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assembly rate by changes in nsites and φ; hence, allowing for direct comparison between SA tests. 

Each data point represents that average of at least 3 tests with 500-700 parts dropped per test. 

Figure 23 illustrates effects of parameters φ and ρo on both assembly types. Effects on 

incorrect assemblies measured lower than what is measurable with the implemented 

experimental system. Consequently, it is difficult to draw definitive conclusions on incorrect 

assemblies. Nevertheless, we can observe that the incorrect assemblies follow similar trends as 

the correct assemblies.  The main objective of the present experiments is to evaluate parameter 

effects on rate correct assemblies (Ḃ) and only these results will be discussed below. 

Figure 23-a shows that the effects of φ are not significant –or at least are not significant 

relative to the experimental variation. Low effects of angle φ would indicate that to first order,  

g(φ) = 1 For the low Ek/Eb values tested here, this would say that at the low kinetic energy, the 

probability of assembly is equal to the probability of the center of a part impacting over an 

assembly site such that Ḃ/ri = ρo.  However, this is clearly an underestimate of the assembly 

(a) (b)  

Figure 23 SA rate results. a) Variation of assembly rate with incidence angle (φ) for 0.5 x 0.5 

x0.5 mm
3
 parts offering a value ρo =0.3. (b) Variation of assembly rate with part orientation 

probability (ρo) for a constant incidence angle φ = 45°. Each data point with error bars 

corresponds to an average, and standard deviation resulting from several SA tests, under same 

conditions. 
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numbers between 0 and 1. The following equation –written as a Matlab command line– depicts 

the model for simulating a drop location. 

 D = [(rand ∙ sizex), ( rand ∙ sizey)] Equation 11 

The coordinate point D is a 2-element vector, defining the x-y coordinates of a single 

drop-location. The scalars sizex and sizey are the dimensions of the rectangular drop-area, within 

which all drop locations are uniformly distributed. Next, a Gaussian probability distribution was 

used to model the distribution of part landing locations relative to the target (drop) position. The 

landing location was defined as follows (also written as a Matlab command line).  

 L = D + [(randn ∙ σ), ( randn ∙ σ)] Equation 12 

The last term of the right side of Equation 12 represents the inaccuracy of the pick-and-

drop system.  The Matlab function “randn” generates random numbers, following a Gaussian 

probability distribution, with mean = 0, and variance = 1. The scalar σ is the standard deviation 

of the previously measured distance between landing locations and drop location. This value is a 

direct measure of the drop-process inaccuracy (e.g. σ = 0 for a perfectly accurate system). The σ 

value was previously measured for different test conditions (water medium, and air medium with 

different drop heights). A procedure for measuring σ is explained below. 

5.2.2 Method for Measuring Inaccuracy of Pick-and-Drop System 

The standard deviation σ was acquired from measuring the inaccuracy of the pick-and-

drop system. First, the drop location (D) was programmed into the pick-and-drop system. A 

reference point was drawn on the landing surface, and defined as the origin of the coordinate 

system defining the drop and landing locations. A minimum of 50 parts were dropped (this 

number provided a consistent average measurement). Top-view digital images captured the 

position of each landing location (see Figure 27). The imaging equipment included an IDS 
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camera (UI-1460SE) with a 3X compact telecentric lens (Edmund Optics). Images were post-

processed in order to maximize the grayscale contrast between target points and the white 

background. Photoshop was used to measure the distance between the reference point and the 

dropped part (i.e. landing location L).  

The measured distance allowed for calculating the distance between the drop location, 

and the landed part. Measurements were repeated for water medium, and for two different drop 

heights in air-medium (representing a low end and high end of the range to be tested in future SA 

experiments). For each configuration, a total of 50 part drops provided average and standard 

deviation values. Air-medium measurements required a coating of the landing surface, in order 

to absorb impact, and prevent parts from bouncing off the actual landing location. A thin, 

transparent glycerol coating achieved such purpose, while allowing the top-view image to 

capture both part and the reference point (underneath the coating).  Results of standard 

deviations of the calculated distances between drop and landing locations are depicted in Table 

4. The standard deviation of the calculated distances was then inserted as σ into the command 

 
Figure 27 Sample image captured for measuring drop accuracy of the pick-drop system. The 

drop location (not drawn to scale, for clarity purposes) was located 0.1 mm x 0.1 mm away from 

the reference point. The land location was acquired as the centroid of the part. The part is 

displayed out-of-focus due to the difference in height between the reference point and the top 

surface of the part. 
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line in Equation 12, which was used by the Monte Carlo simulations to generate landing 

locations. 

