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Abstract

This dissertation studies bad behavior at large-scale using data traces from online video

games. Video games provide a natural laboratory for exploring bad behavior due to their

popularity, explicitly defined (programmed) rules, and a competitive nature that provides

motivation for bad behavior. More specifically, we look at two forms of bad behavior: cheat-

ing and toxic behavior.

Cheating is most simply defined as breaking the rules of the game to give one player an

edge over another. In video games, cheating is most often accomplished using programs, or

“hacks,” that circumvent the rules implemented by game code. Cheating is a threat to the

gaming industry in that it diminishes the enjoyment of fair players, siphons off money that

is paid to cheat creators, and requires investment in anti-cheat technologies.

Toxic behavior is a more nebulously defined term, but can be thought of as actions that

violate social norms, especially those that harm other members of the society. Toxic be-

havior ranges from insults or harassment of players (which has clear parallels to the real

world) to domain specific instances such as repeatedly “suiciding” to help an enemy team.

While toxic behavior has clear parallels to bad behavior in other online domains, e.g.,

cyberbullying, if gone unchecked it has the potential to “kill” a game by driving away its

players.

xi



We first present a distributed architecture and reference implementation for the collection

and analysis of large-scale social data. Using this implementation we then study the social

structure of over 10 million gamers collected from a planetary scale Online Social Network,

about 720 thousand of whom have been labeled cheaters, finding a significant correlation

between social structure and the probability of partaking in cheating behavior. We addi-

tionally collect over half a billion daily observations of the cheating status of these gamers.

Using about 10 months of detailed server logs from a community owned and operated

game server we next analyze how relationships in the aforementioned online social network

are backed by in-game interactions. Next, we use the insights gained and find evidence

for a contagion process underlying the spread of cheating behavior and perform a data

driven simulation using mathematical models for contagion. Finally, we build a model

using millions of crowdsourced decisions for predicting toxic behavior in online games.

To the best of our knowledge, this dissertation presents the largest study of bad behavior

to date. Our findings confirm theories about cheating and unethical behavior that have

previously remained untested outside of controlled laboratory experiments or only with

small, survey based studies. We find that the intensity of interactions between players is

a predictor of a future relationship forming. We provide statistically significant evidence

for cheating as a contagion. Finally, we extract insights from our model for detecting toxic

behavior on how human reviewers perceive the presence and severity of bad behavior.

xii



Chapter 1: Introduction

The past decade has seen an explosion of computer mediated social interactions. Online

social networks such as Facebook have enabled billions of people to communicate and

share information with their friends. Social media applications like Twitter have become

primary sources for the spreading of news. Multiplayer video games are poised to become

the largest segment of the entertainment industry.

While users of these services benefit in a variety of ways, the huge amount of data they

generate also enables the study of social phenomena at previously unheard of scales. For

example, empirical studies in the social sciences tend to involve sample sizes of a few thou-

sand individuals at most, whereas social network systems expose the relationships and in-

teractions between millions, and in some cases billions, of individuals. Further, the digital

nature of these services means that researchers can eschew the use of surveys in favor of

hard ground truths.

One area of research that is particularly enabled is the study of bad behavior. In this dis-

sertation, through social network analysis and machine learning techniques, we quantify

and model bad behavior in online video games, leading to suggestions for the detection

and prevention of this behavior as well as insights into unethical behavior at large.

Studying bad behavior in online games can serve to better understand the behavior of

individuals that abuse the shared social space in large-scale non-hierarchical communities.
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In online social networks, for example, such individuals abuse available, legal tools, like

communication or tagging features, for marketing gains, political activism, or cyberbully-

ing. Taken to the extreme, such behaviors lead to the tragedy of the commons: all game

players become cheaters and then abandon the game, or corruption escalates and chaos

ensues.

The remainder of this chapter provides background on the problems and methodology

this dissertation addresses. In Section 1.1, we give a brief introduction to social network

analysis, which we make heavy use of in this dissertation. Section 1.2 discusses the use

of video games as living labs for social research. Cheating and toxic behavior, the two

unethical behaviors we study in this dissertation, and their impact are introduced in Sec-

tion 1.3. Finally, in Section 1.4 we summarize and provide an outline for the remainder of

this dissertation.

1.1 Social Network Analysis

Much of the work in this dissertation is concerned with social network data. A social net-

work, also referred to as a social graph, is simply a collection of vertices which represent

people, also called actors, and edges representing the social relationships that connect

them. More formally, a social network is a graph G(V,E), where a vertex v exists in the

graph if v ∈ V , and an edge e(u, v) exists if there is a relationship between vertices u

and v. A graph can be either directed or undirected. If the graph is directed, e(u, v) is a

different edge than e(v, u).

Social networks have been studied in sociology for several decades. They provide researchers

with a stronger data point than simply looking at various attributes aggregated across

2



individuals: the relationship between actors. The study of social networks has proven

successful at providing quantitative explanations of phenomena.

For example, perhaps the most well known social network experiments, by Milgrim, tested

how information could spread between people [TM69]. The experiments sent a package to

a randomly selected source individual, asking that they do their best to ensure the package

was received by a specific target person located in Boston. If the source did not know the

target on a first name basis, she would instead forward it to a go between, whom she knew

on a first name basis, that might have a chance at knowing the target. The result of this

experiment was that the package arrived after passing through a relatively small number

of go-betweens. I.e., Americans seemed to form a small world network, with around “six

degrees of separation”1.

While social networks have proved fertile for scientific discovery, more recently, they have

become important to the computing world. Social applications like Facebook have become

ubiquitous, accessed by desktop computers, mobile phones, TVs, and even cars. They

have changed the way news is delivered [KLPM10], the way we do business [SR03], and

the way we form communities [bE07]. These applications require special concern on their

design in terms of how to distribute computation and storage, privacy implications, as well

as user and application programming interfaces, among others. Because of their ubiquity

and popularity, they also serve as excellent platforms for empirical study of planetary scale

social networks.

Social network analysis is the study of structural properties of social networks. The struc-

ture of a network has proven to be a robust method for drawing insights into underlying

social phenomena. For example, the strength of a relationship can be estimated by looking

1This phrase was not coined (or used) by Milgram, but has become popularly associated with the
small world theory.
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at how much overlap there is between the two individual’s friends [OSH+07]. These in-

sights help us learn about how other people influence, and are influenced by, our behavior.

1.2 Video Games: Living Labs for Social Research

In the past 30 years or so, video games have transitioned from being seen as a children’s

activity to becoming a huge chunk of the entertainment industry. What started as simple

games like PONG has grown to become a billion dollar industry with hundreds of millions

of people playing together over the Internet, forming planetary scale social networks. Con-

sidering the time and financial investment people put into games, the research community

has shown increasing interest in studying games from a variety of perspectives.

Studying video games as a scientific endeavor can have huge impact for the industry. Quan-

tification and empirical evidence can inform game developers on design decisions, aid in

the advancement of gaming technology, and provide new insight into the minds of gamers.

This is important for several reasons. First, the gaming industry has driven significant

amounts of innovation in computing technology [Gil10]. Second, gaming skill has been

shown to be a predictor of real-life ability, as well as increasing certain skill sets. For ex-

ample, skill in Nintendo Wii games has been shown to be a predictor of laparoscopic (min-

imally invasive) surgery skills [BASS+10]. Finally, as people are spending an increasing

amount of their time in online games [Cro11], the development and crafting of games has a

direct impact on a large number of social interactions.

Edward Castronova has put forth the theory that video games can serve as living labora-

tories allowing for novel social science research [Cas06]. The rules of the game world are

not just explicitly known, they are in fact completely controlled by the game developers.
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This in turn allows us to study what amounts to real world behavior, but still have some

well defined controls.

For example, economists face a difficult struggle when it comes to experimental methodol-

ogy: it is nearly impossible to perform controlled experiments at scale. Further, although

historical data is helpful for modeling purposes, there is a large degree of uncertainty when

it comes to accuracy and completeness of this type of data. Video games offer an exciting

alternative, however.

With millions of players participating in virtual economies, large scale studies become

much more feasible. Because it is a virtual economy operating within the confines of the

developer’s programming, and since the data is digital, there are few questions about accu-

racy or completeness [CWC+09]. In fact, the abundance of data means that even more

sophisticated analysis can occur. Thus, video game studies can provide real benefit to

academic inquiry, and enable the answering of questions applicable outside the virtual

world.

1.3 Bad Behavior in Online Games

The popularity of online gaming supports a billion-dollar industry, but also a vigorous

cheat code development community that facilitates unethical in-game behavior. “Cheats”

are software components that implement game rule violations, such as seeing through

walls or automatically targeting a moving character. It has been recently estimated that

cheat code developers generate between $15, 000 and $50, 000 per month from one class of

cheats for a particular game alone [APB11]. For some cheaters, the motivation is mone-

tary: virtual goods are worth real-world money on eBay, and online game economies pro-

5



vide a lucrative opportunity for cyber criminals [KAW+10, KCWC07]. For others, the

motivation is simply a competitive advantage and the desire to win [NRCS10]. And finally,

some cheaters simply want to have fun and advance to a higher level in the game without

investing tedious effort [Con07].

In all cultures, players resent the unethical behavior that breaks the rules of the game:

“The rules of a game are absolutely binding [...] As soon as the rules are transgressed,

the whole play-world collapses. The game is over [Hui50]”. Online gamers are no differ-

ent, judging by anecdotal evidence, vitriolic comments against cheaters on gaming blogs,

and the resources invested by game developers to contain and punish cheating (typically

through play restrictions).

Cheating is seen by the game development and distribution industry as both a monetary

and a public relations problem [Con07] and, consequently, significant resources are invested

to contain it. For example, Steam, the largest digital distribution channel for PC games,

employs the Valve Anti-Cheat System (VAC) that detects cheats and marks the corre-

sponding user’s profile with a permanent, publicly visible (regardless of privacy setting),

red, “ban(s) on record”. Game servers can be configured to be VAC-secured and reject

players with a VAC-ban on record matching the family of games that the server supports.

The overwhelming majority of servers available in the Steam server browser as of October

2011 are VAC-secured. For example, out of the 4,234 Team Fortress 2 servers available on

October 12, 2011, 4,200 were VAC-secured. Of the 34 servers that were not VAC-secured,

26 were owned and administrated by a competitive gaming league that operates its own

anti-cheat system. Like many gaming environments, Steam allows its members to declare

social relationships and connect themselves to Steam Community, an online social network.
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Dishonesty, prevalent in society [Ari12], permeates the online gaming world as well, raising

technical, legal and social challenges. Understanding cheaters’ position in the social net-

work that connects online gamers is relevant not only for evaluating and reasoning about

anti-cheat actions and policies in gaming environments, but also for studying dishonest

behavior in society at large.

For example, a study of large-scale cheating behavior can provide evidence to validate

theories from social sciences and psychology on the nature of unethical behavior in gen-

eral [GAA09]. Studying a gaming network is particularly interesting because of the com-

petitive nature of many multiplayer games, that has parallels in the real world, possibly

describing corruption mechanisms in cases such as Enron, where “internal [group] competi-

tion could set the stage for the diffusion of ‘widespread unethical

behavior’ ” [KOS08].

Another prevalent cheating phenomenon is in academia, from plagiarizing in student as-

signments to falsifying data in research. Research into academic cheating has indicated the

presence of a network effect. For example, the acceptance of a single high school cheater

into a United States military service academy (typically thought of as bastions of honor

and integrity) has been shown to cause a statistically significant 0.37 to 0.47 additional

students to cheat [CMW08]. A study of 158 private universities [RK09] showed that ob-

serving other undergraduate students cheat was strongly correlated with one’s own cheat-

ing behavior. What has been lacking, for the most part, is an empirical investigation into

how cheating behavior diffuses through the relationships of a social network.

Another area where understanding cheating in games is relevant is gamification. Gami-

fication attempts to import gameplay mechanics to otherwise non-gaming environments,

with lofty goals such as increasing engagement, participation, and even performance. It

7



has become a hot topic in both science [TMD12, WH12, LZ12, LC11, DSN+11, HL10] and

industry [Inc12b, Inc12a, Gar11], emphasizing even more the importance of understanding

gaming, and the deviant behavior associated with it. As gamification becomes increasingly

ubiquitous, the threat of cheating will become more prominent, and its effects more pro-

found.

In fact, Foursquare, one of the most popular location-based social networks and an early

innovator in gamification, has experienced “pervasive” cheating [Gla11]. In Foursquare,

users “check-in” to physical locations, receiving points for various tasks. Badges are given

to encourage service usage (e.g., the “Superstar” badge given for checking into 50 different

venues), for various achievements (e.g., the “Douchebag” badge is given for checking in to

25 locations with a “douchebag” tag), and have been converted into a revenue stream by

charging for sponsored “Partner Badges” which are often accompanied by special offers

at a venue. Cheating not only diminishes the achievements of fair players, but poses a

direct threat to Foursquare’s business model as cheaters circumvent the rules set up by

Foursquare’s paying partners for badges and special offers.

Cheating in Foursquare is simple: lie about your location. By falsifying check-ins, a user

can gain badges and honorifics that he would not attain legitimately. Effort has been in-

vested into the detection of cheaters on Foursquare [PKZ12, HLR11], but not to under-

standing how cheating propagates. Although useful, it seems unlikely that detection mech-

anisms will transfer to other gamified systems. While methods for protecting against and

detecting cheaters tend to be domain specific, the process by which the cheating behavior

spreads is unlikely to differ in any fundamental sense, and thus remain applicable to the

entire spectrum of gamified systems.
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Toxic behavior is another type of unethical behavior that is prevalent in online games and

the real world. While cheating is relatively well defined and easy to understand, toxic

behavior is a bit more ambiguous. Toxic behavior has been an area of focus in manage-

ment research, where it has been been noted to act like a “poison” and “contaminate”

individuals and entire organizations, causing “emotional pain,” among other unwanted

consequences [Gol08]. Thus, things like bullying, deliberate undermining of co-workers,

and abusive leadership have been identified as manifestations of toxic behavior. As in the

real world, toxic behavior can permeate a gaming community, lowering player enjoyment

and ultimately make people stop playing.

One confounding issue with the study of toxic behavior is that perceptions vary between

individuals [Pel10]. For example, players of an “unorthodox” basketball coach who exhib-

ited abusive behavior when they performed poorly showed no consensus on their opinion

about his behavior. For some, he was the best coach they had played for, while others

were scared or angered.

Because the rules of gaming are more codified, and because we can extract a huge amount

of precise data, it opens up an opportunity for the quantitative study of toxic behavior.

Like cheating, a quantitative analysis of toxicity in games can produce insights not only

into gamer behavior, but also provide useful information for studies in other domains.

1.4 Dissertation Outline

This dissertation is an exploration of (bad) behavior in online video games. Using tools

from social network analysis and machine learning, we study two specific forms of bad

behavior: cheating and toxic behavior. We collect a dataset of over 10 million gamers from
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the Steam Community online social network, and in conjunction with a 10 month data

trace from a community owned and operated Team Fortress 2 (TF2) game server study

cheaters and how cheating behavior spreads. Additionally, we use crowd sourced decisions

on several million instances of toxic behavior in the League of Legends (LoL) to analyze

and model toxic behavior.

In summary, this dissertation makes the following contributions:

1. An architecture for the collection of longitudinal social network data.

2. A prototype implementation of this architecture.

3. A social network analysis of (cheaters in) the steam community.

4. An analysis of in-game interactions from a popular server.

5. Evidence for cheating as a contagion.

6. A data driven simulation of cheating as contagious behavior.

7. A model for predicting crowdsourced decisions on toxic behavior.

The remainder of this dissertation is organized as follows. Chapter 2 reviews related work

that this dissertation builds on. Our architecture and reference implementation are pre-

sented in Chapter 3. The datasets we study are discussed in Chapter 4. In Chapter 5

we perform a social network analysis of gamers in the Steam Community online social

network, with a focus on the position of cheaters. We explore the in-game interactions

backing the declared relationships in Steam Community in Chapter 6. Chapter 7 we find

evidence for cheating as a contagion process and perform a data driven analysis of a con-

tagion model. In Chapter 8 we produce a model for predicting crowdsourced decisions on

toxic behavior. Finally, we conclude and discuss our findings in Chapter 9.
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Chapter 2: Related Work

In this chapter, we present previous research that this dissertation builds upon. First, we

discuss research into collecting and analyzing online social network data. Next, we discuss

using games for scientific research. We then discuss work related to cheating and unethical

behavior. Finallly, we present previous work on toxic behavior.

2.1 Collecting and Analyzing Online Social Network Data

Chau et al. appear to have published the first work on parallel crawlers for online social

networks [CPWF07]. They describe a system that uses a breadth first search (BFS) and a

centralized queue to assign users to a set of independent crawler tasks. Chau et al.’s sys-

tem was not designed to perform longitudinal data collection, and thus lacks a scheduler,

an analytics engine, and thoughts on how to deal with a growing dataset over time. We

address these concerns via the architecture presented in Chapter 3.

Willinger et al. argued that the reliance on static datasets by OSN researchers was detri-

mental to understanding the real processes that govern human interaction [WRT+10]. By

taking measurements at various points in time from a constructed “toy” graph with dy-

namic properties, they illustrate that overlooking this dynamism can lead to misleading or

11



downright wrong results. Ultimately, they propose a multi-scale approach whereby graphs

are analyzed at various granularities of spatial and temporal resolution.

Wilson et al. [WSPZ12] questioned the meaning of friendships in declared OSNs by exam-

ining interactions between users on Facebook. They define an interaction graph to be a

subset of the Facebook social graph (since Facebook interactions are limited to individuals

with declared friendship) where the two end points had n interactions over a time interval

t, and show that users only interacted with a small subset of their friends, that interaction

degree is not correlated with social degree, and that small-world clustering decreased as

the interaction graph becomes more restrictive. One aspect they leave open for future

work is the construction of interaction graphs that are not a strict subset of the social

graph. The work in Chapter 6 is a first step towards filling that gap since our interactions

exist in a separate, although related, context than the OSN they back.

Finally, a preliminary report by Souravlias et al. presents an architecture [SKP12] with

the same basic components as seen in Figure 3.1. The indication is that work towards an

implementation is still being performed, but we suspect they will face many of the same

challenges outlined in Chapter 3.

2.2 Game Studies

Gaming studies have generally fallen into two categories: 1) technological and 2) behav-

ioral. Technological gaming studies have characterized network traffic due to gaming, re-

source provisioning, work load prediction, and player churn in online games [CFS+10,

CLW03, FCFW02, FCFW05, FF03]. While the actual cheating in online games, especially

the cheating that is most likely to occur within our dataset, is accomplished via technical

12



means, e.g., the modification of game code, the present work is primarily focused on social

aspects. Thus, we limit the majority of our discussion on related work to the study of

gamers’ behavior.

Before we begin in earnest, it is important to discuss how the study of online games has

arisen as a legitimate scientific endeavor. Edward Castronova appears to have made one

of the first comprehensive arguments for viewing online games as large scale natural ex-

periments [Cas06]. In a nutshell, his thesis is that the scale, breadth, and depth of on-

line games results in genuine social interactions, providing detailed, precise, and accurate

traces at the society level. While services like Steam Community (Section 4.1) and games

like League of Legends (4.3) have tens of millions of active users, even the single server

dataset we make use of (Section 4.2.1) involves over 30,000 people, much too many to

study in the lab.

As Castronova puts it, real-world society can be viewed as a large game: there are choices

to be made, the outcome is uncertain, and there are competing interests. Thus, as theories

of human interaction are portable across cultures, for example, the “invisible hand” in the

economies of Ancient Greece and today, they should also hold true across large games. In

other words, we can empirically test social science theories at unprecedented scales in a

completely specified system under controlled conditions.

Using two case studies, Castronova shows that coordination games, which have been the-

orized to be a driving force behind societal interactions, are present in online games. Fur-

ther, because the games themselves had replication (via multiple servers, and thus soci-

eties, running in parallel), statistically significant coordination effects were found. Thus,

the success is not (just)that coordination effects were present, but that he found the evi-

dence empirically.
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In another work, Castronova et al. [CWC+09] use traces of virtual goods transactions to

measure whether there is a mapping principal for economic theories. In other words, do

virtual world denizens operate in the same way as real world economies? Their findings

indicate yes. They are able to quantitatively measure several economic indicators at large

scale due to the accuracy and completeness of digital traces. Like the work presented in

this dissertation, having access to detailed data eliminates many of the concerns of tradi-

tional survey based studies.

Although Steam Community, the OSN of Steam users that we study throughout this dis-

sertation, in particular has not been studied before, other social networks of online gamers

have been addressed in recent studies. Szell and Thurner [ST10] provide a detailed analy-

sis of the social interactions between players in Pardus, a web-based Massively Multiplayer

Online Game. By studying the socio-economic aspects of players, they provide additional

evidence that communities of gamers can serve as a proxy for real world behavior.

Xu et al. interviewed 14 Halo 3 players to study the meaning of relationships within an

online gaming context [XCS+11]. They found evidence of in-game relationships supported

by real-world relationships, triadic closure of relationships making use of both real and

virtual relationships as a bridge, and in-game interactions strengthening ties in the real

world. They further found evidence of social control as a tool for managing deviant be-

havior. Mason and Clauset investigated the behavior of Halo: Reach (the 2010 sequel to

Halo 3) players by combining gameplay logs with pyschometrics and a social network con-

structed from survey data [MC13]. They find that gamers preferred to play with friends,

that teaming up with friends increased performance, and that social ties fundamentally

affect the environment of competition.
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A major difference with our work is the use of surveys vs. an OSN as ground truth for

a friendship existing. Considered together, our work and theirs, particularly Mason and

Clauset’s results that playing together is a useful proxy for friendship and our results that

declared friends have orders of magnitude more interactions than non-declared friends can

be taken as evidence that declared relationships in gaming related OSNs might very well

represent real “friendships.”

There is an additional subtle, yet important difference between these works though: the

mechanism for finding play partners. In Halo, the primary mechanism is a skill-based match-

making service [HMG07], which places groups of players of similar skill into a peer-to-

peer gaming session. To play with the same teammates, players must explicitly choose

to “party up”, and anecdotal evidence suggests that most players back out of the party

up option after games with random players. In contrast, the mechanism in TF2 relies

on players explicitly choosing a particular community owned and operated server, each

with their own unique personalities and atmospheres, for play. This makes the selection

of a virtual environment an analogue to the selection of a real world environment. For

example, the frequenting of a particular pool hall, chosen not just for the competition

but also for the camaraderie exhibited by the community. This easily accessible metaphor

hints at the applicability of our results to real world scenarios.

Shen and Iosup [SI11] analyzed long term traces of the Xfire, a gaming network similar

to Steam Community. They propose an observational study framework where repeated

samplings of data are used to form a more complete picture of gamers’ activities. Focusing

on the characteristics of gamers, they investigated the time players spend in game, the

number of games they play, the production and consumption of user generated content,

and the social structure of gamers. The most notable differences with our study are our
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characterization of cheaters in the gaming community and the data collection technique

(sampling in [SI11] vs. exhaustive crawl in our study, which enables more in-depth so-

cial network analysis). One notable difference between their study and ours is the size of

the datasets. They used a bootstrap method that identified about 65,000 users, later re-

peatedly sampling these users and a random sampling of their friends for a total of about

545,000 users.

In contrast, as explained in Section 4.1, we captured what we believe to be the vast major-

ity of Steam Community users (over 10 million) at the time of our crawl via a distributed

breadth first search, allowing us to make stronger claims about the social network of gamers,

our primary interest. Although an early entry in the genre of gaming services, Xfire dif-

fers from Steam Community in several important ways. Steam Community is a piece of

the larger Steam platform under the control of Valve. In particular, we note the vertical

integration of the Steam store, Steam content delivery system, Steam Community, and

Steamworks. Because of this tight integration, many newer games require a Steam account

to play and thus many more active players.

While Xfire averages about 150,000 and peaks at 165,000 online users, Steam Community

has between 3 and 6 million online users at any given time [Val12b]. Unsurprisingly, the

integrations of these offerings has catapulted Steam (and Steam Community) into the

forefront of gaming services, while Xfire has lagged behind. Next, Xfire has a maximum

limit of 1,000 friends, which is quite a bit larger than Steam Community’s limit of 250.

Shen and Iousup discovered a power-law like degree distribution in Xfire, unlike what we

find in Steam Community (Chapter 5), and the much higher limit on friends might be the

reason for this difference. Finally, and most important for this work, Steam Community

makes the cheating flag assigned by the VAC service publicly visible.
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2.3 Cheating and Unethical Behavior

Cheating and unethical behavior has been studied mostly in psychology and sociology.

In this section, we look at previous research on cheating and unethical behavior in two

categories: 1) cheating in general, and 2) cheating in video games specifically.

2.3.1 Cheating in General

Gino et al. performed a controlled lab experiment to test the effects of “one bad apple”

with respect to cheating. The experiments made use of several groups of university stu-

dent volunteers. In all experiments, students were given a math test to take. In certain

setups, students self reported the number of questions they successfully answered. For

certain groups a shredder was made available to destroy their copy of the test. The re-

searchers then further introduced an actor to certain groups. This actor made it very clear

that he was cheating on the test by turning it in almost immediately and shredding his

original work. I.e., these groups were exposed to cheating behavior.

The diffusion of (un)ethical behavior in social networks has been a topic of interest in

business and management in particular. Kulik et al. proposed a theory that competitive

environments can act as a catalyst for the spread of unethical behavior, using Enron as

a case study [KOS08]. Enron’s internal corporate structure was built around the concept

of “stacking”, where employees would be ranked on their performance and split along

percentiles into different groups. Those in the top percentile group would receive commen-

surate benefits, while those in the lowest 15% were placed into an isolated area together.

