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Table 6: A summary of a subset of genes involved in lipid metabolism harboring miR-
494 binding sites	



	

113 
	

localization) in several of these above-described proteins, involved in mediating mitochondrial 

changes. Indeed, in miR-494 expressing cells, we observed reduced PINK1 protein, increased 

LC3B mRNA and protein, and altered subcellular localization of Drp1. We propose that it would 

be important to understand how miR-494 modulates changes in these key proteins to better 

understand the contribution of miR-494 in altering mitochondrial dynamics and the mitophagy 

pathway. Although we identified LC3B as a target of miR-494 (through a 3’-UTR luciferase-

based assay), it is likely that the other proteins (Drp1 , Parkin, and PINK1) are regulated in an 

indirect manner since there were no miR-494 binding sites in the 3’UTR of PINK1, Parkin, or 

Drp1 via TargetScan. We propose that miR-494 may modulate expression of an upstream gene 

in the mitochondrial/mitophagy pathway which would indirectly affect PINK1 and Drp1. For 

example, NFB signaling has been reported to induce PINK1 expression [316]; although  miR-

494 induces expression of inflammatory cytokines in an NF-B-dependent manner, it has yet to 

be shown whether miR-494 modulates upstream signaling leading to activation of NF-B [317]. 

PINK1 recently is reported to regulate cell cycle progression and promote cell survival [318]; 

thus, it would be worthwhile to determine whether miR-494 alters cell cycle progression since 

we observed reduced PINK1 levels which is accompanied by reduced cellular growth. 

 

Accumulation of LDs in miR-494 expressing cells: mitochondrial involvement 

During starvation, cytoplasmic lipases hydrolyzes LDs to glycerol (which is converted to 

glucose by the liver) and fatty acids [319]. These fatty acids are substrates for-oxidation 

leading to the formation of acetyl CoA, which is used in the Krebs cycle; these steps  occur in 

the mitochondrial compartment [319]. Evidence implicates mitochondrial dysfunction or 

induction of apoptosis leads to inhibition of mitochondrial -oxidation resulting in re-direction of 

the fatty acids to LDs which then accumulate [292] [320] [321] [322]. Recent studies by 

Rambold and colleagues implicate both the autophagy and lipolysis pathways in the  trafficking 
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of fatty acids in starved cells [320]. Further, inhibition of mitochondrial fusion redirected fatty 

acids back to the LDs [320]. Indeed, in Chapter 5, we demonstrated that miR-494 increased 

LDs, accompanied by mitochondrial structural disorganization, reduced cell survival, and 

increased apoptotic cells. In order to determine whether miR-494 alters the rate of -oxidation, 

we propose to measure mitochondrial oxygen consumption rate (mtOCR) in miR-494 

expressing cells. 

Since we observed accumulation of fragmented mitochondria, we propose that miR-494 

may modulate targets that are involved in mitochondrial fusion (which is needed for transfer of 

fatty acids from LDs to mitochondria). Indeed, the 3’-UTR of mitofusin-1 (Mfn1) and mitofusin-2 

(Mfn2) (major proteins involved in mitochondrial fusion [323]) contain miR-494 binding sites.  

 

As depicted in Figure 34, there are perfect miR-494 binding sites in the 3’UTR of both 

Mfn1 and Mfn2. We hypothesize that miR-494 could modulate mitochondrial fusion by directly 

regulating the gene expression of Mfn1 and Mfn2. Since we observed increased Drp1 

localization to mitochondria in miR-494 expressing cells (suggestive of increased mitochondrial 

fission), we propose that miR-494 expressing cells have reduced rates of mitochondrial fusion 

Figure 34: Mfn1/Mfn2 - potential targets of miR-494  
 
Schematic showing the perfect complementarity of miR-494 binding sites within the 3’UTRs of 
Mfn1 and Mfn2. (*Figure created by Punashi Dutta) 
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which may then lead to increased numbers of fragmented mitochondria. Increased 

mitochondrial fragmentation is associated with increased apoptosis [324] [325-327] and/or 

mitophagy [285]. Figure 35 depicts a proposed model for the miR-494-mediated mitochondrial 

dynamic changes. 

