>
<td>651.65(6)Å³</td>
<td>1722.87(8)Å³</td>
</tr>
<tr>
<td>Dc/g cm³</td>
<td>1.410</td>
<td>1.456</td>
<td>1.423</td>
<td>1.459</td>
<td>1.466</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2θ range</td>
<td>4.74 to 67.38°</td>
<td>5.42 to 68.37°</td>
<td>5.92 to 67.80°</td>
<td>3.08 to 66.77°</td>
<td>2.96 to 67.38°</td>
</tr>
<tr>
<td>Nref./Npara</td>
<td>1592 / 136</td>
<td>2359 / 260</td>
<td>2366/ 214</td>
<td>5435 / 2165</td>
<td>14352 / 3033</td>
</tr>
<tr>
<td>T /K</td>
<td>100(2)</td>
<td>100(2)</td>
<td>100(2)</td>
<td>100(2)</td>
<td>100(2)</td>
</tr>
<tr>
<td>R1 [I>2σ(I)]</td>
<td>0.0340</td>
<td>0.0343</td>
<td>0.0361</td>
<td>0.0408</td>
<td>0.0362</td>
</tr>
<tr>
<td>wR2</td>
<td>0.0848</td>
<td>0.0978</td>
<td>0.0903</td>
<td>0.1034</td>
<td>0.0911</td>
</tr>
<tr>
<td>GOF</td>
<td>1.014</td>
<td>1.011</td>
<td>1.040</td>
<td>1.017</td>
<td>1.024</td>
</tr>
<tr>
<td>Abs coef</td>
<td>0.917</td>
<td>0.900</td>
<td>0.874</td>
<td>0.896</td>
<td>0.992</td>
</tr>
</tbody>
</table>

189
Table 8.3. (Continued)

<table>
<thead>
<tr>
<th></th>
<th>GALINZ</th>
<th>GALDMP</th>
<th>GALADN</th>
<th>GALURE</th>
<th>GALGAH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C${13}$H${13}$N${3}$O${6}$</td>
<td>C${17}$H${22}$N${4}$O${3}$</td>
<td>C${12}$H${11}$N${5}$O${5}$</td>
<td>C${8}$H${10}$N${2}$O${6}$</td>
<td>C${13}$H${12}$N${2}$O${7}$</td>
</tr>
<tr>
<td>MW</td>
<td>307.26</td>
<td>362.39</td>
<td>305.25</td>
<td>230.18</td>
<td>284.23</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
<td>Triclinic</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
<td>P-1</td>
<td>P$_{2_1}$/c</td>
<td>P$_{2_1}$/c</td>
<td>P-1</td>
</tr>
<tr>
<td>a (Å)</td>
<td>8.6337(3)</td>
<td>8.074(2)</td>
<td>7.96634(14)</td>
<td>9.7502(3)</td>
<td>6.0418(2)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>11.9056(5)</td>
<td>8.149(2)</td>
<td>6.33221(23)</td>
<td>9.8774(3)</td>
<td>7.9997(2)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>13.3621(5)</td>
<td>15.091(4)</td>
<td>24.8483(4)</td>
<td>10.2927(3)</td>
<td>13.0244(3)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>94.353(2)</td>
<td>95.811(5)</td>
<td>90</td>
<td>90</td>
<td>103.309(2)</td>
</tr>
<tr>
<td>β (deg)</td>
<td>99.401(2)</td>
<td>93.004(5)</td>
<td>96.2093(16)</td>
<td>109.204(2)</td>
<td>91.082(2)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>108.929(2)</td>
<td>117.408(4)</td>
<td>90</td>
<td>90</td>
<td>109.7880(10)</td>
</tr>
<tr>
<td>V / Å3</td>
<td>1269.47(8)</td>
<td>871.4(4)</td>
<td>1246.11(4)</td>
<td>936.09(5)</td>
<td>573.19(3)</td>
</tr>
<tr>
<td>Dc/g cm$^{-3}$</td>
<td>1.608</td>
<td>1.381</td>
<td>1.589</td>
<td>1.633</td>
<td>1.647</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2θ range</td>
<td>3.38 to 65.97</td>
<td>2.73 to 25.03</td>
<td>3 to 40</td>
<td>4.80 to 67.95</td>
<td>3.51 to 66.04</td>
</tr>
<tr>
<td>Nref./Npara</td>
<td>4165/420</td>
<td>3031/265</td>
<td>-</td>
<td>1677/166</td>
<td>1914/196</td>
</tr>
<tr>
<td>T /K</td>
<td>100(2)</td>
<td>100(2)</td>
<td>300</td>
<td>100(2)</td>
<td>100(2)</td>
</tr>
<tr>
<td>R$_1$ [I>2σ (I)]</td>
<td>0.0444</td>
<td>0.0406</td>
<td>-</td>
<td>0.0323</td>
<td>0.0369</td>
</tr>
<tr>
<td>wR$_2$</td>
<td>0.1130</td>
<td>0.1060</td>
<td>-</td>
<td>0.0853</td>
<td>0.0925</td>
</tr>
<tr>
<td>GOF</td>
<td>0.999</td>
<td>1.039</td>
<td>1.523</td>
<td>1.084</td>
<td>1.095</td>
</tr>
<tr>
<td>Abs coef</td>
<td>1.109</td>
<td>0.103</td>
<td>0.123</td>
<td>1.237</td>
<td>1.211</td>
</tr>
</tbody>
</table>
Table 8.3. (Continued)

