
University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

4-4-2014

A Maximum Principle in the Engel Group
James Klinedinst
University of South Florida, klinedinstjames@gmail.com

Follow this and additional works at: https://scholarcommons.usf.edu/etd

Part of the Mathematics Commons

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

Scholar Commons Citation
Klinedinst, James, "A Maximum Principle in the Engel Group" (2014). Graduate Theses and Dissertations.
https://scholarcommons.usf.edu/etd/5248

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F5248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F5248&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F5248&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F5248&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F5248&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F5248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarcommons.usf.edu%2Fetd%2F5248&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


A Maximum Principle in the Engel Group

by

James Klinedinst

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Arts
Department of Mathematics & Statistics

College of Arts and Sciences

University of South Florida

Major Professor: Thomas Bieske, Ph.D.

Razvan Teodorescu, Ph.D.

Seung-Yeop Lee, Ph.D.

Date of Approval:

April 04, 2014

Keywords: Viscosity Solutions, Partial Differential Equations, Carnot Groups, Heisenberg Group

Copyright c© 2014, James Klinedinst



Dedication

This work is dedicated to my son, Blaise. May his discov-
eries be even better.



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Chapter 1 Background on the Engel Environment . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Carnot Jets and Viscosity Solutions . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 3 Sub-Riemannian Maximum Principle . . . . . . . . . . . . . . . . . . . . . . . 14

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

i



Abstract

In this thesis, we will examine the properties of subelliptic jets in the Engel group of step 3. Step-2

groups, such as the Heisenberg group, do not provide insight into the general abstract calculations.

This thesis then, is the first explicit non-trivial computation of the abstract results.

ii



Chapter 1

Background on the Engel Environment

One of the properties of Riemannian manifolds is that at each point, the dimension of the tangent

space is equal to the topological dimension of the manifold. For example, if the manifold is Rn,

the tangent space is also Rn. If the manifold is a surface in R3, then the tangent space at a point is

R2. Thus, there are no restricted directions in the tangent space. However, many real-world models

require restricted directions, because movement is limited. An example is driving a car [1]. This is

because a car cannot move laterally, restricting the direction of motion. One other model is how the

human brain processes visual images [5].

We then use sub-Riemannian spaces, which are spaces having points where the dimension of the

tangent space is strictly less than the topological dimension of the manifold. We will consider sub-

Riemannian manifolds with an algebraic group law, called Carnot groups.

In Bieske’s paper [3], a sub-Riemannian maximum principle is proved for Heisenberg groups. Later,

in [2], this maximum principle is proved for general Carnot groups. In the time between these two

papers, it was discovered that the Heisenberg group and so-called “step-2 groups” do not have a

sufficiently mellifluous geometry, resulting in these groups being inadequate concrete examples. In

this thesis, we explore the step-3 Engel group, which allows us a more concrete understanding of

the abstraction found in [2].

We start in R4 with coordinates (x1, x2, x3, x4) and for α ∈ R, let

u = u(x1, x2, x3, α) =

(
1

2
x3 +

1

12
x2(x1 + αx2)

)
m = m(x1, x2, x3, α) =

(
− 1

2
αx3 +

1

12
x1(x1 + αx2)

)
n = n(x1, x2, α) =

(
1

2
x1 +

1

2
αx2

)
.
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Consider the linearly independent vector fields

X1 =
∂

∂x1
− x2

2

∂

∂x3
− u ∂

∂x4

X2 =
∂

∂x2
+
x1

2

∂

∂x3
+m

∂

∂x4

X3 =
∂

∂x3
+ n

∂

∂x4

and X4 =
∂

∂x4
.

These vector fields obey the relations

[X1, X2] = X3, [X1, X3] = X4, [X2, X3] = αX4, and [Xi, X4] = 0 for i = 1, 2, 3.

The vectors and these brackets form a Lie algebra, represented by g, that has a corresponding de-

composition given by

g = V1 ⊕ V2 ⊕ V3

where the vector space Vi is given by

V1 = span {X1, X2}

V2 = span {X3}

and V3 = span {X4}.

Note that [V1, V1] = V2, [V1, V2] = V3, and [V1, V3] = 0.

This Lie algebra, has an inner product that orthonomalizes the basis {X1, X2, X3, X4} denoted

by 〈·, ·〉. It is given by the symmetric matrix
k11 k12 k13 k14

k12 k22 k23 k24

k13 k23 k33 k34

k14 k24 k34 k44


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where

k11 = 1 + u(u− nx2) +
x2

2(1 + n2)

4

k12 = −mu− (1 + n2)x1x2

4
+

1

2
n(ux1 +mx2)

k13 = −nu+
(1 + n2)x2

2

k14 = u− nx2

2

k22 = 1 +m2 −mnx1 +
(1 + n2)x2

1

4

k23 = mn− (1 + n2)x1

2

k24 = −m+
nx1

2
, k33 = 1 + n2, k34 = −n

k44 = 1.

The exponential map, which allows us to relate this Lie algebra to a Lie group called the step-3

Engel group, takes a vector from the Lie algebra at point p, say Xp and relates it to a unique integral

curve given by γ(t). The relationship is defined as exp (Xp) = γ(1) where γ′(0) = Xp and

γ(0) = p.

THEOREM 1.1 The exponential map exp: g → G is the identity map.

Proof. Let γ(t) = (γ1(t), γ2(t), γ3(t), γ4(t)) be a curve. Suppressing the parameter t, we compute:

4∑
i=1

aiXi = a1

(
∂

∂x1
− γ2

2

∂

∂x3
− u(γ1, γ2, γ3, α)

∂

∂x4

)
+ a2

(
∂

∂x2
+
γ1

2

∂

∂x3
+m(γ1, γ2, γ3, α)

∂

∂x4

)
+ a3

(
∂

∂x3
+ n(γ1, γ2, α)

∂

∂x4

)
+ a4

∂

∂x4

= a1
∂

∂x1
+ a2

∂

∂x2
+

(
−a1γ2

2
+
γ1a2

2
+ a3

)
∂

∂x3

+

(
− a1γ3

2
− a1γ1γ2

12
− αa1γ

2
2

12
− αa2γ3

2
+
a2γ

2
1

12

+
αa2γ1γ2

12
+
a3γ1

2
+
αa3γ2

2
+ a4

)
∂

∂x4
.
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Thus the initial value problem 
γ′(t) =

4∑
i=1

aiXi(γ(t))

γ(0) = 0

is equivalent to the initial value problem

γ′1(t) = a1

γ′2(t) = a2

γ′3(t) =
−a1γ2

2 +
γ1a2

2 + a3

γ′4(t) = −a1γ3
2 − a1γ1γ2

12 − αa1γ
2
2

12 − αa2γ3
2 +

a2γ
2
1

12 +
αa2γ1γ2

12 +
a3γ1

2 +
αa3γ2

2 + x4

γi(0) = 0 for i = 1, 2, 3, 4.