Those in the lower 15% were fired within a few weeks if they were unable to find a new job
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within Enron, which was a near certainty due to their publicly known poor performance.

Ultimately, employees could be divided into two groups: winners and losers. This intense

competition lead some employees to cheat: e.g., inflating the projected profit of a proposal.

An honest employee could not compete, became a loser, and was summarily fired. After

observing the gains made by cheating co-workers, Kulik, O’Fallon, and Salimanh argue the

behavior would be emulated by otherwise ethical employees.

Kedia et al. [KKR10] studied contagion in corporate misconduct via the manipulation of

earnings statements. Their primary findings indicate that the likelihood of cheating on

a report increased as the fraction of employees who had previously cheated increased. In

particular, they a significantly higher chance of “aggressive accounting policies” if the

fraction of cheaters in a given industry or local contacts that had cheated is higher. In

other words, their findings support the theory of unethical behavior as a contagion.

As mentioned in Chapter 1, Kulik et al. [RK09] and Carrel et al. [CMW08] studied cheat-

ing in academic environments. Rettinger et al. studied cheating in US military academies.

Both of these studies were survey based. In each case, they found evidence of contagion in

academic cheating.

2.3.2 Cheating in Online Games

Although we do not study any cheat in particular, it is important to understand how dif-

ferent forms of cheating can be categorized and classified. Yan and Randell develop taxon-

omy for cheating across 3 dimensions: 1) what the cheat exploits, 2) what cheaters gain,

and 3) who is cheating. They identify 15 common forms of cheating. Each category is well

defined and comprehensive, but not disjoint; a given cheat might fall into more than one
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category. While they concede that such a disjoint listing would be of great benefit, the

creation of one has so far proven difficult. For example, consider a match making queue

where players joining are not allowed to be in a party. Now imagine that two players can

exploit such a system by joining the queue at the same time to guarantee their place-

ment on the same team1. The cheaters in this case have a large tactical advantage over

the other team due to, e.g., real-time voice communication over Skype. This could be

placed in both the “cheating by collusion” and “cheating by abusing the game procedure”.

It could also arguably fall into the “timing cheating” category.

They divide what the cheat exploits into two categories, either a system design inadequacy

or the people that play and operate the game. System design inadequacies are further

divided into the game system and the underlying system (code). The subcategories of

consequences of cheating are based on traditional computer security classifications. Confi-

dentiality is not leaking information to unauthorized users. Integrity is ensuring that infor-

mation is altered by an unauthorized party. Availability, or making sure that information

is not withheld by unauthorized parties. Finally, authenticity provides identity assurances

not reliant on the machine a user connects from.

Wu and Chen present a social cognitive theory based model for cheating in online

games [WC13]. Social-cognitive theory is a framework for understanding human behavior

that treats human behavior as as a function of both self and outside influences. In other

words, social environment and personal beliefs interact to produce a given behavior. They

devise 10 hypotheses on the relationships between social and personal influence, for ex-

ample, that the more often people cheat around an individual, the more said individual

cheats.

1This is a scenario that has appeared in the wild.
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They first performed a preliminary study of 63 gamers to inform the creation of a sur-

vey. The resulting survey was composed of 27 Likert-scale questions across 5 theorized

constructs: game cheating, social effects, cheating self-efficacy, cheating evaluation, and

attitudes towards cheating behavior. They then build a structured equation model based

on data collected from 1,666 respondents.

A structured equation model can be viewed as a graph, where nodes are measured vari-

ables and edges between them represent unmeasured (yet hypothesized) variables. The

model they fit showed that social effects had a significant effect on cheating behavior, as

well as the valuation of cheating behavior. Additionally, the valuation of cheating had

a significant effect on attitude towards cheating, which itself had a significant effect on

cheating behavior itself. In other words, the more an individual is exposed to, the more

likely they are to cheat, the more likely they are to find value in cheating, and the more

their general attitude towards cheating will shift.

While there has been a decent amount of attention on technical aspects of cheating, pri-

marily in the detection and prevention of 3rd party cheat software [MDF11, KTCB05,

BCR11], the social aspects of cheating in games remains relatively unexplored.

Dumitrica [Dum11] examines Neopets, a web based social game. She describes a process

by which gamers, who naturally seek ways to increase their “gaming capital”, are tempted

to cheat, and argues that a cheating culture emerges, where social values are used to un-

derstand and evaluate the ethical questions of cheating.

Nazir et al. study fake profiles created to gain an advantage in [NRCS10]. Though the

evaluation of behavior of player accounts within the social game Fighters’ Club (FC),

they are able to predict with high accuracy whether a profile is fake. Users in FC cheat

by performing what is essentially a Sybil attack, since a player’s power in FC is directly
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proportional to the number of declared friends that are also players. Cheaters in Steam

Community, however, do not explicitly gain an advantage by altering the structure of the

social graph. Instead, they are attacking out of band game rule implementations.

Vazquez and Consalvo performed a survey based study on the perception and practices of

cheating in social network games similar to FC [VC13]. They answer three research ques-

tions: 1) how players cheat in social network games, 2) what cheating related practices

they partake in, and 3) how does the perception of cheating differ between individuals and

across genres and gaming platforms. They find a variety of mechanisms by which play-

ers cheat in social network games, ranging from account sharing to spaming their friends

lists. They also note that their respondents differed as to their opinions on what behav-

ior constitutes cheating. Finally, they determined that there was a difference in cheating

behavior, and particularly how it is perceived, depending on the genre or platform of the

game. The study’s results show a different alignment of moral compasses with respect to

cheating in social network games vs. multiplayer games on consoles or PC: about 35%

of respondents said that cheating across these different platforms was “different.” This

finding is particularly relevant to the current work.

Because the datasets used in this dissertation are drawn from PC gamers, the results might

not be completely portable to other game platforms. From samples of open ended ques-

tions on the survey, we conjecture that many of the respondents who who viewed cheat-

ing as different might not be familiar with modern mulitplayer gaming. For example, one

respondent noted that cheating on PC or console games did not hurt any other players,

indicating a lack of knowledge of the popularity of multiplayer games That said, about

65% of respondents viewed the cheating behavior the same. Unfortunately, their study was
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primarily qualitative and they were unable to draw many statistically significant conclu-

sions.

“Gold farmers” are cheaters that make black-market exchanges of real world currency for

virtual goods outside of sanctioned, in-game, trade mechanisms. By examining social net-

works constructed from database dumps of banned EverQuest II (EQ2) players, Keegan

et al. [KAW+10] found gold farmers exhibit different connectivity and assortativity than

both their intermediaries and normal players, and are similar to real-world drug trafficking

networks. Ahmad et al. [AKS+11] further examined trade networks of gold farmers and

propose models for deviant behavior prediction.

The dataset they used dataset differs from ours in both motivation for cheating, and the

method of punishing cheaters. No clear financial motivation for cheating exists in the ma-

jority of games played by the majority of Steam Community players. Although the grow-

ing eSports industry has made gaming a possible profession, and tournaments with real

world prizes are seen as a stepping stone for amateurs to go professional, most gameplay

time is not spent with prize money on the line. While trafficking of virtual goods most

certainly has implications for the monetization of the Free-to-Play model that has been

recently adopted by many games, VAC bans apply specifically to cheating. Additionally,

while cheaters in EQ2 have their accounts permanently disabled, cheaters in Steam Com-

munity are only restricted from playing the particular game they were caught cheating in

on VAC-secured servers, as explained in Section 4.1.1.

Similar to business environments like Enron [KOS08] the overwhelming majority of mul-

tiplayer games have clear winners and losers. In multiplayer FPSs like Halo and TF2,

performance is also made public, as it was in Enron. At minimum, these games tend to

have an in-game scoreboard displaying performance related statistics for each player (such
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as points, or the number of kills and deaths in the given gaming session), with the highest

performing players at the top of the scoreboard’s visual representation, and the lowest

at the bottom. In addition to the in-game scoreboard, most games make world-wide and

friends leaderboards, as well as more detailed life-time statistics such as accuracy, number

of games won, and a variety of game-specific statistics available.

Although no one is fired for poor performance in a game, there are consequences for poor

performance besides the social stigma of being a “newb”. For example, the TrueSkill [HMG07],

algorithm used by Halo, ranks players and places similarly skilled individuals in the same

game. The rank of a player is visible in the in-game UI for Halo 3, removed from the UI

of its sequel Halo: Reach (studied by Mason and Clauset [MC13]), and will eventually

be made available on the stats tracking website for the latest incarnation, 2012’s Halo

4 2, but it affects matchmaking none the less. A particularly relevant finding from dis-

coveries in [HMG07] is that the deployment of TrueSkill led to an increased frequency of

cheating. This form of cheating, known as “boosting,” has sprung up where players boost

their statistics using various unscrupulous methods. There is even at least one service that

claims to employ professional gamers to boost accounts, later selling them for around $50

a piece [Hal12]. The competitive aspects shared by gaming and business indicates they

share same process of unethical behavior’s spread. Thus, findings from this work can help

explain how unethical behavior spread through an organization like Enron.

Finally, we note that to the best of our knowledge, our work is the largest scale study of

cheaters in a gaming social network. We discovered over double the amount of cheaters

as there were players in [NRCS10], and multiple orders of magnitude more cheaters than

players in [KAW+10, AKS+11].

2The ranking system has become so important to players that developers are postponing the release
until they can properly tune it, much to the chagrin of a sometimes rabid fan base hungry for a metric by
which to gauge their standing in the highly competitive community.
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2.4 Toxic and Anti-social Behavior

Toxic behavior in online games is a form of cyberbullying, defined as repetitive intentional

behavior to harm others through electronic channels [SMC+08]. Computer mediated com-

munication through electronic channels without face-to-face communication lacks social

psychological influences and can lead to more hostile interaction [HM08]. In psychology

and education, offline bullying has been actively researched [Olw96], and offers a theoreti-

cal background to understand cyberbullying.

Griefing is a term describing cyberbullying in online gaming, and those who enjoy the act

of disrupting other players are called grief players [FK04, MB00]. Griefers make other

players annoyed and feel fatigued. Sometimes victims even leave the game [MPK03], ex-

hibiting toxic behavior themselves to escape beratement.

Although griefing is intuitively understood, its boundary is unclear [CCLM09, FK04, LS05,

MPK03] because customs, rules, or ethics can be different across games [WR05]. In ad-

dition, the perception of grief behavior is unique across individuals. As a consequence,

even griefers themselves may not recognize what they have done as griefing [LS05]. This

inherent vagueness makes it hard to understand grief behavior.

A few studies have characterized grief playing. Foo and Koivisto divide grief behavior into

four categories: harassment, power imposition, scamming, and greed play [FK04]. They

focus on the intention of behavior and distinguish griefing from greed playing because mo-

tivation behind greed playing is usually for the win instead of disrupting other players.

Barnett discovers that griefing is one of factors provoking anger in World of Warcraft by

survey of 33 participants [BCF10]. Chen et al. correlate personality and grief playing.

They reveal that players who enjoy the anonymous experience tend to like the motivation
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of grief playing, such as “I like the experience of wanting to feel powerful while playing

online games” [CDN09].
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Chapter 3: ARKS: An Architecture for the Collection and Analysis of Social

Network Data

Unlike controlled laboratory experiments, researchers wishing to conduct empirical “in the

wild” studies face several unique challenges in collecting and analyzing their data:

1. Poorly documented, incomplete, or broken APIs exposed by data sources.

2. “Moving target” concerns with the data that is exposed.

3. Changing needs in both data collection and analysis as understanding of a research

problem matures.

4. New sources of data becoming available over time.

To address the above challenges, we devised an architecture [BI13b] that met the following

three requirements:

• Requirement 1: Decoupled architecture.

Decoupling of data collection from extraction and analysis enables our platform to be

useful for studies of dynamic networks relying on volatile data sources. Most solutions

employed in one-time social network analyses address data collection, extraction, and anal-

ysis as a monolithic component: the data analysis requirements inform data extraction,
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inevitably leading to multiple iterations of data collection or limited knowledge extraction.

While decoupling data collection from extraction and analysis makes greater demands

on storage, it allows for (a) successive iterations of data extractions as informed by data

analysis results with minimum costs; (b) transparent collection of newly introduced at-

tributes embedded within the data source independent of the data extraction or processing

mechanisms; and (c) independent insertion or removal of new sources of data. This loosely

coupled architecture has the implicit benefits of fault tolerance and scalabilit

• Requirement 2: Versioning and provenance.

Longitudinal studies require revisiting the same data source over time to compare changes

in the network. At minimum, this requires time stamping of data. More importantly, how-

ever, in light of the rapid growth experienced by social applications and the ever increasing

ubiquitousness of Internet connected mobile devices, the format of data sources are likely

to change over time, necessitating adaptations in data extraction code. In addition to data

provenance, we are exploring the usage of existing distributed version control systems and

continuous integration tools to provide knowledge of process provenance.

• Requirement 3: Multigraph, ego-net based data model.

Representing the fusion of multiple sources of social data for a single ego involves several

design challenges. First, we observe that an undirected graph cannot adequately model

contexts where relationships and interactions are not necessarily reciprocal in nature. Sec-

ond, from a sociological perspective, even reciprocal relationships are usually not sym-

metric, calling for the ability to place a weight on an edge [Wel88]. Third, simple graphs

are unable to capture ego’s ties across disparate social networks, and thus are insufficient
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for answering questions about behaviors that span application domains. For example,

consider a study on diffusion, focusing on free form reviews given by gamers. Gameplay

statics available via the Steam Community application, comments from YouTube, and

participation in relevant communities such as gaming.reddit.com can be combined to

form a more complete view of influence and exposure.

Finally, the abstraction of a multigraph stored as ego-nets allows for holes in the observa-

tional record to be patched in certain cases. Consider a situation where a change in state

triggers the crawling of a user (see: Section 3.4.1). In this scenario, information about the

newly crawled user might be inferable from information collected on previous users, and

vice versa, without altering the provenance record.

For example, say users A and B were crawled at times ti and ti+n, respectively. In A’s

record no relationship between the two exists, yet in B ’s one does. We can thus infer (at

least partially) A’s neighborhood at ti+n without actually collecting any additional infor-

mation. We can also infer information about B ’s neighborhood prior to having made any

direct observations. Most importantly, the inference maintains the observational record;

storing the graph as, e.g., an edge list, would eliminate the distinction between inference

and direct observation, especially considering that the overwhelming majority of crawled

datasets are not direct observations of the graph, but rather multiple observations of sepa-

rate ego-nets.

A high level overview of our architecture can be seen in Figure 3.1. The scheduler (labeled

1) is responsible for issuing requests to crawl a particular user. The crawlers (2) receive

the requests issued by the scheduler and retrieve raw data from various data sources. The

output from the data collection sub-system is received by the storage process (3), which

coalesces crawler output, for example the output from the Steam crawler and the YouTube
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Figure 3.1: A high level view of our architecture.

crawler for a given user, and generates provenance metadata. Once coalesced, the storage

process commits the raw data to the raw data document store (4). The extraction process

(5) extracts meaningful social information, and stores it, along with additional provenance

metadata, in the social graph store (6). Finally, the analytics process (7) operates on the

structure exposed by the social graph.

With the above in mind, the remainder of this chapter describes an implementation of this

architecture that meets the needs of social data scientists.

3.1 Scheduler

The scheduler is responsible for issuing crawl requests to crawlers. It separates deciding

what to crawl from the actual process of crawling. This makes it particularly easy to change

crawling behavior due to both research and technical requirements. For example, the sched-

uler can respect rate limiting by controlling the requests it makes to crawlers. From a

more research oriented point of view, the scheduler allows for dynamic decisions on who

to crawl, and how often to crawl.
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The only requirements the architecture exposes on the scheduler is the ability to issue

requests to crawlers and the ability to update schedules. Our scheduler implementation is

written in Ruby and makes use of the rufus-scheduler gem to achieve a cron-like interface.

3.2 Data Collection

The initial implementation of the data collection component was used to crawl Steam

Community (Section 4.1) between March 16th and April 3rd, 2011. Although there was

a fledgling API exposed, it did not allow for querying of friends lists at the time. Thus,

we used unmetered, consumable XML on the steamcommunity.com web site. The crawler

collected user profiles starting from a randomly generated set of SteamIDs and following

the friendship relationships declared in user profiles. To seed our crawler, we generated

100,000 random SteamIDs within the key space (64-bit identifiers with a common prefix

that reduced the ID space to less than 109 possible IDs), of which 6,445 matched config-

ured profiles.

The crawling was executed via a distributed breadth first search, and the implementation

was built around Amazon Web Services. Each of the initial seed SteamIDs was pushed

onto an Amazon Simple Queue Service (SQS) queue. Each crawler process popped one

SteamID off this queue and retrieved the corresponding profile data via a modified ver-

sion of the Steam Condenser library. The profile data of the crawled user was stored in a

database and any newly discovered users (i.e., friends that were previously unseen) were

added to the SQS queue. Crawling proceeded until there were no items remaining in the

queue. Using RightScale, Inc’s cloud computing management platform to automatically

scale the crawl according to the number of items in the SQS queue, we ended up running
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Figure 3.2: A high level overview of the crawler used to collect the static Steam Commu-
nity data set.

up to six Amazon “c1.medium” EC2 instances executing up to 15 crawler processes each.

A high level overview of the crawler implementation can be seen in Figure 3.2.

We built a second implementation that took full advantage of the scheduler to dynami-

cally gather observations on over 9 million users every day. This implementation includes

two data collection subsystems: 1) a status flag observer, and 2) a social neighborhood

observer.

The status observer is scheduled to run for every known user in the system once per day.

The scheduler creates one request per 100 known users per day, which is then placed onto

a job queue. Using the Resque job queuing library, one of a number of distributed crawlers

executes the job. Accessing the 3rd party data takes place over HTTP. The results from

the 3rd party data source are then placed into another job queue for processing.
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The second crawler retrieves friends lists for selected users. There is one particular domain

specific concern making this crawler a bit more complicated. The issue is that the Web

API is limited to 100,000 calls per day. Luckily, the ban status API allows for the query-

ing of 100 users’ ban statuses in a single call. Although our dataset grew slowly as friends

were added from monitored users’ friends lists, we were still left with several thousand

unused API calls per day.

Unfortunately, the friends list API only returns a single user’s friends list. To limit our

calls, only the initial query of a user’s neighborhood made use of the API and subsequent

queries make use of the unmetered XML interface to Steam Community. A consequence of

this is that the resolution of the friends since field is reduced to 24 hours on all but the

first observation of a user’s neighborhood.

3.3 Data Storage

There has been some exploration of various database solutions suitable for social data

storage [RBR11], each with their own pros and cons. For our purposes, we settled on Mon-

goDB 1. The choice of MongoDB was motivated by several factors:

1. Easy to understand ad-hoc data modeling.

2. Familiar SQL-esque querying and RDBMS-style indexing.

3. Promises of high availability and performant scaling.

1http://www.mongodb.org
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Figure 3.3: An overview of the MongoDB cluster for our collection system.

MongoDB is a NoSQL [HHLD11] document store. Generally speaking, the NoSQL name

is a bit of a misnomer. SQL is the query language typically used by Relational Database

Management Systems (RDBMs). RDBMs tend to be build around the concept of tables

and rows with data normalization. For example, there might be a customers table that has

columns for a customers first name and last name, as well as a link to another table that

stores order information.

NoSQL document stores like MongoDB, on the other hand, tend to avoid normalization

and instead favor an approach where a single document (e.g., a customer) contains all

information relevant for that document (e.g., the customer’s orders). There are several ad-

vantages to this type of scheme, but, for our purposes, a document store makes it easy to

respond to changes in source data due to its schemaless nature. In other words, we do not

have to normalize our records with defined tables and columns, but rather the structure of

the record is contained within the document itself.

From a performance standpoint, the benefit to this has to do with the distribution of data

throughout a multi-machine cluster. A document store like MongoDB has implicit data

locality. It also avoids difficulties with distributing normalized data.
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Figure 3.4: JSON datastructure for storing neighborhood observations.

There were some issues related to the specific domain that are not addressed in the archi-

tecture described earlier. First, the volume of data we were collecting hinted at the need

for delta based storage. Even though the per-user data returned for each ban status query

was small, in aggregate it added up fast, and so we implemented a simple delta storage

scheme that found the last known value of each flag and stored the new value if it had

changed 2. A side effect of this was that any additional ban types added to the API were

automatically integrated into our system 3.

The same basic approach was used for the storing of neighborhoods, but a more complex

data structure was required, as seen in Figure 3.4.

The user id field is a key representing the user this observation corresponds to, and the

observed at field is the time the observation was taken. The plus and minus fields con-

tain the deltas computed from neighborhood observation, with the plus fields storing the

edges that were added to this neighborhood, and the minus field those edges that were

removed since the previous observation. friend observations are edges, and labeled with

2A timestamp recording that an observation was made is always stored.
3Two additional ban types, “community” and “trade”, were discovered.
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the type of a relationship (at the time of this writing there is only one type of edge on

Steam, “friendship”), and the friend since field is the timestamp that the friendship was

created.

Because MongoDB uses JSON as a record format, fields that were not used in an observa-

tion (e.g., if the user’s neighborhood had no change) were not stored. The friend since

field in the friend observation is optional for two reasons: 1) when someone is “unfriended”,

there was no need to store the date the relationship was created; we already had it on

record in a previous observation, and 2) some friendships do not have a friend since

value available from the API 4.

3.4 Analytics

While collecting and storing data is necessary for studying empirical social data, researchers

must perform actual analysis to produce results. In addition to analysis oriented towards

end results, i.e., the findings we present in later chapters, the data collection process itself

is informed by the analysis process. In this section, we present the reference implementa-

tion of the analysis tools used in this dissertation.

3.4.1 Finding New Users to Crawl

A major piece of the functionality in this implementation is the dynamic monitoring of

neighborhoods for newly marked cheaters. To this end, after ban status’s have been crawled,

they are analyzed for transitions from non-cheater to cheater. We say a user has transi-

4Steam Community did not record the date of friendship creation until 2009.
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tioned when we have at least one observation for him, he has been marked as a cheater in

the current observation, and he was a non-cheater in the previous observation.

When we detect a transitioned user, the analysis component schedules several new crawler

jobs. First, an immediate crawl that makes use of the Steam WebAPI to get a timestamped

list of relationships. Next, one neighborhood crawl is scheduled for the next 10 days. Ev-

ery time a neighborhood is crawled, any newly discovered users are added to the list of

users for daily ban status checks. Note that the transition detection described above en-

sures that we are not performing neighborhood scans for users with undetermined ban

dates (i.e., users that we had not previously discovered, but were banned some time in the

past).

3.4.2 Ad-hoc Programs

Many of the results in this work were generated using ad-hoc analysis programs. Gener-

ally speaking, these programs simply made use of the data that had been collected by the

implementation, without providing any feedback to the scheduler. Analysis programs were

written in Ruby, Python, and R. Had we required “real-time” updates to our results, we

could have simply scheduled the ad-hoc programs to run on a regular basis 5.

5We did implement a few scheduled programs to monitor the state of the data collected, for example
the number of cheaters detected per day
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3.4.3 Elaine

Elaine is an implementation of the Pregel system proposed in [MAB+10]. Pregel imple-

ments the Bulk Synchronous Processing (BSP) model [Val90]. The BSP model is com-

posed of distributed computation nodes which compute in parallel, a communication com-

ponent to allow the processes to communicate, and a synchronization barrier, which sus-

pends computation until some condition has been met.

Pregel is a realization of the BSP model for performing distributed computation on (large)

graphs. Each vertex in the graph keeps track of its out edges (i.e., edges pointing to other

vertices) and a value. Additionally, each vertex implements a function that performs the

actual computation. Results are built up iteratively via repeated calls to the compute

function. Vertices send and receive messages to each other such that a message sent at su-

per step s is available in super step (and only super step) s+1. Because the programmer is

primarily concerned with the computation that occurs at the vertex level, Pregel programs

are also referred to as vertex programs.

A coordinator node in a Pregel cluster is responsible for any initialization, partitioning,

and distribution of the graph. The coordinator distributes portions of the graph (as deter-

mined by a partitioner) to a set of distributed worker nodes. It also is responsible for the

synchronization of super steps between workers. Worker nodes are in turn responsible for

executing the computation function on the vertices they are responsible for.

Figure 3.5 shows a state machine view of the Pregel computation model. Each vertex can

be in one of two states: active or inactive. If the vertex is active at step s, then it will per-

form computation. Vertex states can be handled in a domain specific way, but, generally

37



Active Inactive

Vote to stop

Message received

Figure 3.5: An overview of the Pregel computation model.

speaking, a vertex is active if it has not voted to stop or it has messages available at step

s.

Elaine is an implementation of Pregel written in Ruby, and relies on the DCell actor-based

distributed objects library for compute node communications. While Google’s Pregel im-

plementation is not publicly available, there are some public implementations [KAA+13].

We chose to create our own implementation for several reasons. First and foremost, we

wished to expand our understanding of the challenges involved in a Pregel implementation.

Next, we had particular interest in exploring the suitability of Ruby for large scale data

processing. Finally, at the time of Elaine’s inception, there was no Ruby implementation

of a distributed Pregel, and thus we have the potential to provide a benefit to the Ruby

ecosystem.

