


Figure 7.19: The total number of nodes in the co-presence network infected over time for
different p (rows), thresholds (columns), and seeding strategies.

seeding strategies. This finding has direct implications for the gaming industry. Depend-

ing on the position of cheaters in the network, i.e., if they are both declared friends and

actively interact with each other, the risks of contagion are more serious. Consequently, as

Figure 7.19 shows, there is less time to intervene and disrupt potential breakouts.

Another point of interest is how exposure probability affects contagion over time. Seeding

with the interacting friends reduces the relative impact of decreased exposure probabilities.

As indicated in Figures 7.13 and 7.14 friends tend to play many more games, especially

series of matches, with each other than non-friends. Because the reduction in exposure

probability reduces the odds of receiving a dose from any single contact with an infected

individual, the repeated co-play behavior leads to more exposures (and thus a higher cu-

mulative probability of receiving a dose) from infected friends.
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Interacting friends are a prime vector to contaminate the network because of their co-play

habits. For example, consider a pair of players that plays 7 matches in a row together. If

one player is infected, that gives 7 opportunities for his friend to receive a dose. Because

friends play series of matches together, this increases the odds that doses will “stack”

up together within the limits of the memory window. Because the interacting friends are

some of the most central in terms of betweenness (Figure 7.11), the newly infected inter-

acting friends are able to efficiently spread the infection further and faster than other seed

selections, especially to the relatively poorly connected nodes on the edge of the network.

As can be inferred from the negative degree correlation in the static interaction network

(Figure 7.10), the network has a core-periphery structure where the interacting friends act

as hubs, exposing the maximum number of susceptible players to the cheating contagion.

The results from the co-presence experiments can be summarized into two findings. First,

the actual position of the cheaters in our dataset is the most inoffensive in terms of cas-

cading. Second, seeding with interacting friends greatly increases the network’s susceptibil-

ity to infection.
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Chapter 8: Predicting Crowdsourced Decisions on Toxic Behavior

1In this chapter, we use the League of Legends Tribunal dataset (Section 4.3) and raise

two research questions initially explored in [BK14].

• Research Question 1: Can we predict the crowdsourced decisions?

Since the perception of toxic behavior is subjective and different across individuals, the

Tribunal deals with toxic behavior by a majority rule based on crowdsourcing. It has worked

quite well, but requires a long time to obtain enough votes. Thus, our research question is

to validate whether a certain part of the Tribunal can be assisted by machine learning. A

few considerations are carefully addressed here.

First, we must define machine learning tasks. We can define various machine learning

tasks on crowdsourced decisions in the Tribunal. Classifying 6 different combinations of

decision and level of agreements, dividing cases into punished or pardoned, extracting high

agreement cases, and recognizing less agreement cases are all possible tasks that machine

learning could help. It is not only about the accuracy of the classifier but also about the

application.

1Much of the work in this chapter was first published in Proceedings of the 23rd International
Conference on World Wide Web, 2014 [BK14]. Permission is included in Appendix B.
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Next, we must refine the training set. A Tribunal decision is either punish or pardon with

a level of agreement: majority, strong majority, and overwhelming majority. Previous

literature demonstrate that crowdsourced responses with high agreement are better for

training a classifier than less agreement [BGC10]. Unfortunately, it is unknown how Riot

Games divides these levels of agreement. We thus create different training sets and com-

pare the accuracy of trained classifiers.

Third, we examine the use of non-linguistic features only. LoL has a global userbase in

a few tens of countries across the world. This implies that chat logs in the Tribunal are

not always written in English. For example, most messages in the Korean Tribunal are

written in Korean. Various languages can potentially limit the portability of the classifier

if it largely depends on the textual information left in chats. In other words, more non-

linguistic features increase the generality of the classifier and bring higher practical im-

pacts.

Finally, we detect sentiments in chats. This is the inverse of the above, maximizing the

benefit of linguistic features. Many methods have been developed for detecting sentiments

conveyed in texts. Our intuition is that negative sentiments might be captured from toxic

behavior or other players’ reaction when toxic playing occurs.

The work in this chapter indicates that yes, the Tribunal can be successfully assisted by a

machine learning model.

• Research Question 2: What do the important features imply?

The next research goal is understanding decision-making in the Tribunal from the im-

portant features observed through supervised learning. Which features are important for

predicting crowdsourced decisions? What do they mean? Answering these questions leads
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to several interesting challenges. First of all, features we find could be a huge advance in

online violence research. Toxic behavior has been typically considered hard to define. If

we obtain a good quality supervised-learned classifier, it indicates the important building

blocks in defining and understanding toxic behavior. Then, we draw a subsequent ques-

tion. Can we apply our classifier or the important features to other games, or Internet

communities? We find that our model is reasonably portable, even without training it on

region specific data.

8.1 Features

The Tribunal can be seen as a 2-stage crowd-sourced solution. Stage 1 is the per-match

reporting done by players that actually experienced the alleged toxic behavior. Stage 2

is the Tribunal case-by-case judgments. Toxicity is not having a bad game (possibly per-

ceived as feeding, i.e., repeatedly dying on purpose, or assisting the enemy) or having a

bad day and lashing out at a teammate (harassment). According to Riot, a certain thresh-

old of reports from stage 1 must be met before moving on to stage 2, which reveals re-

peated toxic behavior. The reason that Stage 2 is necessary has to do with the vagueness

of toxic behavior. Consider a player who is not very skilled. This player might exhibit

tendencies that could be interpreted as toxic, for example intentionally feeding. This is

compounded by attribution theory where a negative outcome (losing a match) triggers a

search for an external cause. I.e., when a team loses, as is the the case in the majority of

reported matches [KH], reporters might attribute the loss to a poorly performing player.

