
CHAPTER 5 : STATE ENCODING BASED NBTI OPTIMIZATION IN FINITE

STATE MACHINES 3

NBTI degradation is a serious problem in FSM circuits as it might lead to several timing

closure issues. It can be controlled using proposed state encoding. In this chapter, we introduce a

state encoding based NBTI optimization technique for FSMs and report experimental results.

5.1 Proposed Approach

We propose a run time NBTI optimization technique for finite state machines. FSMs operate

in various states at different points of time. Output of state registers drive a number of PMOS

transistors in a circuit, some of which might be on the critical path. The number of critical path

transistors under stress depends on state code. The extent of NBTI degradation in these transistors

is controlled by state probability. For a given application, states can be sorted based on how long

the FSM works in specific states, or based on state probability. Since NBTI depends on the ON

time of PMOS transistors, high probability states have worse NBTI degradation. The transistors

that are ON in a high probability state are under stress for a longer period of time, and hence

more prone to NBTI degradation. High probability states have a great scope to influence the NBTI

degradation of the circuit. Given a previous state code of a circuit, one can determine the state

code of current state with minimum NBTI effect. Such optimized state codes should be assigned
3This chapter is a part of
S. Pendyala and S. Katkoori, “State Encoding based NBTI optimization of Finite State Machines,” Manuscript

submitted to 2016 17th International Symposium on Quality of Electronic Design (ISQED).
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to the high probability states so that overall NBTI degradation of the circuit can be minimized.

State codes of low probability states influence NBTI degradation as well. But given their shorter

duration, their effect on degradation is much lesser when compared to the high probability states.

The relation between ON time of transistors and NBTI degradation is not straight forward.

It can be found in the NBTI model [22] used in this paper. Hence, a heuristic approach is used

instead of an analytical approach to achieve NBTI optimization. The technique used in this work

could easily be extended to counter PBTI effect as well. A compact model for PBTI DC stress

can be developed in a similar way as NBTI [22]. According to Lin et al. [62] and Wang et al. [61],

PBTI is much lower than NBTI in 45nm technology, so NBTI effect is solely considered. PBTI is

comparable to NBTI in high-k metal process technology. We would like to include PBTI effect in

out future work with lower technology nodes. In conventional synthesis, reducing dynamic power

of FSM is the major concern. In synthesis for NBTI minimization, delay degradation is optimized

at the risk of slight dynamic power overhead.

5.1.1 Motivational Example 1

Table 5.1: Sample.kiss2 State Transition Table

Input Current Next Output
state state

1- S0 S1 1
-1 S1 S0 0
1- S1 S1 1

Consider an example FSM benchmark circuit sample.kiss2 as shown in Table 5.1 with two

states S0 and S1. Figures 5.1 and 5.2 show the critical paths with different state codes for S0 and

S1. In Figure 5.1, the critical path consists of 6 PMOS transistors, with 2 PMOS in FF2 and 1
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PMOS each in g1, g2, g18, and FF1. In Figure 5.2, the critical path consists of 4 PMOS transistors,

with 3 PMOS in FF1 and 1 PMOS in g11. This example illustrates how PMOS transistors on the

critical path vary with state encoding.

Figure 5.1: Sample FSM with S0 = 0, S1 = 1

Figure 5.2: Sample FSM with S0 = 1, S1 = 0
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5.1.2 Motivational Example 2

Consider an FSM benchmark circuit mc.kiss2 from LGSYNTH93 benchmark suite as shown

in Table 5.2. It has 4 states (S1, S2, S3, S4), 3 bit input, and 5 bit output. For a sample input

sequence, S3 and S4 are states with high probability. State codes for S3 and S4 should be chosen

to achieve minimized NBTI optimization. The initial state codes for S3 and S4 are 10 and 11,

respectively. The number of PMOS transistors on the critical path is six. By applying the proposed

NBTI optimization technique, final state codes for S3 and S4 are 01 and 00, respectively. The

number of PMOS transistors on the critical path is reduced to four and 4% NBTI optimization

is achieved using optimized codes. Worst case state code assignment is S3=00 and S4=10 and it

results in 24% NBTI degradation. This example demonstrates the influence of state code assignment

on NBTI degradation.