Through integration,

γ1(t) = a1t and γ2(t) = a2t.

Substituting, we get γ′3(t) = a3 and so

γ3(t) = a3t

and γ′4(t) = a4, giving

γ4(t) = a4t.

Thus, γ(t) = (a1t, a2t, a3t, a4t) and so γ(1) = (a1, a2, a3, a4). So

exp(a1X1 + a2X2 + a3X3 + a4X4) = (a1, a2, a3, a4).

�

The non-abelian algebraic group law is supplied by the Baker-Campbell-Hausdorff formula [10],

which is given by

expX ? expY = exp(X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]]).

The higher order brackets are zero because they will all involve bracketing with X4.

PROPOSITION 1 For p = (x1, x2, x3, x4), q = (y1, y2, y3, y4) ∈ G, the group law is

p ? q =

(
x1 + y1, x2 + y2, x3 + y3 +

1

2
µ, x4 + y4 +

1

2
ν +

1

12
µ(x1 + αx2 − y1 − αy2)

)
4



where µ = (x1y2 − x2y1) and ν =
(
x1y3 − x3y1 + α(x2y3 − x3y2)

)
in the embedding space R4.

Proof.

p ? q = (x1, x2, x3, x4) ? (y1, y2, y3, y4)

= exp
(
x1X1 + x2X2 + x3X3 + x4X4

)
exp
(
y1X1 + y2X2 + y3X3 + y4X4

)
= exp

(
(x1X1 + x2X2 + x3X3 + x4X4) + (y1X1 + y2X2 + y3X3 + y4X4)

+
1

2
[x1X1 + x2X2 + x3X3 + x4X4, y1X1 + y2X2 + y3X3 + y4X4]

+
1

12
[x1X1 + x2X2 + x3X3 + x4X4,

[x1X1 + x2X2 + x3X3 + x4X4, y1X1 + y2X2 + y3X3 + y4X4]]

− 1

12
[y1X1 + y2X2 + y3X3 + y4X4,

[x1X1 + x2X2 + x3X3 + x4X4, y1X1 + y2X2 + y3X3 + y4X4]]

)
.

The only non-zero Lie brackets for

[x1X1 + x2X2 + x3X3 + x4X4, y1X1 + y2X2 + y3X3 + y4X4] are given by

x1y2[X1, X2] + x1y3[X1, X3] + x2y1[X2, X1] + x2y3[X2, X3] + x3y1[X3, X1] + x3y2[X3, X2]

= x1y2X3 + x1y3X4 − x2y1X3 + αx2y3X4 − x3y1X4 − αx3y2X4

=
(
x1y2 − x2y1

)
X3 +

(
x1y3 − x3y1 + α(x2y3 − x3y2)

)
X4

= µX3 + νX4.

The only non-zero Lie brackets for

[x1X1 + x2X2 + x3X3 + x4X4, [x1X1 + x2X2 + x3X3 + x4X4, y1X1 + y2X2 + y3X3 + y4X4]]

are

x1µ[X1, X3] + x2µ[X2, X3] =
(
x1µ+ αx2µ

)
X4.

Finally, the non-zero brackets for

[y1X1 +y2X2 +y3X3 +y4X4, [x1X1 +x2X2 +x3X3 +x4X4, y1X1 +y2X2 +y3X3 +y4X4]] are

y1µ[X1, X3] + y2µ[X2, X3] =
(
y1µ+ αy2µ

)
X4.

5



Plugging these values into the formula, we get exp
(

(x1X1 + x2X2 + x3X3 + x4X4) + (y1X1 +

y2X2 + y3X3 + y4X4) + 1
2(µX3 + νX4) + 1

12

(
x1µ+ αx2µ

)
X4 − 1

12

(
y1µ+ αy2µ

)
X4

)
.

Combining like terms, we get

exp
(

(x1 + y1)X1 + (x2 + y2)X2 +
(
x3 + y3 + 1

2µ
)
X3 +

(
x4 + y4 + 1

2ν + 1
12µ(x1 + αx2) −

1
12µ(y1 + αy2)

)
X4

)
.

The proposition then follows since the exponential is the identity. �

COROLLARY 1.0.1 The identity element under group multiplication is (0, 0, 0, 0) and the inverse

element is (−x1,−x2,−x3,−x4).

The next theorem tells us how the group law interacts with our vector fields.

THEOREM 1.2 Let p = (x1, x2, x3, x4) ∈ G be any point and let 0 be the identity element. The map

Lp : G → G is left-multiplication by p and DLp its derivative matrix. Then, Xi(p) = DLpXi(0).

This means the vector fields {X1, X2, X3, X4} are left-invariant.

Proof. Using the group law above, we compute for points p = (x1, x2, x3, x4) and

q = (y1, y2, y3, y4):

DLp =



1 0 −x2
2 −x3

2 + 1
12

(
− x2(x1 + αx2 − y1 − αy2)− µ

)
0 1 x1

2 −x3
2 α+ 1

12

(
x1(x1 + αx2 − y1 − αy2)− αµ

)
0 0 1 x1

2 + αx2
2

0 0 0 1


and so

DLp(0) =


1 0 −x2

2 −x3
2 −

1
12x2(x1 + αx2)

0 1 x1
2 −x3

2 α+ 1
12x1(x1 + αx2)

0 0 1 x1
2 + αx2

2

0 0 0 1

 =


1 0 −x2

2 u(x1, x2, x3, α)

0 1 x1
2 m(x1, x2, x3, α)

0 0 1 n(x1, x2, α)

0 0 0 1


.

Because Xi(0) = ∂
∂xi

, the theorem follows. �

The tangent space to our Engel group, having topological dimension 4, is V1, because those are

the generating vector fields. It has topological dimension 2, so we have a sub-Riemannian space.

6



There exists a natural metric on G, given by the Carnot-Carathéodory distance. For the points p

and q,

dC(p, q) = inf
Γ

∫ 1

0

‖γ′(t)‖dt

where Γ is the set of all curves γ satisfying γ(0) = p, γ(1) = q and γ′(t) ∈ V1. Chow’s theorem

[1] tells us that dC(p, q) is a metric. By the previous theorem, this metric is invariant under left

multiplication.