Although there is an unskilled player report type, players are aware that no punishment

is handed out for this category and thus might choose one of the punishable offenses in-

stead. Thus, the second stage removes the subjectivity associated with direct interaction
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with the possibly toxic player, as well as providing a more complete view of the accused’s

behavior over multiple matches. Players that have invested significant time, and are thus

familiar with LoL, are able to pick out patterns of toxic behavior when reported matches

are combined into a case.

The challenge lies in representing the parsimonious data presented to Tribunal reviewers in

a form digestible by machine learning algorithms. We thus extract summarized statistics

from each Tribunal case. We make use of two primary sources of information: 1) domain

specific values extracted from the results of reported matches, and 2) the information pro-

vided by the stage 1 Tribunal participants.

There are, unfortunately, several points of variation when it comes to extracting the in-

game values. First, each case has a varying amount of matches with no guarantee on the

sequence in which the matches took place. Second, because of the variety of game play in

LoL, there is no guarantee that matches are directly comparable, especially across different

players. For example, a player with below average skill is likely to have a lower KDA (an

in-game performance metric explained in the next section) than a player with higher skill.

Now assume that the low skill player is not toxic, while the high skill player is toxic, yet

both are reported for intentional feeding. There might not be a way of discriminating

between the two using just KDA.

Although we average the per-match statistics across all matches with a given report type

for each case, we could also use the worst/best matches. This is somewhat problematic as

it requires a definition of worst and best. We include the standard deviation of each aver-

aged statistic as a feature, which provides a sense of inter-match performance differences.

We then augment each instance with information provided by the Stage 1 Tribunal partic-

ipants. Namely, we make use of the number of allied and enemy reports in a given match,
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the number of reports where the reporter included optional human readable text about

the offense, and the most common type of behavior reported for a given match. For each

possible report type, we compute the relevant statistics across all matches in the case with

said most common report type.

8.1.1 In-game Performance

In-game performance is the category of features that most requires the input of experts.

LoL is a complicated game and the meaning of the various match-related statistics is un-

likely to be divined by a reviewer, especially with respect to toxic behavior, without hav-

ing invested a significant number of hours in gameplay themselves. Nevertheless, they are

the easiest features to represent to a computer due to their purely numerical nature, so we

extract a set of relevant statistics from the matches in each Tribunal case.

We first begin with the most basic statistic, one that is common to nearly all competitive

games: kills, deaths, and assists. Kills and deaths are relatively self explanatory: simple

counts of the number of enemies a player killed and the number of times said player died.

Likewise, an assist is awarded to a player that participated in eliminating an enemy, but

did not land the killing blow. The details of what qualifies an assist varies per game, but

LoL awards an assist to any player that did damage or contributed passively (e.g., healed

a teammate that landed the killing blow) within 10 seconds prior to the death of an en-

emy. Kills, deaths, and assist are raw scores, but are often normalized to a KDA metric,

defined as:

KDA =
kills+ assists

deaths+ 1

.
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Unfortunately, due to the reliance on teamwork in games like LoL, a single toxic player

can severely impact his teammates abilities to perform at a high level. For example, an

intentional feeder is supplying the enemy team with gold and experience points, allowing

them to acquire powerful items and abilities much faster than the feeder’s allies. In turn,

this can result in a low KDA not only for the toxic player, but makes it difficult for his

allies to maintain a good KDA as well. For this reason, it might be difficult to distinguish

toxic players based solely on KDA and our initial analysis [KH] indicated reviewers were

not basing decisions only on KDA. However, two other statistics, damage dealt and re-

ceived, might shed additional light on toxic players.

In LoL, attacks do a certain amount of base damage to other players, removing a portion

of their hit points (“life”). When a player’s hit points reach 0, he dies, a kill (with asso-

ciated gold and experience) is awarded to his killers, and he must wait a certain period

of time to “respawn” and return to the fight. The base damage is modified depending on

both the offensive and defensive items a player has purchased. Anecdotally, toxic play-

ers in the feeding and assisting enemy categories will not buy items that aid in offense

or defense. Thus, we might expect a feeder to have very low damage dealt and very high

damage received relative to his teammates who have made purchases of useful items; even

though they might not have the power to actually kill enemies (due to a gold and expe-

rience advantage given to the other team by the feeder), fair players’ efforts are likely to

show in terms of damage. Seeing which items a player bought could give more details, but

it is overly specific and loses generality.

Next, we include the total gold and gold per minute earned by the offender. In LoL play-

ers earn gold in several ways: 1) passively at a pre-determined rate, 2) destroying towers,
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3) kills or assists, and 4) killing creeps, which are computer controlled monsters. Gold is

known to be a primary determinant of a match’s outcome.

The final performance related feature is time played, which is useful for detecting leavers

or players going AFK. In total, there are 364 features generated from in-game performance

values only. This number is large because we group per-match values based on the most

common report type.

8.1.2 User Reports

The first stage of the Tribunal, reports submitted players who directly observed the be-

havior, provides us with several pieces of information. First, we know the most common

category of behavior reported per match. Next, we know how many allies and enemies

made a report. Finally, reports can include a short (500 character limit) comment from

the reporter. Intuitively, the extra effort required to add a comment to a report might

indicate the intensity of the toxic behavior. Again, we group the per match values in the

case based on the common report type for that match, resulting in a total of 28 features.

8.1.3 Chats

As seen in Figure 8.1, around 60% of cases have more than about 25% of the matches in

them reported for offensive language or verbal abuse. This indicates that the observed

toxic behavior was expressed (at least partially) via the chat system. For this reason, we

intuit that the chat logs have predictive power. Linguistic analysis is an area of intense

research [FMDD13, GM11, TSSW10], and the corpus of chat logs in our data set would
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Figure 8.1: The number of matches reported in a case for each category of toxic behavior
per Tribunal case.

provide an interesting case for cutting edge techniques. We use an intuitive and straight-

forward method, “happiness” index.