Table 5.2: MC.kiss2 State Transition Table

Input Current Next Output
state state

0– S1 S1 00010
-0- S1 S1 00010
11- S1 S2 10010
–0 S2 S2 00110
–1 S2 S3 10110
10- S3 S3 01000
0– S3 S4 11000
-1- S3 S4 11000
–0 S4 S4 01001
–1 S4 S1 11001

Figure 5.3 shows the implementation framework. For a given FSM benchmark in .kiss2

format, an in-house FSM to behavioral verilog converter is developed. Cadence BUILDGATES

is used to do gate level synthesis. The gate level verilog netlist is converted into SPICE format

using Synopsys NETTRAN tool. An in-house NBTI degradation tool is developed to achieve Vth
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Figure 5.3: Framework for NBTI Optimization
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1 Algorithm Simulated_Annealing_NBTI
2 Inputs: (a) High Probability States (H)
3 (b) Used State codes (U)
4 (c) Unused State codes (UU)
5 (d) algo_type ∈ generic, state_prob_based
6 Outputs: Optimized State codes (NBTI_codes)
7 begin
8 Temp← 100
9 γ ← annealing co-efficient
10 best_codes← U
11 curr_codes← best_codes
12 best_delay ← NBTI_delay(curr_codes)
13 while Temp >0 do
14 foreach iteration in iteration_count do
15 if algo_type == state_prob_based
16 then
17 window ← Temp ∗ no_of_high_states/2
18 curr_codes← Swap(random(H) in the window,
19 random(U) or random(UU) )
20 else
21 window ← Temp ∗ no_of_used_states/2
22 curr_codes← Swap(random(U) in the window,
23 random(UU) )
24 end if
25 curr_delay ←NBTI_delay(curr_codes)
26 if curr_delay <best_delay ‖ random(0,1) ≤
27 pow(e,-(best_delay - curr_delay)/Temp )
28 then
29 if curr_delay <best_delay
30 then
31 NBTI_codes← curr_codes
32 end if
33 best_codes← curr_codes
34 best_delay ← NBTI_delay(curr_codes)
35 end if
36 Temp← Temp * γ
36 end while
37 best_delay ← NBTI_delay(NBTI_codes)
38 end Algorithm

Figure 5.4: Simulated Annealing Algorithm for NBTI Optimization
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degradation models for all degraded transistors in the SPICE circuit. This tool used NBTI long

term degradation (DC stress) model for random input sequence [22] to calculate Vth degradation of

the PMOS transistors. Activity factor is one of the inputs to the NBTI degradation model. For any

given input sequence, activity factor for all PMOS transistors is derived using Synopsys VCS and

Synopsys PRIMETIME tools. NBTI degraded SPICE circuit is developed from degraded PMOS

transistor models using an in-house script. Synopsys NANOTIME static timing analysis tool is

used to measure degraded delay from NBTI degraded SPICE circuit from which delay degradation

is calculated.

Time complexity of brute force search on the NBTI aware state encoding problem is O(tCu),

where t represents total possible state codes and u represents the number of states required in the

FSM. The time complexity to find an optimal solution is exponential. Hence, we adopt heuristic

technique to find NBTI optimized state encoding. Figure 5.4 shows the simulated annealing (SA)

algorithms for NBTI optimization. The two simulated annealing algorithms are implemented: (a)

Generic SA; (b) State probability based SA.

Generic SA technique considers of all the used states for optimization. For example, say an

FSM has 3 bit state encoding and only five states (S1, S2, S3, S4, S5). Since state encoding has

three bits, there are total of eight state codes to choose from. Initial state assignment as given in

the benchmark circuit consists of five states with state codes (S1=000, S2=001, S3=010, S4=011,

S5=100). The five states of FSM are sorted based on duration of active time during total lifetime

(10 years). Let us assume the states in the order of high to low state probability are S3, S1, S5,

S2, S4. In the NBTI optimization algorithm, first half of the states are chosen as high probability

states (S3, S1).
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Inputs of the algorithm on line 2 include used state codes (U), unused state codes (UU),

high probability states (H), complete state set (S), and high_state_flag. For above example, U →

(000, 001, 010, 011, 100), UU → (101, 110, 111), H → (S3, S1), algo_typee is state_prob_based

for state probability based SA and generic for generic SA. Output is the Optimized state code set

(NBTI_codes) on line 6. Temperature parameter of simulated annealing is set to 100 on line 8.