The heart of Elaine is in the exposure of three objects to remote processes, and the defi-

nition of a vertex program. The three objects, or services, are Coordinator, Worker, and

Postoffice. With Elaine, we use the terminology compute node to represent a unique end

point that an Elaine services reside. Any given compute node can be running one or more

services, however, the assumption is that one compute node will expose the coordinator

service while the remaining compute nodes each expose a worker and postoffice. It is im-
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Figure 3.6: An overview of Elaine. The coordinator node controls the flow of execution.
Worker nodes perform computation via the worker service. Messages are sent between to
individual vertices via postoffice service (dashed lines).

portant to note that a compute node is a logical abstraction: a single machine can host

multiple compute nodes, with each compute node running as its own process.

Within the compute nodes, services are managed as threads per the DCell library. The

coordinator service is responsible for initializing a job, which includes partitioning and dis-

tributing a graph. It also controls the flow of a given program by instructing each worker

to perform a super step. Each worker service is responsible for a given partition of the

graph. It is responsible for invoking computation on each vertex in its partition. The post

office service enables message passing between remote vertices. A high level overview of

the Elaine architecture can be seen in Figure 3.6.
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3.4.3.1 The Coordinator

As mentioned above, the coordinator is responsible for managing workers and any setup

the vertex program, in addition to any setup that is necessary for the vertex program. To

this end, Elaine exposes an API that provides some default functionality. The API is as

follows:

• register worker - Registers worker services.

• graph= - Allows for setting the graph of the coordinator.

• zipcodes - Generates a zipcodes hash that maps vertices to the worker they reside

on.

• distribute graph - Distributes the graph to worker nodes.

• partition - Partitions the graph.

• init job - Initializes the job by partitioning the graph, generating zipcodes and

distributing them to postoffices, and distributing the graph to worker nodes.

• init superstep - Performs initialization necessary at the start of a super step.

• superstep - Performs a super step on each worker service in parallel.

• vertex values - Gathers all vertex values from worker services.

• aggregate - Aggregates results from each worker service.

This functionality can be overriden by a programmer for any special needs.

40



3.4.3.2 Workers

The worker service is responsible for performing computation on any active vertices in its

portion of the graph. The API exposed is:

• add vertex - Adds a vertex to the portion of the graph this worker is responsible

for.

• add vertices - Adds multiple vertices to the portion of the graph this worker is

responsible for.

• init graph - Initializes an entier graph this worker is responsible for.

• init superstep - Performs initialization necessary at the beginning of each super

step.

• superstep - Executes a step for each active vertex in its portion of the graph, in

parallel.

• vertex values - Gathers and returns the values of each vertex in its portion of the

graph.

• aggregate - Performs an aggregation function on the vertex values in its portion of

the graph. Note: aggregation is a domain specific concern and thus programmers

must supply an aggregate function if one is desired.
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3.4.3.3 Postoffice

The post office handles message delivery to and receiving from remote computation nodes.

Recall that vertices pass messages to each other. This message passing occurs asynchronously.

I.e., a vertex does not wait for s sent message to be received by the destination before

continuing computation. The post office enables this by essentially buffering all outgoing

messages and then sending them in bulk to the post offices responsible for the destination

vertices.

The post office exposes the following API:

• zipcodes= - Allows for setting the zipcodes mapping vertices to remote workers.

• deliver - Delivers a message from one vertex to another.

• deliver all - Delivers all messages currently in this postoffice’s outbox.

• deliver bulk - Delivers bulk messages to remote postoffices.

• receive bulk - Receives bulk messages from remote postoffices.

• read bulk - Moves messages from vertex mailboxes to the vertex itself.

• address - Returns the compute node that a given vertex resides on.

There are some performance related decisions in the post office implementation. First, the

aforementioned message buffering reduces the overall communication between computation

nodes and enables the asychronous computation performed by vertices. Next, once the

buffer limit is reached, vertex messages are compressed (by default using Zlib compression)

and then sent across the wire in bulk. Finally, if the destination vertex resides on the same
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compute node as the source, the post office will immediately place the message in the

destination vertexes inbox for the next superstep.

3.4.3.4 Vertex Programs

Programmers define the actual computation process by deriving from the Vertex class.

This class provides an API as well as some default functionality as follows:

• deliver - Delivers a message to another vertex via the postoffice service.

• deliver to all neighbors - Delivers a message to all neighbors of this vertex.

• compute - Perform the computation for a step.

• vote to stop - Sets this vertex state to inactive.

As a simple example, consider the single source shortest path problem. The SSSP problem

finds the length of the shortest path from a source vertex to every other reachable vertex

in the graph. Consider the binary tree that appears in Figure 3.7. If we run SSSP with

the source as vertex 0, the length of the shortest path of any other vertex is imply the

level that vertex appears at. While it is easy to label the vertices in a binary tree in this

way, Figure 3.8 provides a vertex program to solve the problem for any graph.

There are several relevant lines to understanding how a vertex program works. In line 5

from the constructor, all vertices besides the source vote to stop (become inactive). Al-

though this is not entirely necessary due to the implementation of the compute method, it

aids in clarity: we know that only the source vertex’s compute will be run at superstep 1.

In line 10, the vertex extracts the minimum value from any messages it was sent at the
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Figure 3.8: A Pregel style vertex program for the single source shortest path problem.
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previous superstep. In lines 13 and 14, if necessary, it updates its value (the minimum

distance between itself and the source) and sends what amounts to its best guess at the

minimum distance between each of its neighbors and the source vertex. Finally, in line 17

the vertex votes to stop.

3.4.3.5 Performance Analysis

Elaine is designed to scale to arbitrarily large graphs performing arbitrary computations.

Because of this, it is somewhat difficult to measure Elaine’s performance. However, since

Elaine essentially provides the programmer with a message passing framework, it makes

sense to examine how the number of messages sent affects running time.

The binary tree SSSP example (Listing 3.8) works as a good test case. The computational

requirements are minimal, and as the number of messages in each superstep doubles, it

provides an opportunity to observe message cascades.

Figure 3.9 plots the number of workers versus the cumulative superstep runtime for a SSSP

on a binary tree of 1 million vertices. I.e., the running time of the vertex program, not

counting graph initialization, worker provisioning, etc. Performance increases proportional

to the number of workers, up until around 9 or 10 where it flattens. In other words, Elaine

scales well.

There are a few caveats to note, however. First is that although we exhibit the same scal-

ing properties as the original Pregel implementation (see Figures 7 and 8 in [MAB+10]),

we believe the overall performance of our system is not as good. Pregel is written in C++

while Elaine is written in Ruby. Ruby is a much higher level language than C++, and
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Figure 3.9: Total running time for the SSSP problem on a binary tree of 1 million vertices
executed on varying amount of workers.

worse performance is expected. Additionally, we ran our tests using the JRuby virtual

machine (VM) to take advantage of our multi-core cluster of machines. JRuby is, generally

speaking, not as fast as the reference Ruby VM written in C, however, it takes advan-

tage of hardware threads, which the standard VM does not. Because Elaine uses threads,

JRuby is able to take full advantage of our multi-core machine cluster.

Figure 3.10 plots the individual running times of each superstep million vertex graph ex-

ecuted on varying number of workers. This plot makes the cascading aspect of the binary

SSSP problem clear. Recall that the (maximum) number of messages sent at superstep

s is 2s. In other words, the number of messages sent doubles for each superstep. For the

first 10 supersteps, the performance is approximately the same, regardless of how many

workers are used. This is because there are very few messages to be sent. In total, there

are
10∑
s=1

2s = 2046 messages sent through the first 10 steps. At step 11, there are 211 =

2048 messages sent. It is not until this point that message passing begins to exceed the
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Figure 3.10: Running time per superstep for the SSSP problem on a binary tree of 1
million vertices executed on varying amount of workers.

overhead of initializing the superstep. As in Figure 3.9, we see that once we hit this point,

individual superstep performance is proportional to the number of workers used. The drop

off from step 19 to step 20 is due to a binary tree of 1 million vertices not being full (i.e.,

the last level does not have as many vertices as it could).

Next, to measure the scalability in terms of graph size, we run the SSSP on binary trees

ranging in size from 1 to 10 million vertices on 10 workers. Figure 3.11 plots the results.

The running time increases linearly, thus showing that Elaine scales not only in terms of

workers, but also the size of the graph.
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Figure 3.11: Total running time for SSSP on binary trees of varying size executed on 10
workers.

3.5 Summary

In this chapter we presented an architecture for the collection of longitudinal social data.

We described the seven components of the architecture and the reasoning behind them.

We then presented an implementation of this architecture. We demonstrated custom crawlers

and a storage solution using MongoDB. We also discussed dynamic analysis that feeds

into the scheduler, as well as a system for large scale graph analysis called Elaine. Finally,

we presented measurements showing that Elaine scales both in the number of distributed

workers as well as the size of the input graph.
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Chapter 4: Datasets

1There are three major datasets used in this dissertation. The first is a planetary scale

Online Social Network of gamers. The second is about 10 months worth of detailed in-

game interactions from a community owned and operated game server located in Cali-

fornia. The third dataset is crowdsourced decisions regarding toxic behavior in an online

video game.

4.1 The Steam Community Online Social Network

Steam controls between 50% and 70% of the PC game digital download market [Sen11],

and claimed over 40 million user accounts as of September 2012 [Val12a]. Steam is run

by Valve, who also develops some of the most successful multiplayer first-person shooter

(FPS) games.

For gamers, Steam provides a system to purchase, download, and play games. For game

developers, Steam provides a content distribution network, storefront with a digital rights

1Much of the work in this chapter was first published in Proceedings of the 21st International
Conference on World Wide Web, 2012 [BSK+12], ACM Transactions on Internet Technology,
2014 [BKS+14] and Proceedings of the 23rd International Conference on World Wide Web, 2014 [BK14].
Permission is included in Appendix B.
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management solution, and a tightly integrated API for cloud storage, domain specific fea-

tures like achievements, and a social service called Steam Community.

Games from a number of developers and publishers are available for purchase on Steam.

A noteworthy segment is formed by the multiplayer FPS genre. In contrast to massively

multiplayer online games, multiplayer FPSs usually take place in a relatively “small” en-

vironment, player actions generally do not affect the environment between sessions, and

instead of one logical game world under the control of a single entity, there are often mul-

tiple individually-owned and operated servers. Because there is no central entity control-

ling game play and a large number of servers to choose from, the communities that form

around individual servers are essential to the prolonged health of a particular game.

An initial dataset was collected by crawling the Steam Community website for user profiles

and the social network represented by declared relationships between them. After a first

round of analysis, we used the system described in Chapter 3 to make daily observations

of the ban status of a large set of users (over 9 million), as well as daily observations of the

neighborhoods of newly banned cheaters and a set of control users.

Steam Community is a social network comprised of Steam users, i.e., people who buy and

play games on Steam. To have a Steam Community profile, one first needs to have a Steam

account and take the additional step of configuring a profile. Users with a Steam account

and no profile (and thus, not part of the Steam Community) can participate in all gaming

activities, and can be befriended by other Steam users, but no direct information is avail-

able about them. Steam profiles are accessible in game via the Steam desktop and mobile

clients, and are also available in a traditional web based format at http://steamcommunity.com.

A Steam profile includes a nickname, a privacy setting (public, private, friends only or

in-game only), set of friends (identified by SteamIDs), group memberships, list of games
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Table 4.1: Size of the Static Steam Community dataset.
Account All Edges Profiles Public Private Friends only With location
All users 12,479,765 88,557,725 10,191,296 9,025,656 313,710 851,930 4,681,829
Cheaters - - 720,469 628,025 46,270 46,174 312,354

owned, gameplay statistics for the past two weeks, a user-selected geographical location,

and a flag (VAC-ban, explained in more detail in the next section) that indicates whether

the corresponding user has been algorithmically found cheating. We augmented the infor-

mation for the VAC-banned players with a timestamp that signifies when the VAC ban

was first observed (as explained next).

The initial implementation of the data collection component of the architecture described

in Chapter 3 was used to crawl Steam Community between March 16th and April 3rd,

2011. Although there was a fledgling API exposed, it did not allow for querying of friends

lists at the time. Thus, we used unmetered, consumable XML on the steamcommunity.com

web site. The crawler collected user profiles starting from a randomly generated set of

SteamIDs and following the friendship relationships declared in user profiles. To seed our

crawler, we generated 100,000 random SteamIDs within the key space (64-bit identifiers

with a common prefix that reduced the ID space to less than 109 possible IDs), of which

6,445 matched configured profiles.

From our initial 6, 445 seeds of user IDs, we discovered just about 12.5 million user ac-

counts, of which 10.2 million had a profile configured (about 9 million public, 313 thou-

sand private, and 852 thousand visible to friends only). There are 88.5 million undirected

friendship edges and 1.5 million user-created groups. Of the users with public profiles, 4.7

million had a location set (one of 33,333 pre-defined locations), 3.2 million users with pub-

lic profiles played at least one game in the two weeks prior to our crawl, and 720 thousand

users are flagged as cheaters. Table 4.1 gives the exact numbers.
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While Steam accounts are free to create, they are severely restricted until associated with

a verifiable identity, for example from game purchases (via a credit card) or from a gift

from a verified account. Once associated with an account, game licenses (whether bought or

received as a gift) are non-transferable. This serves as a disincentive for users to abandon

flagged accounts for new ones: abandoning an account means abandoning all game licenses

associated with that account. Moreover, Sybil attacks become infeasible, as they would re-

quire monetary investments and/or a real-world identity for even the most trivial actions,

such as initiating chats with other players.

4.1.1 Valve Anti Cheat System

Valve also provides the Valve Anti-Cheat (VAC) service that detects players who cheat

and marks their profiles with a publicly visible, permanent VAC ban. Server operators

can “VAC-secure” their servers: any player with a VAC ban for a given game can not

play that game on VAC-secured servers (but they are allowed to play other games). In

an effort to hinder the creators and distributors of cheats and hacks, most of the details of

how VAC works are not made public.

Valve has publicly described VAC as sending periodic challenges to gamers’ machine that,

for example, execute otherwise unused game code and return a response [Kus10]. If the

player’s machine does not respond, then an alert of a possible cheat is registered. The

detection itself operates similarly to anti-virus tools which examine changes in memory

and signatures of known cheats. It is important to note that VAC is designed in a manner

to leak as little information as possible to potential cheat creators: VAC is continuously

updated and distributed piecemeal to obscure complete knowledge of the system. Addi-
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tionally, VAC bans are not issued immediately upon cheat detection, but rather in delayed

waves, as an additional attempt to slow an arms race between cheat creation and detec-

tion. Valve claims what amounts to a 0% false positive rate, and there are only 10 known

instances where bans were incorrectly handed out (and eventually lifted). It is difficult to

ascertain VAC’s false negative rate, but we believe that nearly all cheats are eventually

detected.

We collected historical data on when a cheating flag was first observed from a 3rd party

service, vacbanned.com, that allows users to enter a SteamID into a search box to check

whether or not that SteamID has been banned. If the account is banned, the date the ban

was first observed is provided. We also re-crawled (between October 18th and October

29th 2011) all Steam profiles discovered during the first crawl without a VAC ban, to iden-

tify which non-cheaters had been flagged as cheaters since April 2011. Of these, 43, 465

now have a VAC ban on record.

Vacbanned.com had observed ban dates for 423,592 of the cheaters we discovered dur-

ing our initial crawl. Figure 4.1 plots a cumulative distribution functions (CDF) of these

ban observations over time. The CDF represents the probability of a random variable x

having a value less than or equal to X. For example, about 35% of retrieved ban dates

were observed by June, 2010. The earliest dates indicate users that were banned prior

to December 29th, 2009. We combined the “banned-since” dates from our original crawl,

vacbanned.com, and our re-crawl. In the case of a user profile having more than one ban

date (due to the 3 sources), the earliest date was chosen. It is important to note that all

ban dates were treated as “on or before” as opposed to a precise timestamp. This is be-

cause the ban dates are when the ban was first observed by a 3rd party (vacbanned.com or

our crawler), not necessarily when it was applied by Valve.

53



 0
 0.2
 0.4
 0.6
 0.8

 1

2009-11-01

2010-01-01

2010-03-01

2010-05-01

2010-07-01

2010-09-01

2010-11-01

2011-01-01

2011-03-01

2011-05-01

2011-07-01

2011-09-01

2011-11-01

C
D

F

Figure 4.1: Historical VAC ban dates. The dates are collected from vacbanned.com. The
date of discovery is on the x-axis, and the cumulative probability distribution of the
number of discovered accounts is on the y-axis. The jump around end of May 2011 is
probably due to an effort from the website to populate their database.

While the data collected from vacbanned.com allows us to perform a significant amount of

analysis, the observations on VAC ban dates are course grain with accuracy and precision

concerns due to the use of a 3rd party data base with unknown collection methodology.

Additionally, it does not adequately capture changes in the structure of the Steam Com-

munity network over time. In particular, we are interested in two data fields: first, the

time when a VAC ban was applied. And second, the dynamics of the relationships of a

newly branded cheater soon after the VAC ban was applied.

Fortunately, two new Web API methods were made available after our initial crawl. One

method provides access to timestamped friends lists and another provides the ban states

(without dates) of up to 100 users at a time. With these API methods, we made daily ob-

servations of the ban status of users, as well as neighborhood observations of newly banned

users and a control set of non-cheaters using the implementation described in chapter 3.

Ban status observations consist of the id of the observed user, the time stamp the ob-

servation was made, and a delta of the ban states. There are three different ban types:

1) VACBanned, 2) CommunityBanned, and 3) EconomyBan.
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VACBanned is the boolean cheating flag described earlier. CommunityBanned is a boolean

that we have been unable to find documentation about. However, we discovered that,

unlike a VAC ban, it is not permanent: we observed users having a community ban ap-

plied, and later removed. We suspect it bars access to Steam Community features such as

commenting on other users’ profiles and sending new friend requests. The EconomyBan is

related to a cross-game 2 virtual goods trading platform added to Steam in August 2011

and can take one of three string values: 1) none, 2) probation, and 3) banned. Along with

this platform came cheating related to virtual assets [DC09] and many of the problems

discussed in [KAW+10], as well as more traditional unscrupulous acts such as bait and

switch scams [KCWC07]. Trade bans are displayed on a user’s profile in a similar fashion

to VAC bans, but, the three value system allows probated users to be reinstated. To the

best of our knowledge, trade bans are applied manually, although individual games might

very well employ algorithmic techniques to identify, e.g., gold farmers [AKS+11] and bring

offenders to the attention of Valve. Although we captured information on all ban types,

the remainder of this paper deals only with VAC bans. no documentation describing their

use).

Friends list observations consist of the time when the relationship was declared in addition

to the ID of the friend. We note that deleted relationships are not recorded by Steam

Community, which is why we record the neighborhood of selected gamers on a daily basis.

On June 20, 2012 we began daily observations of an initial set of 9,025,656 public pro-

files from the static data set described above. In total, we collected over 525 million ban

status observations for over 9 million gamers, with Table 4.2 giving the exact numbers.

Figure 4.2 plots the cumulative number of bans per day, as well as the number of new

2Users can trade items from game A for items from game B, and even trade unactivated game licenses
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Figure 4.2: The number of cheaters in our system, per day from June 21 to July 17, 2012.

bans in the system from June 21, 2012 to July 17, 2012. We found an average of 83 users

were flagged as cheaters per day, but, this number varied quite a bit: from 0 to over 400.

For monitoring the new cheaters’ social neighborhood, any gamer that transitioned from

a VAC Banned = false toVAC Banned = true state is treated specially. For these users,

we begin a 10-day period of neighborhood observation where the friends list of the user

is queried, and a delta stored once per day. Any friends of the user who do not already

exist in the system are added, and will thus have their ban statuses recorded moving for-

ward. In addition to users that transition from non-cheater to cheater, we also monitor

the neighborhoods of a set of 10,000 randomly selected users (from the initial dataset) as

a control group, 8,712 of which had public profiles. We call the combination of the control

users and the newly discovered cheaters monitored users. We made 349,123 neighborhood

observations of monitored users. Table 4.3 provides details on this dataset.
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Table 4.2: Details of ban observations dataset.
Observations Users VAC bans Comm. bans Eco. probations Eco. bans

525,427,853 9,124,454 701,448 11,701 423 313

Table 4.3: Details of neighborhood observations dataset.
Observations Public control group Public cheaters Edges Total Nodes

349,123 8,712 2,337 294,058 284,765

4.2 Team Fortress 2 In-game Interactions

Team Fortress 2 (TF2) is a team- and class-based, objective-oriented first person shooter

game released in 2007. Game sessions in TF2 are hosted by individual servers, most often

owned and operated by independent gaming communities. Gameplay pits two teams, Red

and Blue, against each other on a variety of maps. We delineate an individual game as

taking place on a single map. Some maps are symetrical, with both Red and Blue at-

tempting to complete the same objective, and others are asymmetrical, with Blue attack-

ing and Red defending the objective.

A player finds a server to play on via three primary mechanisms: 1) invitations to join

a server from other players, 2) joining a server of a currently playing friend, and 3) the

server browser. The server browser provides players with the ability to discover new servers

based on a variety of criteria, including latency (“ping”), the map currently being played

on the server, the number of players currently on the server, and tags supplied by the

server operators. Valve has implemented a few features to improve the server browsing ex-

perience, including the ability to bookmark servers, a quick start feature, and a mechanism

to blacklist servers that attempt to lie about their status (e.g., to make the server appear

populated by real players when it is in fact populated by bots).
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Once a player has located a satisfactory server, she can attempt to connect to it. If the

server has an available slot, the connection will proceed. If there is no available slot (i.e.,

the server has reached its simultaneous player capacity) the server browser provides func-

tionality to automatically connect when a slot becomes available. Players are free to join

and leave a server at any time, and it is quite common for a game to start with a some-

what different set of players than it ends with.

Once players join a game they must choose a team. After choosing a team, players choose

to play as one of 9 classes. Players are allowed to switch classes at any point of the game,

and while certain team compositions might be more or less viable, players can choose a

class independent of the choices made by the rest of their team. A key feature of TF2 is

clearly defined difference in classes, even down to the silhouette of the models [MFE07],

which promotes cooperative gameplay between players. A regular stream of free content

updates (335 as of January 2013 [Val12c]) has kept TF2 popular since its release.

4.2.1 The Slaughterhouse Server

We obtained just over 10 months of gameplay traces (from April 1 to February 3, 2012)

from “The Slaughterhouse” (SH), one of several TF2 servers operated by the “Brother-

hood of Slaughter” (BoS) gaming community. The server, located in Los Angeles, Cal-

ifornia, hosts up to 30 players simultaneously, costs approximately $250.00 a month to

operate, and is completely funded by donations from the BoS community.

SH has been customized with a variety settings. Of note is the alltalk setting, which broad-

casts all voice communications to both teams, chosen by the BoS server administrators to

foster a fun, social atmosphere, as opposed to a purely competitive environment. As voice
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communication in games like TF2 both influences, and is influenced by, gameplay [TMW+12],

a server like SH can produce an intense social gaming experience when filled with a talkative

crowd.

The logs contain information such as gameplay events, in-game team and server-wide text

chat, and map nomination and votes. They are in a special format that has been further

customized by server plug-ins selected by the SH administrators. Each line in the log file is

in a different format, and game-play events in particular have variable components. E.g.,

multiple people can capture a control point.

We extracted 12,621,543 gameplay events from the log files. Such events include, for ex-

ample, one or more players capturing territory together, or two players on the same team

working together to “kill” a player on the opposing team.

From the extracted events, we created an undirected interaction graph where an edge ex-

ists between two players if there was at least one event that involved both players. Each

edge is annotated with a time series corresponding to the times of the extracted event

between the players. In total there were 18,743,644 pairwise interactions, i.e., the sum of

the length of all edges’ annotated time series.

Because all TF2 players can be linked to a Steam account via the SteamID that appears

in the log files, we also constructed a declared social network of players. Thus, the in-game

interactions data set is composed of four networks: 1) Steam Friends, 2) Server Friends, 3)

Interaction, and 4) Interacting Friends.

The Steam Friends network is the declared social networks of all players in our log files.

It is important to note that this network includes gamers that did not actually appear

in our log files. Even though they might be friends on Steam Community, they might
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Table 4.4: Details of the SH interaction dataset.

Graph # Players # Edges
Steam Friends 33,546 (620,789 non-players) 1,038,133
Server Friends 22,099 50,522

Interaction 33,546 1,768,528
Interacting Friends 7,501 13,270

not have played together on this particular server; either during the period our log files

capture or ever. The Server Friends network is simply the subgraph of the Steam Friends

network that includes only players appearing in the log files, regardless of whether or not

they had an interaction together. The Interaction network is a graph of players where an

edge exists if the two players had an in-game interaction. Finally, the Interacting Friends

network is the intersection of the Server Friends and Interaction networks. I.e., an edge

exists between two vertices if they are declared friends and had an in-game interaction.

Table 4.4 presents the size of our dataset. There are 33,546 players on the server who are

part of the Steam Community, involved in over 1 million relationships. Of them, 22,099

have 50,522 friendships where both friends played on the server. Of these, 7,701 friends

interacted on the server during our observations, forming 13,270 interactive pairs.

4.3 The League of Legends Tribunal

The League of Legends (LoL) is a match-based team competition game developed by Riot

Games. It is currently one of the most played online games in the world, and has a com-

petitive eSports scene with weekly tournaments that are broadcast live around the world.

Teams are most often composed of five players who are randomly matched together, and

friends can also form pre-made teams.
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Figure 4.3: The League of Legends map, featuring 3 symmetric lanes, separated by a
jungle. The goal of the game is to destroy the enemy team’s Nexus by first destroying the
towers in the lanes.