We now turn to calculus. Define a smooth function f : G → R. Because of the Lie brackets,

vectors in Vi are ith order derivatives, with respect to the parameter of the curve ([1, Prop. 5.16]),

where i ∈ {1, 2, 3}. The horizontal gradient, consisting of first order derivatives, uses only X1 and

X2, so

∇0f =
(
X1f,X2f

)
.

We note that this agrees with having V1 as the tangent space for horizontal curves.

We use a symmetrized horizontal second derivative matrix, (D2f)?, with entries given by(
(D2f)?

)
ij

=
1

2

(
XiXjf +XjXif

)
for i, j = 1, 2. In our Engel group,

(D2f)? =

D11 D12

D21 D22

 (1.0.1)

where

D11 =
∂2f

∂x2
1

− x2
∂2f

∂x1∂x3
− 2u

∂2f

∂x1∂x4
+ x2u

∂2f

∂x3∂x4
+
x2

6

∂f

∂x4
+
x2

2

4

∂2f

∂x2
3

+ u2∂
2f

∂x2
4

,

D12 = D21 =
∂2f

∂x1∂x2
+
x1

2

∂2f

∂x1∂x3
+m

∂2f

∂x1∂x4
− x2

2

∂2f

∂x2∂x3
− u ∂2f

∂x2∂x4

−x1u+mx2

2

∂2f

∂x3∂x4
− x1x2

4

∂2f

∂x2
3

− um∂2f

∂x2
4

+
αx2 − x1

12

∂f

∂x4

and

D22 =
∂2f

∂x2
2

+ x1
∂2f

∂x2∂x3
+ 2m

∂2f

∂x2∂x4
+ x1m

∂2f

∂x3∂x4
+
−αx1

6

∂f

∂x4
+
x2

1

4

∂2f

∂x2
3

+m2∂
2f

∂x2
4

.

Further, let the semi-horizontal derivative be given as

∇1f = (X1f,X2f,X3f)

and note this involves vectors in V1 and V2.
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DEFINITION 1.0.1 A function f : G→ R is C2
sub if O1f and XiXjf are continuous for i, j = 1, 2.

A function that is C2
sub is not necessarily C2 in the Euclidean sense. For instance, the function

f(x1, x2, x3, x4) = (x3)
3
2 is not C2 in the Euclidean sense at the origin, since the (Euclidean)

second derivative is undefined. But we have the following proposition:

PROPOSITION 2 The function f(x1, x2, x3, x4) = (x3)
3
2 is C2

sub in the Engel group.

Proof. Using Theorem 1.1 and Proposition 1, get

X1f(0, 0, 0, 0) =
d

dt
f((0, 0, 0, 0) ? exp(tX1))

∣∣∣∣∣
t=0

=
d

dt
f(t, 0, 0, 0)

∣∣∣∣∣
t=0

=
d

dt
0

∣∣∣∣∣
t=0

= 0.

Similarly, X2f(0, 0, 0, 0) = 0 and

X3f(0, 0, 0, 0) =
3

2
(t)

1
2

∣∣∣∣∣
t=0

= 0.

We now need to check XiXjf(0, 0, 0, 0) for i, j = 1, 2. Using the Baker-Campbell-Hausdorff

formula, we get

X1X2f(0, 0, 0, 0) =
∂2

∂t∂s
f((0, 0, 0, 0) ? exp(tX1) ? exp(sX2)

∣∣∣∣∣
s,t=0

=
∂2

∂t∂s
f(exp(tX1 + sX2 +

1

2
stX3))

∣∣∣∣∣
s,t=0

=
∂2

∂t∂s

(
1

2
st

) 3
2

∣∣∣∣∣
s,t=0

=
∂

∂t

(
3t

4

(
1

2
st

) 1
2

∣∣∣∣∣
s=0

)∣∣∣∣∣
t=0

= 0.

Similarly, X2X1f(0, 0, 0, 0) = 0. For X1X1f(0, 0, 0, 0) we have

X1X1f(0, 0, 0, 0) =
∂2

∂t∂s
f((0, 0, 0, 0) ? exp(tX1) ? exp(sX1)

∣∣∣∣∣
s,t=0

=
∂2

∂t∂s
f(exp((s+ t)X1))

∣∣∣∣∣
s,t=0

=
∂2

∂t∂s
0

∣∣∣∣∣
s,t=0

= 0

with the same for X2X2f(0, 0, 0, 0). The proposition is proved. �

With the above derivatives and using the Engel divergence, which is the sum of our vectors spaces

X1 and X2, we define the horizontal p-Laplacian of a smooth function f for 1 < p <∞ by

∆pf = div(‖∇0f‖p−2∇0f) = X1(‖∇0f‖p−2∇0f) +X2(‖∇0f‖p−2∇0f)

= X1(‖∇0f‖p−2X1f) +X2(‖∇0f‖p−2X2f)

= ‖∇0f‖p−2(X1X1f +X2X2f) + (p− 2)‖∇0f‖p−4
〈
(D2f)?∇0f,∇0f

〉
.

8



Letting p run to infinity gives us the infinite Laplacian, defined as

∆∞f =
〈
(D2f)?∇0f,∇0f

〉
.

9



Chapter 2

Carnot Jets and Viscosity Solutions

Following [2], we have the Taylor Theorem:

THEOREM 2.1 For a smooth function f : G→ R, the Taylor formula at the point p0 is:

f(p) = f(p0) + 〈∇1f(p0), p̂−1
0 p〉+

1

2
〈(D2f(p0))?p−1

0 p, p−1
0 p〉+ o((d(p0, p))

2) (2.0.1)

where p−1
0 p is p−1

0 p projected onto V1 and p̂−1
0 p is p−1

0 p projected onto V1 ⊕ V2. We remind our-

selves that the exponential mapping is the identity.