Simulated annealing coefficient γ on line 9 is a variable that is a function of total simulation time

as defined in 4.2. In every SA iteration, a state in a window is chosen and its corresponding state

code is swapped with a state code outside the window as shown in lines 18, 19, 22, and 23.

In case of generic SA, the window consists of complete state set S. Window for state

probability based SA consists of high probability states H. Depending on algo_type in line 15,

window size and swap operation are executed. The size of the window varies with temperature

parameter of simulated annealing. Figure 5.5 shows the window range during SA iterations. In

generic SA, window size starts with complete state set S and gradually reduces at low temperatures.

In state probability based SA, window size starts with high probability states H and grad-

ually reduces as well. Simulated annealing condition is tested in lines 26 and 27. Temperature

parameter is updated in line 36. Optimized state codes are assigned to NBTI_codes. Cost func-

tion is the NBTI delay degradation (NBTI_delay), and is used to calculate cost of a given solution

in lines 12, 25, 34, and 37. Depending on the simulation time that can be afforded, quality of the

solution improves. If the probability numbers of high probability states are large, state probability

based SA tend to achieve a better quality solution since the input space is pruned and limited

to high probability states. This is because high probability states cause major stress due to long

ON time. The scope of NBTI minimization by assigning optimized state code is substantial. The
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simulated annealing can also be extended to NBTI and leakage co-optimization by changing the

cost function to include leakage as well.

Figure 5.5: SA Iteration Window

5.2 Experimental Results

Table 5.3: Overview of LGSYNTH93 Benchmarks

Design Input Output Number of Number of Simulation time
(bits) (bits) states state table 1 SA run

entries (seconds)
s8 4 1 5 20 67
ex6 5 8 8 34 77
dk17 2 3 8 32 85
s386 7 7 13 64 94
s1 8 6 20 107 176
s1494 8 19 48 250 1500
s1488 8 19 48 251 1500
s208 11 2 18 153 180

We report the experimental results for two FSM NBTI optimization techniques: (a) Generic

SA; and (b) State probability based SA. Eight FSM benchmarks from LGSYNTH93 suite are used

in 45nm technology node at temperature 105C. Relevant data about the benchmark circuits is

summarized in Table 5.3. Total optimization time for each benchmark is five hours except for

s1488 and s1494 which takes eight hours each. It can be varied by the user to determine the
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solution quality. The Verilog-A code of the NBTI degradation model is verified with silicon results

from [94]. In the framework, for each set of state codes, the circuit undergoes gate level synthesis.

This might lead to different circuit with more area than the circuit with initial state encoding.

Hamming distance is also changed when state encoding is modified. Re-synthesis might cause area

overhead and change in hamming distance might cause dynamic power overhead. Area and power

overheads are reported along with NBTI optimization for the FSM benchmarks.

Time taken for generation of SPICE level circuit and net probabilities takes an average of

70 seconds. Time taken to generate degraded circuit from in-house Vth degradation calculation

tool depends on the size of the benchmark. This tool occupies a large part of simulation time. We

experimented with Cadence Relxpert but did not achieve correct results. With a quality industry

standard tool, the time taken by Vth degradation calculation can be reduced in the future. This can

make the technique scalable to larger designs. Figures 5.6–5.21 show the cost versus temperature

plots for generic and state probability based optimization for eight benchmarks. The best solution

so far is the cost on y-axis.

Table 5.4 reports NBTI improvement obtained using state probability based simulated an-

nealing along with area and power overheads. NBTI improvement is reported in column 2. In

columns 3, 4, and 5, area, dynamic power, and leakage power overheads are reported, respectively.

Several overhead numbers are observed to be negative (i.e. improvement). For instance, NBTI op-

timization on ex6 showed an improvement in NBTI degradation, area, leakage and dynamic power.

For the eight benchmarks, an average of 18.8% NBTI improvement. It also achieved an average

area improvement of 5.5%, dynamic power improvement of 4.6% and leakage improvement of 4.1%.