Increase in reactive oxygen species are major causes of oxidative stress-induced 

mitochondrial dysfunction and damage [328]. Although we did not observe any changes in 

mitochondrial superoxide levels in miR-494 expressing cells compared to control cells, there 

may be changes in other reactive oxygen species (ROS) such as hydrogen peroxide and 

hydroxyl radical [329],  which may be worthwhile investigating. 

Figure 35: Potential contribution of miR-494 to the mitochondrial fission/fusion events 
  
We propose that miR-494 expression induces the localization of Drp1 to mitochondrial fission 
sites, leading to mitochondrial fragmentation, mitophagy, and apoptosis. Additionally, we 
propose that miR-494 targets Mfn1/2 and thus inhibits mitochondrial fusion, leading to 
apoptosis. (*Figure created by Punashi Dutta) 
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Cross-talk between miR-494 and the pro-survival Bcl-2 molecule 

Although we observed a reduction in Bcl-2 protein levels in miR-494 expressing cells via 

western blotting analyses (Chapter 5), 3’-UTR luciferase assays failed to demonstrate Bcl-2 as 

a direct target of miR-494. However, this suggests an inverse association between Bcl-2 and 

miR-494. Interestingly, Bcl-2 opposes BNIP1–mediated Drp1 recruitment to mitochondrial 

fission sites [330] (Figure 36A). Since we observed reduced Bcl-2 protein and increased 

recruitment of Drp1 to mitochondria in miR-494 expressing cells, we hypothesize that the 

presence of Bcl-2 may antagonize Drp-1 recruitment to mitochondrial fission sites; this would 

lead to increased mitochondrial fusion.  

Figure 36: Potential cross-talk between Bcl-2 and miR-494  
 
(A) Schematic of our proposed hypothesis whereby miR-494 reduces Bcl-2 protein which is 
reported to inhibit Drp-1 mediated mitochondrial fission. The cumulative effect of this pathway 
would then lead to increase mitochondrial fission in miR-494 expressing cells via Drp1. (*Figure 
created by Punashi Dutta). (B) Parental 769-P cells stably expressing pBABE-puro-Bcl-2 or 
mCherry-GFP-LC3B 769-P cells stably expressing pQCXIN-Bcl-2 were seeded at 250,000 
cells/well. Protein lysates were harvested 48 hours post-seeding. Samples were run on a 10% 
SDS-PAGE gel and western blotting analyses were performed using the specified antibodies. 
	



	

117 
	

We have begun to address this hypothesis by generating Bcl-2 overexpressing 769-P parental 

and mCherry-GFP-LC3B stable cell lines (Figure 36B). We propose to perform rescue 

experiments by expressing miR-494 in these Bcl-2 overexpressing stable cell lines; we would 

then assess changes in LD formation, Drp1 recruitment to mitochondria, modulation of 

autophagosome size, and cell death responses. If the reduction in Bcl-2 levels is required for 

the observed miR-494 cellular changes, we expect that Bcl-2 would antagonize the cellular 

responses mediated by miR-494. 

 

 

 

Figure 37: Overall model of proposed cellular effects mediating the cell death response 
elicited by miR-494 (*Continued on next page) 
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A schematic of our model depicting all the key proteins involved in miR-494-mediated 

responses is shown in Figure 37. We propose that miR-494 increases LC3B mRNA and protein 

levels, leading to increased co-localization of LC3B to LDs. miR-494 also reduces Bcl-2 and 

PINK1 protein levels and both these proteins antagonize the movement of Drp1 to mitochondrial 

fission sites, which inhibit mitochondrial fragmentation and mitophagy [285, 286, 330]. Since we 

identified miR-494 perfect match binding sites in the 3’UTR of both Mitofusin-1/2 via an in silico 

approach, a reduction in mitofusin expression may thus lead to increased Drp1 localization to 

mitochondria. This would next lead to fragmented mitochondria which would be deficient in -

oxidation, causing an efflux of fatty acids from mitochondria to the LDs which would 

subsequently lead to an over-accumulation of LDs and thus, cell death. 