Happiness, and its relation to language, is a widely studied area of psychology [BGB86].

For example, in the Affective Norms for English Words (ANEW) study [BL99], partici-

pants graded a set of 1034 words on a valence scale of 1 to 9 (in 0.5 increments). Valence

is the psychological term for the attractiveness (positive) or aversion (negative) to some-

thing; in this case a word. In other words, valence quantifies the “goodness” or “badness”

of a word. Valence scores in the ANEW dataset are well distributed, as can be seen in

Figure 8.2 (a), which plots the distribution of scores for all words in the ANEW dataset.

The ANEW study polled both female and male respondents. Riot reports that 90% of

LoL players are male2, and we thus use male respondent scores only. Although gender

swapping often occurs in social games [LPC+13], according to Flurry’s report3, action and

2http://tinyurl.com/stfunub6
3http://tinyurl.com/stfunub7
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Figure 8.2: CDF of valence scores.

strategy are the top two genres that females usually avoid. Also, positive effects of gender

swapping, enjoying a kind of “second” life, do not apply to LoL.

As demonstrated by Dodds and Danforth [DD10], valence scores for individual words can

be used to estimate the valence for a larger corpus of text. The valence of a piece of text is

defined as:

vtext =

∑n
i=1 vifi∑n
i=1 fi

where vi is the valence score of the ith word from the ANEW study, and fi is the number

of times said word appears in a given piece of text.

While we acknowledge that chat logs are likely to contain typos and abbreviations, vtext

has been shown to be robust across genres of text, including tweets [DD10, MFH+13],

another medium where we might expect “Internet-style” speech patterns. For cases where

no ANEW words were present, we define vtext = 0.

Figure 8.2 (b) plots the distribution of valence scores of all messages sent in a case for

both pardoned and punished cases where vtext ≥ 1. A two-sample Kolmogorov-Smirnov

test confirms the distributions are different. When compared to Figure 8.2 (a), we see that

“verbal” communication in LoL is generally neutral: most valence scores fall between 5

and 6. Further, cases that resulted in a punishment tend to have a lower valence score
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when compared to pardoned cases. This indicates that the chat logs are likely to be valu-

able in detecting toxic behavior.

When looking at the scores of messages sent only by potential toxic players, offenders, in

Figure 8.2 (c), it becomes clear that toxicity is present in a quantifiable way within the

chat logs. The distributions for both punished and pardoned offenders is lower than the

valence of the entire chat logs. The mean for punished and pardoned users are 5.725 and

5.779, respectively. Pardoned users are indeed more likely to have higher valence scores.

Interestingly, the difference is mainly present in terms of “above average” (≥ 5) valence

scores for pardoned users as opposed to a tendency towards below average scores for pun-

ished players. We also discover that the difference between punished and pardoned of-

fender becomes bigger if more reviewers are agreed. Figure 8.2 (d) shows the valence score

of toxic players when overwhelming majority is agreed. The mean for only those who are

punished or pardoned in this case are 5.699 and 5.751, respectively.

In addition to the scores described above, we also include the valence scores for bystanders

and victims for each report category. Here, we treat verbal abuse, offensive language, and

negative attitude differently from the other categories. For these cases we have previously

observed that reports by enemies are much more common. This can be attributed to by-

stander theory, which says that bystanders, i.e., those not directly harmed by bad behav-

ior, are much less likely to take action against it. In the case of, e.g., intentional feeding,

not only are enemy teams not directly harmed by the behavior, they actually receive a

benefit. While the quality of the competition may decrease, the odds of a win are much

more in their favor.

When it comes to chat based offenses, however, a toxic player can lash out at everyone

in the match. He can insult the enemy team when they are performing well, and trash
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talk when they are performing poorly. For example, a common insult in LoL is to call

someone a “noob,” slang for “newbie,” implying a lack of ability. It is a catch-all negative

term used as a response to criticism, to call out poor play, as a form of trash talk, and just

plain meanness. The word “noob” appears 3,551,328 times in the chat logs for the NA

region; an average of 6 times per case and 1.7 times per match, with players under review

saying “noob” at more than double the rate per message sent as non-offenders. Because

these communication based categories can affect both enemies of the offender, allies, or

neither, we consider their victims to be the offender’s allies if only allies reported him,

enemies if only enemies reported, and all players if both enemies and allies reported him.

With the above in mind, we extract 60 features per case from the chat logs.

8.2 Models

As we introduced above, we extract features from different categories. We then build sep-

arate models for each category, and a full model to contain all the features: an in-game

performance model, a user report model, a chat model, and a full model. The intuition

behind these basic models is comparing different sources.

First, in the in-game performance model, we can divide features by offender performance

and other players performance. Offender performance can reflect intentional feeding. Play-

ers with noticeably bad performance might die over and over intentionally. We note that

non-toxic unintentional feeding does occur, but only intentional feeding is toxic behavior.

Other players’ performance relates to the team competition aspect of LoL. Attribution

theory says that individuals will look for external causes of failure [Wei80]. The most obvi-

ous cause would be poor performance by an ally, and is likely to manifest as verbal abuse

151



(harassment). In other words, a toxic player might lash out at the worst performing ally

due to the perception that a loss was the fault of said ally. We hypothesize that the inten-

sity of the verbal abuse, and thus the likelihood of punishment in the Tribunal, increases

as the offender’s performance diverges from the worst performing player on his team.