Hence, the overhead is optimized. In Tables 5.4 and 5.5, NBTI improvement reported is mea-
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sured between NBTI degradation of optimized state encoding and NBTI degradation of initial state

encoding provided in the benchmarks.

Table 5.5 reports NBTI improvement obtained using generic simulated annealing along with

area and power overhead. NBTI improvement is reported in column 2 and area, dynamic power and

leakage power overheads are reported in columns 3, 4 and 5, respectively. Several overhead numbers

are observed to be negative in this technique as well which means that there is an improvement

instead of overhead incurred. An average of 17.5% NBTI improvement is reported for an average

area over head of 3.3%, dynamic power overhead of 9.6% and leakage overhead of 2.0%.

The experimental results of both NBTI optimization techniques achieve substantial NBTI

improvement. However, further improvement in area, leakage and dynamic power parameters over-

head is observed in case of state probability based simulated annealing.

5.3 Chapter Summary

In this chapter, a framework for state encoding based NBTI optimization was detailed. State

probability based and generic optimization techniques were implemented. Experimental results were

reported for both of the techniques, and NBTI improvement looks promising.
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Figure 5.6: Generic Simulated Annealing for NBTI Delay - s8
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Figure 5.7: Generic Simulated Annealing for NBTI Delay - ex6
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Figure 5.8: Generic Simulated Annealing for NBTI Delay - dk17
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Figure 5.9: Generic Simulated Annealing for NBTI Delay - s386
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Figure 5.10: Generic Simulated Annealing for NBTI Delay - s1
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Figure 5.11: Generic Simulated Annealing for NBTI Delay - s1494
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Figure 5.12: Generic Simulated Annealing for NBTI Delay - s1488
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Figure 5.13: Generic Simulated Annealing for NBTI Delay - s208
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Figure 5.14: State Probability Based Simulated Annealing for NBTI Delay - s8
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Figure 5.15: State Probability Based Simulated Annealing for NBTI Delay - ex6
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Figure 5.16: State Probability Based Simulated Annealing for NBTI Delay - dk17
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Figure 5.17: State Probability Based Simulated Annealing for NBTI Delay - s386
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Figure 5.18: State Probability Based Simulated Annealing for NBTI Delay - s1
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Figure 5.19: State Probability Based Simulated Annealing for NBTI Delay - s1494
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Figure 5.20: State Probability Based Simulated Annealing for NBTI Delay - s1488
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Figure 5.21: State Probability Based Simulated Annealing for NBTI Delay - s208

Table 5.4: Experimental Results - State Probability Based Simulated Annealing

Design NBTI Area (%) Dynamic Leakage
Improvement (%) Power (%) Power (%)

s8 10.3 5.4 28.0 10.3
ex6 37.9 -2.0 -3.9 -1.3
dk17 3.8 -1.9 -37.0 -13.2
s386 14.5 -2.8 -1.3 -8.1
s1 23.1 7.7 5.0 8.4
s1494 20.8 0.9 0.8 3.7
s1488 9.6 -23.2 -0.2 -2.7
s208 30.8 -28.5 -28.0 -30.0
Average 18.8 -5.5 -4.6 -4.1

Table 5.5: Experimental Results - Generic Simulated Annealing

Design NBTI Area (%) Dynamic Leakage
Improvement (%) Power (%) Power (%)

s8 3.8 4.6 19.4 8.6
ex6 35.0 2.2 1.4 4.0
dk17 0.4 3.2 23.8 -5.0
s386 19.1 1.2 15.7 -3.3
s1 30.8 11.3 9.2 12.4
s1494 13.4 -0.1 -2.4 -0.3
s1488 16.6 -2.4 -0.5 -1.0
s208 21.0 -3.2 10.1 0.4
Average 17.5 3.3 9.6 2.0
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CHAPTER 6 : CONCLUSIONS AND FUTURE WORK

Leakage reduction is a crucial problem in deep sub micron regime. In chapter 3, we have

formulated the low leakage vector identification technique based on interval propagation at register

transfer level. Using this technique, significant subthreshold leakage savings with no area overhead

are achieved successfully. We also proposed a self similarity based module characterization which

makes this technique scalable to more complex datapaths. We conclude that our low leakage vector

determination technique achieves significant leakage optimization in RTL datapaths of any level of

complexity if one could invest in a few hours of pre-characterization time. As part of future work, a

correlation between a circuit and self similarity property of the input space could be derived. The

origin of self similarity property in VLSI circuits can be examined based on the structure of the

circuits. The difference of self similarity in bit sliced designs and random designs can be researched.