5.2.3 General Procedure for Monte Carlo Simulations 

Sampling strategy is defined by 1) the number of part-drops before each time assembly 

data was sampled; and 2) the total amount of data acquired for each SA test. Monte Carlo 

simulations evaluated whether the sampling strategy of water-medium tests was a contributor to 

scatter in the SA test data. First, simulations replicated the drop area size and sampling strategy 

implemented in water-medium experiments (Chapter 4).  However, the area surrounding a single 

strip (with 20 assembly sites) was considered instead of evaluating an area containing 12 strips 

(as implemented in water-medium tests). The right/left boundaries depict the edges of the strip, 

past which there are no more assembly sites. Accordingly, the upper/lower boundaries of the 

simulation drop area (red outline in Figure 28) corresponded to adjacent strips. Periodic 

boundary conditions for the upper/lower boundaries simulated parts landing on adjacent strips. A 

detailed procedure for applying such boundary conditions is described below. 

Equation 11 generated a random drop-locations, with sizex and sizey equal to the width 

and height of the drop area (delimited by red outline in Figure 28), respectively. The origin of the 

coordinate system was the center-left corner of the drop area. Next, Equation 12 calculated the 

landing location yielded by the corresponding drop. In this case, σ = 6 mm represented the 

Table 4 Summary of drop accuracy measurements 

 Standard deviation of 

measured distance (σ) 

Water medium (capillary gripper) 6 mm 

Air medium (Vacuum gripper), parts dropped from 3 mm height 0.25 mm 

Air medium (Vacuum gripper), parts dropped from 10 mm height 0.29 mm 
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accuracy of the water-medium pick-drop system. This was repeated for the target number of 

drops.  

A single test simulation ended after the last part-drop simulation, and percentage of 

landing locations occurring inside of an assembly site (delimited by green boundaries in Figure 

28) was calculated. The whole simulation process (generate random drops, calculate landings, 

and calculate on-site landings fraction) was repeated for 12 strips, as this was the number of 

strips utilized for water-medium tests. The final result of one simulation trial accounted for the 

sum of part-drops, and on-site landings from each strip. 

Periodic boundary conditions were applied for the edges adjacent to another strip. These 

conditions consider parts that were dropped on top of one strip, but land on adjacent strips (or the 

area surrounding them) due to the difference between dropping and landing location.  Hence, the 

landing locations that occurred past such boundaries were considered as if landing inside the 

drop area. For instance, a part that exited the bottom boundary would actually fall on another 

strip below, and have a distance y1 from the top of such strip. For the simulation, this was 

modeled by placing the part at a distance y1 from the top of the top boundary of the current strip.   

 
Figure 28 Illustration of boundaries for drop area and assembly sites. Drop locations were 

generated within the drop area. Assembly sites are 0.6 x 0.6 mm
2
, however they were inclined to 

a certain angle (angle of incidence, φ), which made the projected area smaller along one 

direction. This geometry reflects the same implemented for water-medium experiments, and φ = 

45°. 
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algorithm for calculating assembly rate, and also presents simulations that estimate such 

sampling variation effects on experimental data. 

5.4 Monte Carlo Simulations of Assembly Rate 

Assumptions of probability can be combined with the on-site landing predictions in order 

to generate estimates of assembly counts. For example, assembly probability, ρa = 1 assumes that 

every on-site landing generates an assembly. A set of simulations was based on 100% assembly 

probability and the geometry depicted in Figure 29(c). When an on-site landing occurred, the 

corresponding site was registered as “filled” (i.e. an assembly), so that subsequent landings on 

that site would not generate additional assemblies.  Simulations extracted the number of 

assemblies produced from incremental numbers of drops. Figure 31 displays the results of 

several simulations, portraying how assembly progressed with incremented part-drops.  