LoL features a symmetric map with three paths, or “lanes”. The lanes are colloquially

known as “top”, “mid”, and “bot” and have a “jungle” area between them. The goal of

LoL is to penetrate the enemy team’s central base, or “Nexus”, and destroy it. Figure 4.3

illustrates the layout of the LoL map. To destroy the Nexus, players must first destroy

towers in at least one lane. Typically, when a match starts players choose to go to one

particular lane, often taking on different roles depending on the character they chose to

play.

Players’ in-game characters are called champions. Riot Games has released 115 champions

as of September 2013. A weekly rotation of 10 champions is offered to all players, but they
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can also be permanently purchased via points earned through play or real world money.

Each champion has different strengths and thus naturally lend themselves to the different

styles of play expected from a particular lane.

After a match, players can report toxic players in one of 10 predefined categories: assist-

ing enemy team, intentional feeding, offensive language, verbal abuse, negative attitude,

inappropriate name, spamming, unskilled player, refusing to communicate with team, and

leaving the game/AFK [away from keyboard].

Intentional feeding means a player allowed themselves to be killed by the opposing team

on purpose, and leaving the game is doing nothing but staying at the base for the entire

game. To understand the motivation behind intentional feeding and assisting the enemy

team, we present a common scenario when such toxic play happens. LoL matches do not

have a time limit, instead continuing until one team’s Nexus is destroyed. If a team is at

a disadvantage, real or perceived, at some point during the match, they may give up by

voting to surrender. However, surrendering is allowed only after 20 minutes have passed,

and the vote requires at least four affirmatives to pass. If a surrender vote fails, players

who voted for the surrender may lose interest and regard continuing the game as wasting

time. Some of these players exhibit extreme behavior in response to the failed vote.

4.3.1 The Tribunal

To take the subjective perception of toxic behavior into account, Riot Games developed

a crowdsourcing system to judge whether reported players should be punished, called the

Tribunal. The verdict is determined by majority votes.
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When a player is reported hundreds of times over dozens of matches, the reported player

is brought to the Tribunal3. Riot Games randomly selects at most five reported matches 4

and aggregates them as a single case. In other words, one case includes up to 5 matches.

Cases include detailed information for each match, such as the result of the match, reason

and comments from reports, the entire chat log during the match, and the scoreboard,

that reviewers use to decide whether that toxic player should be pardoned or punished,

as seen in Figure 4.4. To protect privacy, players’ handles are removed in the Tribunal,

and no information about social connections are available. We note that our data set does

not include reports of unskilled player, refusing to communicate with team, and leaving

the game in our datasets, even though players are able to choose from the full set of 10

predefined categories5.

The Tribunal also institutes mechanisms to maintain the quality of reviewers’ tasks. One

is a limit on the number of cases that reviewers can see a day. Next is a minimum dura-

tion for decision making, limiting mechanical clicks without careful consideration. Another

is a skip feature for difficult cases.

After some time has passed, reviewers can see the crowdsourced decisions for the cases

they reviewed. Both the final decision and the level of agreement are accessible, as seen in

Figure 4.5. To encourage user participation, Riot Games adopts reviewers’ accuracy score

and ranking as gamification element.

Data (summarized in Table 4.5) was provided by [BK14] which collected over 1.46 million

cases in the Tribunal, made up of 10 million user reports using distributed crawlers similar

to those described in Chapter 3. Riot divides the world into several regions, each served

3http://tinyurl.com/stfunub4
4http://tinyurl.com/stfunub5
5To the best of our knowledge, this is intentional on the part of Riot.
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Figure 4.4: A tribunal case as presented to a reviewer.

Table 4.5: LoL Tribunal data set summary.

EUW NA KR Total
Cases 649,419 590,311 220,614 1,460,344

Matches 2,841,906 2,107,522 1,066,618 6,016,046
Reports 5,559,968 3,441,557 1,898,433 10,899,958
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Figure 4.5: The decision of reviewed cases, available after some time.

by dedicated servers due to quality of service concerns. The data was collected from North

America (NA), Western Europe (EUW), and South Korea (KR) servers. These regions

were selected by considering the representativeness of cultural uniqueness and familiarity

of the authors [BK14]. We reasonably assume most of the players connect to the servers in

the region closest to them for the best user experience. This assumption is supported by

observations from the Steam Community dataset (Section 5.4.1).

4.4 Summary

In this chapter we presented our data sets. We described the Steam Community and high

level statistics of the over 10 million user profiles we collected. We additionally introduced

a dynamic network with over 500 million daily observations of ban statuses and neighbor-
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hood changes for a subset of Steam Community users. We then presented the data sets

derived from 10 months of detailed gameplay logs on a community owned and operated

server. Finally, we explained the LoL Tribunal and our dataset of 1.46 million cases on

toxic behavior. In the next chapters, we analyze these data sets and discuss the implica-

tions of our findings.
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Chapter 5: Social Network Analysis of Cheaters in Steam Community

1One line of thought in moral philosophy is that (un)ethical behavior of an individual is

heavily influenced by his social ties [Par84]. Under this theory, cheaters should appear

tightly connected to other cheaters in the social network. On the other hand, unlike in

crime gangs [AKS+11], cheaters do not need to cooperate with each other to become more

effective. Moreover, playing against other cheaters may not be particularly attractive as

any advantage gained from cheating would be canceled out. These observations suggest

that cheaters may be dispersed in the network, contradicting the first intuition.

To understand the position of cheaters in the social network, we raise four research ques-

tions, initially explored in [BSK+12, BSL+11, BKS+14]:

• Research Question 1: Are cheaters “social gamers”?

At its surface, cheating appears to be anti-social behavior: cheaters are violating social

norms for their own benefit to the detriment of others. This might lead us to believe that

cheaters themselves are anti-social. However, this dissertation is concerned with games

which rely on social interactions between players. Thus, we use socio-gaming metrics to

1Much of the work in this chapter was first published in Proceedings of the 21st International
Conference on World Wide Web, 2012 [BSK+12] and ACM Transactions on Internet Technology,
2014 [BKS+14]. Permission is included in Appendix B.
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explore the relationship between game ownership, play time, and cheater status and find

that cheaters and non-cheaters are quite similar.

• Research Question 2: What is the relationship between cheating status and friend-

ships?

If cheaters are social gamers, then we might be expect them to have different socialization

patterns. For example, just because a cheater is interested in the social aspect of gaming,

does not necessarily mean that they are particularly engaged in the Steam Community

OSN. We find that although cheaters are well embedded in the social network, they tend

to associate with each other more than non-cheaters.

• Research Question 3: Are cheaters visibly penalized by other members of the social

network?

While substantial evidence indicates that cheaters are generally frowned upon by the gam-

ing community, the permanent and publicly visible cheater status in Steam Community

allows us to quantify the reaction to cheaters. While VAC bans result in restricted play, do

they have any observable effect on social standing? Observations on reactions to cheater

status help us better understand how cheating impacts a community, as well as providing

insight on possible mitigation strategies. By studying changes in neighborhood sizes, we

find that cheaters face some social penalties for their sins.

• Research Question 4: What is the relationship between cheating status and gamer

proximity?
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Measuring how “close” users are gives us better understanding of network dynamics. For

example, do cheaters tend to form ties with other users who are within short geographic

distance of each other? Answering this research question can provide insight into cultural

perceptions of cheating, as well as how cheaters form relationships with each other and

fair users. We use three metrics for closeness and find that cheaters are quite close to each

other with respect to geograpy and position in the social network.

5.1 Socio-gaming

While the majority of this chapter is concerned with how cheaters are positioned within

Steam Community, understanding their behavior as gamers helps to better understand

their interactions in the community. To this end, we analyze the number of games owned

and hours played per game genre using the tags provided by the Steam Store to describe

each game, and place games in the following categories: single-player, multi-player, single-

player only, multi-player only, and co-op.

We use the categories “single-player” (the game can be played by a single human player)

and “multi-player” (the game supports multiple human players) for two reasons: first,

VAC bans only have an effect on multi-player games, and second, all games are tagged in

at least one of these categories. Some games do not contain a single-player component at

all. We classified these types of games as “multi-player only” if they were tagged as multi-

player but not single-player, and those with no multi-player component are likewise classi-

fied as “single-player only”. Finally, “co-op”, or cooperative games, are loosely defined as

multi-player games with a mechanic focusing on co-operative (as opposed to competitive)

interaction between human players. For example, players might work together to defeat
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Figure 5.1: The number of games owned and lifetime hours per genre for cheaters and
non-cheaters from the March 2011 crawl, and newly discovered cheaters from the October
2011 crawl.

a horde of computer controlled goblins [Tre11], or to excavate a landscape and build a

city [Re-11].

Figure 5.1 plots the CDF of the number of games owned and the lifetime hours on record

per game category for cheaters and non-cheaters in our initial crawl (static snapshot).

Around 60% of cheaters and non-cheaters have less than 100 lifetime hours played in multi-

player only games. For brevity, we only present the plots representing the ownership of

single-player only, multi-player only, and co-op games.

These results lead to the following observations. First, they provide confirmation of gam-

ing as a social-activity: gamers on Steam Community are far more likely to own more

than one multi-player games than single-player games, even though there are over twice as

many single-player games available on Steam. This trend is even clearer when considering

single-player only games vs. multi-player only games.

Next, we observe that non-cheaters are more likely to own more games than cheaters in

general. However, the difference in number of games owned between cheaters and non-
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cheaters is significantly smaller for multi-player only games than for single-player only

games. This provides an initial indication that cheaters are social gamers: even though

they might not own as many games as a whole, they are as interested in multi-player games

as non-cheaters are.

When considering the lifetime hours played per category, we see a similar story. Cheaters

tend to play fewer hours of single-play only and co-op games than fair players. This is

not entirely expected, as cheating can be motivated not only by competition with other

players, but also for advancing in the game to access higher levels of fun [Dum11]. Because

the co-op tag was later introduced, it is possible that not all co-op games are properly

tagged: however, of the games tagged as co-op, cheaters tend to own fewer games and play

fewer hours than non-cheaters.

The message of this analysis is that cheaters are most definitely social gamers: they favor

multi-player games over single-player games for both purchase and play time. Specifi-

cally, cheaters are much less interested in games without a multi-player component. This

strengthens the conclusions we can draw regarding further analysis on cheaters’ social

positioning.

5.2 Cheaters and their Friends

A common first step in network analysis is to examine degree distributions. By this, we

mean looking at the probability of a user having a certain number of friends. One method

of analysis involves comparisons of cumulative distribution functions. A common way

to visualize this type of analysis is to plot a variant of the complementary cumulative
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distribution function (CCDF) on a log-log axis. The CCDF represents the probability of

a random variable x having a value greater than or equal to X2.

Figures 5.2 and 5.3 presents the degree distribution for the Steam Community graph as a

whole and for just cheater profiles, as well as for private, friends-only profiles, and for users

users without a profile, respectively. For example, about 10% of Steam Community users

have at least 20 friends. For users without a profile or with private profiles, edges in the

graph are inferred based on the information from public profiles that declare the user as a

friend. From the degree distributions we make two observations.

First, we discovered a hard limit of 250 friends (this limit has since been raised if a user

links their Facebook account to their Steam Community account or fulfills other criteria).

However, there are some users who have managed to circumvent this hard limit. One user

in particular has nearly 400 friends, and through manual examination we observed this

user’s degree increasing by one or two friends every few days. Coincidentally, this profile

also has a VAC ban on record.

Second, all categories plotted in Figures 5.2 and 5.3, with the exception of users with Steam

accounts but no profiles, overlap. This means that the distribution of the number of friends

cheaters have is about the same as the non-cheaters’ distribution. It also highlights that

attempting to hide connection information through private or friends-only profile privacy

settings is mostly unsuccessful: the player’s position in the social network is revealed by

the privacy settings of his friends.

While cheaters are mostly indistinguishable from fair players using the node degree dis-

tribution, a more important question is whether their behavior shows network effects. In

2Some definitions of the CCDF are strictly greater than, however, degree distributions in social
networks are often plotted using the greater than or equal to definition.
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non-cheaters’ friends that are cheaters.

other words, are cheaters more likely to be friends with other cheaters than with non-

cheaters? Figure 5.4 plots the CDF of the fraction of a player’s friends who are cheaters.

Figure 5.5 plots the CCDF of the number of cheater friends for both cheaters and non-

cheaters. This figure is comparable to Figure 5.2, but displays only the size of the cheating

neighborhood.

The picture that emerges from these two figures is a striking amount of homophily be-

tween cheaters: cheaters are more likely to be friends with other cheaters. While nearly

70% of non-cheaters have no friends that are cheaters, 70% of cheaters have at least 10%

cheaters as their friends. About 15% of cheaters have over half of their friends other cheaters.

While the differentiation is visually apparent, we ensured it was statistically significant via

two methods: 1) the two sample Kolmogorov-Smirnov (KS) test, and 2) a permutation

test to verify that the two samples are drawn from different probability distributions. An

explanation of the two methods appears in Appendix A. We find that the distributions

are in fact different with pks < 0.01, D = 0.4367, ppermute < 0.01, T = 969.0140, and

pks < 0.01, D = 0.4752, ppermute < 0.01, T = 766.8699 for Figures 5.4 and 5.5, respectively.
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Figure 5.5: CCDF of the number of cheater friends, the “cheater degree”, for both
cheaters and non-cheaters.

Declared relationships in online social networks are inconsistently backed by actual inter-

actions [WBS+09]. While gaming is a primarily interactive community, with the declared

ties not always necessary for the primary purpose of the community, we verify that the

number of declared friends translates into gaming interactions. To this end, Figures 5.6

and 5.7 plot the average number of games owned and hours played, respectively, in the

two weeks prior to our March 2011 crawl as a function of social degree. There is a strong

correlation between the degree of a user and the average number of hours played (0.70 for

the whole Steam Community, 0.64 for cheaters). The figures show a positive correlation

between the social degree of a gamer and the average number of games owned (0.38 Pear-

son correlation score) and a clear positive correlation for cheaters (0.63). In Chapter 6 we

perform a more detailed analysis related to declared relationships and in-game interactions

using the SH log files.

In other words, the investment in gaming (both monetary and time) increases with the

number of friends for both cheaters and non-cheaters. Even though cheaters are involved

in decidedly anti-social behavior, they still have a positive response to the social phenom-
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Figure 5.6: The number of games owned as a function of the number of friends.
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Figure 5.7: The number of hours played as a function of the number of friends.
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Figure 5.8: Possible triad configurations in an undirected social network.

Table 5.1: Undirected triad census of Steam Community.

Type 0 Type 1 Type 2 Type 3
3.23× 1020 1.10× 1016 4701213029 153466265

ena of gaming. This is an important result, as it introduces the possibility of VAC bans

having more than just a utilitarian impact on cheaters: not only is their technical abil-

ity to game affected, but the ban might also impact their standing with their gameplay

partners. In fact, in the next section we show that there are indeed negative social effects

associated with being branded a cheater.

Next, we took a triad census of Steam Community. A triad census is a way of measuring

the connectivity and clustering between people in a social network. Although dyad (2-

person) level relationships are important, triadic (3-person) relationships are known to

occur at significantly different rates than in random networks. Each triad type is differen-

tiated based on the number of links present between the three nodes. Figure 5.8 illustrates

the four possible triad configurations in an undirected social network like Steam Commu-

nity, and Table 5.1 shows the results. Because there are a total of
(
n
3

)
possible triads, we

show approximate values for type 0 and 1 triads in Table 5.1.

We can get a rough measure of how often social clustering occurs by looking at the pro-

portion of type 3 triads that could exist. I.e., we look at the proportion of closed triangles

out of triangles with at least two edges. In a random network, we would expect this num-

ber to be very close to the density of the network. In our case, this is around 0.3, which is
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much greater than the network density. We can thus say that users on Steam Community

are indeed exhibiting social clustering.

5.3 The Social Response to the Cheating Flag

While aggregate-level information shows little differentiation between cheaters and non-

cheaters, the effect of the VAC-ban mark can better be understood by analyzing the tran-

sition from non-cheater to cheater. We answer the following two questions: 1) Are cheaters

shamed by the mark on their permanent record? and 2) Does the community shun cheaters

once their transgressions are revealed?

Of the new cheaters discovered from our October re-crawl, 87% had no change in pri-

vacy state, and nearly 10% changed their privacy setting from public to a more restrictive

setting. In comparison, in our control group of re-crawled non-cheaters, privacy settings

remained unchanged for over 97% of users, and less than 3% changed to a more restrictive

setting. Cheaters seem to value their privacy more once their sins are laid bare, perhaps in

the naive hope that a more restrictive setting will provide a measure of protection from a

potentially disapproving community.

But is the community disapproving? Figure 5.9 plots the CDF of net change in the num-

ber of friends for cheaters and non-cheaters during the six months between our two static

snapshot crawls. Of the still public cheaters in our re-crawl, 44% had a net loss of friends,

13% had a net gain, and 43% had no change. Of the non-cheaters in our new crawl, 25%

had a net loss of friends, 36% had a net gain, and 39% had no change. While both sets of

users exhibited fluctuations in the size of their neighborhoods, more cheaters lost friends

and fewer cheaters gained friends when compared to non-cheaters. Treated as a whole,
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Figure 5.9: CDF of net change in cheaters’ and non-cheaters’ neighborhood size.

cheaters lost nearly twice as many friends as they gained, and non-cheaters gained twice

as many friends as they lost. Overall, non-cheaters continue to gain friends, and cheaters,

while not overtly ostracized, appear to have trouble making new friends and may lose a

few of their previous ones.

Using the high resolution observations, we plot the total fraction of friends lost and gained,

relative to the first day of observation, for the control users and new cheaters in Figures 5.10

and 5.11, respectively. Note the different scales.

We additionally ran an Analysis of Variance (ANOVA) to determine whether group and

day of observation have a significant effect on degree. The findings show a significant in-

teraction for between cheater/non-cheater status and day of observation (p < 0.01 for

both). They thus confirm the findings from the low resolution static snapshots, and fur-

ther demonstrate that newly banned cheaters, while not completely ostracized, tend to

lose many more friends than they gain. Further, the reaction occurs very quickly: the

greatest loss in friends happens within the first few days of the ban becoming publicly

visible (Figure 5.11).

There are several possible explanations for the changes in neighborhood sizes we observe.

First, evidence suggests that online gamers “clean up” their friend lists to make room for
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new friends, removing people they no longer play with [XCS+11]. However, because so

few users are near the 250 friend limit (as seen in Figure 5.2), we do not believe this is

the primary contributing factor to neighborhood size fluctuations. Additionally, while the

control group’s pattern is what we might expect from a clean up of friends lists, the speed

and degree of friendship loss for the new cheaters indicates a response to the application of

the cheating flag.

This provides quantitative insight that human beings react to unethical behavior in a

similar fashion as we do to epidemic disease (further explored in Chapter 7), and indicates

future directions towards modeling and suppressing the spread of unethical behavior. For

example, the publicly visible cheating flag can be seen as a form of information-driven

vaccination [RTL12]: knowledge of the unethical behavior is not hidden, and thus spreads

through the network causing non-cheaters to sever ties with new cheaters. Models with

both rewiring [GDB06] and information-driven vaccination [RTL12] have been shown to

have an effect on the spread of epidemic contagion in a network, and our analysis provides

new empirical insight into these phenomena. In Chapter 7, we perform a more thorough

analysis of cheating as a contagion process.

A second explanation is that the Steam client, by default, issues “pop up” notifications

that are visible in game whenever a friend starts playing any game. If a gamer has many

active friends, these pop ups might become distracting, possibly prompting a purge of

friends they no long actively play with regardless of how close they are to the friend limit.

A final explanation, especially with respect to the net loss of friends cheaters suffer, is that

cheaters are deliberately severing their ties once they are caught cheating. We observed

one account in particular that went from 200 to 0 friends after the VAC ban was issued.
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Figure 5.10: The total fraction of friends gained and lost for the control group of cheaters.

“Social suicide” might account for large decreases in degree, as it is far more probable that

the cheater himself deletes friends, rather than each of his friends deleting the cheater.

5.4 Social Closeness of Cheaters

We use two metrics, one geographical, and another social, to quantify the strength of the

relationship among Steam Community users in general and among cheaters in particular.

5.4.1 Geographical Proximity

Exploring the relationship between geographical and social-network proximity may give

quantitative support to the theory proposed in [Dum11] according to which opinions on

cheating are culturally derived. We thus first observe that user population on Steam Com-

munity does not follow real-world geographic population and, more importantly, that cheaters

are not uniformly distributed with respect to geo-political boundaries.
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Figure 5.11: The total fraction of friends gained and lost for the cheaters.

Figure 5.12 shows the fraction of cheaters in the populations for the twelve countries com-

prising the union of the top ten user populations and the top ten cheater populations.

The figure shows that cheaters are vastly overrepresented in some locations. For example,

there are about 55,000 cheaters in the Nordic European countries (12.4% of the playing

population of the region), while there are about 39,000 cheaters (3.9%) in the US. These

regional differences become more striking when taking real-world population into account.

In particular, we found enough Steam profiles to account for nearly 2.5% of Denmark’s 5.5

million residents, of which cheaters account for nearly 0.5% of Denmark’s population.

We now ask two additional questions: 1) Does the Steam Community exhibit properties

of a location-based social network? and 2) Do cheaters tend to form geographically closer

relationships with other cheaters than non-cheaters? To answer these, we measure node

locality and geographic clustering coefficient introduced in [SMML10].

We begin by defining Duv to be the geographic distance between two nodes, u and v. Sim-

ilarly, the link length, luv, is the geographic distance between nodes u and v that share an
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Figure 5.12: The fraction of cheaters for the union of the top 10 player and top 10 cheater
population countries. The countries are sorted on the x-axis in decreasing order of their
real-world populations.

edge in the network. Node locality NLu of node u with degree ku and neighborhood Γu is a

measure of how geographically close u is to its direct neighbors, as:

NLu =
1

ku

∑
v∈Γu

e−luv/β

Because various networks might have different geographic scale, β serves as a scaling func-

tion to allow comparisons of geo-social properties regardless of geographic scale. For this

reason, we set β equal to the mean distance between nodes, 〈Duv〉, for a given network.

Next, similar to the clustering coefficient which measures how densely connected a node’s

neighbors are by measuring how many triangles exist between its neighbors in proportion

to the number of possible links between them, the geographic clustering coefficient mea-

sures the likelihood of triangles being geographically close. This is achieved by weighing

the classical clustering coefficient of a node by the maximum length of links between nodes
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in the triangle under consideration. The weight of a triangle consisting of nodes u, v, and

w is defined as:

cuvw = e−
max(luv,luw,lvw)

β

again scaling networks at different geographic scale with β. If there is no link between v

and w, cuvw = 0 by definition.

From here, the geographic clustering coefficient of a node u, with degree ku, and neighbor-

hood Γu is:

GCu =
1

ku(ku − 1)

∑
v,w∈Γu

cuvw

The node locality of a given node quantifies how close (geographically) it is to all of its

neighbors in the social graph. Thus, a node locality of 1 indicates that a given node is at

least as close to all of its neighbors as any other node in the graph is to their neighbors,

and a value of 0 indicates that a given node is further away from all its neighbors than any

other node in the graph.

We constructed the location network by including an edge from the social network if and

only if both end points had a known location. Steam Community users can optionally

choose to specify their location from a total of 33,333 possible locations at the country,

state and city level. Because setting a locations is optional, this lead to a reduction in the

size of the network, which, along with the geo-social properties of the resulting location

network, can be seen in Table 5.2. We note that a subgraph composed solely of cheater-to-
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Figure 5.13: CDF of link length for Steam Community location network.

cheater relationships (C-C) has a lower mean inter-nodal distance and lower average link

length than the location network as a whole.

Table 5.2: Location network properties: the number of nodes, edges, mean distance
between users 〈Duv〉, average link length 〈luv〉, average node locality 〈NL〉.

Network # of nodes # of edges 〈Duv〉 (km) 〈luv〉 (km) 〈NL〉
Steam Community 4,342,670 26,475,896 5,896 1,853 0.79
Steam Community C-C 190,041 353,331 4,607 1,761 0.79
BrightKite 54,190 213,668 5,683 2,041 0.82
FourSquare 58,424 351,216 4,312 1,296 0.85

The CDF of link length for the location network is plotted in Figure 5.13. About 50% of

all link lengths in all networks are less than 500 km. In general, cheater-to-cheater rela-

tionships tend to be closer than the network as a whole.

Figure 5.14 plots the CDF of node locality for the location network (Steam Community),

the cheater-to-cheater subgraph (C-C), which includes only edges between cheaters, as

well as just the cheaters within the location network (Cheaters Only), which includes all

edges with at least one cheater. We first note that about 40% of users in the location net-

work have a node locality of above 0.9, a phenomena exhibited by other geographic online
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Figure 5.14: CDF of node locality.

social networks such as BrightKite and FourSquare [SMML10]. This is strong evidence

that Steam Community relationships exhibit geo-social properties, a characteristic to be

expected in the context of multiplayer gaming where high network latencies cannot be

well masked by current game infrastructure. Next, we observe that the cheater-to-cheater

network and the Steam Community at large have similar node locality distributions. Fi-

nally, when considering only the cheaters embedded within the location network, we see

drastically lower node locality, with only about 10% of cheaters having a node locality

greater than 0.9.