 

Contribution of the miRNA Cluster at 14q32 in Renal Cancer Pathophysiology 

A study conducted by Laddha and colleagues analyzed the expression of the 14q32 

genomic cluster miRNAs across various cancers and found 61% of these to be down-regulated 

in renal cancer [304]. Several miRNAs at 14q32 regulate autophagic mediators. These include 

miR-379 which targets LAMP-2A [331], miR-376a and miR-376b which target ATG4C and 

beclin-1 [332, 333], and miR-410 which targets AMPK[334]. Additionally, several other 

miRNAs at 14q32 regulate genes in the lipid biosynthesis pathway including miR-370 [300], 

miR-376a [301], miR-379 [302], and miR-410 [303]. However, the detailed role of this miRNA 

Figure 37: Overall model of proposed cellular effects mediating the cell death response 
elicited by miR-494 
 
The model as presented summarizes our findings and links these to published reports in order 
to better understand the potential effects of miR-494 in lipid metabolism and mitochondrial 
dynamics. We propose that miR-494 targets Bcl-2, PINK-1, and Mfn1/2 thus increasing Drp-1 
mediated mitochondrial fission. We have shown herein, that miR-494 increases LC3B 
expression. We propose that LC3B localizes to LDs. Collectively, these effects lead to inhibition 
of mitochondrial fusion, transfer of fatty acids back to the mitochondria, reduction in -oxidation, 
and reduced cellular survival. (*Figure created by Punashi Dutta) 
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cluster in renal cancer biology is presently unclear. Therefore, it would be worthwhile to 

investigate the contribution of the other miRNAs present at the 14q32 locus in autophagy and/or 

altered lipid metabolism. 

A custom-design screen using a 96-well plate format in which each well contain a 

miRNA mimic (54 wells in total) could be designed for this purpose. By reverse transfection in 

parental 769-P cells, the formation of LDs would be assessed using LipidTOX green neutral lipid 

stain. This would be analyzed either manually or using an INCell Analyzer, if available. In a 

similar procedure, 769-P renal cancer cells stably overexpressing mCherry-GFP-LC3 would 

allow assessment of red/green punctae to identify changes in autophagic flux and 

autophagosome size. Additionally, a MTT survival assay using the above custom-designed 

screen and parental 769-P renal cancer cells could be performed to assess changes in cell 

viability. The positive hits that are identified via this screening strategy would then be assessed 

in in vitro experiments (using mimic and/or antagomirs). Since genes harboring neighboring loci 

on the chromosome may co-operatively regulate common cellular processes [335], we 

speculate that expression of a combination of a subset of these miRNAs in renal cancer cells 

may induce robust cellular changes including cell growth and viability. 

 

Renal Cancer Specimens: Cellular Changes with Altered miR-494 Expression 

TCGA analysis demonstrated that miR-494 levels were reduced by 32% in KIRC 

samples compared to normal (results not shown). To follow-up on this observation, we propose 

to assess changes in patient survival and chemotherapeutic responsiveness in panel of normal 

and renal cancer patient specimens with high/low expression of miR-494. It would also be 

worthwhile to assess fatty acid/phospholipid levels and mitochondrial dynamics across different 

stages of renal cancers. Additionally, using a real-time PCR and western analysis approaches, 

changes in mRNA and protein of autophagy markers in KIRC samples (compared to normal) 

across different stages of kidney cancer could be assessed. From kidney tumor specimens, 
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miR-494 levels and Bcl-2, PINK1, LC3B, Mfn1/2 mRNA, and protein levels can be assessed. 

Immunohistochemical analysis of cytochrome c, Drp1, and LC3B could be performed on the 

tissue specimens. Additionally, lipidomic studies and fatty acid measurements could also be 

performed on these specimens. The resultant data could also then be correlated to patient 

clinical variables.  