 
Figure 30 Progress of on-site landings for incremented number of parts dropped. The variation of 

on-site landings is measured by the relative standard deviation (right axis).  The vertical line 

depicts the sampling amount used for previous water-medium tests (Chapter 4); this was equal to 

approximately 80 parts. 
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 The plots shown for each simulation demonstrate the 1
st
 order reaction nature of the 

stochastic assembly process. Each simulated data set was fitted to the integrated rate law 

equation, of 1
st
 order reaction: 

 
𝐵(𝑛)

𝐴o
= 1 − 𝑒−𝑘𝐵∙𝑛 Equation 13 

Similarly to Chapter 4 definitions, B(n)/Ao is the fraction of assembly sites filled with a part-site 

assembly; kb is the reaction rate constant for (correct) assembly formation, and n is the number of 

parts dropped. Unlike the competing reactions seen in Chapter 4, the present simulations neglect 

the formation of incorrect assemblies (in other words, assume that orientation probability ρo=1). 

Considering the formation of incorrect assemblies would not significantly alter the conclusion 

from the present simulations.  

Simulations results were interpreted in terms of initial assembly rate. The assembly rate, 

Ḃ was defined as the derivative of the function of parts-dropped, B(n). Accordingly, the 

derivative of Equation 13 becomes 

 
  𝑑

𝑑𝑛
(

𝐵

 𝐴0
) = 𝑘𝐵 ∙ 𝑒−𝑘𝐵∙𝑛 Equation 14 

Hence, the rate of change of Ḃ/Ao becomes kB as n→0. For this reason, the rate constant can also 

be considered as the initial rate of change. The reported “assembly rate” results from all the 

Monte Carlo simulations in this chapter refer to initial assembly rate (i.e. kb). 

The simulations of Figure 31 illustrate the difference between best fits. Such difference 

arises from variation of on-site landings (which was illustrated in Figure 30) on a finite number 

of sites.  As the number of assembly sites increases, the answer should converge to a consistent 

average and a lower standard deviation of the assembly (i.e. rate constant kb). A low standard 

deviation is desired; because, it is a direct measure of the data scatter caused by the stochastic 

nature of SA interactions.  
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The assembly rate results from water medium experiments (Chapter 4) showed error bars 

of significant size (refer back to Figure 23, in Chapter 4). The corresponding R.S.D. values lied 

between 5% and 30%, and were derived from up to 5 data points of each test configuration. Each 

of those tests performed up to 1,000 drops over 12 strips. The R.S.D. values seen in water-

medium tests were compared with Monte Carlo simulations. The simulation conditions used for 

Figure 31 trials were implemented for a set of 1,000 simulation trials with up to 1,000 parts 

dropped in each trial. One thousand simulation trials allowed calculation of meaningful statistics 

about the distribution of the measurements. Additional sets of 1,000 simulation trial were 

repeated for different amounts of parts dropped per simulation. Each simulation set extracted the 

average assembly rate constant, kb. 

 
Figure 31 Results from 3 simulation trials, displaying the change in assembled sites (B/Ao) with 

the increasing number of parts dropped.  Simulations are based on the assumption that any on-

site landing produces an assembly (i.e. ρa = 1). Solid lines represent regression fits of each 

simulation trial to Equation 13. The rate constant values are given for each corresponding best 

fit. 
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are more likely to interact with other parts that are already assembled yielding less incremental 

information with additional dropped parts.  Consequently, an optimum test strategy is required to 

minimize variation, while avoiding parts landing on existing assemblies. The following section 

presents an analysis of reaction kinetics for defining a sampling limit for avoiding landings on 

existing assemblies. Moreover, next section also includes a Monte-Carlo study for evaluating an 

optimum test strategy. 