<table>
<thead>
<tr>
<th></th>
<th>FERINZ</th>
<th>FERADN</th>
<th>FERURE</th>
<th>FERGAH</th>
<th>FERTBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C_{16}H_{17}N_{3}O_{5}</td>
<td>C_{15}H_{15}N_{3}O_{4}</td>
<td>C_{14}H_{16}N_{4}O_{5}</td>
<td>C_{14}H_{16}N_{2}O_{6}</td>
<td>C_{17}H_{20}N_{3}O_{7}</td>
</tr>
<tr>
<td>MW</td>
<td>331.33</td>
<td>329.32</td>
<td>314.30</td>
<td>308.29</td>
<td>392.37</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>Orthorhombic</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P_{2}/c</td>
<td>Pca_{2}</td>
<td>P_{2}/c</td>
<td>Pc</td>
<td>C_{2}/c</td>
</tr>
<tr>
<td>a (Å)</td>
<td>13.681(4)</td>
<td>13.2739(4)</td>
<td>19.950(1)</td>
<td>10.9682(3)</td>
<td>30.546(4)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>3.798(12)</td>
<td>16.2621(5)</td>
<td>10.2970(5)</td>
<td>12.7359(3)</td>
<td>6.8895(9)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>29.843(10)</td>
<td>6.9427(3)</td>
<td>7.2349(4)</td>
<td>10.2315(3)</td>
<td>17.209(2)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β (deg)</td>
<td>101.914(5)</td>
<td>90</td>
<td>94.914(3)</td>
<td>97.599(2)</td>
<td>93.725(6)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>V / Å³</td>
<td>1517(5)</td>
<td>1498.66(9)</td>
<td>1480.77(13)</td>
<td>1416.69(7)</td>
<td>3619.9(8)</td>
</tr>
<tr>
<td>Dc/g cm⁻³</td>
<td>1.451</td>
<td>1.460</td>
<td>1.410</td>
<td>1.445</td>
<td>1.442</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>2θ range</td>
<td>3.30 to 44.48</td>
<td>2.72 to 67.07</td>
<td>2.22 to 65.82</td>
<td>3.47 to 65.98</td>
<td>2.90 to 52.63</td>
</tr>
<tr>
<td>Nref./Npara</td>
<td>1206/229</td>
<td>2421/226</td>
<td>2497/208</td>
<td>4124/403</td>
<td>2042/259</td>
</tr>
<tr>
<td>T /K</td>
<td>293(2)</td>
<td>100(2)</td>
<td>100(2)</td>
<td>225(2)</td>
<td>298(2)</td>
</tr>
<tr>
<td>R₁ [I>2σ (I)]</td>
<td>0.0762</td>
<td>0.0354</td>
<td>0.0445</td>
<td>0.0537</td>
<td>0.0742</td>
</tr>
<tr>
<td>wR²</td>
<td>0.1734</td>
<td>0.0827</td>
<td>0.1062</td>
<td>0.1413</td>
<td>0.1965</td>
</tr>
<tr>
<td>GOF</td>
<td>0.994</td>
<td>1.065</td>
<td>1.081</td>
<td>1.004</td>
<td>1.016</td>
</tr>
<tr>
<td>Abs coef</td>
<td>0.920</td>
<td>0.918</td>
<td>0.974</td>
<td>0.971</td>
<td>0.965</td>
</tr>
</tbody>
</table>
Table 8.3. (Continued)

<table>
<thead>
<tr>
<th></th>
<th>ELANAM</th>
<th>ELADMP</th>
<th>ELADMG</th>
<th>ELACAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C({26})H({18})ClN(4)O({10})</td>
<td>C({24})H({22})N(4)O({8})</td>
<td>C({18})H({15})N(4)O({10})</td>
<td>C({26})H({28})N(2)O({10})</td>
</tr>
<tr>
<td>MW</td>
<td>546.44</td>
<td>494.46</td>
<td>405.31</td>
<td>528.51</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2(_1)/n</td>
<td>P2(_1)/c</td>
<td>C2/c</td>
<td>P2(_1)/n</td>
</tr>
<tr>
<td>a (Å)</td>
<td>7.035 (3)</td>
<td>4.9393 (6)</td>
<td>20.7781 (4)</td>
<td>12.452 (3)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>22.963 (6)</td>
<td>18.155 (2)</td>
<td>12.4012 (2)</td>
<td>6.0627 (15)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>7.290 (2)</td>
<td>12.1795 (12)</td>
<td>13.0557 (2)</td>
<td>15.624 (4)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β (deg)</td>
<td>106.50 (2)</td>
<td>93.451 (7)</td>
<td>107.333 (1)</td>
<td>91.562 (10)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>V/Å(^3)</td>
<td>1129.2 (6)</td>
<td>1090.2 (2)</td>
<td>3211.34 (9)</td>
<td>1179.1 (5)</td>
</tr>
<tr>
<td>D(_s)/g cm(^{-3})</td>
<td>1.607</td>
<td>1.506</td>
<td>1.677</td>
<td>1.489</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>2θ range</td>
<td>3.85 to 39.04</td>
<td>4.38 to 68.13</td>
<td>4.20 to 65.08</td>
<td>4.48 to 42.87</td>
</tr>
<tr>
<td>Nref./Npara.</td>
<td>623/172</td>
<td>1916/178</td>
<td>2695/285</td>
<td>753/212</td>
</tr>
<tr>
<td>T/K</td>
<td>100 (2)</td>
<td>100 (2)</td>
<td>100 (2)</td>
<td>100 (2)</td>
</tr>
<tr>
<td>R(_1) [I>2σ(I)]</td>
<td>0.0375</td>
<td>0.0636</td>
<td>0.0313</td>
<td>0.0515</td>
</tr>
<tr>
<td>wR(_2)</td>
<td>0.0771</td>
<td>0.1404</td>
<td>0.0844</td>
<td>0.1346</td>
</tr>
<tr>
<td>GOF</td>
<td>1.011</td>
<td>1.002</td>
<td>1.030</td>
<td>1.065</td>
</tr>
<tr>
<td>Abs coef.</td>
<td>1.077</td>
<td>0.972</td>
<td>1.206</td>
<td>0.974</td>
</tr>
</tbody>
</table>
Table 8.4. Crystallographic data and structure refinement parameters for the cocrystals

<table>
<thead>
<tr>
<th></th>
<th>CFAGAH</th>
<th>CFAINM•2H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C₁₃H₁₄N₂O₆</td>
<td>C₁₅H₁₈N₂O₇</td>
</tr>
<tr>
<td>MW</td>
<td>294.26</td>
<td>338.31</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
<td>P-1</td>
</tr>
<tr>
<td>a (Å)</td>
<td>6.1600 (3)</td>
<td>8.5694(1)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>8.0178 (4)</td>
<td>9.4912(2)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>13.4643 (6)</td>
<td>9.5505(2)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90.271 (3)</td>
<td>93.312(1)</td>
</tr>
<tr>
<td>β (deg)</td>
<td>101.790 (3)</td>
<td>91.537(1)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>96.325 (3)</td>
<td>99.397(1)</td>
</tr>
<tr>
<td>V/Å³</td>
<td>646.75 (5)</td>
<td>764.56(2)</td>
</tr>
<tr>
<td>D_c/mg m⁻³</td>
<td>1.511</td>
<td>1.470</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2θ range</td>
<td>3.35 to 65.52</td>
<td>4.64 to 65.97</td>
</tr>
<tr>
<td>Nref./Npara.</td>
<td>2135 /201</td>
<td>2534/350</td>
</tr>
<tr>
<td>T /K</td>
<td>225 (2)</td>
<td>100 (2)</td>
</tr>
<tr>
<td>R₁ [I>2sigma(I)]</td>
<td>0.0347</td>
<td>0.0365</td>
</tr>
<tr>
<td>wR₂</td>
<td>0.0900</td>
<td>0.0975</td>
</tr>
<tr>
<td>GOF</td>
<td>1.028</td>
<td>1.057</td>
</tr>
<tr>
<td>Abs coef.</td>
<td>1.035</td>
<td>1.003</td>
</tr>
</tbody>
</table>
Table 8.5. Selected Hydrogen bonds distances and parameters for cocrystals.