A less intuitive reasoning in favor of this model is that a poor performance by a player

does have an impact on the rest of his team. Previous analysis indicates that KDA alone

is insufficient in predicting the judgment of the tribunal: there was no correlation with

KDA and corresponding Tribunal decision [KH]. I.e., players with the best KDA were

about as likely to be punished as those with the worst.

The user report model depends on how players in a match perceive toxic playing. Al-

though user perception on toxic behavior is different, more reports in a single match means

more people recognize it, and implies more severe toxic behavior. In our initial analy-

sis [KH], we find that the number of reports in a single match is highly correlated with

the likelihood of being punished. The chat model relates to verbal abuse and offensive

language. In the Tribunal, reviewers can see the final in-game performance but not how

the match played out over time. Chats are the only source to give reviewers context about

what happened and what other players thought about it.

8.3 Results

In this Section we present the results of our experiments. We discuss the effects of con-

fidence in crowdsourced decisions, the model features that are most helpful in predicting

toxic behavior, and the portability of our classifier with respect to different regions.
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8.3.1 The Effects of Confidence in Crowdsourced Decisions

The first research question we answer is whether or not reviewer agreement is relevant

when training a classifier. To do this, we grow random forest classifiers from only cases

of a given agreement. We then evaluate each classifier with a separate test set for each

agreement. The intuition is that the cases with the highest level of agreement from the

reviewers display the most egregious toxic behavior, providing a baseline for the remainder

of cases.

Figures 8.3, 8.4, and 8.5 plot the Receiver Operating Charactering (ROC) curves for test-

ing sets of each agreement type with classifiers trained from varying agreement cases. We

observe that training the classifier with overwhelming majority decisions results in the

highest Area Under the ROC Curve (AUC) across all cases. Our ability to distinguish

between guilty and not guilty increases with the level of agreement that we train the clas-

sifier with. This is consistent with previous research [BGC10]. While the classifier trained

with overwhelming majority is the most discriminating across the board, training with

strong majority cases has similar performance, while performance drops off considerably

when training with the majority decision cases.

This experiment has several implications. First, it might be beneficial to look at the ex-

tremes of behavior, clear cut pardons and punishes, to better predict borderline cases.

Second, it might be fruitful to predict decisions based on confidence. I.e., finding the most

obviously guilty or innocent individuals, leaving the borderline cases to human review-

ers. Third, it reveals the difficulty in discriminating between all but the most egregious

offenses.
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Figure 8.3: ROC curves for cases with a majority decision using a classifier trained from
majority cases (“M”), strong majority cases (“SM”), and overwhelming majority cases
(“OM”).

Figure 8.4: ROC curves for cases with a strong majority decision using a classifier trained
from majority cases (“M”), strong majority cases (“SM”), and overwhelming majority
cases (“OM”).
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Figure 8.5: ROC curves for cases with a overwhelming majority decision using a classifier
trained from majority cases (“M”), strong majority cases (“SM”), and overwhelming
majority cases (“OM”).

Figure 8.6: ROC curve for predicting Tribunal decisions with models using in-game
performance (P), user report (R), chats (C), and all available features (F).
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8.3.2 What Do Tribunal Reviewers Base Their Decisions On?

We now address what information Tribunal reviewers might be basing their decision on.

We present a few learning results to show the performance of our Random Forest classifier.

We begin with the performance of predicting decisions, pardon or punish without consider-

ing the agreement level. Figure 8.6 presents ROC curve for predicting decisions, punish

or pardon, with the performance (P), report (R), chat (C), and full (F) models. AUCs

are 0.7187, 0.7195, 0.7157, and 0.7991 for the performance, report, chat, and full models,

respectively. We observe that each model shows comparable performance.

Table 8.1 shows the 5 most important variables for predicting decisions. We omit the im-

portant variables for each category of toxic behavior, but it is similar across the categories.

In the performance model, we find that enemy performance is a good predictor for deci-

sions because offender or ally performance is relative in team competition games. Also,

offender performance itself is important for decision making in the Tribunal. Interestingly,

the number of deaths is more important than KDA. This might relate to partner blam-

ing. Toxic players blame teammates, e.g., saying “noob”, when the toxic player dies. The

implication is the toxic player died because allies did not help him. In this situation, the

number of deaths could be a good measure to reveal which is true: allies did not help or

toxic players performed poorly.

In the chat model, we find that the most important variable is the valence score of of-

fender no matter what the reported toxic category is. This agrees with our intuition that

reviewers can see the context from chats and infer what happened. They gain insights

from chat not only for verbal abuse or offensive language, but also other categories of toxic
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Table 8.1: The top 5 ranked features from an information gain evaluator for Tribunal
decisions.

Rank Feature
Performance only

1 verbal.abuse.enemies.kda
2 verbal.abuse.enemies.gpm
3 verbal.abuse.offender.deaths
4 verbal.abuse.enemies.kda.avg.per.player
5 verbal.abuse.offender.kda

Chat only
1 case.offender.valence
2 verbal.abuse.offender.chat.msgs
3 offensive.language.offender.chat.msgs
4 verbal.abuse.offender.valence
5 verbal.abuse.total.chat.msgs

Report only
1 verbal.abuse.allied.report.count
2 verbal.abuse.allied.report.comment.count
3 intentionally.feeding.allied.report.count
4 intentionally.feeding.allied.report.comment.count
5 offensive.language.allied.report.count

Full
1 case.offender.valence
2 verbal.abuse.allied.report.count
3 verbal.abuse.offender.chat.msgs
4 offensive.language.offender.chat.msgs
5 verbal.abuse.allied.report.comment.count
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behavior. Also, this demonstrates that the ANEW dataset works well even with chats in

online games. The second and third most important variable are the number of messages

sent by the offender when the reported reason is verbal abuse and offensive language. This

implies that the likelihood of toxic behavior goes up if the offender talks more. This can

be easily recognized in real-time and thus pragmatically used for warning toxic players

through visual cues. The fourth important variable is the valence score when the behavior

is reported as verbal abuse. This is straightforward to understand. We find that number of

total messages sent when the report reason is verbal abuse is the fifth important variable.