Proof. Let p = (x1, x2, x3, x4) and p0 = (x0
1, x

0
2, x

0
3, x

0
4). Following [3], we will rewrite the Taylor

polynomial as:

f(p) + o((d(p0, p))
2) =f(p0) + (x1 − x0

1)X1f(p0) + (x2 − x0
2)X2f(p0)+(

x3 − x0
3 +

1

2
(x1x

0
2 − x0

1x2)

)
X3f(p0) +

1

2
(x1 − x0

1)2X1X1f(p0)

+
1

2
(x2 − x0

2)2X2X2f(p0) +
1

2
(x1 − x0

1)(x2 − x0
2)X1X2f(p0)

+
1

2
(x1 − x0

1)(x2 − x0
2)X2X1f(p0)

10



and we will call the right side polynomial P (p). We then have

X1P (p) = X1f(p0) +
1

2
x0

2X3f(p0)− 1

2
x2X3f(p0)

+ (x1 − x0
1)X1X1f(p0) +

1

2
(x2 − x0

2)X1X2f(p0) +
1

2
(x2 − x0

2)X2X1f(p0)

X2P (p) = X2f(p0)− 1

2
x0

1X3f(p0) +
1

2
x1X3f(p0)

+ (x2 − x0
2)X2X2f(p0) +

1

2
(x1 − x0

1)X1X2f(p0) +
1

2
(x1 − x0

1)X2X1f(p0)

X3P (p) = X3f(p0)

X1X1P (p) = X1X1f(p0)

X2X2P (p) = X2X2f(p0)

X2X1P (p) = −1

2
X3f(p0) +

1

2
X1X2f(p0) +

1

2
X2X1f(p0)

and X1X2P (p) =
1

2
X3f(p0) +

1

2
X1X2f(p0) +

1

2
X2X1f(p0).

We then have X1P (p0) = X1f(p0), X2P (p0) = X2f(p0), and X3P (p0) = X3f(p0). And we

haveX1X1P (p0) = X1X1f(p0), X2X2P (p0) = X2X2f(p0), and 1
2(X2X1P (p0)+X1X2P (p0)) =

1
2(X1X2f(p0) + X2X1f(p0)). Note also that since X3 = [X1, X2], we have X1X2P (p0) =

X1X2f(p0) and X2X1P (p0) = X2X1f(p0). By definition, Equation (2.0.1) gives the second-

order Taylor polynomial.

�

Because smoothness is too restrictive of a requirement we use the following definition to introduce

some flexibility. This definition will invoke Taylor polynomials. Let us recall a function f is defined

to be upper semicontinuous if

lim sup
x→x0

f(x) ≤ f(x0)

and a function g is defined to be lower semicontinuous if

lim inf
x→x0

g(x) ≥ g(x0)

Using these functions, we are able to define the superjets of our space.

DEFINITION 2.0.2 Let f be an upper semicontinuous function f : G → R and let S2 be the set of

all 2× 2 symmetric matrices. For η ∈ V1⊕V2 and X ∈ S2, then the following inequality motivates

the definition of the second-order superjet.

f(p) ≤ f(p0) +
〈
η, p̂−1

0 p
〉

+
1

2

〈
X, p−1

0 p
〉

+ o((d(p0, p))
2) as p→ p0. (2.0.2)

11



The second order superjet of f at p0, denoted J2,+f(p0), is defined as

J2,+f(p0) = {(η,X) ⊂ (V1 ⊕ V2)× S2 : Equation (2.0.2) holds}.

There is also the second-order subjet of the lower semicontinuous function g at p0, which is repre-

sented by J2,−g(p0), and is defined by

J2,−g(p0) = −J2,+(−g)(p0).

Note that in (2.0.2) the inequality will flip to ≥. The set-theoretic closure of J2,+f(p0), which will

be denoted J2,+
f(p0), is given by (η,X) ∈ J2,+

f(p0) if there is a sequence {(pi, f(pi), ηi, Xi)} ∈

G × R × g × S2 so that as i → ∞, then {(pi, f(pi), ηi, Xi)} → (p0, f(p0), η,X) with (ηi, Xi) ∈

J2,+f(pi). Given an upper semicontinuous function f , we define a set of test functions that touch f

from above at p0, denoted by T A(f, p0) and given a lower semicontinuous function g, we can also

define a set of test functions that touch g from below at p0, denoted T B(g, p0). Thus:

T A(f, p0) = {φ : G→ R : φ ∈ C2
sub(p0), φ(p0) = f(p0) and φ(p) > f(p) for p near p0}

and

T B(g, p0) = {φ : G→ R : φ ∈ C2
sub(p0), φ(p0) = g(p0) and φ(p) < g(p) for p near p0}.

Thus we can define another pair of sets, K2,+f(p0) and K2,−g(p0), where

K2,+f(p0) = {(∇1φ(p0), (D2φ(p0))?) : φ ∈ T A(f, p0)}

and K2,−g(p0) = {(∇1φ(p0), (D2φ(p0))?) : φ ∈ T B(g, p0)}.

These definitions motivate the following lemma, from [2]. The proof is excluded.

LEMMA 2.1 [2, Lemma 2.2] Also see [6]. Given an upper semicontinuous function f and lower

semicontinuous function g, then

J2,+f(p0) = K2,+f(p0) and J2,−g(p0) = K2,−g(p0).

These jets will prove to be very useful in creating a type of solution to partial differential equations.

In general, a k-order partial differential equation is solved by a classic solution if there is a k-times

12



differentiable function on an interval that satisfies the conditions of the equation. For instance, the

first order differential equation with u : R2 → R

∂u

∂x
+ u = 0, where u = u(x, y)

has a solution of

u = e−xf(y), where f(y) is an arbitray function of y

This is a classical solution over the region R2 [9]. Unfortunately, there are a great deal many

partial differential equations for which the classic solution does not exist. For instance, the Eikonal

equation from [8], given by

|u′(x)| = 1, for x ∈ (−1, 1),

with initial conditions u(−1) = u(1) = 0. This equation does not have a differentiable function

which satisfies the equation over the interval (−1, 1)[8]. However, if we relax the requirement of

differentiability to only requiring continuity, we discover two possible solutions: u(x) = −|x| + 1

and v(x) = |x| − 1 = −u(x). As discussed in [7], because the functions are merely continuous and

not necessarily differentiable, we must “push” differentiation onto appropriate test functions. This

is the purpose of the jets discussed above: they are the result of this process.

We consider a class of equations given by:

F (p, f(p),∇1f(p), (D2f(p))?) = 0,

where the function F , defined as

F : G× R× g × S2 → R,

fulfills the inequality

F (p, r, η,X) ≤ F (p, s, η, Y )

when r ≤ s and Y ≤ X . This function F is proper as defined in [7]. The p-Laplace equation,

defined for 1 < p <∞ by

−
(
‖∇0f‖p−2tr((D2f)?) + (p− 2)‖∇0f‖p−4〈(D2f)?∇0f,∇0f〉

)
= 0

and the infinite Laplace equation

−〈(D2f)?∇0f,∇0f〉 = 0

are examples of such equations.
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Chapter 3

Sub-Riemannian Maximum Principle

We now state Lemma 3 from [2] which allows us to express our semi-horizontal derivative and our

symmetrized second derivative matrix in terms of their Euclidean counterparts.