The CDF for geographic clustering coefficient is plotted in Figure 5.15. Cheaters embed-

ded within the social network tend to have lower geographic clustering coefficients. As

a whole, around 10% of the network has a geographic clustering coefficient larger than

0.5 with 4% having over 0.9. For embedded cheaters, we see only 5% with a geographic

clustering coefficient of over 0.5 and 2% greater than 0.9. While a larger proportion of

cheaters have a geographic clustering coefficient greater than 0.015 than non-cheaters,

this trend quickly reverses, with about 40% of the whole network having a geographic

clustering coefficient greater than 0.1 versus 30% of embedded cheaters. We also see that
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Figure 5.15: CDF of geographic clustering coefficient.

only about 30% of users in the cheater-to-cheater network, have a geographic clustering

coefficient over 0.01. This is contrast to over about 65% for the entire location network

and the cheaters embedded within it.

These results lead to three observations: 1) friendships tend to form between geograph-

ically close users, 2) cheaters tend to form relationships with other nearby cheaters and

these links are geographically closer than those formed by non-cheaters, and 3) as evi-

denced by their lower node locality when considering the entire location network and not

only the cheater-to-cheater subgraph, cheaters appear to befriend geographically remote

fair players. This might indicate that cheaters form relationships with other cheaters via

a different mechanism than they form relationships with non-cheaters. Cheater-to-cheater

relationships appear geographically constrained, while their relationships with non-cheaters

are over larger distances.

Finally, we note that there are some caveats with these results. First, locations in Steam

Community are set by the user, and to the best of our knowledge, not enforced in any way.

In other words, cheaters might be lying about their locations. Second, the locations are
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selected from a predefined list, and users can specify only a country, or down to the city

level. While these points should be taken into consideration, Steam Community clearly

has properties of a location based social network, which is intuitive considering constraints

on latency in multi-player games. In Chapter 6 we will provide evidence that Steam Com-

munity is an interaction backed social network. Since players choose servers based in large

part on latency, this strengthens the premise that declared friends are geographically close.

We thus believe that the effect of gamers potentially lying about their geographical loca-

tion is inconsequential.

5.4.2 Social Proximity

We use social proximity as the second metric to characterize the strength of the relation-

ships between Steam Community users and understand whether they materially differ for

the cheater population. The social proximity metric is based on a previous study [OSH+07]

that suggests that the overlap between the social neighborhood of two individuals is a

good indicator of the strength of their relationship. We study the overlap of friends of

users in the Steam Community networks to understand whether cheaters exhibit a stronger

relationship with other cheaters than fair players do with fair players. We assess the strength

of the relationship between two connected users by the overlap between their sets of friends,

computed as follows:

Overlapuv = muv/((ku − 1) + (kv − 1)−muv)

where muv is the number of common neighbors between users u and v, ku is the number of

neighbors of user u and kv is the number of neighbors of user v. This overlap is calculated
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Figure 5.16: CDF of social proximity for cheater and non-cheater pairs when we consider
all relationships, only cheater to cheater relationships (labeled C-C) and only non-cheater
to non-cheater relationships (labeled NC-NC).

for two groups of user pairs: the 1.5 million pairs of cheaters (i.e., all cheater pairs in the

full social network) and 1.5 million randomly selected pairs of non-cheaters (i.e., about 2%

of the existing non-cheater pairs). Additionally, we also calculate the same metric on the

cheater-only as well as on the non-cheater-only graphs.

Figure 5.16 shows a higher overlap for cheater pairs in the cheater-only graph and non-

cheater pairs in the non-cheater-only graph compared to the respective overlaps in the

overall social network. This suggests that social relationships are weaker between different

types of players (cheaters to non-cheaters) than within a uniform group.

5.5 Summary

In this chapter, we performed a social network analysis of cheaters in the Steam Commu-

nity Online Social Network. Via socio-gaming metrics, we discovered that cheaters are so-
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cial gamers, greatly preferring multiplayer games over single player games. We also found

that cheaters are well embedded on the social network, having about the same number of

friends as non-cheaters. However, when we looked at the composition of neighborhoods,

we discovered that cheaters tend to have more cheater friends, in terms of both absolute

and percentage of neighborhood, than non-cheaters. Interestingly, we also saw that there

is a reaction to the application of the cheating brand: newly branded cheaters tend to lose

friends in comparison to non-cheaters. Finally, using geo-social metrics and neighborhood

overlap, we observed that cheaters are socially close to each other.

90



Chapter 6: Analysis of Interactions in Team Fortress 2

Because SteamIDs of players are the same in the log files as in Steam Community, we are

able to explore how in-game interactions relate to a declared social network. Thus, in this

chapter we make use of the SH server logs (Chapter 4.2.1) to expand on an initial analysis

of interactions that back the declared social network of Steam Community [BI13a].

This chapter is primarily concerned with answering the following research question:

• Research Question 1: What is the relationship between in-game interactions and

declared relationships in the Steam Community?

Declared relationships in the Steam Community are a bit different than those in OSNs

like Facebook. In Steam Community, interactions happen out of band from the social

network. I.e., there is no requirement to be friends in order to play together. Thus, we can

observe the events that lead up to an official declaration of friendship. We first find that

interactions between friends dominate interactions between players where no friendship

exists. We then examine the weeks prior to and after a relationship is created and observe

an increasing number of interactions which peak right before the friendship forms and then

begin to decrease almost immediately.

We start by describing several networks that we induce from the server logs and Steam

Community data:
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• The server friends network is composed of edges between players who appear in the

server logs and are also declared friends on Steam Community.

• The interaction network is composed of edges between players with at least one in-

game interaction.

• The interacting friends network is the intersection of the server friends and interac-

tion networks. An edge between two nodes in this network indicates that the pair is

both declared friends and had at least one in-game interaction on the TF2 server.

• The co-presence network is a dynamic network whereby an edge exists between two

nodes at time k if they both played in game k.

Each of these networks represents a different aspect of the SH gaming community. The

server friends network gives us a basic idea of how the structure of Steam Community

maps on to a smaller, more localized community. One way to think about the SH server

is that it is a local pub where people tend to gather to socialize and have fun. While the

patrons of the pub have a relationship with each other because of their patronage, there

is no guarantee this relationship persists elsewhere. To stretch the analogy a bit more,

we can also say that there is no guarantee that patrons that might know each other from

other situations (e.g., work) actually interact at the bar.

Conversely, the interaction network can be seen as patrons of a pub whose relationships

are constrained within the walls of the pub. I.e., while they might have a drink and do

some karaoke together, that is the extent of their relationship.

The interacting friends network demonstrates interaction backed declared relationships. In

other words, these are individuals who not only had some form of social interaction, but

felt strongly enough to create a declared relationship. This is important as it gives some
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context to the declared relationships. Although we might not know all the details behind

how the relationship was formed, what we do know is that it exists outside the ether of an

OSN. Previous work [WSPZ12] has found flaws with using OSN relationships as ground

truth for “real” relationships: they grow stale and users only interact with a small frac-

tion of their declared friends. Thus, we posit that interacting friends have stronger rela-

tionships than players who either just interacted with each other or just have a declared

relationship.

The construction of the server friends, interaction, and interaction friends networks is

straight forward. There are 33,546 players on the server who are part of Steam Commu-

nity, involved in over 1 million relationships. Of them, 22,099 have 50,522 friendships where

both friends played on the server. Of these, 7,701 friends interacted on the server during

our observations, forming 13,270 interactive pairs.

In the remainder of this chapter we explore the dynamics between patterns of play and our

induced networks. Understanding these dynamics will help inform the simulation study we

perform in Chapter 7 as well as interpret our results.

6.1 General Server Characterization

We begin with a general characterization of the SH community. Like any community, the

social environment of a virtual community helps shape the interactions that occur.

Figure 6.1 shows that the community is quite active on any given day of the week. On all

days, activity levels are the highest in the afternoon, and begin to fall off around midnight
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Figure 6.1: Number of interactions per hour, per-day of the week (from Sunday).

Pacific Time. We note that Saturday, a “pure” weekend day, has a relatively higher level

of activity during normal working hours, with Sunday having the second highest level.

This sustained activity during non-working hours drastically differentiates this dataset

from interactions in declarative OSNs such as Facebook. Gaming is a leisure activity that

requires adequate, and often specialized, hardware, and more importantly, significant fo-

cus and concentration. Unlike other online social activities such as instant messaging or

browsing Facebook profiles, gaming sessions are continuous and preclude multitasking.

Hence, activity levels correlate to the times of day that gamers are not encumbered with

the distractions of work or school.

6.2 Declared Relationships

Figure 6.2 plots the degree distributions of the players on the server. The Steam Com-

munity degree distribution is based off the entire friends list of players, while the Server

Friends degree distribution is based off the subset of a player’s friends that also played on

the server. The interaction distribution portrays the number of interaction partners each

player had.
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Figure 6.3: Heat map of friendships created between players on SH in 2011 per calendar
day.

From Figure 6.2, we also see that players have many more interaction partners than they

do declared friends, and tend to have fewer friends that play on the server than they do

overall. Both of these results mirror real-life experiences that are not captured by inter-

action graphs or declarative OSNs alone: not everyone we interact with becomes a friend,

and we interact with a subset of our friends depending on the venue.

What is not necessarily intuitive is the shape of the server friends curve. While we might

expect the server friends curve to have the same shape (yet shifted) as the Steam friends

curve, this is not the case. Instead, the shape mimics that of the interaction partners curve,

giving us our first indication that interaction and declared friendships are related.
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In Figure 6.3 we plot a heat map of the number of friendships created between SH players

per calendar day for 2011. When viewing the plot, we see a clear demarcation between the

first half of the year (ending in June) and the second half of the year (starting in July).

For the first part of the year, friendship creation is steady, with a slight relative increase

on weekends. In the second half of the year, however, we see a large uptick in friendship

creations, followed by a gradual decline until December.

At face value, this seems like an odd result. However, it can be explained by a change in

the pricing policy of TF2. In June of 2011 TF2 went Free-to-play. That is, while it had

previously cost around $10 - $20 to purchase a copy of TF2, the game is now available to

anyone for no cost. As might be expected, this lead to a sudden and dramatic increase in

the number of global TF2 players.

The heat map thus shows a projection of the social effects of TF2 going free-to-play. The

large influx of new players lead to a respectively large increase in the diversity of play

partners. Simply put, there were suddenly a bunch more people to play with. This in turn

leads to new found friendships. We see a corresponding reduction in the number of new

friendships as the bump from the initial set of free-to-play adopters subsided.

It is important to note that there is a clear spike in friendships though. This can be ex-

plained by several things. First, TF2 going free-to-play was a very well publicized event.

TF2 has a stellar reputation in the gaming world and thus many people likely rushed to

try it out who had otherwise been unwilling to pay for it. Second, it is a big hint that

there is a link between interactions and declared friendships, which we go into more detail

about in the next section. Third, we can see that even though there is a drop off after the

initial free-to-play announcement, that friendship creations are still occurring at a higher
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Figure 6.4: The average number of interactions per hour of the week for interacting pairs.
Hour 0 is Sunday midnight (0:00)

than previous rate. This indicates that the free-to-play model continues to inject a diverse

set of new players to the community.

6.3 Interactions and Declarations

Having established the activity level of the server community and the engagement of its

players in the online social network of Steam, we next examine the relationship between

the two. Ultimately, we find that declared pairs have many more interactions than unde-

clared pairs.

There is a striking difference between the interaction patterns of declared pairs and non-

declared pairs of players, lending credence to the strength of declared relationships in an

interaction-backed OSN like Steam Community. Figure 6.4 plots the average number of

events per hour of the week for interacting pairs, differentiated by the existence of a de-

clared relationship, across the entire span of our log files. Friends averaged several orders

of magnitude more interactions than pairs without a declared friendship.
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One unexpected finding is that the peaks in Figure 6.4 for declared pairs are during the

week. This is in contrast to Figure 6.1 which shows higher levels of activity during the

weekends. One possible explanation for this difference is that the server population skews

towards “regulars” during the week and includes more “randoms” during the weekends.

This hypothesis fits well with the concept of an interaction-backed OSN: regulars are more

likely to interact more, and their interactions are more likely to spawn declared relation-

ships in the OSN.

While it is clear that declared friends have significantly more interactions than non-declared

friends, it is still unclear how direct an impact interactions have with friendship decla-

ration. To begin answering this, we examine the number of interactions between pairs of

players who became friends during the span of our log files. We thus look at the number of

interactions between such pairs for each of the three weeks prior to and after the declared

relationship forms.

In Figure 6.5 we compare the three weeks before the relationship forms, while Figure 6.6

compares the three weeks after the relationship forms. It is immediately apparent that

friendship creation is preceded by a significant spike in interaction (Figure 6.5). More

interestingly, we see in Figure 6.6 that once a relationship forms the volume of interaction

begins to decline. Further, the rate of change in the volume of interactions is smaller for

the three weeks after the relationship is formed than it is for the three weeks prior. This is

an important finding for a few reasons. First, it provides solid evidence that relationships

in Steam Community are interaction backed. I.e., changes in the volume of interaction

between two gamers are a predictor for whether a friendship will form. Next, it highlights

a similarity between interaction backed OSNs like Steam Community and more “tradi-

tional” OSNs like Facebook: in both cases, interactions begin to subside very soon after
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Figure 6.5: The number of interactions per pair for each of the three weeks prior to a
declared relationship forming.

the relationship is declared. Third, it indicates that the intensity of a relationship is at its

peak prior to the relationship being made official.

6.4 Summary

In this chapter we presented an analysis of the social behavior of gamers on a commu-

nity owned and operated game server. We found diurnal patterns of play, essentially an

inverse of the normal American work week. We used several networks induced from the in-

game behavior of over 30 thousand players.and found differences in those players that were

friends but did not interact, those players who interacted but were not friends, and players

who both interacted and were friends. Next, we saw how an influx of new players (due to

a change in the business model for TF2) resulted in a spike of new friendships. Finally,

we showed interactions between declared friends dominated those between non-declared

friends and that friendship creation was proceeded by a sharp increase in the volume of

interactions which then slowly begins to decay.
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Figure 6.6: The number of interactions per pair for each of the three weeks after a declare
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Chapter 7: Cheating in Online Games as a Contagion

1In this chapter we explore the mechanism by which cheating behavior spreads throughout

the network of gamers. We identify several research questions, initially examined in [BKS+14,

BSK+12]:

• Research Question 1: Is there evidence for a contagion process at play?

Literature from psychology indicates that cheating and unethical behavior spreads from

individual to individual. Although positive results have been shown in controlled lab ex-

periments, our large scale dataset can provide empirical evidence of such a mechanism.

Using longitudinal data, we show that future cheating behavior is predicted by how many

cheater friends one has, as well as visualizing the spread of behavior through the network

over time.

• Research Question 2: How does positioning in a gaming network affect the processes

described by accepted models of contagion?

Contagion has been studied quite extensively in a variety of fields. From this research,

several models for contagious processes have been proposed. By performing a simulation

1Much of the work in this chapter was first published in Proceedings of the 21st International
Conference on World Wide Web, 2012 [BSK+12] and ACM Transactions on Internet Technology,
2014 [BKS+14]Permission is included in Appendix B.
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using data from our empirical networks, we are able to measure the effects that a cheater

can have on epidemic spread. Our simulations show that the most engaged users are able

to propagate a cheating epidemic much easier and faster than empirically observed cheaters

or randomly selected seeds.

7.1 Evidence for Contagion

Having seen that there are clear differences in the social networks of cheaters and non-

cheaters, and that the declared social relationships in Steam Community are backed by in-

game interactions, we now analyze the hypothesis that this behavior is a contagion. That

is, the reason we see such striking differences in the neighborhood compositions of cheaters

and non-cheaters is that the cheating behavior spreads between individuals like a disease.

7.1.1 Potential for Influence

The position of a node in the social network affects the potential influence the node has on

close or even remote parts of the network. For example, a high degree centrality node—

one with many direct neighbors—can directly influence more nodes than a low degree

centrality node. High betweenness centrality nodes, on the other hand, mediate the traffic

along the shortest paths between many pairs of nodes, thus having influence on remote

parts of the network. A high betweenness centrality cheater, for example, could facilitate

the propagation of cheats and other deviant behavior to distant parts of the gamers net-

work.
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To understand the positional importance of the cheaters in the network, we study their

potential for influence in the Steam Community by computing their degree centrality and

node betweenness centrality. The degree centrality is simply the degree of the node in the

network, and is thus a local metric. Betweenness centrality, however, is a global graph

measure and consequently computationally expensive, requiring the calculation of the

shortest paths between all pairs of nodes in the network. Due to the scale of our graph, we

approximate betweenness centrality using κ–path centrality, a betweenness approximation

method proposed in [KAS+12].

We observe a high correlation of 0.9731 between degree and betweenness centrality scores

of the gamers. This high correlation remains consistent when we differentiate on the player

type: 0.9817 for cheaters, and 0.9726 for non-cheaters. Consequently, if a player has many

friends in the Steam Community network, (that is, high degree centrality), not only can

she influence many players directly, but she can also mediate the information flow between

remote players due to her likely high betweenness centrality. This result is consistent with

theories of social influence [CF07].

We focus only on the most central players in the network and study how many of them

are cheaters. Table 7.1 demonstrates that cheaters are under-represented among the most

central players, despite the fact that they have about the same degree distribution as the

fair players, as shown earlier in Figure 5.2. Over 7% of the entire player population in our

dataset are cheaters, but they make up less than 7% of the top 1% most central players,

and are not adequately represented until we consider the top 5% to top 10% most cen-

tral players. Earlier results from Section 5.3 provide an explanation for this. There seem

to be social mechanisms that retard the growth of cheaters’ social neighborhoods which

could be preventing them from entering the top 1% central players in the social network.
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Table 7.1: Percentage of cheaters found in top-N% of high degree centrality (DC) and
betweenness centrality (BC) users in the Steam Community.

Top-N% 0.1 0.5 1.0 5.0 10.0
DC 3.25 4.46 5.11 7.06 8.20
BC 5.16 5.95 6.35 7.86 8.58

Surprisingly, this mechanism also limits their opportunity to influence remote parts of the

network, as they tend not to be on central betweenness positions.

While remote influence is unlikely, is there any direct social influence in the propagation of

cheating in the network? Figures 5.4, and 5.5 seem to suggest so, and thus we hypothesize

that the friends of known cheaters are at risk of becoming cheaters themselves.

7.1.2 How Does Cheating Propagate over Time?

Based on the observations from Figures 5.4, and 5.5, we hypothesize that the friends of

known cheaters are at risk of becoming cheaters themselves. To test this hypothesis, we

first explored whether cheaters discovered during a given time interval were more likely to

be friends of previously discovered cheaters than to be friends with non-cheaters using the

static Steam Community data set and ban dates. Again, we stress that banned dates must

be treated as “on or before” as opposed to exact timestamps. To mitigate the effects of

this uncertainty, we chose to examine cheaters discovered over 180-day long intervals.

We begin by assuming that all users in the Steam Community friendship network are non-

cheaters. We then initialize the network by marking the 94,522 users found to have a VAC

ban on or before December 29, 2009 (i.e., the earliest date retrieved from vacbanned.com).

For the first 180-day interval (between December 30, 2009 and June 28, 2010), 34,681
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players were found to have a VAC ban. For these users, we calculated and plotted the

number and fraction of their cheater friends (i.e., from the 94,522 cheaters found previ-

ously). We repeat these steps for another 3 time intervals, with 19,294, 571,975, and 43,465

cheaters found in each. The third interval (starting at December 26, 2010) contains the

bulk of cheaters, since their VAC ban was first observed by our initial crawl (and not from

vacbanned.com). However, as shown next, the differentiation between cheaters and non-

cheaters holds true for all intervals. In addition to a best effort approximation of the times-

tamp of the VAC bans, the data constructed this way has another caveat: the social net-

work is from our March/April 2011 crawl, but we show in Section 5.3 that the network

is quite dynamic. We verified that despite the change in number of friends over time, the

trend is preserved: we recalculated the fraction of cheaters in the 1 hop neighborhoods of

users based on the state of their relationships as determined by our October 2011 re-crawl

and we found the non-cheaters CDF to dominate the cheaters CDF as in Figure 5.4.

Figures 7.1 and 7.2 plot the results of our experiments. Each subplot represents only the

cheaters discovered during the corresponding time interval, and an equal number of ran-

domly sampled non-cheaters (statistical significance confirmed by KS test at 5% signifi-

cance level, p < 0.01 in all cases, and D = 0.215, 0.2172, 0.1963, and 0.2911 for the frac-

tion of cheater friends distributions of each interval, respectively). From the plots we see

evidence that users with both a higher absolute number of cheater friends, as well as those

with proportionally more cheater friends are more likely to become cheaters themselves.

To understand if the number of cheater friends has any predictive power on the state of

a player, we used the framework developed by Backstrom et al. [BHKL06]. We first cre-

ated a dataset of fair players with at least one cheater friend at the time of our first crawl.

We then labeled the players from this set who were marked as cheaters by the time of
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Figure 7.1: CCDF of the number of cheater friends of newly discovered cheaters and a
random sample of non-cheaters over four 180-day time intervals.
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Figure 7.2: CDF of the fraction of cheater friends of newly discovered cheaters and a
random sample of non-cheaters over four 180-day time intervals.

our second crawl. We consider the new cheaters as joining a group in the sense of the

Backstrom study to estimate the probability of a fair player becoming a cheater. We then

applied the decision tree technique, using the number of cheater friends as the single fea-

ture, and achieved an area under the curve (AUC) of .61. The AUC can be thought of the

probability of the classifier ranking a cheater higher than a non-cheater for any random

cheater/non-cheater pair. For our purposes, it shows that the number of cheater friends

is a good predictor of becoming a cheater. With perfect knowledge, that is, if every single

cheater was marked in our dataset by a perfect and timely cheating detection system, we

would expect this value to be higher. (In comparison, Backstrom et al. show a AUC value

of .6456 for the DBLP communities and .69244 for LiveJournal.)

While these results show that the number of cheater friends has predictive power for the

transition of a player from fair to cheater, it is difficult to ascertain the specifics of how
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the behavior propagates. Specifically, it is difficult to distinguish between homophily and

contagion by simply observing the network properties and without strong assumptions

about the social process [AMS09, ST11]. However, an individual’s propensity towards

unethical behavior, and cheating in particular, has been shown to be dependent on social

norms, including the saliency of the behavior, and whether or not the behavior is observed

from in- or out-group members [GAA09]. Our large-scale findings further corroborate this

theory and suggest that cheating behavior is not preponderantly dependent on a personal

strategy that takes into account player-local information only, but spreads through a con-

tagion process.

A higher resolution data set, however, would provide stronger evidence as well as a deeper

understanding of the speed of the cheating contagion. We thus begin by comparing the

number of cheater friends for two groups of monitored users: non-cheaters and newly-

labeled cheaters. Frequency distributions for the number of cheater friends for the mon-

itored users (the number when banned for cheaters, and the number at the end of the

observation period for control users) are plotted in Figures 7.3 and 7.4, respectively, with

descriptive statistics listed in Table 7.2. Cheaters are considerably more likely to have

multiple cheater friends at the time of the VAC ban application than our control group,

and the samples are indeed drawn from different distributions (D = 0.444, pks < 0.01,

T = 36.80971, pperm < 0.01).

We built a logistic regression model using a single feature: the number of cheater friends

at the time of the ban. Although there are many suitable classifiers, we next used a logis-

tic regression as it is a well understood method suitable for binary predictions. The classi-

fier built from this high-resolution dataset achieved an area under the receiver operating
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Figure 7.4: Frequency distribution of the number of cheater friends for a control group of
non-cheaters.

characteristic curve (AUC) of 0.78, significantly higher than 0.61 which we achieved in

using the static data set.

Table 7.2: Descriptive statistics for cheater friend distributions of the control group and
new cheaters in the ban history dataset.

n mean sd median min max se
Control 8,712 1.25 3.23 0.00 0.00 69.00 0.03
Cheaters 2,337 5.97 9.31 3.00 0.00 79.00 0.19
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7.1.3 Hazard Analysis

We can view the adoption of behavior as a form of survival. Simply put, if the behavior

is adopted by an individual, said individual can is said to have “perished”, and if it is not

adopted, the individual has “survived.” Constructing the problem in this manner allows us

to exploit the well studied area of survival analysis to model contagious effects of cheating.

Specifically, we use the Cox proportional hazard model to assess the effects of predictors

on the likelihood of becoming a cheater.

In a nutshell, a hazard function provides the instantaneous rate at which the event of in-

terest occurs, given that it has not yet occurred:

h(t) = lim
t→∞

Pr[t < T ≤ t+ ∆t)|T ≥ t]

∆t

The proportional hazard model assumes there is a baseline risk that is altered by predic-

tors that characterize a subject:

h(t|x) = hi(t) = h0(t) exp(β1xi1 + β2xik + · · ·+ βkxik),

where h(t) is the underlying hazard function and can be left completely unspecified when

only the relative hazards of a subject with different x profiles are of interest. One technical

detail is important. Parameter estimates are obtained by maximizing the partial likelihood

rather than the maximum likelihood but this is valid only when there a not ties in the

data set, that is, no two subjects have the same event time. If there are ties (as is the

109



case for our data set), the true partial likelihood involves permutations and can be time-

consuming to compute but two approximations can be used.

To apply to cheating, we define an observation window for some start time to some end

time. All non-cheaters at the start time are at risk of becoming cheaters. If they become

cheaters the dependent variable is scored 1 otherwise it stays 0, the time since beginning

of observation that they become cheaters is noted as well as the number of friends at the

time who were also cheaters. Thus, we can view each case as a gamer characterized by:

1. An indicator variable (0 or 1) for whether or not player adopted cheating behavior

(i.e., received a VAC ban) at some point during the duration of the observation pe-

riod.