This is the only feature in the top five that is not only related to the offender, but also

others. If more players are involved in a quarrel, it is a strong sign of verbal abuse having

occurred.

In the user report model, top variables are related to how many reports are submitted.

The more reports, the more likely the Tribunal will decide to punish. This strongly agrees

with previous analysis [KH]. Additionally, we find that reviewers care about short com-

ments in user reports. This implies that a user interface encouraging comments might be

helpful for crowdsourced decision-making.

The top 5 features in the full model are entirely from the chat and report models. The

total valence of the case is the number one feature, which highlights how much toxic be-

havior is visible/expressed via in-game communication. The second most important fea-

ture in the full model comes from the report only model, highlighting how our approach

dovetails with the first crowdsourced stage of the Tribunal. The hints provided by those

that directly experience toxic behavior are useful not only to human reviewers, but, for an

algorithmic solution as well. Next, we note that the 6th and 7th most important features
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in the full model are from the performance model. Thus, while in-game performance num-

bers are a predictor of toxic behavior, context is key.

We also look into the top 5 important variables in predicting overwhelming majority par-

don and punish, respectively. We omit the details but we highlight two findings by com-

paring them. One is that there are great discrepancies of important variables between

the model for predicting overwhelming majority pardon and punish. It implies that re-

viewers might make a decision for punish and pardon according to different mechanisms.

The other is that, similar to predicting decisions, there are some commonalities in im-

portant variables across the category of toxic behavior for predicting overwhelming ma-

jority pardon and punish. For example, in predicting overwhelming majority pardon, the

most important variable in the report only model is the number of reports by allies across

the category. Similarly, in predicting overwhelming majority punish, the most important

variable in the chat only model is the number of messages sent by the offender across the

categories. Of course, there are some specifics for each category. For predicting overwhelm-

ing majority punish, in the report only model, the number of reports by enemies is more

important than the number by allies in intentional feeding, but in verbal abuse, allies’ re-

ports are more important than enemies’. For future work, we intend to combine this result

with qualitative user interviews and plan to reveal details of the mechanism of reviewers’

decisions.

Figures 8.7 and 8.8 show ROC curves for predicting overwhelming pardon and overwhelm-

ing punish, respectively. Their AUC are 0.8049, 0.8055, 0.8269, and 0.8811 for overwhelm-

ing pardon decisions and 0.6509, 0.6886, 0.619, and 0.7461 for overwhelming punish deci-

sions. There are some interesting differences between the curves for the agreement levels.

First, detecting overwhelming pardon is easier to find than overwhelming majority punish
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Figure 8.7: ROC curve for predicting overwhelming pardons with models using in-game
performance (P), user report (R), chats (C), and all available features (F).

and shows quite good performance. It is mainly because overwhelming majority punish is

very close to strong majority punish, as we mentioned in Figure 8.3.

This proves the feasibility of automatically assigning tasks to crowds and machines accord-

ing to their difficulties. Quinn et al. demonstrate that crowd-assisted machine learning

can achieve high overall accuracy when assigning easy tasks to machine and fuzzy tasks

to human [QBYL10]. Although they divide cases into two classes by human experts, our

result demonstrates that we can do it automatically.

In context of LoL, properly dealing with overwhelming pardon case is more important

than overwhelming punish. Wrongly punished players would leave LoL, while wrongly

pardoned players sometimes would be back to the Tribunal. If they do not come to the

Tribunal again, it means that they are reformed and fine for the overall LoL ecosystem.
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Figure 8.8: ROC curve for predicting overwhelming punish decisions with models using
in-game performance (P), user report (R), chats (C), and using all available features (F).

In addition, we achieve high accuracy to predict decisions of punish or pardon on clear-

cut cases, overwhelming majority punish and pardon cases, as in Figure 8.3. Thus, it is

feasible that our classifier can automatically extract clear-cut cases and make accurate

decisions on them. It is great way to assist crowdsourcing platform by machine learning.

Second, the order of models by performance is different in two cases. In detecting over-

whelming majority pardon, we observe that a chat model shows the best performance,

while a user report model is quite comparable for the most part. By contrast, in detecting

overwhelming majority punish, a user report model shows quite good performance. This

is an interesting finding. Reviewers need to understand context from chats to prove not

guilty, but they also see why and how many times a toxic player is charged. This is consis-

tent with our initial analysis, revealing the number of user reports is highly correlated with

the likelihood of being punished [KH].
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8.3.3 Classifier Portability

Finally, we explore whether or not our classifier is portable. Based on previous analysis [KH],

we saw that there were statistically significant differences in Tribunal cases across the

various regions that LoL operates. One underlying reason behind this is likely due to cul-

tural differences realizing themselves both in the tendencies of toxic players as well as the

reviewers. Because of these differences, we expect models trained on the North American

dataset to not perform as well on the other regions. However, we do expect the models

to remain superior to a coin flip in terms of discriminatory power. In other words, while

we believe the models we specify are meaningful regardless of the region, the thresholds

learned are probably sub-optimal.

Before presenting results, we stress an additional caveat related to linguistic features. The

ANEW dataset is based on English words and was built from American respondents. This

makes the linguistic features (highly relevant in the NA dataset) useless when applied to

the KR dataset since English language words are almost non-existent. The EUW dataset

includes players with a variety of native tongues, and anecdotally French, German, and

Spanish are all spoken in-game. However, there is no language requirement to become

a reviewer; you only have to have an account within the region you are reviewing. Also,

English is a common tongue for gamers world wide. In fact, we see that less than 1% of

EUW cases have an undefined vtext.