LEMMA 3.1 Recalling the definition of u,m and n in Chapter 2, we define the matrix A as

A =

1 0 −x2
2 −u

0 1 x1
2 m


and the matrix B as

B =
[
0 0 1 n

]
.

Let f be a smooth function with Oeuclf its Euclidean gradient and let D2
euclf be the Euclidean

second-order derivative matrix of f . Let AT denote the transpose of the matrix A. Then

O1f = A · Oeuclf ⊕ B · Oeuclf.

Further, for all t ∈ Rn,

〈(D2f)? · t, t〉 = 〈(A ·D2
euclf · AT + M · t, t〉

where the matrix M is given by

M =

 1
6x2

∂f
∂x4

1
12(αx2 − x1) ∂f∂x4

1
12(αx2 − x1) ∂f∂x4 −1

6αx1
∂f
∂x4


Proof.

A quick computation shows that

A · Oeuclf =

 ∂f
∂x1
− x2

2
∂f
∂x3
− u ∂f

∂x4

∂f
∂x2

+ x1
2
∂f
∂x3

+m ∂f
∂x4


14



and

B · Oeuclf =
[
∂f
∂x3

+ n ∂f
∂x4

]
so the direct sum gives us 

∂f
∂x1
− x2

2
∂f
∂x3
− u ∂f

∂x4

∂f
∂x2

+ x1
2
∂f
∂x3

+m ∂f
∂x4

∂f
∂x3

+ n ∂f
∂x4

 = O1f

For the second derivative matrix, matrix multiplication gives

A ·D2
euclf · AT =

T11 T12

T21 T22


where

T11 =
∂2f

∂x2
1

− x2
∂2f

∂x1∂x3
− 2u

∂2f

∂x1∂x4
+ x2u

∂2f

∂x3∂x4
+
x2

2

4

∂2f

∂x2
3

+ u2∂
2f

∂x2
4

,

T12 = T21 =
∂2f

∂x1∂x2
+
x1

2

∂2f

∂x1∂x3
+m

∂2f

∂x1∂x4
− x2

2

∂2f

∂x2∂x3
− u ∂2f

∂x2∂x4

−x1u+mx2

2

∂2f

∂x3∂x4
− x1x2

4

∂2f

∂x2
3

− um∂2f

∂x2
4

,

and

T22 =
∂2f

∂x2
2

+ x1
∂2f

∂x2∂x3
+ 2m

∂2f

∂x2∂x4
+ x1m

∂2f

∂x3∂x4
+
x2

1

4

∂2f

∂x2
3

+m2∂
2f

∂x2
4

Our choice of M provides the missing ∂f
∂x4

terms from Equation (1.0.1). We then have A ·D2
euclf ·

AT + M = (D2f)?. �

By relating our derivatives to their Euclidean counterparts, we now have a way to relate our

Euclidean superjets to the jets we created for our Engel group.

COROLLARY 3.1.1 Let (η,X) ∈ J2,+
eucl f(p), where (η,X) ∈ R4 × S4. Then

(A · η ⊕ B · η,AXAT + M(η, p)) ∈ J2,+
f(p).

The matrix M(η, p) in this case is

M(η, p) =

 1
6x2η4

1
12(αx2 − x1)η4

1
12(αx2 − x1)η4 −1

6αx1η4

 .
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Proof.

Our goal is to convert the Euclidean Taylor polynomial for the upper semicontinuous function u

u(p) ≤ u(p0) + 〈η, p− p0〉E +
1

2
〈X(p− p0), p− p0〉E + o(|p− p0|2)

to

u(p) ≤ u(p0) + 〈Aη ⊕ Bη, p̂−1
0 p〉+

1

2
〈AXAT (p−1

0 p), (p−1
0 p)〉+

1

2
〈Mp−1

0 p, p−1
0 p〉+ o(d(p, p0)2)

where 〈·, ·〉E is the Euclidean inner product and 〈·, ·〉 is the Engel inner product. Further, p =

(y1, y2, y3, y4) and p0 = (x1, x2, x3, x4).

First, we will look at the error term. Suppose W is o(|p− p0|2). Then,

W

d(p, p0)2
=

W

|p− p0|2
|p− p0|2

d(p, p0)2

The first term goes to zero, and the second term is bounded by Prop 1.1 of [11]. Thus, the right

hand side goes to zero as p → p0, and thus W is o(d(p, p0)2). The Taylor theorem, thus, now can

be made to read:

u(p) ≤ u(p0) + 〈η, p− p0〉E +
1

2
〈X(p− p0), p− p0〉E + o(d(p, p0)2).

Before proceeding, let us define the matrix A as

A =


1 0 −x2

2 −u

0 1 x1
2 m

0 0 1 n

0 0 0 1


Let the η vector be defined as

η =


η1

η2

η3

η4


and the symmetric matrix X is given as

X =


X11 X12 X13 X14

X12 X22 X23 X24

X13 X23 X33 X34

X14 X24 X34 X44


.
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Then

〈Aη, p−1
0 p〉 =

(
η1 −

x2

2
η3 +

(
− x1x2

12
− αx2

2

12
− x3

2

)
η4

)
(y1 − x1)

+

(
η2 +

x1

2
η3 +

(
x2

1

12
+
αx1x2

12
− αx3

2

)
η4

)
(y2 − x2)

+

(
y3 − x3 +

1

2

(
x2y1 − x1y2

))(
η3 +

(x1

2
+
αx2

2

)
η4

)
+

(
y4 − x4 +

1

2

(
x3y1 − x1y3

)
+

1

2
α
(
x3y2 − x2y3

)
− 1

12
(x1 + y1)(x2y1 − x1y2)− 1

12
α(x2 + y2)(x2y1 − x1y2)

)
η4.