Interval propagation technique can be adopted to identify minimum NBTI vector to achieve NBTI

minimization at high level. Input design space exploration can be conducted with self similarity

based characterization to acquire NBTI and leakage co-optimized vector.

Input vector control is a common leakage reduction technique which reduces the leakage

by controlling transistor stacking with a given input vector. Since NBTI is effected by transistor

stacking as well, co-optimization of both the objectives is considered. In chapter 4, an alternative

vector cycling technique is developed with simulated annealing and a back tracking algorithm for

NBTI and leakage co-optimization. The technique is implemented in gate level combinational
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circuits. The periodic recovery for critical path transistors under stress alleviates NBTI degradation.

This technique successfully achieved significant NBTI improvement with minimum leakage overhead.

We conclude that our technique optimizes NBTI and leakage effects on gate level circuits. The

technique can be further extended to high-k circuits where PBTI phenomenon is dominant as well.

NBTI, PBTI and leakage can be co-optimized.

State encoding in FSMs has a strong control on circuit area and performance. It can be

adopted to optimize NBTI degradation as well. In chapter 5, a simulated annealing algorithm

is devised to obtain NBTI optimization in finite state machines at gate level. State probability

parameter is used to reduce the input space. Significant NBTI improvement is achieved for minimum

area and power overhead. The same technique can be extended to PBTI optimization as well. As a

part of future work, NBTI aware synthesis as described in [48] can be performed on the benchmarks

in addition to NBTI optimization. This might alleviate NBTI further.
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APPENDIX A: SELF SIMILARITY PLOTS FOR 8b ADDER AND 8b

MULTIPLIER

Figures A.1–A.5 present the Hurst parameters and grid level leakage distribution of 8b

multiplier when the input space is divided into cells along both axes (2 x 2 grid). Figures A.6–A.10

present the Hurst parameters and grid level leakage distribution of 8b adder when the input space

is divided into cells along both axes (2 x 2 grid).

If the same input space is divided into 4 grid cells along one axis, we have the following grid

cells: [0, 0 - 63, 255], [63, 0 - 127, 255], [127, 0 - 191, 255], and [191, 0 - 255, 255]. Figures A.11–A.15

present the grid level distribution of a multiplier when the input space is divided along one axis

(4 x 1 grid). Figures A.16–A.20 present the grid level distribution of a multiplier when the input

space is divided along one axis (4 x 1 grid). Figures A.21–A.37 present the grid level distribution

of 8b multiplier when the input space is divided along both axes (4 x 4 grid). Figures A.38–A.54

present the grid level distribution of 8b adder when the input space is divided along both axes (4

x 4 grid). If the bit-width of the module is doubled, the number of cells on each axis is doubled as

well. Hence, the characterization is scalable.

Figure A.1: Hurst Parameter in Multiplier with 4 Cells (2 x 2 Grid)
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Figure A.2: Multiplier Distribution in Grid Cell 1 (2 x 2 Grid)

Figure A.3: Multiplier Distribution in Grid Cell 2 (2 x 2 Grid)
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Figure A.4: Multiplier Distribution in Grid Cell 3 (2 x 2 Grid)

Figure A.5: Multiplier Distribution in Grid Cell 4 (2 x 2 Grid)
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Figure A.6: Hurst Parameter in Adder with 4 Cells (2 x 2 Grid)

Figure A.7: Adder Distribution in Grid Cell 1 (2 x 2 Grid)
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Figure A.8: Adder Distribution in Grid Cell 2 (2 x 2 Grid)

Figure A.9: Adder Distribution in Grid Cell 3 (2 x 2 Grid)
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Figure A.10: Adder Distribution in Grid Cell 4 (2 x 2 Grid)