Figure 8.9 and 8.10 show ROC curves of predicting EUW decisions and detecting EUW

overwhelming majority pardon cases by using classifier trained on NA. The performance

of predicting EUW decision does not reach that of NA decision, but detecting EUW over-
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Figure 8.9: ROC curve for EUW decisions with classifier trained on NA.

Figure 8.10: ROC curve for EUW Overwhelming Majority Pardons with classifier trained
on NA.
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whelming majority pardon is as good as NA. As with our hypothesis, this shows the po-

tential of classifier portability, but at the same time, the existence of regional differences [KH].

8.4 Estimating the Real-world Impacts

We present the potential gain of time, cost, and accuracy if our classifier assists the Tri-

bunal. One challenge is estimating the actual cost, time, and accuracy of reviewing cases

in the Tribunal because Riot does not release detail statistics thereof, except a few info-

graphics. We collect and complement partially available information to estimate required

sources for the Tribunal.

First, we estimate the actual cost for crowdsourcing decisions. Initially, Riot gave 5 Influ-

ence Points (IP) as rewards to each vote only when a majority vote is reached, but have

since removed this payment system. In LoL, IP is used for buying champions or skins.

To measure how big 5 IP is, we need to convert it to real money. Some champions whose

price are 450 IP can also be bought for 260 Riot Points (RP), that can be purchased by

real money. Players pay $10 for 1380 RP. Through a simple calculation, we reach $0.02 for

each correct vote. This is comparable fare with other crowdsourcing platforms [QBYL10].

Second, we estimate the time required for each case. According to the talk by Jefferey

“Lyte” Lin at Game Developers Conference (GDC) 20134, reviewers have cast 105 million

votes and reformed 280,000 toxic players. Other announcements by Steve “Pendragon”

Mescon5 reveal 50% of players warned by Tribunal are reformed. We thus assume that 105

million votes make verdicts for 560,000 toxic players and half of them are reformed. We

4http://tinyurl.com/stfunub8
5http://tinyurl.com/stfunub9
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conservatively assume this is the lower bound of players who came to the Tribunal. This

means that 187.5 votes are required for majority votes on a single case. From the same

source, Riot reveals more than 47 million votes were cast in the first year of the Tribunal,

implying that 1.49 votes per second are casted. From both, we can infer 125.85 seconds

are required to reach a verdict for one case in the Tribunal. We reasonably assume that

this is the acceptable speed where Riot’s in-house experts manually review some intriguing

cases.

Finally, we estimate the accuracy of the Tribunal. Lin said, “approximately 80% agree-

ment between the [Tribunal] community and Riot’s in-house team”, in the same GDC

talk. He added that the in-house team is less lenient than the Tribunal. Surprisingly, the

overall accuracy of the Tribunal is comparable with our classifier with respect to Riot’s

in-house decisions. That is, in contrast to CrowdFlow [QBYL10], our supervised learner

has the potential to replace the crowdsourcing part of the Tribunal with no real sacrifice in

accuracy.

We now estimate the gain of Riot from the view of cost and victim players.

We already compute that the cost of each correct vote is $0.02. Conservatively, we esti-

mate 50% of all votes fall into majority for each case. Since the Tribunal got 47 million

votes the first year, its cost is 47M (votes) x 50 (%) x 0.02 ($) = 470,000 ($). As of March

2013, the number of votes reached 105 millions. Its potential cost surpasses 1 million dol-

lars. With the success of new regions and a growing userbase, this cost will become huge.

As of October 2012, Riot announced that 12 million players play LoL everyday6 and they

play more than 1 billion hours every month. Thus, we estimate that a player enjoys LoL

83 minutes everyday which equates to 2.21 matches where one match usually spans 30 to

6http://tinyurl.com/stfunub10
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45 minutes. In the first year, the Tribunal detected 47M / 187.5 = 250,667 toxic players.

On average, 686.75 toxic players are warned by the Tribunal everyday. From this number

we can compute number of potential victims who are protected by the Tribunal everyday.

The number of matches toxic players participate everyday is 1517.74, and 13659.61 inno-

cent players are exposed to toxic players. If our classifier and the Tribunal works together

in a 50-50 manner, we can protect 13,659 more players everyday and more than 400 thou-

sand per month.

8.5 Limitations and Consequences of Our Approach

Although we have shown our approach is relatively robust, even across different regions

of the world, there are some limitations. First, although outside the scope of this paper,

LoL features an ever changing “meta-game” which dictates commonly used strategies and

tactics. Although the features we use in this paper are not directly tied to the meta-game,

for example which particular items or champions are selected, they are indirectly related.

E.g., the amount of damage dealt and received or gold earned might be influenced by the

current meta-game. Although the dataset in this paper spans multiple meta-games and we

still see good results, accuracy might be improved by training classifiers on data only from

the meta-game of cases under examination.

Toxic players could, in theory, adapt to avoid detection. For example, toxic players might

say “Wow, you are a great player!” sarcastically instead of calling someone a noob. Or,

perhaps an intentional feeder would go out of his way to damage the enemy team, but not

enough to actually kill them. This raises some interesting points. First, toxic behavior

only has an impact if it actually affects people in a negative way. It would take a ma-
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jor shift in the community’s understanding of language to infer that a seemingly positive

statement was meant in a negative way. Second, in the case of toxic players adapting their

play style, we argue that is a hidden benefit of our approach. Detecting toxic behavior

has significant value, but preventing it wholesale or reducing its impact is a much better

solution. Although a feeder could attempt to hide his intentions by damaging the enemy

team, he is consequently reducing the negative impact of his feeding by still providing

some utility to his team.