Distributing and collecting like terms, we get

〈Aη, p−1
0 p〉 = (y1 − x1)η1 −

x2

2
(y1 − x1)η3 + (y1 − x1)(−x1x2

12
− αx2

2

12
− x3

2
)η4

+ (y2 − x2)η2 +
x1

2
(y2 − x2)η3 + (y2 − x2)(

x2
1

12
+
αx1x2

12
− αx3

2
)η4

+ (y3 − x3)η3 +
1

2
(x2y1 − x1y2)η3 + (y3 − x3)

(
x1

2
+
αx2

2

)
η4

+
1

2
(x2y1 − x1y2)(

x1

2
+
αx2

2
)η4

+

(
1

12
(x1 + y1)(x2y1 − x1y2)− 1

12
α(x2 + y2)(x2y1 − x1y2)

+ (y2 − x2)(
x2

1

12
+
αx1x2

12
− αx3

2
)

)
η4

= (y1 − x1)η1 + (y2 − x2)η2 + (y3 − x3)η3

+
1

2
(x1x2 − y1x2 +−x2x1 + y2x1 + x2y1 − x1y2)η3

+

(
(y3 − x3)

(
x1

2
+
αx2

2

)
+

(
1

2
(x2y1 − x1y2)

)(
x1

2
+
αx2

2

)
+ y4 − x4 +

1

2

(
x3y1 − x1y3

)
+

1

2
α
(
x3y2 − x2y3

)
+

1

12
(x1 + y1)(x2y1 − x1y2)

− 1

12
α(x2 + y2)(x2y1 − x1y2) + (y2 − x2)

(
x2

1

12
+
αx1x2

12
− αx3

2

))
η4

= (y1 − x1)η1 + (y2 − x2)η2 + (y3 − x3)η3

+

(
y4 − x4 +

1

12

(
x1 − y1 + α(x2 − y2)

)(
x1y2 − y1x2

))
η4.
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Further, 〈η, p0 − p〉E is (y1 − x1)η1 + (y2 − x2)η2 + (y3 − x3)η3 + (y4 − x4)η4

and so 〈η, p0 − p〉E − 〈Aη, p−1
0 p〉 is

1

12

(
x1 − y1 + α(x2 − y2)

)
(x1y2 − x2y1)η4.

Thus, the Euclidean Taylor polynomial f(p) ≤ f(p0) + 〈η, p0 − p〉E + 〈X(p0 − p), p0 − p〉E +

o(|p0 − p|2) can be rewritten as

u(p) ≤u(p0) + 〈Aη, p−1
0 p〉+

1

12

(
x1 − y1 + α(x2 − y2)

)
(x1y2 − x2y1)η4

+ 〈X(p0 − p), p0 − p〉E + o(d(p, p0)2).

Similarly, 〈AXAT p−1
0 p, p−1

0 p〉 − 〈X(p− p0), p− p0〉E is

1

144
(x1 − y1 + α(x2 − y2))(x1y2 − x2y1)

×
(
x2

1y2X44 − αx2
2y1X44 + x2(24X24 + y1(y1 + αy2)X44)

+ x1(24X14 −X44(x2(y1 − αy2) + y2(y1 + αy2)))

+ 24(x3X34 + x4X44 − y1X14 − y2X24 − y3X34 + y4X44)

)
.

Let us then look at what is left. After simplifying, the coefficient to X14 is given by

1

144
(24x1 − 24y1)(x1 − y1 + α(x2 − y2))(x1y2 − x2y1).

However, x1y2−x2y1 = y2(x1−y1)+y1(y2−x2) isO(d(p, p0)) since we are in a bounded domain,

and thus y2 and y1 are bounded numbers. Also, 24(x1 − y1) is O(d(p, p0)). So this coefficient is

o(d2(p0, p)), and is part of the error term. Similarly, the coefficient to X24 is given by

1

144
(24x2 − 24y2)

(
x1 − y1 + α(x2 − y2)

)
(x1y2 − x2y1)

and is also in the error term.

Further, we have the coefficient of X34 given by

1

144
(24x3 − 24y3)(x1y2 − x2y1)

(
x1 − y1 + α(x2 − y2)

)
.

Since 24x3 − 24y3 approaches 0 as p→ p0, this term overall is o(d2(p0, p)) and thus part of the

error.
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Finally, the X44 coefficient is

1

144
(x1y2 − x2y1)

(
x1 − y1 + α(x2 − y2)

)
×

(
24(x4 − y4)− x1x2y1 − αx2

2y1 + x2y
2
1 + x2

1y2 + αx1x2y2 − x1y1y2 + αx2y1y2 − αx1y
2
2

)
.

Since we again have a (x1y2−x2y1)(x1−y1+α(x2−y2)) term, we know this will beO(d2(p0, p)).

Again, through a similarity of terms, we see that the rest of the multiplication tends to 0 as p→ p0.

That is, this term is o(d2(p0, p)) and part of the error. Thus, 〈Xp−p0, p−p0〉E = 〈AXAT p−1
0 p, p−1

0 〉

plus elements that are o(d2(p, p0)).

Because the first and second coordinates of p−1
0 p are O(d(p, p0)), the third coordinate of p−1

0 p is

O(d2(p, p0)) and the fourth coordinate of p−1
0 p is o(d2(p, p0)), the Taylor polynomial

u(p) ≤ u(p0) + 〈Aη, p−1
0 p〉+

1

12

(
x1 − y1 + α(x2 − y2)

)
(x1y2 − x2y1)η4

+
1

2
〈AXAT p−1

0 p, p−1
0 p〉+ o(d2(p, p0))

can be rewritten as

u(p) ≤ u(p0) + 〈A · η ⊕ B · η, p̂−1
0 p〉+

1

12

(
x1 − y1 + α(x2 − y2)

)
(x1y2 − x2y1)η4

+
1

2
〈AXAT p−1

0 p, p−1
0 p〉+ o(d2(p, p0))

Recall that p−1
0 p is p−1

0 p projected onto V1 and p̂−1
0 p is p−1

0 p projected onto V1 ⊕ V2.

Thus, we are just left with 1
12

(
x1 − y1 + α(x2 − y2)

)
(x1y2 − x2y1)η4.

But we know matrix M is

M(η, p) =

 1
6x2η4

1
12(αx2 − x1)η4

1
12(αx2 − x1)η4 −1

6αx1η4

 .
and the first two components of the Engel multiplication are (y1 − x1, y2 − x2). So

[
y1 − x1 y2 − x2

]
× 1

2
M×

y1 − x1

y2 − x2


is our left over term. Thus, 1

12

(
x1 − y1 + α(x2 − y2)

)
(x1y2 − x2y1)η4 equals 1

2〈M p−1
0 p, p−1

0 p〉

and so our result holds. �

With this corollary, we can make use of the Euclidean results from [2]. Specifically, we use

Theorem 3.2 and Remark 3.8.
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THEOREM 3.1 Let ε ∈ R+. Let f be an upper semicontinuous function in R4, g a lower semicon-

tinuous function in R4 and φ a C2 function in R8. Let O be a locally compact subset of R4 and let

(p̂, q̂) be a maximum point of f(p) − g(q) − φ(p, q) over O × O and let the matrixM ∈ S8 be

given by

M =

D2
ppφ(p̂, q̂) D2

pqφ(p̂, q̂)

D2
qpφ(p̂, q̂) D2

qqφ(p̂, q̂)


Where p = (x1, x2, x3, x4) and q = (y1, y2, y3, y4). This leads us to the three 4× 4 matrices where

the (ij)th terms are given by

(D2
ppφ(p̂, q̂))ij =

∂2φ(p̂, q̂)

∂xi∂xj

(D2
pqφ(p̂, q̂))ij = (D2

qpφ(p̂, q̂))ji =
∂2φ(p̂, q̂)

∂xi∂yj

and

(D2
qqφ(p̂, q̂))ij =

∂2φ(p̂, q̂)

∂yi∂yj
.