 

Renal Cancer Mouse Models: Effects of miR-494 on Tumor Growth 

To determine whether miR-494 alters in vivo tumor growth, we propose two different 

orthotropic cancer xenograft mouse studies as shown in Figure 7. For the purpose of the first 

study, stable cell lines overexpressing control (vector backbone) or miR-494 would be 

established. These cells will then be injected under the kidney capsule directly into the proximal 

kidney tubule of athymic nude mice, as shown in Figure 38. After the tumors are established, 

they would be excised from the mice and assessed for size/volume and histological features. 

Immunohistochemical analyses of the tumor sections will be performed to assess morphological 

changes including dysfunctional mitochondria and accumulation of LDs. TEM analysis will allow 

us to determine whether there is an alterations in LD formation. Using these specimens, we will 

also measure changes in mitochondrial -oxidation.    

In the second study, we will establish the tumor by subcutaneously injecting cancer cells 

into the athymic nude mice (Figure 38). After the establishment of the tumor, we would inject 

miR-494 mimic via an intratumoral injection into the mice. In order for the miRNA gene delivery 

strategies to be successful, it is of importance that certain hurdles such as their instability in 

vivo, inappropriate distribution, or off-target effects are overcome [336]. A recent study has 

suggested that the use of lipid-based vesicles, Stable Nucleic Acid Lipid Particles (SNALPs), as 

a tool for encapsulated delivery of miRNA mimic for in vivo studies may ease the miRNA mimic  



	

121 
	

delivery [337]. This strategy for miRNA mimic delivery could be utilized for the above study. 

Similar analytical strategy will be employed as described in the first study.      

As mentioned earlier, depletion of cholesterol activates the apoptotic response in cells; 

certainly, inhibitors that block cholesterol biosynthesis can induce apoptosis [278, 298, 299]. 

HMG CoA-reductase (an important enzyme involved in cholesterol biosynthesis) inhibitors such 

Figure 38: Proposed experimental outline to investigate the effects of miR-494 on tumor 
growth in mouse model 
 
Two different mouse models are proposed in the figure. In the first mouse study, miR-494 
expressing retroviral stable cell lines would be established and then injected into the proximal 
kidney tubule of an athymic nude mouse. After establishment and excision of the tumor 
following appropriate time period, analyses would be performed as indicated. In the second 
mouse study, cancer cells would be injected subcutaneously into the mice. After the 
establishment of the tumor, miR-494 mimic would be injected intratumorally into the mice 
using SNALPs. This study would be performed with or without the use of cholesterol depleting 
agents. Further analyses would be performed as indicated in the figure. (*Figure created by 
Punashi Dutta)  
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as lovastatin and simvastatin reduce cholesterol levels and induce apoptosis [338] [291]. Since 

renal cancer is a metabolic disease [41] with altered lipid metabolism, and cholesterol 

accumulation plays an important role in the disease progression [313], it would also be 

worthwhile to analyze the effect of these drugs along with miR-494 mimic in renal cancer cells to 

determine whether the addition of mimic can further strengthen the cell death response. Once 

we gain more insight into the outcome of this combinatorial regime in in vitro studies, these 

studies could then be applied in vivo, using a kidney cancer xenograft mouse model, as 

described above.  

Since miR-494 has not yet been studied in terms of organismal development, there is no 

information regarding whether this non-coding RNA is essential for survival or development of 

mice. There has not been any report as yet involving study with a miR-494 transgenic or 

knockout mouse model. It is presently unknown if such mice would be embryonically lethal or 

not. Therefore, we would generate a miR-494 whole-body transgenic and knockout mouse 

model and if these mice fail to live, we would then generate a tissue-specific mouse model for 

the kidney by using the kidney proximal tubule-specific type 1 -glutamyltranspeptidase 

promoter to drive the overexpression/knockdown [339]. The miR-494 knockout mouse model 

can be crossed with the PIK3CA mutant mouse (which has increased propensity to develop 

cancer); such mice will then be injected with adenoviral CRE recombinase harboring PIK3CA 

mutation [340] (renal cancer exhibit mutations at the 3q region [43]) and the tumor progression 

will be assessed. 
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