8.6 Summary

This chapter presented an analysis of toxic behavior in the League of Legends. From mil-

lions of crowdsourced decisions, we modeled toxic behavior from features derived from in-

game performance, the perspective of players who directly experienced the behavior, and

chat logs. We discovered that all three models were successful in labeling toxic behavior,

but, combined they were much more powerful. Additionally, we demonstrated that our

model was robust across regions of the world, and an automated system could save signifi-

cant time and money.
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Chapter 9: Conclusion

This dissertation presented an analysis of bad behavior in online video games. We pro-

vided an architecture and reference implementation for the collection and study of large

scale longitudinal social network data. Using this system, we collected data on over 12

million gamers and 700 thousand cheaters from the largest gaming social network on PC.

We performed a quantitative study of about 10 months of interactions among over 30

thousand gamers on a community owned and operated game server. We then used these

findings to perform an analysis of contagion with an interaction based model. Finally, we

analyzed and extracted a model for detecting toxic behavior of gamers.

Our primary findings can be summarized as follows.

1. Cheaters are as well embedded in the social network as fair players.

Although they exhibit anti-social behavior, cheaters had about the same number

of friends as non-cheaters and are well represented in terms of degree and between-

ness centrality. When we looked a bit deeper, we discovered that cheaters and non-

cheaters had different neighborhood compositions. In short, cheaters tended have a

higher fraction of cheaters in their neighborhoods.

2. Gamers form relationships such that interactions between friends dominates interac-

tions between non-friends.
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We analyzed detailed logs from a community owned and operated game server to

explore the impetus behind the creation of declared relationships. We found that

friends interact with each other much more often than non-friends interact. When

exploring events prior to and after a declared relationship was formed, we found that

interactions steadily increase, peaking when the relationship is declared, and then

begin to decay.

3. There is a statistically significant effect such that having more cheater friends is a

predictor for becoming a cheater. I.e., there is evidence that a contagion process is at

play.

Using low resolution timing data, we built a classifier that indicated a relationship

between the number of cheater friends and the likelihood of becoming a cheater in

the future. We used a proportional hazard model to show this effect was increasing

in a statistically significant fashion up until about four cheater friends. We then

visualized the spread of this behavior using high resolution timing data, showing how

clusters of cheaters appear within the network.

4. There is a social penalty involved when knowledge of cheating behavior is made

public (via the application of a VAC ban); cheaters tend to lose friends.

When we examined the effects of the publicly visible cheating flag, we discovered

that cheaters tended to lose friends after a VAC ban was applied. Conversely, non-

cheaters tended to gain friends over the same period of time. When using high-resolution

data, we discovered that this loss of friends happened very quickly after the ban

become publicly known, indicating the existence of a social penalty.

5. Toxic behavior can be modeled and detected to a high degree of accuracy using crowd-

sourced decisions.
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We derived a model for predicting toxic behavior using millions of crowdsourced

decisions from the most popular online game in the world. The model incorporates

domain specific features as well as a semantic analysis component. We were able to

discriminate between guilt and innocence upwards of 80% of the time, and in some

circumstances about 90% of the time. Moreover, the model proved portable across

geo-political regions.

The remainder of this chapter provides future work and discussion related to this disserta-

tion.

9.1 Future Work

There are several avenues of future work related to this dissertation. First, we wish to ex-

plore the impact of match making services on bad behavior. Unlike our SH dataset, play-

ers of games with match making systems do not choose who they play with, but instead

are placed into games according to their skill level. As noted by Herbrich et al. [HMG07],

when the TrueSkill system was implemented, there was an increase in cheating behavior,

and even new forms of cheating springing up. Because match making is such an integral

part to modern multiplayer games, this relationship is due for a deeper exploration. What

is it about match making systems that encourage cheating? How can match making sys-

tems be altered or augmented to take this into account?

We also wish to validate the model presented in Chapter 7. The main challenge for this

avenue of study is acquiring sufficient data. Unfortunately, we only have data from one of

thousands of servers from TF2, and the cheaters appearing in our dataset did not cheat

in that game when they appeared in our dataset; they would have been VAC banned and
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unable to play. However, we are currently devising a data collection strategy to monitor

the virtual whereabouts of gamers from a wider sample of servers. Although it is unlikely

we will be able to obtain as detailed a dataset as our TF2 logs, our model indicates that

co-presence data should be sufficient.

We additionally wish to explore whether or not toxic behavior has contagious effects. Based

on our experiences in the real world, we hypothesize that as players are exposed to toxic

behavior over time, they themselves are more likely to become toxic. Although both cheat-

ing and toxic behavior are “bad,” they are fundamentally different, and we suspect these

differences to be exposed in terms of modeling the underlying contagion process.

We wish to continue building on our Pregel implementation, Elaine 3.4.3. Elaine continues

to be developed ahas been made available to the public at http://github.com/worst/elaine.

It is particularly lacking a robust fault tolerance model. From our instrumentation, we

found that while Elaine scales both in number of compute nodes and the size of the graph,

there are performance bottlenecks in inter-node communication. The performance hits

appear to be taking place in DCell, the distributed object library Elaine is built on top

of, but, we are uncertain whether this is a fundamental issue or something that can be

mitigated via Elaine’s implementation. We are also exploring different graph partitioning

methods to increase performance.

Finally, we are currently exploring performance analytics for games. A growing trend in

real world sports is the use of statistical methods to inform, in a quantitative manner,

strategies, tactics, and other organizational decisions. While professional eSports differ

from real world sports in many ways, the techniques originating from, e.g., baseball, have

been successfully used, albeit with domain specific modifications, to other sports. These

analyses have been exceeding successful in increasing performance of professional sports
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teams, and we see no reason to believe they would not be successful for eSports. As eS-

ports continue to expand, a foundation for analytics could have a large impact on the

industry.