<table>
<thead>
<tr>
<th>Hydrogen bond</th>
<th>d (H···A) /Å</th>
<th>D (D···A)/Å</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELANAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(7)-H(7)···O(7)#2</td>
<td>2.17</td>
<td>3.044(7)</td>
<td>176.5</td>
</tr>
<tr>
<td>N(7)-H(72)···O(15)</td>
<td>2.07</td>
<td>2.939(7)</td>
<td>169(1)</td>
</tr>
<tr>
<td>N(17)-H(17)···O(1)#3</td>
<td>1.59(6)</td>
<td>2634(5)</td>
<td>174(5)</td>
</tr>
<tr>
<td>N(11)-H(11)···O(7)#2</td>
<td>1.85</td>
<td>2.694(6)</td>
<td>179(3)</td>
</tr>
<tr>
<td>ELADMP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(2)-H(2)···O(1)#3</td>
<td>1.58(5)</td>
<td>2.588(4)</td>
<td>163(4)</td>
</tr>
<tr>
<td>N(2)-H(1)···O(4)#2</td>
<td>1.90(5)</td>
<td>2.973(4)</td>
<td>173(4)</td>
</tr>
<tr>
<td>ELADMG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(5)-H(3)···O(10)#1</td>
<td>1.72(2)</td>
<td>2.649(1)</td>
<td>174(2)</td>
</tr>
<tr>
<td>O(6)-H(4)···O(9)#2</td>
<td>1.86(2)</td>
<td>2.682(1)</td>
<td>157(2)</td>
</tr>
<tr>
<td>O(1)-H(1)···O(9)#3</td>
<td>2.17(2)</td>
<td>2.903(2)</td>
<td>149(2)</td>
</tr>
<tr>
<td>O(2)-H(2)···O(10)#4</td>
<td>2.63(2)</td>
<td>2.587(1)</td>
<td>170(2)</td>
</tr>
<tr>
<td>N(1)-H(5)···O(5)#5</td>
<td>2.09(2)</td>
<td>2.887(2)</td>
<td>144(2)</td>
</tr>
<tr>
<td>ELACAP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(11)-H(11)···O(1)</td>
<td>1.96(11)</td>
<td>2.724(9)</td>
<td>160(11)</td>
</tr>
<tr>
<td>N(1)-H(1N)···O(17)#2</td>
<td>2.15(11)</td>
<td>2.903(10)</td>
<td>130(8)</td>
</tr>
<tr>
<td>O(12)-H(12)···O(1)#4</td>
<td>1.98(8)</td>
<td>2.696(9)</td>
<td>171(9)</td>
</tr>
<tr>
<td>COUURE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1) H(1)...O(21)</td>
<td>1.70(2)</td>
<td>2.601(1)</td>
<td>167(2)</td>
</tr>
<tr>
<td>O(2) H(2A)...O(3)#1</td>
<td>1.71(3)</td>
<td>2.647(1)</td>
<td>177(2)</td>
</tr>
<tr>
<td>N(21)-H(21A)...O(3)#2</td>
<td>2.12</td>
<td>2.984(2)</td>
<td>168.0</td>
</tr>
<tr>
<td>N(21)-H(21B)...O(1)#3</td>
<td>2.22</td>
<td>2.963(2)</td>
<td>141.3</td>
</tr>
<tr>
<td>COUINZ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2)-H(11)...N(13)#1</td>
<td>1.61(3)</td>
<td>2.5999(15)</td>
<td>178(2)</td>
</tr>
<tr>
<td>O(2)-H(11)...N(12)#1</td>
<td>2.46(2)</td>
<td>3.3296(14)</td>
<td>146.0(19)</td>
</tr>
<tr>
<td>O(1)-H(12)...N(11)#2</td>
<td>1.89(2)</td>
<td>2.7354(15)</td>
<td>158(2)</td>
</tr>
<tr>
<td>N(13)-H(13)...O(2)#3</td>
<td>2.370(16)</td>
<td>2.9358(15)</td>
<td>119.5(12)</td>
</tr>
<tr>
<td>N(13)-H(14)...O(3)#4</td>
<td>2.09(2)</td>
<td>2.9848(16)</td>
<td>169.4(16)</td>
</tr>
<tr>
<td>N(12)-H(15)...O(3)#5</td>
<td>2.166(18)</td>
<td>2.8865(15)</td>
<td>143.2(15)</td>
</tr>
<tr>
<td></td>
<td>Hydrogen bond</td>
<td>(d\ (H\cdots A)/\text{\AA})</td>
<td>(D\ (D\cdots A)/\text{\AA})</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>COUNAM</td>
<td>O(2)-H(2)...O(11)</td>
<td>1.65(3)</td>
<td>2.5408(15)</td>
</tr>
<tr>
<td></td>
<td>O(3)-H(3)...N(11)#1</td>
<td>1.85(2)</td>
<td>2.7049(17)</td>
</tr>
<tr>
<td></td>
<td>N(12)-H(111)...O(1)</td>
<td>2.02(2)</td>
<td>2.9106(17)</td>
</tr>
<tr>
<td></td>
<td>N(12)-H(112)...O(2)#2</td>
<td>2.08(2)</td>
<td>2.9473(18)</td>
</tr>
<tr>
<td>COUINM</td>
<td>O(1)-H(21)...N(11)#1</td>
<td>1.94</td>
<td>2.694(2)</td>
</tr>
<tr>
<td></td>
<td>O(3)-H(22)...O(11)#2</td>
<td>1.77</td>
<td>2.5859(17)</td>
</tr>
<tr>
<td></td>
<td>N(12)-H(121)...O(2)#2</td>
<td>2.09</td>
<td>3.040(2)</td>
</tr>
<tr>
<td></td>
<td>N(12)-H(122)...O(2)</td>
<td>2.09</td>
<td>2.981(2)</td>
</tr>
<tr>
<td>COUTBR</td>
<td>O(1)-H(10)...O(22)</td>
<td>1.73(2)</td>
<td>2.6158(16)</td>
</tr>
<tr>
<td></td>
<td>O(3)-H(22)...O(32)#1</td>
<td>1.70(3)</td>
<td>2.5993(17)</td>
</tr>
<tr>
<td></td>
<td>N(23)-H(23N)...O(2)</td>
<td>2.04(2)</td>
<td>2.8468(18)</td>
</tr>
<tr>
<td></td>
<td>O(31)-H(31O)...O(3)#2</td>
<td>1.99(3)</td>
<td>2.8145(18)</td>
</tr>
<tr>
<td></td>
<td>O(32)-H(32O)...O(31)#3</td>
<td>1.85(3)</td>
<td>2.7086(18)</td>
</tr>
<tr>
<td></td>
<td>O(31)-H(33O)...N(21)#4</td>
<td>2.15(2)</td>
<td>2.9145(18)</td>
</tr>
<tr>
<td>CFAINM•2H₂O</td>
<td>O-H…O</td>
<td>1.95 (3)</td>
<td>2.838 (6)</td>
</tr>
<tr>
<td></td>
<td>O-H…O</td>
<td>1.80 (3)</td>
<td>2.687 (1)</td>
</tr>
<tr>
<td></td>
<td>O-H…O</td>
<td>2.02 (3)</td>
<td>2.854 (1)</td>
</tr>
<tr>
<td>CFAINZ</td>
<td>N-H…O</td>
<td>2.08 (3)</td>
<td>2.935 (2)</td>
</tr>
<tr>
<td></td>
<td>N-H…O</td>
<td>2.01 (2)</td>
<td>2.9201(2)</td>
</tr>
<tr>
<td></td>
<td>O-H…O</td>
<td>2.07 (4)</td>
<td>2.748 (3)</td>
</tr>
<tr>
<td></td>
<td>O-H…O</td>
<td>2.14 (4)</td>
<td>2.739 (3)</td>
</tr>
<tr>
<td></td>
<td>N-H…O</td>
<td>2.32 (3)</td>
<td>3.148 (3)</td>
</tr>
<tr>
<td></td>
<td>N-H…O</td>
<td>2.48 (3)</td>
<td>2.977 (3)</td>
</tr>
<tr>
<td></td>
<td>N-H…O</td>
<td>2.50 (3)</td>
<td>3.329 (3)</td>
</tr>
</tbody>
</table>
Table 8.6. Selected hydrogen bond distances and parameters of cocrystals.