5.5 Analysis of Optimum Strategy for SA Tests 

5.5.1 Linear Approximation of 1
st
 Order Kinetics Reaction 

When a part lands on an unavailable assembly site, no assembly can occur.  Therefore, as 

the assembly sites fill up, there is less value in dropping additional parts.  This is seen in Figure 

31 as the slope of the curves decreases.  To obtain the maximum amount of information from 

each part drop, it is preferred to remain in the linear regime of the assembly process. Each 

simulation trial shall be kept at a low fraction of assembled sites. More specifically, the B(n)/Ao 

curves (as plotted in Figure 31) should be kept within the linear regime. This minimizes the 

number of parts landing on existing assemblies and thus maximizes the information obtained 

from each part drop. Moreover, the linear regime allows for a simpler computation of assembly 

rate, thus making the simulations less computationally expensive. The present section derives 

criteria for systematically selecting the linear range of the B(n)/Ao curve of each simulation trial. 

It also explains a less expensive approach for calculating assembly rate. 

As discussed above (when deriving Equation 14 for calculating assembly rate), the 

beginning portion of the integrated rate law equation of 1
st
 order can be approximated to a line 

with slope equal to kB. The accuracy of such approximation decreases as more part drops occur 
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consistent level. Section 5.5.1 offered the rationale for filling each assembly strip before filling 

9.83% of its assembly sites. This allowed maximizing the amount of assembly data acquired 

from each strip before leaving a reasonable linear approximation. For this reason, the number of 

parts dropped in each strip was optimized at each simulated condition in order to consistently 

assemble roughly 9.8 % of each strip. 

Since the actual tolerance will not be known without initial test data, further analysis 

through Monte Carlo simulations should define a part number requirement. Additional 

simulations could be done to elucidate the impact of dropping different numbers of parts/strip.  It 

may be possible to achieve lower RSD values for small values of ‘c’ by adjusting how many 

(a)  

(b)  

Figure 39 Distribution of part landing locations for drop areas of different sizes.  Simulations 

were performed to drop 1,000,000 parts from different drop areas, each with varying width: 4.2 

mm (original size used in previous tests), 2 mm and 1 mm (see a). These drop area sizes were the 

same implemented in Monte Carlo simulations in Section 5.5 above. Simulations generated 

histogram plots of landing locations distribution along y-direction (see b). 
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parts are dropped per strip.  Nevertheless, the present simulations enlightened how much the 

sampling strategy is expected to change the outcomes. 

5.5.3.1 Implementing New Strategy to Future SA Experiments 

The revised strategy for creating SA interactions should target a low intrinsic variation 

for assembly rate measurements. Future SA experiments should implement the revised drop-area 

geometry (Figure 37-c). Moreover, a preliminary assumption of c =1 allows preliminary testing 

to measure an average assembly rate. According to Monte Carlo simulations, dropping 

approximately 1,700 parts (corresponding to dropping 15 parts on each of 114 strips) under such 

conditions would achieve enough samples for a reduce R.S.D. below 5%.  

Future SA experiments should target this amount of sampling. If the average 

measurement is result different as expected, and even varies with higher standard deviations than 

expected, further simulations shall help improve the sampling strategy by adjusting the minimum 

sampling (number of part-drops) requirement. Moreover, the issue of landing locations 

Table 8 Results of Monte Carlo simulation for different misalignment tolerances 

Drop 

Area 

(mm
2
) 

Correction 

Factor* 

Assembly 

site area 

(mm
2
) 

Average 

Assembly Rate 

(
assemblies  sites⁄

parts dropped
) 

N
o
 part-drops 

(n) required 

for 5% 

R.S.D.  

N
o
 drops 

per strip 

N
o 
strips 

required 

for 5% 

R.S.D. 

33 x 2 

c = 0.25 0.3 x 0.212 0.0009 16,500 100 165 

c = 0.5 0.424 x 0.3 0.0018 7,250 50 145 

c = 1 0.6 x 0.424 0.0037 3,640 26 140 

c = 3 0.6 x 0.954 0.0083 1,375 11 125 

33 x 1 

c = 0.25 0.3 x 0.212 0.0017 8,100 54 150 

c = 0.5 0.424 x 0.3 0.0035 3,861 27 143 

c = 1 0.6 x 0.424 0.0068 1,820 14 130 

c = 3 0.6 x 0.954 0.0135 750 7 107 

* Misalignment tolerance is quantified by the correction factor c, which is a multiplier of the 

actually assembly site area, defining the apparent assembly site area which provides assembly. 

This concept was introduced in Chapter 4. 

 