2. The time since start of observation that the adoption occurred. If the behavior was

not adopted by the end of the observation period we right-censor the case by setting

the time to the last time point of observation.

3. The number of signals received at the time of adoption, or received by the end of the

observation period if adoption did not occur.

We performed the same set of experiments on both the low and high resolution data sets.

We first built data files characterizing each subject as described above. We then compared

the effects a number of signals (i.e., the number of cheater friends) had on the odds for

a case becoming a cheater. To compare the effects of having just one friends to having

no friends we selected the cases where the kc variable was 0 or 1. To compare the effects

of having an additional cheater friend to having just a single cheater friend, we selected

the cases where kc was 1 or 2. We continued to calculate the change in odds for additional
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cheater friends as above until the analysis was unable to reject the null hypothesis at the

5% significance level.

The regression analysis calculates the hazard ratio: the amount by which the odds of user

becoming a cheater increase given one additional cheater among his friends. The percent-

age increase is simply the computed hazard ratio −1.00. Thus, a hazard ratio of 1.00 means

the additional cheater friend had no effect on the odds. The hazard ratio computation also

produces a 95% confidence interval, and so we can reject the null hypothesis only if the

confidence interval does not contain 1.00.

The estimated survival functions for are plotted in Figure 7.5. After 30 days, around 10%

of the 2,840 cases remained unbanned, and the function appears linear. However, the ef-

fects of additional cheater friends begin to make themselves apparent. The survival odds

continue to decrease as the number of cheater friends increases: less than 50% of play-

ers with 5 or 6 cheater friends remain non-cheaters at the end of the observation period.

Clearly, the majority of users remain unbanned at the end of our observational period,

but, this is somewhat expected considering that cheaters were observed to make up only

7% of the social network.

The results from each set of our experiments appear in Table 7.3, and we visualize these

results in Figure 7.6 The results indicate that cheating behavior spreads via a contagion

mechanism. Although the increase in odds is drastically greater when moving from 0 to

1 friends, we see a significant increase up through 4 cheater friends for the Spring 2011

dataset, and up through 5 cheater friends for the high resolution dataset. Having 1 cheater

friend results in a 138.5% and 231.3% greater chance to become a cheater in the respective

datasets, compared to an increase of 25.8% when moving from 3 to 4 cheater friends in the

Spring 2011 dataset, and 2.52% when moving from 4 to 5 cheater friends for the August
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Figure 7.5: The estimated survival functions for the Cox regression from the August 2012
dataset. The dashed lines are the 95% confidence interval surrounding the estimated
functions. The decreased survival rates as the number of cheater friends increases is quite
apparent. With 0 or 1 cheater friends, the survival odds are about 90%, but with 5 or 6
cheater friends the survival odds fall to less than 50%.
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Table 7.3: Cox proportional hazard model analysis for both datasets we studied.

Dataset Signals Cases Events Hazard 95% CI

March 2011

0 vs 1 76,760 4,060 2.385 (2.238, 2.541)
1 vs 2 22,283 2,419 1.424 (1.312, 1.547)
2 vs 3 10,305 1,432 1.067 (0.959, 1.188)
3 vs 4 6,004 948 1.258 (1.106, 1.430)
4 vs 5 3,864 684 0.965 (0.828, 1.224)

August 2012

0 vs 1 7,716 817 3.313 (2.889, 3.8)
1 vs 2 2,840 702 1.584 (1.363, 1.841)
2 vs 3 1,498 507 1.199 (1.005, 1.429)
3 vs 4 927 358 1.143 (0.9248, 1.412)
4 vs 5 607 270 1.252 (0.9861, 1.59)
5 vs 6 471 233 1.077 (0.8317, 1.394)

2012 dataset. We note that both datasets see a statistically insignificant increase in odds

followed by a resumption of statistically significant odds increases (2 to 3 friends from the

March dataset, and 3 to 4 friends from the August dataset).

The hazard analysis provides clear, statistically significant evidence of contagion effects at

play. Specifically, the odds of becoming a cheater greatly increase with the more cheater

friends you have, up until about 3 friends.

7.1.4 The Diffusion of Cheating Behavior

If the theory that cheating behavior is a social phenomenon that can be tracked via a

corresponding social network holds true, then we should see newly discovered cheaters

connected to previously discovered cheaters, and thus likely to form components when

compared to the randomly selected control group.

We began by looking at the components formed by all monitored users and their social

neighborhoods from the high resolution data set. The relative component size distributions
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Figure 7.6: Hazard ratios for the 2011 and 2012 datasets. The hazard ratio represents
the increase in odds to become a cheater when going from x − 1 to x cheater friends.
Error bars represent the 95% confidence interval. As long as the confidence interval does
not contain 1.00, the increase in odds is significant at the 5% level. For the March 2011
dataset, we see a significant increase up through 4 cheater friends. For the August 2012
dataset, the hazard ratio is significant up through the increase from 4 to 5 cheater friends.
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Figure 7.7: Relative component size distribution for the ban history network. There are
6,692 components, and the largest component has 186,360 members.

for this network is plotted in Figure 7.7. The network had 6,692 components, with the

largest containing 186,360 nodes and 200,236 edges. The existence of a large connected

component forming from the 1-hop neighborhoods of '10,000 users indicates that our

monitored users are not randomly dispersed throughout Steam Community, and additional

evidence that cheaters are indeed clustering together.

Although the component distributions provide clear indication of cheaters clustering to-

gether, they do not necessarily address the issue of causality. To visualize the propaga-

tion of the cheating ban in the network (as a way of identifying causality), we plot in Fig-

ure 7.8 the progression of VAC bans in the 10 largest components composed entirely of

monitored users between August 6th and September 5th 2012, divided into 6 intervals.

We take network dynamics into account by coloring nodes and edges differently depending

on the state of the network during the interval. Nodes are colored red if they were VAC

115



banned by the end of the interval, and green otherwise. Edges are colored black if they

existed prior to the end of the interval. Gray edges have not been formed by the end of

the interval, but will exist at some point in the future. Finally, if an edge has been deleted

(i.e., the friendship was dissolved) prior to the beginning of an interval it is colored orange.

Figure 7.8 shows evidence of spread. Most newly flagged cheaters are soon followed by

their neighbors, resulting in clusters of cheaters appearing as time progresses. This dis-

covery is the first indication of how rapid the contagion spreads through the network: out

of the 279 cheaters at the end of Interval 6, only 28 (10%) were cheaters a month before.

A clarification is necessary at this point: we do not believe that the VAC ban is what

inspires friends of newly-marked cheaters to cheat and thus become cheaters themselves;

about 90% of the ties between eventual cheaters existed well before either were cheaters.

Of these, 75% were created more than 10 days prior to one of the friends being labeled a

cheater, as seen in Figure 7.9. In fact, the delayed application of the VAC ban obscures

the exact timing of the contagion somewhat, and also allows friends to see the gains from

cheating without the public penalty of the cheating label. Moreover, Figures 5.9 and 5.11

show that non-cheaters sever their relationships with newly discovered cheaters, perhaps

in an attempt to dissociate themselves from the dishonest behavior. What we believe hap-

pens is that the cheating behavior—implemented via sharing of cheat codes, for example—

spreads along social ties prior to the cheating behavior being exhibited by the initial cheater

in the relationship. When the VAC bans are applied some unknown time interval later,

they reveal the time causality pattern of a social contagion.

There are two take-away lessons from this finding. First, it hints at possible improvements

for the detection of cheaters. For example, the costs of detection efforts could be reduced

by focusing on users who are in a relationship with a recently detected cheater. When
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Interval 1
28 (9.6%) cheaters

Interval 2
61 (21%) cheaters

Interval 3
107 (36.8%) cheaters

Interval 4
164 (56.4%) cheaters

Interval 5
215 (73.9%) cheaters

Interval 6
279 (95.9%) cheaters

Figure 7.8: The spread of cheating behavior in the 10 largest connected components
of monitored users over a 1-month period, split into six intervals. If a non-cheater
transitioned to cheater prior to the end of an interval, the node is colored red, and green
otherwise. Gray edges will form in a future interval, black edges have formed by the end of
an interval, and orange edges have been deleted prior to the beginning of an interval.
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Figure 7.9: CDF of the age of a relationship between pairs of eventual cheaters prior to
either of the friends becoming a cheater. I.e., how old the relationship was before either
friend cheated. 75% of the ties existed more than 10 days prior to the application of the
cheating flag, about 50% had existed for more 50 days, and over 25% existed for more
than 6 months. This indicates that the cheating behavior itself is not the catalyst for
friendship formation, but rather that existing friendships allow the cheating behavior to
spread.

used in conjunction with crowd-sourcing techniques to discover “spontaneous” cheaters

(e.g., allowing users to report suspicious behavior), leveraging the structure of the social

network would drastically reduce the set of users deemed at risk. The reduction in at-risk

users would allow more computational expensive detection techniques to be deployed. This

filtering would also make further use of crowd-sourcing possible, for example, by allowing

other gamers to make judgments based on recorded gameplay sessions of at-risk users.

Second, knowledge of an epidemic process can also help prevent the adoption of cheat-

ing behavior in the first place. One solution could be to quarantine recently discovered

cheaters (especially before the VAC ban becomes publicly visible), to limit the time of ex-

posure to the “infectious” gamer. While an intuitive solution might be to remove cheaters

from the service completely, this does not fit the business model of many gaming plat-

forms. Even more, cheaters are accepted by the communities of other games that they did
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not cheat in. For this reason, we suggest a temporary quarantine of new cheaters that pre-

vents direct, out-of-game communication via chat for a limited time. This may retard the

cheating contagion at practically no cost to the service provider by, for example, allowing

the delayed VAC ban to be applied before the newly discovered cheater is able to share his

cheating tools via Steam Community’s communication channels.

A more intriguing solution might be the development of interventions targeting at-risk

users. In this case at-risk users could be actively targeted with a “vaccination” strategy,

for example, personalized pop-up notifications reminding them of the consequences of

cheating. Targeted interventions have been shown to effectively contain epidemic out-

breaks, even with a lag between the identification of infected individuals and administra-

tion of the vaccine [LNX+05].

7.2 Data Driven Simulation of Contagious Behavior

Diffusion and contagion processes have been well explored in both the epidemiology as

well as sociology literature [DW05, CEM07, ST11, AMS09]. Generally speaking, contagion

models call for nodes to be in one of several states. Infected nodes have succumbed to the

contagion, susceptible nodes are vulnerable to the contagion, and recovered where infected

individuals can either gain permanent immunity or die. In our case, we restrict node states

to either susceptible or infected, and nodes remain in the infected after switching from

susceptible (using epidemiology terminology, the recovery rate is 0).

Models can broadly be classified as either independent interaction or threshold. In inde-

pendent interaction models, the infection probability is uniform and independent between

contacts. A single contact with an infected node is sufficient to spread the infection. Thus,
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there is no consideration for how contact with multiple infected individuals alters the odds

of becoming infected.

When contact with multiple infectious individuals alters the probability of becoming in-

fected, the process is often called a complex contagion. Complex contagion is often used

to model social diffusion processes where odds of infection increase as more of a person’s

friends become infected. The threshold model takes this into account by requiring contact

with a certain number of infected individuals. Once the threshold is met, infection can

occur.

Centola et al. used a fractional threshold model to study complex contagion cascade dy-

namics in [CEM07]. A cascade, the process of the contagion spreading through the net-

work is deemed successful if at least 90% of the nodes are infected by the time the cas-

cade stalls. They propose an estimation for a critical threshold, Tc = 1
〈k〉 where 〈k〉 is

the average degree in the network. By randomizing the network, they show that while the

original network can support T > Tc, the permuted network (which loses social clustering

properties), cannot reach a successful cascade until T = 1
〈k〉 . Their findings indicate that

social clustering in small world networks allows for the propagation of complex contagion.

In other words, only simple contagion can propagate on the randomized network.

Dodds and Watts [DW05] introduced a generalized model for contagion. This model is

able to produce epidemics that fall into several universal classes including independent in-

teractions and complex contagion. The system is dosage based, whereby an infected node

is able to provide a dose to an uninfected contact. Each uninfected node u has a dosing

threshold g(u), which if exceeded causes it to become infected. An additional parameter

of a memory window M keeps tracks of doses over time. When calculating whether or

not a dosing threshold has been exceeded, only doses received in the last M timesteps are

120



Table 7.4: Summary of model parameters.

p Exposure probability.
M Memory window of contacts and dosings.
g(u) Dosing threshold distribution.
f(u) Dosage size distribution.
θt(u) u’s valid interaction partners at time t.
ξt(u) Max. doses receivable at time t.
ζt(u) Max. contacts that can be made at time t.

Table 7.5: Parameters to reproduce common contagion processes.
Process p M g(u) f(u) θt(u) ξt(u) ζt(u)
Independent interaction - - - - V 1 1
Complex contagion - 1 2 1 neighborhood(u) degree(u) degree(u)

considered. A dose size distribution f(u) controls how big of a dose u will receive. Finally,

p is the probability of becoming infected when coming into contact with an infected indi-

vidual. Only exposed individuals are dosed.

7.2.1 Augmented Model for Contagion

We augment the Dodds and Watts model [DW05] with a few additional parameters. First,

we introduce θt as the set of eligible contacts of individual u at time t. For example, when

contagion spreads through the ties of a social network, θt(u) = neighborhood(u). In an

interaction network, θt(u) = the set of nodes u interacted with at t. We also introduce

ζt(u) as the maximum number of doses that u can receive at timestep t and ξt(u) as the

maximum number of individuals u can come into contact with at time t.

These additional parameters allow us to capture all elements of the generalized model,

as well as complex contagion models which require exposure to multiple individuals. Ta-
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ble 7.4 summarizes the model parameters, and Table 7.5 shows how common contagion

processes can be reproduced with our model.

These additional parameters also allow us to extend the theoretical models to better suit

the online gaming domain and our empirical datasets. θt(u) allows an individual u to in-

fect many others at the same timestep. This is a departure from the model in [DW05],

which restricts u to coming into contact with only one individual per step. The reasoning

behind this change is due to the application our datsets are derived from: players come

into contact with all the other players in a given match or with their connections in the

social or interaction networks.

First, although we have seen evidence that suggests complex contagion might occur (e.g.,

the odds of a player becoming a cheater increase with the number of cheater friends he

has), previous work on OSNs has indicated that declared social ties might not be represen-

tative of real relationships. Specifically, Facebook relationships have proven problematic

for systems that rely on trust derived from the network structure [WBS+09]. Because of

this concern, we first want to determine whether complex contagion propagation is even

possible on the Steam Community OSN. Additionally, because Steam Community is an

interaction-backed OSN (Chapter 6, structural properties that are invisible at the OSN

level might provide answers into how the spread of cheating projects onto the declared

network’s structure.

Next, although static network analysis provide insight into high-level propagation dynam-

ics, it only provides high-level aggregate knowledge. By making use of temporal data on

interactions, we can examine how behavioral patterns can influence the network’s suscepti-

bility to infection. For the domain of gaming, this temporal information is highly relevant:

while declared ties provide knowledge of the existence, and possibly some attributes de-
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scribing a relationship, the addition of time-aware analysis captures how relationships wax

and wane over time.

By blending an independent interaction and complex contagion model we can use real

workloads representative of gameplay patterns over time. By manipulating M , we account

for domain specific social behavior.

The exposure probability p has the same meaning as in the original model, but a gaming-

specific interpretation. Unlike biological contagions, human beings conciously decide whether

to adopt an unethical behavior (and thus become “infected”). However, just like biolog-

ical contagions, humans (generally speaking) do not have control over whether they are

exposed to cheating behavior. For the domain of cheating in video games, p captures the

effects of blatant versus more discrete cheating behavior. In the real world, some cheats

are quite evident (thus p is close to 1) while others are not.

7.2.2 Experiments

We implemented the model presented in Section 7.2.1 in a simulator that takes as input

one of the empirical networks presented in Chapter 4. Each step of the simulation rep-

resents one discrete timestep t. At t = 0 we seed nseed nodes as infected. The seeding

process differs with the experiment and will be noted ahead.

On each step t, every node u randomly selects ζt(u) contacts v ∈ θt(u). One outcome of

this is that it allows us to scale the simulation timesteps differently than the real inter-

action frequencies. In this case we are “compressing” the per-second resolution of the log

files into discrete, domain relevant matches.
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For each v that u contacts, with exposure probability p, u receives a dose f(u), unless u

has already exceeded its dosage count ξt(u). A newly infected node can not infect any

other node until the next timestep, which could be seen as an incubation period of 1.

As stated previously, we have two primary research objectives: (1) Understanding how

cheating behavior spreads in our empirical networks under accepted models of contagion;

and (2) How networks representing different perspectives of the same reality affect conta-

gion.

To do this, we measure two metrics:

• φt which measures the size of a cascade at a given time t, reported as either a frac-

tion or absolute value of infected nodes.

• ψT the final size of the cascade for a given threshold T , reported as a fraction of

infected nodes.

The remainder of this section describes our experimental setup. The results are presented

in Section 7.2.3.

Each of these networks allows us to examine different scenarios under which cheating be-

havior spreads. The server friends network models contagion over purely social relation-

ships. The interation network, however, represents interactions that are not necessarily

associated with a social relationship. The intersection of these two, the interacting friends

network, is built from strong ties, allowing us to explore the effects of relationship strength.

Finally, the co-presence network places real world restrictions on through whom and when

the contagion can spread.
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Table 7.6: Network statistics for the largest connected components of the static networks.
Network nodes edges density mean degree clustering coeff. cheaters

Interacting Friends 2,406 9,720 0.0034 8.1 0.20 30
Server Friends 16,682 46,791 0.00034 5.6 0.20 274
Interaction 33,523 1,768,377 0.0031 106.0 0.16 527

The construction of the server friends, interaction, and interaction friends networks is

straight forward. There are 33,546 players on the server who are part of Steam Commu-

nity, involved in over 1 million relationships. Of them, 22,099 have 50,522 friendships where

both friends played on the server. Of these, 7,701 friends interacted on the server during

our observations, forming 13,270 interactive pairs. The metrics of the largest connected

components of the three networks are presented in Table 7.6. Figure 6.2 plots the degree

distributions for the three largest connected components of our static networks. The de-

gree distribution of the interacting friends network retains some of the curve that shows up

in the full Steam Community network.

We describe the likelihood of nodes with similar degrees being connected via knn, the de-

gree correlation, which for our undirected networks is the average degree of the neighbors

of nodes with a given degree k. Figure 7.10 plots the knn distributions for each of our

static networks. The server friends, and, to a lesser degree the interacting friends net-

work, retain the characteristically strong degree correlation of an OSN [WSPZ12]. The

interaction network does not. Instead, there is a negative correlation. This is due to the

behavioral patterns of players and the maximum capacity of the server. Because players

can only interact with ∼30 other players in a match, and the number of games played is a

heavy tailed distribution, those that play many matches will necessarily come into contact

with those who played relatively few matches in addition to other highly active players.

Figures 7.11 and 7.12, plot edge and node betweenness of our networks, respectively .

High betweenness nodes can serve as bottlenecks restricting information exchanges be-
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Figure 7.10: Average degree of neighbors (knn) as a function of degree for the three static
networks.

tween distance nodes, but can also accelerate contagion by providing “shortcuts” along

which the infection can reach new hosts. Figure 7.11 also includes the betweenness of the

players appearing in the interacting friends network relative to their position in the in-

teraction network. We see that the server friends and interacting friends networks have

bi-modal distributions, with most nodes and edges having nearly no shortest paths flowing

through them while a very small minority act as hubs. The implications of these network

statistics on the contagion process will be discussed further in Section 7.2.3.
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Figure 7.11: CDF of normalized node betweenness for the static networks and the
interacting friends within the interaction network.

Figure 7.12: CDF of normalized edge betweenness for the static networks.
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The presence network captures the co-presence of players over time. A user is deemed

present during a match if the event game-join was recorded in the logs. Disconnects are

measured using two event types: 1) player disconnected, and 2) end of log file. Player-

disconnected events appear in the log whenever a player disconnects from the server. Since

each match has its own logfile, log-file-end events delineate the matches.

There were 17,577 matches (i.e., log-file-end events). The number of players appearing

in the log files is 40,663. However, we consider only those who joined matches (37,140

players) and discard those who never joined a match, i.e., had a server connect, but not

a game join2

Formally, we define the co-presence network as an annotated graph G(V,E, S) of vertices

(V ) and edges (E) where an edge e(u, v) ∈ E iff players u and v were both present for at

least one match together. Each edge is annotated with the series of matches the users had

in common s(u, v) ∈ S.

To construct this network, consider an m × n matrix A, where m is the number of players

and n is the number of matches, indexed according to an ascending temporal ordering. Let

Aik = 1 if player i was present for match k, and 0 otherwise. Now, we can see that

e(u, v) ∈ E ⇔
n∑
k=1

AukAvk > 0

Further, we see that

s(u, v) =< Auk1Avk1 , ..., AukmAvkm >

Note that
∑
s(u, v) is the number of matches that u and v were co-present for.

2Players first connect to the server, which then communicates with Steam to validate that the player is
allowed to connect to that server.
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Figure 7.13: CDF of the number of matches pairs of players played together.

We use the link prediction model proposed by Mason and Clauset [MC13] (hereafter re-

ferred to as the FTW! model) to show that the co-presence network captures social rela-

tionships. This model is parameterized by the total number of mutual matches, the longest

series of matches, as well as the number of series of matches of different lengths between

pairs of players. As seen in Figures 7.13 and 7.14, declared friends play many more games

with each other, and, they also play longer series of games together when compared to

non-friends. Mason and Clauset achieved a remarkable area under the receiving operator

characteristic curve (AUC) of 0.98 from survey derived ground truth. Using this model we

are able to predict the presence of a declared relationship in our dataset with an AUC of

0.74 without any additional game-specific tuning.

7.2.2.1 Static Networks

This set of experiments uses three static networks: 1) the interaction network, 2) the server

friends network, and 3) the interacting friends network. Although each of these networks

129



0.4

0.6

0.8

1.0

1 10 100
Number of series

C
D

F

friends
●

●

0

1

length

> 10

> 2

> 4

> 6

Figure 7.14: CDF of the number of series of varying length for both friends and non-
friends.

has time information available, we look solely at empirical structural elements, and thus

simulation timesteps are independent of real-world time.

We vary a uniform fractional threshold relative to a node’s degree, g(u) = T ∗ deg(u),

while keeping p = 1.0 and f(u) = 1.0. I.e., if T = 0.24, and node i has 8 neighbors, then

g(i) = 0.24 ∗ 8 = 1.92. We allow each node to contact all of its neighbors per timestep, and

to receive a dose from each of them (ξ(u) = ζ(u) = degree(u)). θt(u) = neighborhood(u)

for all t. For each run of a simulation, a random node and its neighbors are selected as

initial seeds. With M = 1, these experiments model a complex contagion [CEM07].

First, we want to examine whether the social clustering of the networks affects the propa-

gation of contagion. To do this, we use a uniform distribution of fractional thresholds and

compare ψT for each static network and its randomized version.

The randomized networks are constructed by applying the permutation algorithm to each

network. In short, each edge has its end points swapped with another randomly selected

edge. This maintains the degree distribution while changing the topology of the network.
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By permuting the network, we decrease social clustering. In effect, we are reducing the

overlap between neighborhoods, and connecting otherwise socially distant users to each

other. In theory, a permuted network will not be susceptible to complex contagion, or at

least have a reduced ability to support it [CEM07].

As mentioned previously, the critical threshold, Tc = 1
〈k〉 has been posited as an adequate

estimate for the critical threshold of simple contagion, with Tc >
1
〈k〉 for complex conta-

gion.

As mentioned in Section 7.2.1, by varying exposure probability we can simulate the inher-

ently clandestine nature of cheating. We choose a uniform exposure p ∈ {1.0, 0.75, 0.5} to

provide baseline measurements for the effects of how fair players observe an act of cheating

in the real world.

7.2.2.2 Dynamic Network

This set of experiments uses the co-presence network. For these experiments, only a subset

of nodes are eligible for contact at each step t: the players that played during game t,

independent of the existence of declared Steam relationships or recorded in-game inter-

actions. For example, a player might observe another player cheating, but not actually

have a direct (as measurable via game logs) interaction. Observing cheating behavior,

even from a stranger, has been shown to affect the odds of cheating in controlled experi-

ments [GAA09, Ari12].

We use a uniform linear threshold, g(u) = T , in these experiments as opposed to the

fractional threshold in the previous section, while the dosage size distribution remains
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f(u) = 1. We let θt be the set of players that played in match t, and ξt(u) = ζt(u) =

|θt(u)|. Finally,

θt(u) =


θt if Aut = 1

∅ if Aut = 0

.

We are interested in examining the relationship between the following parameters: 1) the

threshold, 2) the memory window, 3) the exposure probability, and 4) seed selection.

As noted in the FTW! model, the number of series of matches of certain lengths is a good

predictor for friendship. If we set M > 1, then, as seen in Figure 7.13, it will provide

friends more opportunity to spread contagion to each other then non-friends do. If we set

p = 1.0, then being co-present with an infected once will guarantee a dose. If M = 1, then

a player must play with T infected players during a single match.

But, friends are more likely to play multiple matches in a row with each other. If we set

M > 1, it will give friends the ability to reinforce cheating behavior. Specifically, we test

M ∈ 1, 3, 5, 7. By using θt in combination with the appropriate selections of M , we are

thus projecting the effects of the social structure onto the behavioral network.