<table>
<thead>
<tr>
<th></th>
<th>Hydrogen bond</th>
<th>(d) (H ⋅ ⋅ ⋅ A)/Å</th>
<th>(D) (D ⋅ ⋅ ⋅ A)/Å</th>
<th>DHA (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GALINZ</td>
<td>N-H-O</td>
<td>2.20</td>
<td>2.942(2)</td>
<td>142.2</td>
</tr>
<tr>
<td></td>
<td>N-H-O</td>
<td>2.56(3)</td>
<td>3.427(3)</td>
<td>169(2)</td>
</tr>
<tr>
<td></td>
<td>N-H-O</td>
<td>2.24</td>
<td>2.913(2)</td>
<td>132.8</td>
</tr>
<tr>
<td></td>
<td>N-H-O</td>
<td>2.18(3)</td>
<td>3.044(3)</td>
<td>162(2)</td>
</tr>
<tr>
<td></td>
<td>O-H-O</td>
<td>2.07</td>
<td>2.802(2)</td>
<td>145.3</td>
</tr>
<tr>
<td></td>
<td>O-H-O</td>
<td>2.04</td>
<td>2.755(2)</td>
<td>142.8</td>
</tr>
<tr>
<td></td>
<td>O-H-N</td>
<td>1.80</td>
<td>2.636(2)</td>
<td>174.8</td>
</tr>
<tr>
<td></td>
<td>O-H-N</td>
<td>1.89</td>
<td>2.717(2)</td>
<td>167.6</td>
</tr>
<tr>
<td></td>
<td>O-H-N</td>
<td>1.84</td>
<td>2.675(2)</td>
<td>173.9</td>
</tr>
<tr>
<td></td>
<td>O-H-N</td>
<td>1.87</td>
<td>2.699(2)</td>
<td>167.6</td>
</tr>
<tr>
<td>GALDMP</td>
<td>N-H-O</td>
<td>2.14(2)</td>
<td>2.9314(19)</td>
<td>151.7(17)</td>
</tr>
<tr>
<td></td>
<td>N-H-O</td>
<td>1.95(2)</td>
<td>2.8092(19)</td>
<td>162(2)</td>
</tr>
<tr>
<td></td>
<td>O-H-N</td>
<td>1.67(3)</td>
<td>2.6190(18)</td>
<td>167(2)</td>
</tr>
<tr>
<td></td>
<td>O-H-N</td>
<td>2.51(2)</td>
<td>3.3135(19)</td>
<td>140.6(18)</td>
</tr>
<tr>
<td></td>
<td>O-H-O</td>
<td>1.97(2)</td>
<td>2.7410(16)</td>
<td>144.9(19)</td>
</tr>
<tr>
<td></td>
<td>O-H-O</td>
<td>2.27(2)</td>
<td>2.7283(16)</td>
<td>112.0(17)</td>
</tr>
<tr>
<td></td>
<td>O-H-N</td>
<td>1.84(3)</td>
<td>2.6800(17)</td>
<td>160(2)</td>
</tr>
<tr>
<td></td>
<td>O-H-N</td>
<td>1.658(18)</td>
<td>2.5891(17)</td>
<td>169(3)</td>
</tr>
<tr>
<td>GALURE</td>
<td>O-H-O</td>
<td>1.73</td>
<td>2.5282(14)</td>
<td>158.5</td>
</tr>
<tr>
<td></td>
<td>O-H-O</td>
<td>1.89</td>
<td>2.7012(14)</td>
<td>162.4</td>
</tr>
<tr>
<td></td>
<td>O-H-O</td>
<td>2.04</td>
<td>2.8346(14)</td>
<td>156.5</td>
</tr>
<tr>
<td></td>
<td>N-H-O</td>
<td>2.10</td>
<td>2.8263(14)</td>
<td>144.7</td>
</tr>
<tr>
<td></td>
<td>N-H-O</td>
<td>2.37(2)</td>
<td>3.2347(17)</td>
<td>159.9(16)</td>
</tr>
<tr>
<td></td>
<td>N-H-O</td>
<td>2.542(19)</td>
<td>3.0048(17)</td>
<td>112.2(15)</td>
</tr>
<tr>
<td></td>
<td>N-H-O</td>
<td>2.31(2)</td>
<td>2.8264(17)</td>
<td>120.0(16)</td>
</tr>
<tr>
<td></td>
<td>N-H-O</td>
<td>2.12(2)</td>
<td>2.9961(18)</td>
<td>168.5(18)</td>
</tr>
<tr>
<td>GALGHAH</td>
<td>O-H-O</td>
<td>1.80</td>
<td>2.6382(14)</td>
<td>178.6</td>
</tr>
<tr>
<td></td>
<td>O-H-O</td>
<td>2.06</td>
<td>2.7229(15)</td>
<td>135.2</td>
</tr>
<tr>
<td></td>
<td>O-H-O</td>
<td>1.91</td>
<td>2.7480(15)</td>
<td>175.7</td>
</tr>
<tr>
<td></td>
<td>O-H-O</td>
<td>1.78</td>
<td>2.6102(15)</td>
<td>169.1</td>
</tr>
<tr>
<td></td>
<td>N-H-O</td>
<td>1.94(2)</td>
<td>2.8537(17)</td>
<td>165.7(18)</td>
</tr>
<tr>
<td></td>
<td>N-H-O</td>
<td>2.08(2)</td>
<td>2.9349(17)</td>
<td>166.7(19)</td>
</tr>
<tr>
<td>FERINZ</td>
<td>O-H-O</td>
<td>2.19</td>
<td>2.647(8)</td>
<td>115.8</td>
</tr>
<tr>
<td></td>
<td>O-H-O</td>
<td>2.37</td>
<td>3.000(8)</td>
<td>134.4</td>
</tr>
<tr>
<td></td>
<td>O-H-N</td>
<td>1.82</td>
<td>2.634(9)</td>
<td>174.6</td>
</tr>
<tr>
<td></td>
<td>N-H-O</td>
<td>2.06(2)</td>
<td>2.91(1)</td>
<td>176(8)</td>
</tr>
<tr>
<td></td>
<td>N-H-O</td>
<td>2.32(4)</td>
<td>3.17(1)</td>
<td>159(8)</td>
</tr>
<tr>
<td></td>
<td>N-H-O</td>
<td>2.25(7)</td>
<td>2.96(1)</td>
<td>137(8)</td>
</tr>
<tr>
<td>FERADN</td>
<td>O-H-N</td>
<td>1.98</td>
<td>2.715(2)</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>N-H-N</td>
<td>2.00</td>
<td>2.826(2)</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>N-H-O</td>
<td>2.09(2)</td>
<td>2.964(3)</td>
<td>164(2)</td>
</tr>
</tbody>
</table>
Table 8.6. (Continued)