9.2 Discussion

Our findings have impact not only in video games but also in the real world. As has been

shown by other researchers, the behavior of people online maps to their behavior in the

real world [BTP14, CWC+09]. This mapping principle allows us to transfer our findings,

with some caveats, to more general behavior.

Unlike many studies on bad behavior, we were able to show hard empirical evidence at

planetary scale that cheating is contagious. For gaming in particular this suggests possible

mechanisms to detect and, more importantly, prevent cheating. For example, the social

penalty that cheaters face could be exploited. As it stands now, a change in cheater sta-

tus, while public, requires actually looking at a player profile. If it was instead, say, broad-

cast via a message to all the friends of the cheater, then it might serve as an information

driven vaccine [RTL12] in addition to being a deterrent.

As we saw in Section 5.4.1, there appears to be substantial differences in cheating behavior

in different socio-geographic regions. On the other hand, in Section 8.3.3, we found that

a toxic behavior classifier trained on North American data was reasonably successful at

detecting toxic behavior on European data. Any solution for dealing with bad behavior

online should take socio-geographic concerns into account. Even though underlying mech-

anisms might be similar across regions, the details, or in the case of Section 8.3.3 model

parameters, likely differ.
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For online video games, designers should keep in mind that although they might codify the

rules of the virtual world with programming, players are influenced by their real world ex-

periences. As we noted in Section 5.2, we discovered a cheater who had exceeded the max-

imum number of friends that is supposed to be allowed on Steam Community, seemingly

in contradiction to the social penalty we saw. As it turns out, this cheater was from one

of the Nordic countries, where we also found a very high population of cheaters. Although

more study is necessary, this indicates that a solution that might work in one part of the

world, e.g., an information driven vaccine, might not work elsewhere.

In Chapter 8 we developed a predictive model for toxic behavior. While certainly relevant

to online games, the effectiveness of this model implies something more. Recall that toxic

behavior has a somewhat ambiguous definition. This ambiguity is what makes derivation

of a mathematical model difficult. How can we precisely represent toxic behavior to a

computer if we cannot explicitly define it for humans? The solution that we took amounts

to using the crowdsourced decisions as an implicit definition. The implication is that by

dissecting the derived model, we might increase our knowledge and ability to describe

certain types of behavior.

As with any observational study, there are some caveats to keep in mind. While research

across disciplines indicates that our findings are portable, we caution that our findings

might capture specifics of unethical behavior that are not cross applicable. For example,

while a student cheating on a test can make his own cheat sheet, most of the cheaters in

our study are dependent on 3rd party cheat creators. Although cheating behavior defi-

nitely diffuses in both cases, in video games the knowledge of how the cheat is executed

does not.
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There are also significant concerns about privacy and validation. Any mechanism that

exploits the structure of a social network for detection of unethical behavior inherently

faces concerns of “guilt by association.” Indeed, our findings indicate that not all of a

cheaters friends will become cheaters themselves, but rather that there is a statistically

significant increased chance they will cheat. Taking action against a potential cheater

based solely on the actions of his associates will undoubtedly result in the condemnation

of innocents. Similarly, deploying the model for detecting toxic behavior (Chapter 8) will

produce both false positives and false negatives: some innocents will be found guilty while

some guilty will go free.

While the consequences of deviations from the model in video games are important, when

applied to the real world they could be disastrous. A false positive for cheating in aca-

demics or business could ruin someone’s life. That said, we implore researchers delving

deeper into this problem to tread carefully. While our findings can, and should, be used to

inform future studies and solutions, these caveats should be carefully considered.
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Appendix A: Statistical Tests

We used two tests of statistical significance when comparing distributions in this paper:

the two sample Kolmogorov-Smirnov (KS) test and the permutation test.

The KS test is nonparametric and uses the supremum (least upper bound) of the set of

distances between each point of two empirical distribution functions for its test statistic

(D). Unfortunately, while the KS test is distribution agnostic (e.g., the data does not have

to be normally distributed) it operates only on continuous distributions with no ties. For-

tunately, the KS test can be bootstrapped to avoid these issues [Sek11]. For all reporting

in this paper we used 1,000 bootstrap samples.

A permutation test, on the other hand, uses random reshuffles of the data to get the dis-

tribution of a test statistic under a null hypothesis. In our case the null hypothesis is that

of no difference between two groups, cheaters and noncheaters, and the random reassign-

ment of these labels to the elements of the data vector followed by the calculation of the

statistic of interest yields a distribution of this statistic, when the reassignment is done

many times, against which its observed value can be compared.

The permutation method, also known as a randomization test, is a straight forward and

intuitive approach. Consider a 2 column vector representing two distributions where the

first column is a label identifying the distribution (e.g,. “cheaters” or “noncheaters”) to

which the value in the second column belongs. We then calculate a test statistic T 1.

Operating under the null hypothesis that the labels are meaningless (and thus the distri-

butions are the same), we randomly permute the labels and compute a new test statistic

1In theory, any appropriate test statistic can be used, but we use a standardized linear statistic as
described in [HHvdWZ08]
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Appendix A: (continued)

Ti. Due to the random labeling, if we perform the permutation repeatedly, our Tis should

be uniformly distributed, and thus the null hypothesis would have the original T statistic

appearing anywhere in the ordered distribution of Tis with equal probability.

If we perform the permutation M times, we can then calculate a p value as the fraction of

permutations where Ti ≥ T . In other words,

ppermute =
1

M

M∑
i=0

I(Ti ≥ T )

(where I is the indicator function returning 1 if its argument is true, and 0 otherwise). For

all reporting in this paper we use M = 100,000.
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