Figure A.11: Hurst Parameter in Multiplier with 4 Cells (4 x 1 Grid)
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Figure A.12: Multiplier Distribution in Grid Cell 1 (4 x 1 Grid)

Figure A.13: Multiplier Distribution in Grid Cell 2 (4 x 1 Grid)
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Figure A.14: Multiplier Distribution in Grid Cell 3 (4 x 1 Grid)

Figure A.15: Multiplier Distribution in Grid Cell 4 (4 x 1 Grid)
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Figure A.16: Hurst Parameter in Adder with 4 Cells (4 x 1 Grid)

Figure A.17: Adder Distribution in Grid Cell 1 (4 x 1 Grid)

133



Figure A.18: Adder Distribution in Grid Cell 2 (4 x 1 Grid)
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Figure A.19: Adder Distribution in Grid Cell 3 (4 x 1 Grid)

Figure A.20: Adder Distribution in Grid Cell 4 (4 x 1 Grid)
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Figure A.21: Hurst Parameter in Multiplier with 16 Cells (4 x 4 Grid)

Figure A.22: Multiplier Distribution in Grid Cell 1 (4 x 4 Grid)

136



Figure A.23: Multiplier Distribution in Grid Cell 2 (4 x 4 Grid)

Figure A.24: Multiplier Distribution in Grid Cell 3 (4 x 4 Grid)
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Figure A.25: Multiplier Distribution in Grid Cell 4 (4 x 4 Grid)

Figure A.26: Multiplier Distribution in Grid Cell 5 (4 x 4 Grid)
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Figure A.27: Multiplier Distribution in Grid Cell 6 (4 x 4 Grid)

Figure A.28: Multiplier Distribution in Grid Cell 7 (4 x 4 Grid)
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Figure A.29: Multiplier Distribution in Grid Cell 8 (4 x 4 Grid)

Figure A.30: Multiplier Distribution in Grid Cell 9 (4 x 4 Grid)
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Figure A.31: Multiplier Distribution in Grid Cell 10 (4 x 4 Grid)

Figure A.32: Multiplier Distribution in Grid Cell 11 (4 x 4 Grid)
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Figure A.33: Multiplier Distribution in Grid Cell 12 (4 x 4 Grid)

Figure A.34: Multiplier Distribution in Grid Cell 13 (4 x 4 Grid)
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Figure A.35: Multiplier Distribution in Grid Cell 14 (4 x 4 Grid)

Figure A.36: Multiplier Distribution in Grid Cell 15 (4 x 4 Grid)
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Figure A.37: Multiplier Distribution in Grid Cell 16 (4 x 4 Grid)

Figure A.38: Hurst Parameter in Adder with 16 Cells (4 x 4 Grid)
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Figure A.39: Adder Distribution in Grid Cell 1 (4 x 4 Grid)

Figure A.40: Adder Distribution in Grid Cell 2 (4 x 4 Grid)
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Figure A.41: Adder Distribution in Grid Cell 3 (4 x 4 Grid)

Figure A.42: Adder Distribution in Grid Cell 4 (4 x 4 Grid)
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Figure A.43: Adder Distribution in Grid Cell 5 (4 x 4 Grid)

Figure A.44: Adder Distribution in Grid Cell 6 (4 x 4 Grid)
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Figure A.45: Adder Distribution in Grid Cell 7 (4 x 4 Grid)

Figure A.46: Adder Distribution in Grid Cell 8 (4 x 4 Grid)
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Figure A.47: Adder Distribution in Grid Cell 9 (4 x 4 Grid)

Figure A.48: Adder Distribution in Grid Cell 10 (4 x 4 Grid)
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Figure A.49: Adder Distribution in Grid Cell 11 (4 x 4 Grid)

Figure A.50: Adder Distribution in Grid Cell 12 (4 x 4 Grid)
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Figure A.51: Adder Distribution in Grid Cell 13 (4 x 4 Grid)

Figure A.52: Adder Distribution in Grid Cell 14 (4 x 4 Grid)
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Figure A.53: Adder Distribution in Grid Cell 15 (4 x 4 Grid)
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Figure A.54: Adder Distribution in Grid Cell 16 (4 x 4 Grid)
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