<table>
<thead>
<tr>
<th></th>
<th>Hydrogen bond</th>
<th>(d\ (H\cdot\cdot\cdot A)/\text{Å})</th>
<th>(D\ (D \cdot \cdot \cdot A)/\text{Å})</th>
<th>(<(DHA))</th>
</tr>
</thead>
<tbody>
<tr>
<td>FERURE</td>
<td>O-H····O</td>
<td>1.75(3)</td>
<td>2.639(2)</td>
<td>168(3)</td>
</tr>
<tr>
<td></td>
<td>N-H····O</td>
<td>2.14</td>
<td>2.983(3)</td>
<td>160.7</td>
</tr>
<tr>
<td></td>
<td>N-H····O</td>
<td>2.32</td>
<td>3.023(2)</td>
<td>136.4</td>
</tr>
<tr>
<td></td>
<td>N-H····O</td>
<td>2.41</td>
<td>3.108(2)</td>
<td>137.0</td>
</tr>
<tr>
<td></td>
<td>N-H····O</td>
<td>2.08</td>
<td>2.951(3)</td>
<td>168.5</td>
</tr>
<tr>
<td></td>
<td>N-H····O</td>
<td>2.25</td>
<td>2.986(2)</td>
<td>141.2</td>
</tr>
<tr>
<td></td>
<td>N-H····O</td>
<td>2.06</td>
<td>2.936(2)</td>
<td>172.1</td>
</tr>
<tr>
<td></td>
<td>N-H····O</td>
<td>2.07</td>
<td>2.945(2)</td>
<td>174.2</td>
</tr>
<tr>
<td></td>
<td>N-H····O</td>
<td>2.29</td>
<td>3.079(2)</td>
<td>150.0</td>
</tr>
<tr>
<td></td>
<td>O-H····O</td>
<td>1.72(4)</td>
<td>2.616(2)</td>
<td></td>
</tr>
<tr>
<td>FERGAH</td>
<td>O-H····O</td>
<td>2.02</td>
<td>2.677(5)</td>
<td>135.1</td>
</tr>
<tr>
<td></td>
<td>O-H····O</td>
<td>2.01</td>
<td>2.646(4)</td>
<td>132.5</td>
</tr>
<tr>
<td></td>
<td>N-H····O</td>
<td>2.58</td>
<td>3.157(5)</td>
<td>124.5</td>
</tr>
<tr>
<td></td>
<td>N-H····O</td>
<td>2.25</td>
<td>3.097(5)</td>
<td>164.1</td>
</tr>
<tr>
<td>FERTBR.H_2O</td>
<td>O-H····O</td>
<td>1.79</td>
<td>2.600(7)</td>
<td>167.4</td>
</tr>
<tr>
<td></td>
<td>O-H····O</td>
<td>1.89</td>
<td>2.710(7)</td>
<td>175.5</td>
</tr>
<tr>
<td></td>
<td>N-H····O</td>
<td>2.00</td>
<td>2.858(7)</td>
<td>172.5</td>
</tr>
<tr>
<td></td>
<td>O-H(W)····O</td>
<td>2.09(5)</td>
<td>2.865(7)</td>
<td>150(7)</td>
</tr>
<tr>
<td></td>
<td>O-H(W)····O</td>
<td>1.90(3)</td>
<td>2.764(7)</td>
<td>169(9)</td>
</tr>
</tbody>
</table>