To examine the relationship between thresholds, we use a set of discrete, integer values

for the threshold, where a node becomes infected if the number of doses received exceeds

the given value. This differs from the fractional thresholds used in the static experiments

in that it is not relative to the number of contacts a player has. However, there is a clear

correspondence between the discrete threshold and a fractional threshold, because the vast

majority of games have an average number of players around 34.
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Some cheats are quite evident. For example, a “spinbot” is a type of cheat that automat-

ically aims for the player by continuously rotating his character at super human speed.

When the cheater sees another player he can “fire”; the bot stops spinning and automat-

ically aims at the other player. Once the cheater stops firing, the bot resumes spinning.

From the perspective of the cheater the world is constantly spinning, and from the per-

spective of other players, the cheater’s character is constantly spinning, except when he is

shooting with perfect aim. In real gameplay, spinbots are obvious.

Other cheats are less obvious. “Wallhacks” allow a cheater to see through walls and often

display otherwise hidden information such as outlining enemy’s characters and showing

their remaining health or ammunition. When used by a savvy cheater, a wallhack is nearly

undetectable to other players. The cheater simply appears to have good situational aware-

ness. With consistent use over time, however, suspicions about whether or not a player

downloaded his skills might arise.

With p = 1.0, we are recreating a scenario where every cheater uses a spinbot type cheat

(or that all cheaters are bad at concealing their behavior). In any case, when p = 1.0, ev-

ery player is aware of all cheaters while p < 1.0 means that some cheating goes unnoticed.

With p < 1.0, we are again projecting aspects of the social network onto the co-presence

network. As p → 0, repeated contact with infected individuals within a memory window

becomes increasingly important for the spread of infection. Thus friend relationships (as

indicated by the FTW! model predictors) will inherently become the prime vectors for

infection. A susceptible is much more likely to have repeated exposures to infected friends.

Of the 37,140 players in the co-presence network, 607, or ∼1.6% had a VAC ban on record

as of April 22, 2012. Although we note that these players did not have a ban for TF2 at

the time they appeared in our logs, they serve as a baseline for the behavior of cheaters
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Figure 7.15: Density of the number of matches played for both cheaters and non-cheaters.

in general. Further, as can be seen in Figure 7.15, the cheaters have (mostly) the same

distribution of games played, and thus our randomly selected seed nodes should have ap-

proximately the same number of chances to contact uninfected individuals as the empirical

cheaters did. Thus we seed a randomly selected 1.6% of nodes as infected at the start of

the simulation (i.e., φ0 = 607).

We draw the seeds from one of 3 player sets. The first is the full set of players, i.e., any

player that was present for at least 1 game. The second set is the empirical cheaters. The

third set is composed of players appearing in the largest component of the interacting

friends network, thus having the most active patterns of interactions (and stronger ties).

7.2.3 Experimental Results

In this Section we present our experimental results on the static networks followed by the

results on the dynamic co-presence network.
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Figure 7.16: Relative cascade sizes for static networks with M = 1, g(u) = T × degree(u),
p = 1, f(u) = 1.

7.2.3.1 Static Networks

Figure 7.16 plots the percentage of contaminated nodes as a function of the contagion

threshold for each empirical network and for their permuted versions. (As a reminder, the

higher the threshold, the harder for an individual to become infected). Each data point

is the result of 100 simulations for each network; we generate 100 permutations of each

empirical network.

We make several observations from Figure 7.16. First, while all networks supports conta-

gion, the critical threshold Tc (the threshold at which 90% of the nodes become infected)

is different for each of them. Thus, the server friends network is the most susceptible for

cascading behavior, and the interacting friends is the least susceptible under the conditions

simulated.

Second, the networks inferred from the declared OSN relationships do not support com-

plex contagion for the critical threshold estimation used in previous studies [CEM07],

where a contagion is deemed complex if Tc >
1
〈k〉 . One reason for the failure to support
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complex contagion under this definition is that while our networks are not scale free, as

seen in Figure 6.2, most of the literature assumes scale free networks.

Third, and most interesting, while the permuted versions of the server friends and inter-

action networks are less susceptible to contagion, the permuted interacting friends net-

work is more susceptible. Specifically, for a contagion to penetrate 75% of the interacting

friends network, the largest threshold is about 0.04. In comparison, for the randomized

versions of the interacting friends network, a threshold of about twice that much (0.08)

is sufficient. This is unexpected and likely due to the bi-modal betweenness distributions

seen in Figures 7.11 and 7.12. Only about 20% of nodes in the interacting friends network

have a normalized betweenness greater than 0.001, and less than 3% have more than 0.01;

the overwhelming majority of nodes have almost no shortest paths flowing through them.

When we permute the network, we are also redistributing much of the concentrated be-

tweenness, making the distribution more uniform. Because the high betweenness centrality

nodes are also high degree nodes, making them more difficult to infect, the permutation

removes the need for the contagion to pass through them to still have a successful cascade.

In other words, permuting the network does not necessarily make infecting hub nodes

any easier (they still need many cheater friends to become cheaters), but, it allows the

infection to spread between nodes with few neighbors who were not previously directly

connected.

Moreover, the middle row in Figure 7.17 (T = 0.1) shows that the server friends network

experiences a quick acceleration of infection, while the spread is more consistent over time

for the interacting friends and interaction networks. In the interaction network, at time

t = 10, about 65% of the network is infected, but only 30% is infected in the permuted

version. The differences in the server friends and interacting friends networks are less pro-
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Figure 7.17: The fraction of infected nodes in the static networks as a function of time.
Rows correspond to different fractional thresholds T . Columns group each empirical
network with its permuted version “(R)”.

nounced, with only about a 10% difference between the server friends and its permutations

when T = 0.1.

To summarize, our simulations showed three things. First, because the permutation al-

gorithm maintains the degree distribution, we know that the degree distribution is not

a sufficient metric to predict the spread of the contagion. Next, neither the interacting

friends nor server friends network support complex contagion when using the Centola es-

timation of critical threshold. Finally, the interacting friends network defies expectations

and becomes more susceptible to contagion when randomized.
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Figure 7.18: ψT for various values of M (columns), p (rows), and various seeding strate-
gies.

7.2.3.2 Dynamic Network

Figure 7.18 plots ψT for the co-presence network with different exposure probabilities and

shows a very surprising result with respect to cheaters’ positions in the network and how

it affects the contagion process. When seeded with the empirically known cheaters (the

red line with circles), the network is at its least susceptible. In fact, the critical thresh-

old when seeding with the banned players is the lowest of our three seeding strategies.

In short, the empirical position of cheaters in our co-presence data prevents them from

initiating an epidemic.

The interacting friends are clearly the most dangerous vector for the transmission of cheat-

ing behavior. For relatively high infection thresholds, cascades occur. In fact, when seeded

from the interacting friends, the critical threshold is nearly triple what it is for the other
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Figure 7.19: The total number of nodes in the co-presence network infected over time for
different p (rows), thresholds (columns), and seeding strategies.

seeding strategies. This finding has direct implications for the gaming industry. Depend-

ing on the position of cheaters in the network, i.e., if they are both declared friends and

actively interact with each other, the risks of contagion are more serious. Consequently, as

Figure 7.19 shows, there is less time to intervene and disrupt potential breakouts.

Another point of interest is how exposure probability affects contagion over time. Seeding

with the interacting friends reduces the relative impact of decreased exposure probabilities.

As indicated in Figures 7.13 and 7.14 friends tend to play many more games, especially

series of matches, with each other than non-friends. Because the reduction in exposure

probability reduces the odds of receiving a dose from any single contact with an infected

individual, the repeated co-play behavior leads to more exposures (and thus a higher cu-

mulative probability of receiving a dose) from infected friends.
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Interacting friends are a prime vector to contaminate the network because of their co-play

habits. For example, consider a pair of players that plays 7 matches in a row together. If

one player is infected, that gives 7 opportunities for his friend to receive a dose. Because

friends play series of matches together, this increases the odds that doses will “stack”

up together within the limits of the memory window. Because the interacting friends are

some of the most central in terms of betweenness (Figure 7.11), the newly infected inter-

acting friends are able to efficiently spread the infection further and faster than other seed

selections, especially to the relatively poorly connected nodes on the edge of the network.

As can be inferred from the negative degree correlation in the static interaction network

(Figure 7.10), the network has a core-periphery structure where the interacting friends act

as hubs, exposing the maximum number of susceptible players to the cheating contagion.

The results from the co-presence experiments can be summarized into two findings. First,

the actual position of the cheaters in our dataset is the most inoffensive in terms of cas-

cading. Second, seeding with interacting friends greatly increases the network’s susceptibil-

ity to infection.
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Chapter 8: Predicting Crowdsourced Decisions on Toxic Behavior

1In this chapter, we use the League of Legends Tribunal dataset (Section 4.3) and raise

two research questions initially explored in [BK14].

• Research Question 1: Can we predict the crowdsourced decisions?

Since the perception of toxic behavior is subjective and different across individuals, the

Tribunal deals with toxic behavior by a majority rule based on crowdsourcing. It has worked

quite well, but requires a long time to obtain enough votes. Thus, our research question is

to validate whether a certain part of the Tribunal can be assisted by machine learning. A

few considerations are carefully addressed here.

First, we must define machine learning tasks. We can define various machine learning

tasks on crowdsourced decisions in the Tribunal. Classifying 6 different combinations of

decision and level of agreements, dividing cases into punished or pardoned, extracting high

agreement cases, and recognizing less agreement cases are all possible tasks that machine

learning could help. It is not only about the accuracy of the classifier but also about the

application.

1Much of the work in this chapter was first published in Proceedings of the 23rd International
Conference on World Wide Web, 2014 [BK14]. Permission is included in Appendix B.
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Next, we must refine the training set. A Tribunal decision is either punish or pardon with

a level of agreement: majority, strong majority, and overwhelming majority. Previous

literature demonstrate that crowdsourced responses with high agreement are better for

training a classifier than less agreement [BGC10]. Unfortunately, it is unknown how Riot

Games divides these levels of agreement. We thus create different training sets and com-

pare the accuracy of trained classifiers.

Third, we examine the use of non-linguistic features only. LoL has a global userbase in

a few tens of countries across the world. This implies that chat logs in the Tribunal are

not always written in English. For example, most messages in the Korean Tribunal are

written in Korean. Various languages can potentially limit the portability of the classifier

if it largely depends on the textual information left in chats. In other words, more non-

linguistic features increase the generality of the classifier and bring higher practical im-

pacts.

Finally, we detect sentiments in chats. This is the inverse of the above, maximizing the

benefit of linguistic features. Many methods have been developed for detecting sentiments

conveyed in texts. Our intuition is that negative sentiments might be captured from toxic

behavior or other players’ reaction when toxic playing occurs.

The work in this chapter indicates that yes, the Tribunal can be successfully assisted by a

machine learning model.

• Research Question 2: What do the important features imply?

The next research goal is understanding decision-making in the Tribunal from the im-

portant features observed through supervised learning. Which features are important for

predicting crowdsourced decisions? What do they mean? Answering these questions leads

142



to several interesting challenges. First of all, features we find could be a huge advance in

online violence research. Toxic behavior has been typically considered hard to define. If

we obtain a good quality supervised-learned classifier, it indicates the important building

blocks in defining and understanding toxic behavior. Then, we draw a subsequent ques-

tion. Can we apply our classifier or the important features to other games, or Internet

communities? We find that our model is reasonably portable, even without training it on

region specific data.

8.1 Features

The Tribunal can be seen as a 2-stage crowd-sourced solution. Stage 1 is the per-match

reporting done by players that actually experienced the alleged toxic behavior. Stage 2

is the Tribunal case-by-case judgments. Toxicity is not having a bad game (possibly per-

ceived as feeding, i.e., repeatedly dying on purpose, or assisting the enemy) or having a

bad day and lashing out at a teammate (harassment). According to Riot, a certain thresh-

old of reports from stage 1 must be met before moving on to stage 2, which reveals re-

peated toxic behavior. The reason that Stage 2 is necessary has to do with the vagueness

of toxic behavior. Consider a player who is not very skilled. This player might exhibit

tendencies that could be interpreted as toxic, for example intentionally feeding. This is

compounded by attribution theory where a negative outcome (losing a match) triggers a

search for an external cause. I.e., when a team loses, as is the the case in the majority of

reported matches [KH], reporters might attribute the loss to a poorly performing player.

Although there is an unskilled player report type, players are aware that no punishment

is handed out for this category and thus might choose one of the punishable offenses in-

stead. Thus, the second stage removes the subjectivity associated with direct interaction
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with the possibly toxic player, as well as providing a more complete view of the accused’s

behavior over multiple matches. Players that have invested significant time, and are thus

familiar with LoL, are able to pick out patterns of toxic behavior when reported matches

are combined into a case.

The challenge lies in representing the parsimonious data presented to Tribunal reviewers in

a form digestible by machine learning algorithms. We thus extract summarized statistics

from each Tribunal case. We make use of two primary sources of information: 1) domain

specific values extracted from the results of reported matches, and 2) the information pro-

vided by the stage 1 Tribunal participants.

There are, unfortunately, several points of variation when it comes to extracting the in-

game values. First, each case has a varying amount of matches with no guarantee on the

sequence in which the matches took place. Second, because of the variety of game play in

LoL, there is no guarantee that matches are directly comparable, especially across different

players. For example, a player with below average skill is likely to have a lower KDA (an

in-game performance metric explained in the next section) than a player with higher skill.

Now assume that the low skill player is not toxic, while the high skill player is toxic, yet

both are reported for intentional feeding. There might not be a way of discriminating

between the two using just KDA.

Although we average the per-match statistics across all matches with a given report type

for each case, we could also use the worst/best matches. This is somewhat problematic as

it requires a definition of worst and best. We include the standard deviation of each aver-

aged statistic as a feature, which provides a sense of inter-match performance differences.

We then augment each instance with information provided by the Stage 1 Tribunal partic-

ipants. Namely, we make use of the number of allied and enemy reports in a given match,

144



the number of reports where the reporter included optional human readable text about

the offense, and the most common type of behavior reported for a given match. For each

possible report type, we compute the relevant statistics across all matches in the case with

said most common report type.

8.1.1 In-game Performance

In-game performance is the category of features that most requires the input of experts.

LoL is a complicated game and the meaning of the various match-related statistics is un-

likely to be divined by a reviewer, especially with respect to toxic behavior, without hav-

ing invested a significant number of hours in gameplay themselves. Nevertheless, they are

the easiest features to represent to a computer due to their purely numerical nature, so we

extract a set of relevant statistics from the matches in each Tribunal case.

We first begin with the most basic statistic, one that is common to nearly all competitive

games: kills, deaths, and assists. Kills and deaths are relatively self explanatory: simple

counts of the number of enemies a player killed and the number of times said player died.

Likewise, an assist is awarded to a player that participated in eliminating an enemy, but

did not land the killing blow. The details of what qualifies an assist varies per game, but

LoL awards an assist to any player that did damage or contributed passively (e.g., healed

a teammate that landed the killing blow) within 10 seconds prior to the death of an en-

emy. Kills, deaths, and assist are raw scores, but are often normalized to a KDA metric,

defined as:

KDA =
kills+ assists

deaths+ 1

.
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Unfortunately, due to the reliance on teamwork in games like LoL, a single toxic player

can severely impact his teammates abilities to perform at a high level. For example, an

intentional feeder is supplying the enemy team with gold and experience points, allowing

them to acquire powerful items and abilities much faster than the feeder’s allies. In turn,

this can result in a low KDA not only for the toxic player, but makes it difficult for his

allies to maintain a good KDA as well. For this reason, it might be difficult to distinguish

toxic players based solely on KDA and our initial analysis [KH] indicated reviewers were

not basing decisions only on KDA. However, two other statistics, damage dealt and re-

ceived, might shed additional light on toxic players.

In LoL, attacks do a certain amount of base damage to other players, removing a portion

of their hit points (“life”). When a player’s hit points reach 0, he dies, a kill (with asso-

ciated gold and experience) is awarded to his killers, and he must wait a certain period

of time to “respawn” and return to the fight. The base damage is modified depending on

both the offensive and defensive items a player has purchased. Anecdotally, toxic play-

ers in the feeding and assisting enemy categories will not buy items that aid in offense

or defense. Thus, we might expect a feeder to have very low damage dealt and very high

damage received relative to his teammates who have made purchases of useful items; even

though they might not have the power to actually kill enemies (due to a gold and expe-

rience advantage given to the other team by the feeder), fair players’ efforts are likely to

show in terms of damage. Seeing which items a player bought could give more details, but

it is overly specific and loses generality.

Next, we include the total gold and gold per minute earned by the offender. In LoL play-

ers earn gold in several ways: 1) passively at a pre-determined rate, 2) destroying towers,
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3) kills or assists, and 4) killing creeps, which are computer controlled monsters. Gold is

known to be a primary determinant of a match’s outcome.

The final performance related feature is time played, which is useful for detecting leavers

or players going AFK. In total, there are 364 features generated from in-game performance

values only. This number is large because we group per-match values based on the most

common report type.

8.1.2 User Reports

The first stage of the Tribunal, reports submitted players who directly observed the be-

havior, provides us with several pieces of information. First, we know the most common

category of behavior reported per match. Next, we know how many allies and enemies

made a report. Finally, reports can include a short (500 character limit) comment from

the reporter. Intuitively, the extra effort required to add a comment to a report might

indicate the intensity of the toxic behavior. Again, we group the per match values in the

case based on the common report type for that match, resulting in a total of 28 features.

8.1.3 Chats

As seen in Figure 8.1, around 60% of cases have more than about 25% of the matches in

them reported for offensive language or verbal abuse. This indicates that the observed

toxic behavior was expressed (at least partially) via the chat system. For this reason, we

intuit that the chat logs have predictive power. Linguistic analysis is an area of intense

research [FMDD13, GM11, TSSW10], and the corpus of chat logs in our data set would
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Figure 8.1: The number of matches reported in a case for each category of toxic behavior
per Tribunal case.

provide an interesting case for cutting edge techniques. We use an intuitive and straight-

forward method, “happiness” index.

Happiness, and its relation to language, is a widely studied area of psychology [BGB86].

For example, in the Affective Norms for English Words (ANEW) study [BL99], partici-

pants graded a set of 1034 words on a valence scale of 1 to 9 (in 0.5 increments). Valence

is the psychological term for the attractiveness (positive) or aversion (negative) to some-

thing; in this case a word. In other words, valence quantifies the “goodness” or “badness”

of a word. Valence scores in the ANEW dataset are well distributed, as can be seen in

Figure 8.2 (a), which plots the distribution of scores for all words in the ANEW dataset.

The ANEW study polled both female and male respondents. Riot reports that 90% of

LoL players are male2, and we thus use male respondent scores only. Although gender

swapping often occurs in social games [LPC+13], according to Flurry’s report3, action and

2http://tinyurl.com/stfunub6
3http://tinyurl.com/stfunub7
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Figure 8.2: CDF of valence scores.

strategy are the top two genres that females usually avoid. Also, positive effects of gender

swapping, enjoying a kind of “second” life, do not apply to LoL.

As demonstrated by Dodds and Danforth [DD10], valence scores for individual words can

be used to estimate the valence for a larger corpus of text. The valence of a piece of text is

defined as:

vtext =

∑n
i=1 vifi∑n
i=1 fi

where vi is the valence score of the ith word from the ANEW study, and fi is the number

of times said word appears in a given piece of text.

While we acknowledge that chat logs are likely to contain typos and abbreviations, vtext

has been shown to be robust across genres of text, including tweets [DD10, MFH+13],

another medium where we might expect “Internet-style” speech patterns. For cases where

no ANEW words were present, we define vtext = 0.

Figure 8.2 (b) plots the distribution of valence scores of all messages sent in a case for

both pardoned and punished cases where vtext ≥ 1. A two-sample Kolmogorov-Smirnov

test confirms the distributions are different. When compared to Figure 8.2 (a), we see that

“verbal” communication in LoL is generally neutral: most valence scores fall between 5

and 6. Further, cases that resulted in a punishment tend to have a lower valence score
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when compared to pardoned cases. This indicates that the chat logs are likely to be valu-

able in detecting toxic behavior.

When looking at the scores of messages sent only by potential toxic players, offenders, in

Figure 8.2 (c), it becomes clear that toxicity is present in a quantifiable way within the

chat logs. The distributions for both punished and pardoned offenders is lower than the

valence of the entire chat logs. The mean for punished and pardoned users are 5.725 and

5.779, respectively. Pardoned users are indeed more likely to have higher valence scores.

Interestingly, the difference is mainly present in terms of “above average” (≥ 5) valence

scores for pardoned users as opposed to a tendency towards below average scores for pun-

ished players. We also discover that the difference between punished and pardoned of-

fender becomes bigger if more reviewers are agreed. Figure 8.2 (d) shows the valence score

of toxic players when overwhelming majority is agreed. The mean for only those who are

punished or pardoned in this case are 5.699 and 5.751, respectively.

In addition to the scores described above, we also include the valence scores for bystanders

and victims for each report category. Here, we treat verbal abuse, offensive language, and

negative attitude differently from the other categories. For these cases we have previously

observed that reports by enemies are much more common. This can be attributed to by-

stander theory, which says that bystanders, i.e., those not directly harmed by bad behav-

ior, are much less likely to take action against it. In the case of, e.g., intentional feeding,

not only are enemy teams not directly harmed by the behavior, they actually receive a

benefit. While the quality of the competition may decrease, the odds of a win are much

more in their favor.

When it comes to chat based offenses, however, a toxic player can lash out at everyone

in the match. He can insult the enemy team when they are performing well, and trash
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talk when they are performing poorly. For example, a common insult in LoL is to call

someone a “noob,” slang for “newbie,” implying a lack of ability. It is a catch-all negative

term used as a response to criticism, to call out poor play, as a form of trash talk, and just

plain meanness. The word “noob” appears 3,551,328 times in the chat logs for the NA

region; an average of 6 times per case and 1.7 times per match, with players under review

saying “noob” at more than double the rate per message sent as non-offenders. Because

these communication based categories can affect both enemies of the offender, allies, or

neither, we consider their victims to be the offender’s allies if only allies reported him,

enemies if only enemies reported, and all players if both enemies and allies reported him.

With the above in mind, we extract 60 features per case from the chat logs.

8.2 Models

As we introduced above, we extract features from different categories. We then build sep-

arate models for each category, and a full model to contain all the features: an in-game

performance model, a user report model, a chat model, and a full model. The intuition

behind these basic models is comparing different sources.

First, in the in-game performance model, we can divide features by offender performance

and other players performance. Offender performance can reflect intentional feeding. Play-

ers with noticeably bad performance might die over and over intentionally. We note that

non-toxic unintentional feeding does occur, but only intentional feeding is toxic behavior.

Other players’ performance relates to the team competition aspect of LoL. Attribution

theory says that individuals will look for external causes of failure [Wei80]. The most obvi-

ous cause would be poor performance by an ally, and is likely to manifest as verbal abuse
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(harassment). In other words, a toxic player might lash out at the worst performing ally

due to the perception that a loss was the fault of said ally. We hypothesize that the inten-

sity of the verbal abuse, and thus the likelihood of punishment in the Tribunal, increases

as the offender’s performance diverges from the worst performing player on his team.

A less intuitive reasoning in favor of this model is that a poor performance by a player

does have an impact on the rest of his team. Previous analysis indicates that KDA alone

is insufficient in predicting the judgment of the tribunal: there was no correlation with

KDA and corresponding Tribunal decision [KH]. I.e., players with the best KDA were

about as likely to be punished as those with the worst.

The user report model depends on how players in a match perceive toxic playing. Al-

though user perception on toxic behavior is different, more reports in a single match means

more people recognize it, and implies more severe toxic behavior. In our initial analy-

sis [KH], we find that the number of reports in a single match is highly correlated with

the likelihood of being punished. The chat model relates to verbal abuse and offensive

language. In the Tribunal, reviewers can see the final in-game performance but not how

the match played out over time. Chats are the only source to give reviewers context about

what happened and what other players thought about it.

8.3 Results

In this Section we present the results of our experiments. We discuss the effects of con-

fidence in crowdsourced decisions, the model features that are most helpful in predicting

toxic behavior, and the portability of our classifier with respect to different regions.

152



8.3.1 The Effects of Confidence in Crowdsourced Decisions

The first research question we answer is whether or not reviewer agreement is relevant

when training a classifier. To do this, we grow random forest classifiers from only cases

of a given agreement. We then evaluate each classifier with a separate test set for each

agreement. The intuition is that the cases with the highest level of agreement from the

reviewers display the most egregious toxic behavior, providing a baseline for the remainder

of cases.

Figures 8.3, 8.4, and 8.5 plot the Receiver Operating Charactering (ROC) curves for test-

ing sets of each agreement type with classifiers trained from varying agreement cases. We

observe that training the classifier with overwhelming majority decisions results in the

highest Area Under the ROC Curve (AUC) across all cases. Our ability to distinguish

between guilty and not guilty increases with the level of agreement that we train the clas-

sifier with. This is consistent with previous research [BGC10]. While the classifier trained

with overwhelming majority is the most discriminating across the board, training with

strong majority cases has similar performance, while performance drops off considerably

when training with the majority decision cases.

This experiment has several implications. First, it might be beneficial to look at the ex-

tremes of behavior, clear cut pardons and punishes, to better predict borderline cases.

Second, it might be fruitful to predict decisions based on confidence. I.e., finding the most

obviously guilty or innocent individuals, leaving the borderline cases to human review-

ers. Third, it reveals the difficulty in discriminating between all but the most egregious

offenses.
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Figure 8.3: ROC curves for cases with a majority decision using a classifier trained from
majority cases (“M”), strong majority cases (“SM”), and overwhelming majority cases
(“OM”).