Then there exist matrices X,Y ∈ S4 such that

(Dpφ(p̂, q̂), X) ∈ J2,+
eucl f(p̂) and (−Dqφ(p̂, q̂), Y ) ∈ J2,−

eucl g(q̂).

In addition, for all vectors ~a,~b ∈ R4,

〈X~a,~a〉 − 〈Y~b,~b〉 ≤ 〈(εM2 +M)(~a⊕~b), (~a⊕~b〉.

This inequality allows us to generate an upper bound for the matrix difference in our Engel group.

THEOREM 3.2 Given a (Euclidean) C2 function φ : G ×G → R, let the semi-horizontal gradient

at the point r ∈ G be denoted ∇1,rφ and the symmetrized second derivative matrix at r be denoted

(D2
rφ)?. Let ε ∈ R+. Let f, g, p, q, p̂, q̂,O, andM be as in Theorem 3.1. Then there are matrices

X ,Y ∈ S2 so that

(∇1,pφ(p̂, q̂),X ) ∈ J2,+
f(p̂) and (−∇1,qφ(p̂, q̂),Y) ∈ J2,−

g(p̂)).

Furthermore, for all vectors ξ ∈ V1

〈X ξ, ξ〉 − 〈Yξ, ξ〉

≤ 〈εM2(A(p̂)T ξ ⊕ A(q̂)T ξ), (A(p̂)T ξ ⊕ A(q̂)T ξ)〉
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Proof. We omit the proof, as it is the same as Theorem 3.4 in [2]. �

With our Carnot group law, and using Theorem 3.2, we get the Carnot group maximum principle

for our Engel group.

LEMMA 3.2 Let Ω ⊂ G be a bounded domain. Let τ ∈ R+ and let u be an upper semicontinuous

function and v a lower semicontinuous function. Let p = (x1, x2, x3, x4) and q = (y1, y2, y3, y4)

and k ∈ 2 · N be an even whole number. Define φ(p, q) by

φ(p, q) =
1

k
(x1 − y1)k +

1

k
(x2 − y2)k +

1

k
(x3 − y3 +

1

2
(x2y1 − x1y2))k

+
1

k

(
x4 − y4 +

1

2
(x3y1 − x1y3) +

α

2
(x3y2 − y3x2)

+
1

12
(x1 + y1)(x2y1 − x1y2) +

α

12
(x2 + y2)(x2y1 − x1y2)

)k

=
1

k

4∑
i=1

(φi(p, q))
k,

where

φ1(p, q) =(x1 − y1)

φ2(p, q) =(x2 − y2)

φ3(p, q) =(x3 − y3 +
1

2
(x2y1 − x1y2))

φ4(p, q) =(x4 − y4 +
1

2
(x3y1 − x1y3) +

α

2
(x3y2 − y3x2)

+
1

12
(x1 + y1)(x2y1 − x1y2) +

α

12
(x2 + y2)(x2y1 − x1y2))

Let the points pτ , qτ ∈ G be the local maximum in Ω×Ω of u(p)− v(q)− τφ(p, q) and let u− v

have a positive interior local maximum such that

sup
Ω

(u− v) > 0.

Then the following hold:

1.

lim
τ→∞

τφ(pτ , qτ ) = 0.

21



2. There exists a point p̂ ∈ Ω such that pτ → p̂ (and so does qτ by part 1) and

sup
Ω

(u− v) = u(p̂)− v(p̂) > 0.

3. There exist symmetric matrices Xτ ,Yτ and vector ητ ∈ V1 ⊕ V2, namely ητ = ∇1,pφ(p, qτ ), so

that

(τητ ,Xτ ) ∈ J2,+
u(pτ ) and (τητ ,Yτ ) ∈ J2,−

v(qτ ).

4. For any vector ξ ∈ V1, we have

〈Xτξ, ξ〉 − 〈Yτξ, ξ〉 ≤ τ〈M2(A(pτ )T ξ ⊕ A(qτ )T ξ), (A(pτ )T ξ ⊕ A(qτ )T ξ)〉

. τ‖M‖2‖ξ‖2 ∼ τφ(pτ , qτ )
2k−4

k ‖ξ‖2

where

‖M‖ = sup{|λ| : λ is an eigenvalue ofM}.

In particular, if ξ ∼ τφ(pτ , qτ )
k−1
k , we have

〈Xτξ, ξ〉 − 〈Yτξ, ξ〉 . τ3φ(pτ , qτ )
4k−6

k .

Proof. The proof of (1) and (2) is the same as [3]. Next, we have for the Euclidean derivatives with

respect to p:

∂

∂x1
φ(pτ , qτ ) = (xτ1 − yτ1 )k−1 − 1

2
yτ2
(
φ3(pτ , qτ )

)k−1

+
1

12

(
− 2xτ1y

τ
2 − yτ1yτ2 − α(yτ2 )2 + xτ2(yτ1 − αyτ2 )− 6yτ3

)(
φ4(pτ , qτ )

)k−1

∂

∂x2
φ(pτ , qτ ) = (xτ2 − yτ2 )k−1 +

1

2
yτ1
(
φ3(pτ , qτ )

)k−1

+
1

12

(
(yτ1 )2 + xτ1(yτ1 − αyτ2 ) + α(2xτ2y

τ
1 + yτ1y

τ
2 − 6yτ3 )

)(
φ4(pτ , qτ )

)k−1

∂

∂x3
φ(pτ , qτ ) =

(
φ3(pτ , qτ )

)k−1
+

1

2
(yτ1 + αyτ2 )

(
φ4(pτ , qτ )

)k−1

∂

∂x4
φ(pτ , qτ ) =

(
φ4(pτ , qτ )

)k−1
.