8.3.3. Hydrochlorothiazide Cocrystals. The CSD has no reported crystal forms of hydrochlorothiazide. However, the literature shows three crystal forms of the drug with nicotinic acid and 18 crown-6 piperazine reported by Almarsson and Zawortko et al. HCT being a sulfonamide drug has donors and acceptors that make it a potential candidate for crystal engineering. The CSD though, enlists a few sulfonamide cocrystal structures such as Piroxicam, which is a BCS class II drug studied by Childs et al,\(^{59}\) Celecoxib a low solubility API studied by Hickey et al\(^{60}\) where one cocrystal with nicotinamide (VIDGAR) showed improved properties following cocrystallization. Caira et al\(^{61}\) conducted a thorough study on sulfa drugs mainly sulfadimine drugs with carboxylic acids. Recently, Nangia et al\(^{63}\) reported the structures of sulfonamide – N pyridine oxide crystal forms. Thus, there are, but few reports on the sulfonamide
class of compounds.\(^6\) For HCT, a CSD search revealed that there are two polymorphic forms (Ref code: HCSBTZ, HCSBTZ01) and nine solvates.

8.3.3.1. CSD statistics. For this CSD search, HCT was divided into two parts, the first part containing the 1\(^{\circ}\) and 2\(^{\circ}\) sulfonamide moiety and the second part containing the 2\(^{\circ}\) amine (Scheme 3). Chloride was not included in the search due to it being a weak acceptor. Table 11 shows the possible supramolecular combinations possible for sulfonamides. The functional groups included in the search are carboxylic acids, phenols, aromatic nitrogen, amides and carboxylates. Table 12 enlists the CSD statistics.

![Scheme 8.3. Moieties used during CSD searches for HCT.](image)

The CSD statistics reveal functionalities such as amides (71%), N\(_{\text{arom}}\) (65%) and carboxylates (50%) showcase higher precedence of occurrence, thereby showcasing there suitability for crystal form synthesis. The first two are widely studied synthons, but the underexplored carboxylate functional group have been studied by Zaworotko et al with 2-aminopyridinium\(^1\) and weakly acidic hydroxyl moieties and it is seen that 2-aminopyridinium-carboxylate supramolecular heterosynthon \(^{62}\) occurs at 97% and weakly acid hydroxyl-carboxylate supramolecular heterosynthon \(^{38}\) occurs at 56%, showcasing that carboxylate moieties are versatile cocrystal forming group which is still not explored to a great extent. Here HCT has been cocrystallized with NAM, NAC and DMG and described herein. The cocrystal of HCT with isonicotinamide (INM) is published elsewhere but included in here for screening studies.
Table 8.7. Possible supramolecular heterosynthons for HCT with other functionalities
Table 8.8: CSD statistics of supramolecular synthons in HCT with different functionalities.

<table>
<thead>
<tr>
<th>Supramolecular synthon</th>
<th>Total Hits</th>
<th>Percentage occurrence of synthons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfonamide and carboxylic acid</td>
<td>132</td>
<td>III=39 (30%), VI=4 (3%), IX=10 (8%)</td>
</tr>
<tr>
<td>Sulfonamide and carboxylate</td>
<td>2</td>
<td>VIII=1 (50%)</td>
</tr>
<tr>
<td>Sulfonamide and amide</td>
<td>17</td>
<td>II=12 (71%), V=12 (71%)</td>
</tr>
<tr>
<td>Sulfonamide and phenol</td>
<td>60</td>
<td>I=9 (15%), IV=16 (27%)</td>
</tr>
<tr>
<td>Sulfonamide and N arom</td>
<td>104</td>
<td>VII=68 (65%)</td>
</tr>
<tr>
<td>2° amine and amide</td>
<td>100</td>
<td>XII=26 (26%)</td>
</tr>
<tr>
<td>2° amine and carboxylate</td>
<td>70</td>
<td>XI=17 (24%)</td>
</tr>
<tr>
<td>2° amine and N arom</td>
<td>1070</td>
<td>X=298 (28%)</td>
</tr>
</tbody>
</table>

Table 8.9: Crystallographic data and structure refinement parameters for the cocrystals.

<table>
<thead>
<tr>
<th></th>
<th>HCTNAM</th>
<th>HCTNAC</th>
<th>HCTDMG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C_{13}H_{14}ClN_{5}O_{5}S_{2}</td>
<td>C_{13}H_{13}ClN_{4}O_{6}S_{2}</td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td>419.86</td>
<td>420.84</td>
<td></td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
<td>Orthorhombic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2_12_12</td>
<td>P2_12_12</td>
<td>P-1</td>
</tr>
<tr>
<td>a (Å)</td>
<td>7.6392 (2)</td>
<td>7.3412 (3)</td>
<td>10.3649 (7)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>13.2595 (4)</td>
<td>12.9934 (6)</td>
<td>10.7143 (8)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>16.1215 (5)</td>
<td>16.1869 (7)</td>
<td>11.5908 (8)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
<td>90</td>
<td>78.513 (4)</td>
</tr>
<tr>
<td>β (deg)</td>
<td>90</td>
<td>90</td>
<td>68.481 (4)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>90</td>
<td>67.970 (4)</td>
</tr>
<tr>
<td>V/Å^3</td>
<td>1632.98 (8)</td>
<td>1544.02 (12)</td>
<td>1107.21</td>
</tr>
</tbody>
</table>
Table 8.9 (Continued)