Figure 8.4: ROC curves for cases with a strong majority decision using a classifier trained
from majority cases (“M”), strong majority cases (“SM”), and overwhelming majority
cases (“OM”).
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Figure 8.5: ROC curves for cases with a overwhelming majority decision using a classifier
trained from majority cases (“M”), strong majority cases (“SM”), and overwhelming
majority cases (“OM”).

Figure 8.6: ROC curve for predicting Tribunal decisions with models using in-game
performance (P), user report (R), chats (C), and all available features (F).
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8.3.2 What Do Tribunal Reviewers Base Their Decisions On?

We now address what information Tribunal reviewers might be basing their decision on.

We present a few learning results to show the performance of our Random Forest classifier.

We begin with the performance of predicting decisions, pardon or punish without consider-

ing the agreement level. Figure 8.6 presents ROC curve for predicting decisions, punish

or pardon, with the performance (P), report (R), chat (C), and full (F) models. AUCs

are 0.7187, 0.7195, 0.7157, and 0.7991 for the performance, report, chat, and full models,

respectively. We observe that each model shows comparable performance.

Table 8.1 shows the 5 most important variables for predicting decisions. We omit the im-

portant variables for each category of toxic behavior, but it is similar across the categories.

In the performance model, we find that enemy performance is a good predictor for deci-

sions because offender or ally performance is relative in team competition games. Also,

offender performance itself is important for decision making in the Tribunal. Interestingly,

the number of deaths is more important than KDA. This might relate to partner blam-

ing. Toxic players blame teammates, e.g., saying “noob”, when the toxic player dies. The

implication is the toxic player died because allies did not help him. In this situation, the

number of deaths could be a good measure to reveal which is true: allies did not help or

toxic players performed poorly.

In the chat model, we find that the most important variable is the valence score of of-

fender no matter what the reported toxic category is. This agrees with our intuition that

reviewers can see the context from chats and infer what happened. They gain insights

from chat not only for verbal abuse or offensive language, but also other categories of toxic
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Table 8.1: The top 5 ranked features from an information gain evaluator for Tribunal
decisions.

Rank Feature
Performance only

1 verbal.abuse.enemies.kda
2 verbal.abuse.enemies.gpm
3 verbal.abuse.offender.deaths
4 verbal.abuse.enemies.kda.avg.per.player
5 verbal.abuse.offender.kda

Chat only
1 case.offender.valence
2 verbal.abuse.offender.chat.msgs
3 offensive.language.offender.chat.msgs
4 verbal.abuse.offender.valence
5 verbal.abuse.total.chat.msgs

Report only
1 verbal.abuse.allied.report.count
2 verbal.abuse.allied.report.comment.count
3 intentionally.feeding.allied.report.count
4 intentionally.feeding.allied.report.comment.count
5 offensive.language.allied.report.count

Full
1 case.offender.valence
2 verbal.abuse.allied.report.count
3 verbal.abuse.offender.chat.msgs
4 offensive.language.offender.chat.msgs
5 verbal.abuse.allied.report.comment.count
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behavior. Also, this demonstrates that the ANEW dataset works well even with chats in

online games. The second and third most important variable are the number of messages

sent by the offender when the reported reason is verbal abuse and offensive language. This

implies that the likelihood of toxic behavior goes up if the offender talks more. This can

be easily recognized in real-time and thus pragmatically used for warning toxic players

through visual cues. The fourth important variable is the valence score when the behavior

is reported as verbal abuse. This is straightforward to understand. We find that number of

total messages sent when the report reason is verbal abuse is the fifth important variable.

This is the only feature in the top five that is not only related to the offender, but also

others. If more players are involved in a quarrel, it is a strong sign of verbal abuse having

occurred.

In the user report model, top variables are related to how many reports are submitted.

The more reports, the more likely the Tribunal will decide to punish. This strongly agrees

with previous analysis [KH]. Additionally, we find that reviewers care about short com-

ments in user reports. This implies that a user interface encouraging comments might be

helpful for crowdsourced decision-making.

The top 5 features in the full model are entirely from the chat and report models. The

total valence of the case is the number one feature, which highlights how much toxic be-

havior is visible/expressed via in-game communication. The second most important fea-

ture in the full model comes from the report only model, highlighting how our approach

dovetails with the first crowdsourced stage of the Tribunal. The hints provided by those

that directly experience toxic behavior are useful not only to human reviewers, but, for an

algorithmic solution as well. Next, we note that the 6th and 7th most important features
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in the full model are from the performance model. Thus, while in-game performance num-

bers are a predictor of toxic behavior, context is key.

We also look into the top 5 important variables in predicting overwhelming majority par-

don and punish, respectively. We omit the details but we highlight two findings by com-

paring them. One is that there are great discrepancies of important variables between

the model for predicting overwhelming majority pardon and punish. It implies that re-

viewers might make a decision for punish and pardon according to different mechanisms.

The other is that, similar to predicting decisions, there are some commonalities in im-

portant variables across the category of toxic behavior for predicting overwhelming ma-

jority pardon and punish. For example, in predicting overwhelming majority pardon, the

most important variable in the report only model is the number of reports by allies across

the category. Similarly, in predicting overwhelming majority punish, the most important

variable in the chat only model is the number of messages sent by the offender across the

categories. Of course, there are some specifics for each category. For predicting overwhelm-

ing majority punish, in the report only model, the number of reports by enemies is more

important than the number by allies in intentional feeding, but in verbal abuse, allies’ re-

ports are more important than enemies’. For future work, we intend to combine this result

with qualitative user interviews and plan to reveal details of the mechanism of reviewers’

decisions.

Figures 8.7 and 8.8 show ROC curves for predicting overwhelming pardon and overwhelm-

ing punish, respectively. Their AUC are 0.8049, 0.8055, 0.8269, and 0.8811 for overwhelm-

ing pardon decisions and 0.6509, 0.6886, 0.619, and 0.7461 for overwhelming punish deci-

sions. There are some interesting differences between the curves for the agreement levels.

First, detecting overwhelming pardon is easier to find than overwhelming majority punish

159



Figure 8.7: ROC curve for predicting overwhelming pardons with models using in-game
performance (P), user report (R), chats (C), and all available features (F).

and shows quite good performance. It is mainly because overwhelming majority punish is

very close to strong majority punish, as we mentioned in Figure 8.3.

This proves the feasibility of automatically assigning tasks to crowds and machines accord-

ing to their difficulties. Quinn et al. demonstrate that crowd-assisted machine learning

can achieve high overall accuracy when assigning easy tasks to machine and fuzzy tasks

to human [QBYL10]. Although they divide cases into two classes by human experts, our

result demonstrates that we can do it automatically.

In context of LoL, properly dealing with overwhelming pardon case is more important

than overwhelming punish. Wrongly punished players would leave LoL, while wrongly

pardoned players sometimes would be back to the Tribunal. If they do not come to the

Tribunal again, it means that they are reformed and fine for the overall LoL ecosystem.
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Figure 8.8: ROC curve for predicting overwhelming punish decisions with models using
in-game performance (P), user report (R), chats (C), and using all available features (F).

In addition, we achieve high accuracy to predict decisions of punish or pardon on clear-

cut cases, overwhelming majority punish and pardon cases, as in Figure 8.3. Thus, it is

feasible that our classifier can automatically extract clear-cut cases and make accurate

decisions on them. It is great way to assist crowdsourcing platform by machine learning.

Second, the order of models by performance is different in two cases. In detecting over-

whelming majority pardon, we observe that a chat model shows the best performance,

while a user report model is quite comparable for the most part. By contrast, in detecting

overwhelming majority punish, a user report model shows quite good performance. This

is an interesting finding. Reviewers need to understand context from chats to prove not

guilty, but they also see why and how many times a toxic player is charged. This is consis-

tent with our initial analysis, revealing the number of user reports is highly correlated with

the likelihood of being punished [KH].
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8.3.3 Classifier Portability

Finally, we explore whether or not our classifier is portable. Based on previous analysis [KH],

we saw that there were statistically significant differences in Tribunal cases across the

various regions that LoL operates. One underlying reason behind this is likely due to cul-

tural differences realizing themselves both in the tendencies of toxic players as well as the

reviewers. Because of these differences, we expect models trained on the North American

dataset to not perform as well on the other regions. However, we do expect the models

to remain superior to a coin flip in terms of discriminatory power. In other words, while

we believe the models we specify are meaningful regardless of the region, the thresholds

learned are probably sub-optimal.

Before presenting results, we stress an additional caveat related to linguistic features. The

ANEW dataset is based on English words and was built from American respondents. This

makes the linguistic features (highly relevant in the NA dataset) useless when applied to

the KR dataset since English language words are almost non-existent. The EUW dataset

includes players with a variety of native tongues, and anecdotally French, German, and

Spanish are all spoken in-game. However, there is no language requirement to become

a reviewer; you only have to have an account within the region you are reviewing. Also,

English is a common tongue for gamers world wide. In fact, we see that less than 1% of

EUW cases have an undefined vtext.

Figure 8.9 and 8.10 show ROC curves of predicting EUW decisions and detecting EUW

overwhelming majority pardon cases by using classifier trained on NA. The performance

of predicting EUW decision does not reach that of NA decision, but detecting EUW over-
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Figure 8.9: ROC curve for EUW decisions with classifier trained on NA.

Figure 8.10: ROC curve for EUW Overwhelming Majority Pardons with classifier trained
on NA.
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whelming majority pardon is as good as NA. As with our hypothesis, this shows the po-

tential of classifier portability, but at the same time, the existence of regional differences [KH].

8.4 Estimating the Real-world Impacts

We present the potential gain of time, cost, and accuracy if our classifier assists the Tri-

bunal. One challenge is estimating the actual cost, time, and accuracy of reviewing cases

in the Tribunal because Riot does not release detail statistics thereof, except a few info-

graphics. We collect and complement partially available information to estimate required

sources for the Tribunal.

First, we estimate the actual cost for crowdsourcing decisions. Initially, Riot gave 5 Influ-

ence Points (IP) as rewards to each vote only when a majority vote is reached, but have

since removed this payment system. In LoL, IP is used for buying champions or skins.

To measure how big 5 IP is, we need to convert it to real money. Some champions whose

price are 450 IP can also be bought for 260 Riot Points (RP), that can be purchased by

real money. Players pay $10 for 1380 RP. Through a simple calculation, we reach $0.02 for

each correct vote. This is comparable fare with other crowdsourcing platforms [QBYL10].

Second, we estimate the time required for each case. According to the talk by Jefferey

“Lyte” Lin at Game Developers Conference (GDC) 20134, reviewers have cast 105 million

votes and reformed 280,000 toxic players. Other announcements by Steve “Pendragon”

Mescon5 reveal 50% of players warned by Tribunal are reformed. We thus assume that 105

million votes make verdicts for 560,000 toxic players and half of them are reformed. We

4http://tinyurl.com/stfunub8
5http://tinyurl.com/stfunub9

164



conservatively assume this is the lower bound of players who came to the Tribunal. This

means that 187.5 votes are required for majority votes on a single case. From the same

source, Riot reveals more than 47 million votes were cast in the first year of the Tribunal,

implying that 1.49 votes per second are casted. From both, we can infer 125.85 seconds

are required to reach a verdict for one case in the Tribunal. We reasonably assume that

this is the acceptable speed where Riot’s in-house experts manually review some intriguing

cases.

Finally, we estimate the accuracy of the Tribunal. Lin said, “approximately 80% agree-

ment between the [Tribunal] community and Riot’s in-house team”, in the same GDC

talk. He added that the in-house team is less lenient than the Tribunal. Surprisingly, the

overall accuracy of the Tribunal is comparable with our classifier with respect to Riot’s

in-house decisions. That is, in contrast to CrowdFlow [QBYL10], our supervised learner

has the potential to replace the crowdsourcing part of the Tribunal with no real sacrifice in

accuracy.

We now estimate the gain of Riot from the view of cost and victim players.

We already compute that the cost of each correct vote is $0.02. Conservatively, we esti-

mate 50% of all votes fall into majority for each case. Since the Tribunal got 47 million

votes the first year, its cost is 47M (votes) x 50 (%) x 0.02 ($) = 470,000 ($). As of March

2013, the number of votes reached 105 millions. Its potential cost surpasses 1 million dol-

lars. With the success of new regions and a growing userbase, this cost will become huge.

As of October 2012, Riot announced that 12 million players play LoL everyday6 and they

play more than 1 billion hours every month. Thus, we estimate that a player enjoys LoL

83 minutes everyday which equates to 2.21 matches where one match usually spans 30 to

6http://tinyurl.com/stfunub10
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45 minutes. In the first year, the Tribunal detected 47M / 187.5 = 250,667 toxic players.

On average, 686.75 toxic players are warned by the Tribunal everyday. From this number

we can compute number of potential victims who are protected by the Tribunal everyday.

The number of matches toxic players participate everyday is 1517.74, and 13659.61 inno-

cent players are exposed to toxic players. If our classifier and the Tribunal works together

in a 50-50 manner, we can protect 13,659 more players everyday and more than 400 thou-

sand per month.

8.5 Limitations and Consequences of Our Approach

Although we have shown our approach is relatively robust, even across different regions

of the world, there are some limitations. First, although outside the scope of this paper,

LoL features an ever changing “meta-game” which dictates commonly used strategies and

tactics. Although the features we use in this paper are not directly tied to the meta-game,

for example which particular items or champions are selected, they are indirectly related.

E.g., the amount of damage dealt and received or gold earned might be influenced by the

current meta-game. Although the dataset in this paper spans multiple meta-games and we

still see good results, accuracy might be improved by training classifiers on data only from

the meta-game of cases under examination.

Toxic players could, in theory, adapt to avoid detection. For example, toxic players might

say “Wow, you are a great player!” sarcastically instead of calling someone a noob. Or,

perhaps an intentional feeder would go out of his way to damage the enemy team, but not

enough to actually kill them. This raises some interesting points. First, toxic behavior

only has an impact if it actually affects people in a negative way. It would take a ma-
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jor shift in the community’s understanding of language to infer that a seemingly positive

statement was meant in a negative way. Second, in the case of toxic players adapting their

play style, we argue that is a hidden benefit of our approach. Detecting toxic behavior

has significant value, but preventing it wholesale or reducing its impact is a much better

solution. Although a feeder could attempt to hide his intentions by damaging the enemy

team, he is consequently reducing the negative impact of his feeding by still providing

some utility to his team.

8.6 Summary

This chapter presented an analysis of toxic behavior in the League of Legends. From mil-

lions of crowdsourced decisions, we modeled toxic behavior from features derived from in-

game performance, the perspective of players who directly experienced the behavior, and

chat logs. We discovered that all three models were successful in labeling toxic behavior,

but, combined they were much more powerful. Additionally, we demonstrated that our

model was robust across regions of the world, and an automated system could save signifi-

cant time and money.
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Chapter 9: Conclusion

This dissertation presented an analysis of bad behavior in online video games. We pro-

vided an architecture and reference implementation for the collection and study of large

scale longitudinal social network data. Using this system, we collected data on over 12

million gamers and 700 thousand cheaters from the largest gaming social network on PC.

We performed a quantitative study of about 10 months of interactions among over 30

thousand gamers on a community owned and operated game server. We then used these

findings to perform an analysis of contagion with an interaction based model. Finally, we

analyzed and extracted a model for detecting toxic behavior of gamers.

Our primary findings can be summarized as follows.

1. Cheaters are as well embedded in the social network as fair players.

Although they exhibit anti-social behavior, cheaters had about the same number

of friends as non-cheaters and are well represented in terms of degree and between-

ness centrality. When we looked a bit deeper, we discovered that cheaters and non-

cheaters had different neighborhood compositions. In short, cheaters tended have a

higher fraction of cheaters in their neighborhoods.

2. Gamers form relationships such that interactions between friends dominates interac-

tions between non-friends.
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We analyzed detailed logs from a community owned and operated game server to

explore the impetus behind the creation of declared relationships. We found that

friends interact with each other much more often than non-friends interact. When

exploring events prior to and after a declared relationship was formed, we found that

interactions steadily increase, peaking when the relationship is declared, and then

begin to decay.

3. There is a statistically significant effect such that having more cheater friends is a

predictor for becoming a cheater. I.e., there is evidence that a contagion process is at

play.

Using low resolution timing data, we built a classifier that indicated a relationship

between the number of cheater friends and the likelihood of becoming a cheater in

the future. We used a proportional hazard model to show this effect was increasing

in a statistically significant fashion up until about four cheater friends. We then

visualized the spread of this behavior using high resolution timing data, showing how

clusters of cheaters appear within the network.

4. There is a social penalty involved when knowledge of cheating behavior is made

public (via the application of a VAC ban); cheaters tend to lose friends.

When we examined the effects of the publicly visible cheating flag, we discovered

that cheaters tended to lose friends after a VAC ban was applied. Conversely, non-

cheaters tended to gain friends over the same period of time. When using high-resolution

data, we discovered that this loss of friends happened very quickly after the ban

become publicly known, indicating the existence of a social penalty.

5. Toxic behavior can be modeled and detected to a high degree of accuracy using crowd-

sourced decisions.
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We derived a model for predicting toxic behavior using millions of crowdsourced

decisions from the most popular online game in the world. The model incorporates

domain specific features as well as a semantic analysis component. We were able to

discriminate between guilt and innocence upwards of 80% of the time, and in some

circumstances about 90% of the time. Moreover, the model proved portable across

geo-political regions.

The remainder of this chapter provides future work and discussion related to this disserta-

tion.

9.1 Future Work

There are several avenues of future work related to this dissertation. First, we wish to ex-

plore the impact of match making services on bad behavior. Unlike our SH dataset, play-

ers of games with match making systems do not choose who they play with, but instead

are placed into games according to their skill level. As noted by Herbrich et al. [HMG07],

when the TrueSkill system was implemented, there was an increase in cheating behavior,

and even new forms of cheating springing up. Because match making is such an integral

part to modern multiplayer games, this relationship is due for a deeper exploration. What

is it about match making systems that encourage cheating? How can match making sys-

tems be altered or augmented to take this into account?

We also wish to validate the model presented in Chapter 7. The main challenge for this

avenue of study is acquiring sufficient data. Unfortunately, we only have data from one of

thousands of servers from TF2, and the cheaters appearing in our dataset did not cheat

in that game when they appeared in our dataset; they would have been VAC banned and
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unable to play. However, we are currently devising a data collection strategy to monitor

the virtual whereabouts of gamers from a wider sample of servers. Although it is unlikely

we will be able to obtain as detailed a dataset as our TF2 logs, our model indicates that

co-presence data should be sufficient.

We additionally wish to explore whether or not toxic behavior has contagious effects. Based

on our experiences in the real world, we hypothesize that as players are exposed to toxic

behavior over time, they themselves are more likely to become toxic. Although both cheat-

ing and toxic behavior are “bad,” they are fundamentally different, and we suspect these

differences to be exposed in terms of modeling the underlying contagion process.

We wish to continue building on our Pregel implementation, Elaine 3.4.3. Elaine continues

to be developed ahas been made available to the public at http://github.com/worst/elaine.

It is particularly lacking a robust fault tolerance model. From our instrumentation, we

found that while Elaine scales both in number of compute nodes and the size of the graph,

there are performance bottlenecks in inter-node communication. The performance hits

appear to be taking place in DCell, the distributed object library Elaine is built on top

of, but, we are uncertain whether this is a fundamental issue or something that can be

mitigated via Elaine’s implementation. We are also exploring different graph partitioning

methods to increase performance.

Finally, we are currently exploring performance analytics for games. A growing trend in

real world sports is the use of statistical methods to inform, in a quantitative manner,

strategies, tactics, and other organizational decisions. While professional eSports differ

from real world sports in many ways, the techniques originating from, e.g., baseball, have

been successfully used, albeit with domain specific modifications, to other sports. These

analyses have been exceeding successful in increasing performance of professional sports
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teams, and we see no reason to believe they would not be successful for eSports. As eS-

ports continue to expand, a foundation for analytics could have a large impact on the

industry.

9.2 Discussion

Our findings have impact not only in video games but also in the real world. As has been

shown by other researchers, the behavior of people online maps to their behavior in the

real world [BTP14, CWC+09]. This mapping principle allows us to transfer our findings,

with some caveats, to more general behavior.

Unlike many studies on bad behavior, we were able to show hard empirical evidence at

planetary scale that cheating is contagious. For gaming in particular this suggests possible

mechanisms to detect and, more importantly, prevent cheating. For example, the social

penalty that cheaters face could be exploited. As it stands now, a change in cheater sta-

tus, while public, requires actually looking at a player profile. If it was instead, say, broad-

cast via a message to all the friends of the cheater, then it might serve as an information

driven vaccine [RTL12] in addition to being a deterrent.

As we saw in Section 5.4.1, there appears to be substantial differences in cheating behavior

in different socio-geographic regions. On the other hand, in Section 8.3.3, we found that

a toxic behavior classifier trained on North American data was reasonably successful at

detecting toxic behavior on European data. Any solution for dealing with bad behavior

online should take socio-geographic concerns into account. Even though underlying mech-

anisms might be similar across regions, the details, or in the case of Section 8.3.3 model

parameters, likely differ.
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For online video games, designers should keep in mind that although they might codify the

rules of the virtual world with programming, players are influenced by their real world ex-

periences. As we noted in Section 5.2, we discovered a cheater who had exceeded the max-

imum number of friends that is supposed to be allowed on Steam Community, seemingly

in contradiction to the social penalty we saw. As it turns out, this cheater was from one

of the Nordic countries, where we also found a very high population of cheaters. Although

more study is necessary, this indicates that a solution that might work in one part of the

world, e.g., an information driven vaccine, might not work elsewhere.

In Chapter 8 we developed a predictive model for toxic behavior. While certainly relevant

to online games, the effectiveness of this model implies something more. Recall that toxic

behavior has a somewhat ambiguous definition. This ambiguity is what makes derivation

of a mathematical model difficult. How can we precisely represent toxic behavior to a

computer if we cannot explicitly define it for humans? The solution that we took amounts

to using the crowdsourced decisions as an implicit definition. The implication is that by

dissecting the derived model, we might increase our knowledge and ability to describe

certain types of behavior.

As with any observational study, there are some caveats to keep in mind. While research

across disciplines indicates that our findings are portable, we caution that our findings

might capture specifics of unethical behavior that are not cross applicable. For example,

while a student cheating on a test can make his own cheat sheet, most of the cheaters in

our study are dependent on 3rd party cheat creators. Although cheating behavior defi-

nitely diffuses in both cases, in video games the knowledge of how the cheat is executed

does not.
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There are also significant concerns about privacy and validation. Any mechanism that

exploits the structure of a social network for detection of unethical behavior inherently

faces concerns of “guilt by association.” Indeed, our findings indicate that not all of a

cheaters friends will become cheaters themselves, but rather that there is a statistically

significant increased chance they will cheat. Taking action against a potential cheater

based solely on the actions of his associates will undoubtedly result in the condemnation

of innocents. Similarly, deploying the model for detecting toxic behavior (Chapter 8) will

produce both false positives and false negatives: some innocents will be found guilty while

some guilty will go free.

While the consequences of deviations from the model in video games are important, when

applied to the real world they could be disastrous. A false positive for cheating in aca-

demics or business could ruin someone’s life. That said, we implore researchers delving

deeper into this problem to tread carefully. While our findings can, and should, be used to

inform future studies and solutions, these caveats should be carefully considered.
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Appendix A: Statistical Tests

We used two tests of statistical significance when comparing distributions in this paper:

the two sample Kolmogorov-Smirnov (KS) test and the permutation test.

The KS test is nonparametric and uses the supremum (least upper bound) of the set of

distances between each point of two empirical distribution functions for its test statistic

(D). Unfortunately, while the KS test is distribution agnostic (e.g., the data does not have

to be normally distributed) it operates only on continuous distributions with no ties. For-

tunately, the KS test can be bootstrapped to avoid these issues [Sek11]. For all reporting

in this paper we used 1,000 bootstrap samples.

A permutation test, on the other hand, uses random reshuffles of the data to get the dis-

tribution of a test statistic under a null hypothesis. In our case the null hypothesis is that

of no difference between two groups, cheaters and noncheaters, and the random reassign-

ment of these labels to the elements of the data vector followed by the calculation of the

statistic of interest yields a distribution of this statistic, when the reassignment is done

many times, against which its observed value can be compared.

The permutation method, also known as a randomization test, is a straight forward and

intuitive approach. Consider a 2 column vector representing two distributions where the

first column is a label identifying the distribution (e.g,. “cheaters” or “noncheaters”) to

which the value in the second column belongs. We then calculate a test statistic T 1.

Operating under the null hypothesis that the labels are meaningless (and thus the distri-

butions are the same), we randomly permute the labels and compute a new test statistic

1In theory, any appropriate test statistic can be used, but we use a standardized linear statistic as
described in [HHvdWZ08]
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Appendix A: (continued)

Ti. Due to the random labeling, if we perform the permutation repeatedly, our Tis should

be uniformly distributed, and thus the null hypothesis would have the original T statistic

appearing anywhere in the ordered distribution of Tis with equal probability.

If we perform the permutation M times, we can then calculate a p value as the fraction of

permutations where Ti ≥ T . In other words,

ppermute =
1

M

M∑
i=0

I(Ti ≥ T )

(where I is the indicator function returning 1 if its argument is true, and 0 otherwise). For

all reporting in this paper we use M = 100,000.
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