22



and for the Euclidean derivatives with respect to q:

− ∂

∂y1
φ(pτ , qτ ) = (xτ1 − yτ1 )k−1 − 1

2
xτ2
(
φ3(pτ , qτ )

)k−1

+
1

12

(
6xτ3 + 2xτ2y

τ
1 + xτ1(xτ2 − yτ2 ) + αxτ2(xτ2 + yτ2 )

)(
φ4(pτ , qτ )

)k−1

− ∂

∂y2
φ(pτ , qτ ) = (xτ2 − yτ2 )k−1 +

1

2
xτ1
(
φ3(pτ , qτ )

)k−1

+
1

12

(
(xτ1)2 − α(6xτ3 + xτ2y

τ
1 ) + xτ1(yτ1 + α(xτ2 + 2yτ2 ))

)(
φ4(pτ , qτ )

)k−1

− ∂

∂y3
φ(pτ , qτ ) =

(
φ3(pτ , qτ )

)k−1
+

1

2
(xτ1 + αxτ2)

(
φ4(pτ , qτ )

)k−1

− ∂

∂y4
φ(pτ , qτ ) =

(
φ4(pτ , qτ )

)k−1
.

Claim 3.1 We have the following relations:

A(pτ )∇euclφ(pτ , qτ ) = −A(qτ )∇euclφ(pτ , qτ )

and

B(pτ )∇euclφ(pτ , qτ ) = −B(qτ )∇euclφ(pτ , qτ ).

So that we may set

ητ = A(pτ )∇euclφ(pτ , qτ )⊕ B(pτ )∇euclφ(pτ , qτ )

Proof. We compute the first row of A(pτ )∇euclφ(pτ , qτ ):

∂

∂x1
φ(pτ , qτ )− xτ2

2

∂

∂x3
φ(pτ , qτ )− u(xτ1 , x

τ
2 , x

τ
3 , α)

∂

∂x4
φ(pτ , qτ ) =

(xτ1 − yτ1 )k−1 − 1

2
(yτ2 + xτ2)

(
φ3(pτ , qτ )

)k−1

+
1

12

(
− 2xτ1y

τ
2 − yτ1yτ2 − α(yτ2 )2 + xτ2(yτ1 − αyτ2 )− 6yτ3

)(
φ4(pτ , qτ )

)k−1

−
(
xτ2
4

(yτ1 + αyτ2 ) +
(1

2
xτ3 +

1

12
xτ2(xτ1 + αxτ2)

))(
φ4(pτ , qτ )

)k−1

We compute the first row of −A(qτ )∇euclφ(pτ , qτ ):

− ∂

∂y1
φ(pτ , qτ ) +

yτ2
2

∂

∂y3
φ(pτ , qτ ) + u(yτ1 , y

τ
2 , y

τ
3 , α)

∂

∂y4
φ(pτ , qτ ) =

(xτ1 − yτ1 )k−1 − 1

2
(xτ2 + yτ2 )

(
φ3(pτ , qτ )

)k−1

− 1

12

(
6xτ3 + 2xτ2y

τ
1 + xτ1(xτ2 − yτ2 ) + αxτ2(xτ2 + yτ2 )

)(
φ4(pτ , qτ )

)k−1

−
(
yτ2
4

(xτ1 + αxτ2) +
(1

2
yτ3 +

1

12
yτ2 (yτ1 + αyτ2 )

))(
φ4(pτ , qτ )

)k−1
.
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Routine calculations show these terms are equal. We now compute the second row of A(pτ )∇euclφ(pτ , qτ ):

∂

∂x2
φ(pτ , qτ ) +

xτ1
2

∂

∂x3
φ(pτ , qτ ) +m(xτ1 , x

τ
2 , x

τ
3 , α)

∂

∂x4
φ(pτ , qτ ) =

(xτ2 − yτ2 )k−1 +
1

2
(xτ1 + yτ1 )

(
φ3(pτ , qτ )

)k−1

+
1

12

(
− 6αyτ3 + yτ1 (xτ1 + yτ1 ) + α(xτ2y

τ
1 − xτ1yτ2 ) + αyτ1 (xτ2 + yτ2 )

)(
φ4(pτ , qτ )

)k−1

+

(
xτ1
4

(yτ1 + αyτ2 ) +
(
− α

2
xτ3 +

1

12
xτ1(xτ1 + αxτ2)

))(
φ4(pτ , qτ )

)k−1
.

We compute the second row of −A(qτ )∇euclφ(pτ , qτ ):

− ∂

∂y2
φ(pτ , qτ )− yτ1

2

∂

∂y3
φ(pτ , qτ )−m(yτ1 , y

τ
2 , y

τ
3 , α)

∂

∂y4
φ(pτ , qτ ) =

(xτ2 − yτ2 )k−1 +
1

2
(xτ1 + yτ1 )

(
φ3(pτ , qτ )

)k−1

+
1

12

(
− 6αxτ3 + xτ1(xτ1 + yτ1 )− α(xτ2y

τ
1 − xτ1yτ2 ) + αxτ1(xτ2 + yτ2 )

)(
φ4(pτ , qτ )

)k−1

+

(
yτ1
4

(xτ1 + αxτ2) +
(
− α

2
yτ3 +

1

12
yτ1 (yτ1 + αyτ2 )

))(
φ4(pτ , qτ )

)k−1
.

Again, routine calculations show these terms are equal. We compute B(pτ )∇euclφ(pτ , qτ ):

∂

∂x3
φ(pτ , qτ ) + k(xτ1 , x

τ
2α)

∂

∂x4
φ(pτ , qτ ) =(

φ3(pτ , qτ )
)k−1

+
1

2
(yτ1 + αyτ2 )

(
φ4(pτ , qτ )

)k−1
+

1

2

(
xτ1 + αxτ2

)(
φ4(pτ , qτ )

)k−1
.

We compute −B(qτ )∇euclφ(pτ , qτ ):

− ∂

∂x3
φ(pτ , qτ )− k(xτ1 , x

τ
2α)

∂

∂x4
φ(pτ , qτ ) =(

φ3(pτ , qτ )
)k−1

+
1

2
(xτ1 + αxτ2)

(
φ4(pτ , qτ )

)k−1
+

1

2
(yτ1 + αyτ2 )

(
φ4(pτ , qτ )

)k−1
.

It is easy to see these two terms are equal. �

Thus, using Corollary 3.1.1, we have matricesX,Y ∈ S4, where (η,X) ∈ J2,+
euclφ(pτ ) and (η, Y ) ∈

J
2,−
euclφ(qτ ). We then have

Xτ = A(pτ )XAT (pτ ) +M(∇euclφ, pτ )

and

Yτ = A(qτ )Y AT (qτ ) +M(∇euclφ, qτ )
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Thus, we have proved Part (3) of our Lemma 3.2. Part (4) follows from the fact thatM is based on

the Euclidean second derivatives of φ(p, q) and by definition, ‖A‖ is bounded by a constant since

we are in a bounded domain. �
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