<table>
<thead>
<tr>
<th></th>
<th>HCTNAM</th>
<th>HCTNAC</th>
<th>HCTDMG</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_c/g cm$^{-3}$</td>
<td>1.708</td>
<td>1.810</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2θ range</td>
<td>4.32 to 67.92</td>
<td>4.36 to 67.14</td>
<td></td>
</tr>
<tr>
<td>Nref./Npara.</td>
<td>2871 / 245</td>
<td>2629 / 229</td>
<td></td>
</tr>
<tr>
<td>T/K</td>
<td>100 (2)</td>
<td>100 (2)</td>
<td></td>
</tr>
<tr>
<td>R_1 [I>2sigma(I)]</td>
<td>0.0283</td>
<td>0.0514</td>
<td></td>
</tr>
<tr>
<td>wR_2</td>
<td>0.0682</td>
<td>0.1160</td>
<td></td>
</tr>
<tr>
<td>GOF</td>
<td>1.051</td>
<td>0.972</td>
<td></td>
</tr>
<tr>
<td>Abs coef.</td>
<td>4.836</td>
<td>5.148</td>
<td></td>
</tr>
</tbody>
</table>

HCTNAM: HCTNAM crystallizes in $P2_12_1$. Each asymmetric unit consists of one HCT and one NAM molecule. The carbonyl moiety of the amide group in NAM molecule hydrogen bonds with the sulfonamide moiety of a HCT molecule (O···N, 3.041 (3) Å) as depicted in Figure 8.4. The NAM molecules are involved in hydrogen bonding in a head-to-tail fashion, giving rise to the formation of parallel tapes of NAM (N···N$_{arom}$: 2.873 (3) Å). Also, HCTNAM forms ribbons that interacts with other ribbons above and below the plane, via N···O (2.901 (3) Å) hydrogen bonding. The HCT molecules in one tape interacts with other HCT molecules in the adjacent tapes via N-H···S=O interactions (2.901 Å). The overall hydrogen bonding is depicted in Figure 8.22.
Figure 8.22. (a) Intermolecular hydrogen bonds in HCTNAM (b) Overall H-bonding in HCTNAM.

HCTNAC: HCTNAC crystallizes in $P2_12_1$. Each asymmetric unit consists of one HCT and one NAC molecule. The NAC molecules exist in their zwitterionic form with C-O bonds (1.252 and 1.261 Å). The NAC molecules form head-to-tail chains via O···N$_{arom}$ hydrogen bonds 2.639 (2) Å. The HCT molecules form linear tapes adjacent to the NAC chains which are H-bonded to each other via charge assisted O···N bonds (2.943 (2) Å) as illustrated in Figure 8.23 (a). Each tape interacts with HCT molecules on either sides via N-H···S=O interactions (2.921 Å) as presented in Figure 23 (b). The H-bonding in HCTNAC resembles to that of HCTNAM. Figure 8.23 (c) represents the overall hydrogen bonding as seen in HCTNAC which shows the formation of corrugated tapes, sustained by π- π stacking.
Figure 8.23 (a) Intramolecular hydrogen bonding in the tape formed in HCTNAC. (b) Lateral interactions of HCT molecules on HCTNAC (c). Overall hydrogen bonding as seen in HCTNAC which shows the formation of corrugated tapes.
HCTDMG: HCT and **DMG** crystallizes in *P*-1. Each asymmetric unit consists of with two **DMG** molecules and one **HCT** molecule. In this crystal, two neighboring **HCT** molecules do not interact with each other directly instead the carboxylate moiety of a **DMG** molecule connects **HCT** molecules via N-H···COO⁻ (N···O : 2.860 Å) as illustrated in Figure 8.24 (a). Two tapes as seen above are connected to each other via bifurcated H-bonds formed by the carboxylate moiety in the first layer with the 1° amine, N···O :2.894 Å and the other with the 2° sulfonamide group N···O :2.827 Å present in the second layer. Similarly, the carboxylate of the DMG molecule in the second layer forms bifurcated H-bonds with HCT present in the first layer. However, the DMG molecules also form a dimer which connects the HCT molecules in one tape and to another DMG molecule present in the adjacent tape, N-H···O⁻ (2.761 Å) as shown in Figure 8.24(b).

8.3.4. Mechanochemistry. The results for the screening experiments have been summarized in Table 14. Both LAG and dry/neat grinding were attempted on all the cocrystals. The solvents used include ethanol, water and DMF. Previously, DMF was found to be solvent of choice for LAG as it afforded the maximum number of crystal forms. The observations of the grinding experiments have been discussed in the following paragraphs.
Figure 8.24. (a) Hydrogen bonding between HCT and DMG in HCTDMG. (b) Overall H-bonding in HCTDMG. HCT molecules are colored in green, while two independent DMG molecules are colored in magenta and red.
Table 8.10. Table showing the comparison of the screening techniques.

<table>
<thead>
<tr>
<th>COCRYSTAL SCREENING METHODOLOGY</th>
<th>COCRYSTAL</th>
<th>GRIND</th>
<th>SLURRY</th>
<th>SLOW EVAPORATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WATER</td>
<td>DMF</td>
<td>EtOH</td>
</tr>
<tr>
<td></td>
<td>ELANAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELAINM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELACAF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELATHP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELASAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELADMP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELACAP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COUNAM</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COUINM-I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COUCAF</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COUTBR.2H2O</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COUTHHP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COUINE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COUTURE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCTNAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCTINM</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCTDMG</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCTNAC</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFANAM</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFAINM</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFAINZ</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gallic acid crystal forms were successfully reproduced via LAG in all the three solvents. In case of dry grinding other than **GALADN** and **GALURE**, where partial conversion of the crystal form was observed none of the other crystal forms could be formed via grinding. In case of ferulic acid,
all the crystal forms successfully formed by LAG, whereas neat grinding could not afford all the forms other than in FERCAF, FERGAH and FERURE.

In the case of caffeic acid, other than CFAINZ, the only crystal form amongst all others where dry grinding worked, grinding overall didn’t look like the best method of synthesis.

In case of coumaric acid, dry grinding did not work out for any crystal form. Partial conversion was observed in case of COUCAF, COUINZ and COUURE. Some crystal forms were formed via LAG.

And finally, ellagic acid crystal forms could not be produced by LAG or dry grinding. And in case of the hydrochlorothiazide crystal forms, HCTNAM could not be made by either LAG or dry grind. And for HCTDMG, total conversion was not observed with any solvent.

Overall, out of the thirty-eight crystal forms studied herein, dry grinding was successful in formation of only two of them. Overall it was seen that LAG was more effective in forming the crystal forms as compared to dry grinding. This can be understood from the fact that the solvent plays a vital role in the kinetics of the reaction as well as formation of intermediate phases and or the dissolution of the cocrystal components to aid in crystal form formation. 18(a) Twenty-five crystal forms were formed by using DMF as a solvent which was higher than what water (twenty forms) or ethanol (twenty-two) had achieved.

The results of our grindings can also be corroborated to the findings of Jones et al’s 23, wherein, upon investigation of the effect of solubility on LAG and sonic slurry, it was understood that solubility of the cocrystal components may have an impact on the final crystal form formation. The equilibrium for crystal form formation for incongruently soluble components can be properly
achieved if both the components remain saturated. Any change to this system results in formation of either the cocrystal and the deposition of the low soluble component or no cocrystal at all.

In this case the COI’s belong to a wide range of solubility: very slightly soluble; coumaric acid, hydrochlorothiazide, ferulic acid and caffeic acid ~ 0.7 mg/mL; practically insoluble; ellagic acid and slightly soluble in case of gallic acid~ 11mg/mL in water. Most of their solubility improves but to a slight extent in organic solvents. Also the cocrystal formers in this case are in the fairly soluble, freely soluble or soluble categories in water. But the crystal forms could not be successfully made via grinding. One of the reasons could be that the more soluble components may not be entirely saturated in the solvent and hence the crystal form conversion does not occur. It can also be postulated that the very high difference in solubilities, result in the incongruency thereby not allowing reaction equilibrium to set in which might mean that the experiment might have required more time than was given.

In conclusion, from the results, it is clearly understood that DMF still remains to be the solvent of choice for grinding which means that the individual components must be able to attain saturation in the solvent due to congruencies in solubilities of the components by DMF successfully lowering the solubility difference between them to an extent that the conversion to the crystal forms occurs successfully.

8.3.5. Trends amongst Cocrystal formers for grinding experiments.

It has been observed that caffeine cocrystals with the COI’s were not formed via grinding in almost all the cases except in case of ferulic acid. This was puzzling considering that the solubility of the phenolic acids are almost in the same order and difference was still observed. Also it has been
observed that nicotinamide which forms cocrystal with all our MOI’s, does not show formation in any case via dry grinding. Also, Other than gallic and ferulic acid, nicotinamide cocrystals with other MOI’s do not form cocrystals via LAG too. In some cases, partial conversion is observed. Considering the variability in the results, we analyzed the crystal structures of the crystal forms. Which resulted in nothing evident. On looking into the synthons, it was found that as principally hypothesized, the crystal forms do form the necessary synthons. COOH··· N arom heterosynthon predominantly as compared to the OH··· N arom heterosynthons. On studying the melting points of the crystal forms with the analogous formers, it is observed that in all cases, either the melting point of the crystal form was lower or in between the either cocrystal formers, which did not suggest anything significant, thereby not leading us into any new trends.

8.3.6. Slurry experiments.

For the slurry experiments, as mentioned before, we employed a couple of variations in our standard experimental protocol to ensure that all the cocrystals could be formed by this method. As observed most of the cocrystals could be reproduced via the slurry method in water in 24 hours of experimentation. In all cases, both the components were in saturation in water. But the hydrochlorothiazide and ellagic acid cocrystals could not be reproduced via slurrying in 24 hours. In case of all these cocrystals we attempted to try the slurries at various concentrations for various amounts of time. But the crystal forms could not be reproduced. Some experiments as in case of ELASAR the experiments were done for even four weeks with no result. Invariably, some other factors were varied to achieve nucleation and finally cocrystallization in slurry. As seen from literature that slurry techniques in general can be affected by temperature change. Thus these
experiments were attempted at elevated temperatures of 75 and 85 °C. It was seen that the hydrochlorothiazide cocrystals on exposure to 75 °C converted rapidly to the cocrystal and the ellagic acid cocrystals were formed at 85 °C. This promotes the idea that even when the two components of variable solubilities are saturated in the solution, due to factors such as relative low solubility of one component, other factors may be required to initiate the process of cocrystal formation. In this case it was seen that varying the temperature for the non forming crystal forms was enough to initiate the nucleation and finally form a stable crystal form in equilibrium state. The same could be extended for the grinding experiments. All the cocrystals could hence be made from the slurry technique and even with slight modifications in the procedure, successful crystal form formation ensures and thus verifies the versatility of this technique in not only cocrystal screening procedure but also in future scale-up experiments.

In conclusion, it was understood that saturation is necessary for cocrystal formation, and also that even if not in stoichiometric amounts but the amount of cocrystal components in solution should be in order, to help reach the critical activity value which allows for cocrystal formation. And finally it is seen that temperature can play a vital role in this technique. Via our experiments, water’s versatility as a solvent for this procedure, has been established and it has been shown that even within a wide range of solubility, water slurry can be deemed to be useful. This showcases the practicality that can be achieved for large scale procedures with minimal cost of production considering that water is indeed cheap, easily available and versatile.
8.4. Conclusion.

From the above seen screening experiments of thirty eight crystal forms via the slurry, solution and grinding techniques it is definite that solvent evaporation still remains the technique of choice for all the crystal forms even though the method has its problems in relation to the various incongruencies in terms of solubility of components in solvents. But formation of good crystals are usually done via this method and herein too this method was suitably used to produce all our crystal forms. In case of grinding though, DMF still remains our solvent of choice considering that formed the most number of cocrystals. LAG is a better alternative to the dry grinding method and well suited for screening. And in case of aqueous slurry we have established that it is indeed a versatile method and can be used along with subtle changes such as temperature to form cocrystals which will help in lowering production costs for scale up purposes.

Acknowledgements. I would like to acknowledge and thank Dr. Padmini Kavuru, Dr. Heather Clarke and Dr. Tien Tong for their valuable combined contributions for this work during their Ph.D. dissertations, which has been incorporated herein.

8.5. References

APPENDIX A: JOURNAL PERMISSIONS

ACS JOURNAL AUTHOR RIGHTS

You may reuse all or part of the Submitted, Accepted, or Published versions of your ACS papers in your thesis or dissertation. Such reuse is permitted subject to the ACS’ Ethical Guidelines to Publication of Chemical Research and you should secure confirmation from the respective ACS journal editor(s) to avoid potential conflicts with journal prior publication policies. The ACS copyright credit line should be noted on the appropriate pages and appropriate citation of any Published versions. If the thesis or dissertation to be published is in electronic format, a direct link to the Published Work must be included using the ACS Articles on Request link.

ELSEVIER JOURNAL AUTHOR RIGHTS

Yes. Authors can include their articles in full or in part in a thesis or dissertation for non-commercial purposes.