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ABSTRACT

This thesis compares different approaches to estimating budgets for Kuhn-Tucker (KT)
demand systems, more specifically for the multiple discrete-continuous extreme value (MDCEV)
model. The approaches tested include: (1) The log-linear regression approach (2) The stochastic
frontier regression approach, and (3) arbitrarily assumed budgets that are not necessarily
modeled as a function of decision maker characteristics and choice-environment characteristics.

The log-linear regression approach has been used in the literature to model the observed
total expenditure as way of estimating budgets for the MDCEV models. This approach allows
the total expenditure to depend on the characteristics of the choice-maker and the choice
environment. However, this approach does not offer an easy way to allow the total expenditure
to change due to changes in choice alternative-specific attributes, but only allows a reallocation
of the observed total expenditure among the different choice alternatives. To address this issue,
we propose the stochastic frontier regression approach. The approach is useful when the
underlying budgets driving a choice situation are unobserved, but only the expenditures on the
choice alternatives of interest are observed. The approach is based on the notion that consumers
operate under latent budgets that can be conceived (and modeled using stochastic frontier
regression) as the maximum possible expenditure they are willing to incur.

To compare the efficacy of the above-mentioned approaches, we performed two
empirical assessments: (1) The analysis of out-of-home activity participation and time-use (with

a budget on the total time available for out-of-home activities) for a sample of non-working



adults in Florida, and (2) The analysis of household vehicle type/vintage holdings and usage
(with a budget on the total annual mileage) for a sample of households in Florida. A comparison
of the MDCEV model predictions (based on budgets from the above mentioned approaches)
demonstrates that the log-linear regression approach and the stochastic frontier approach
performed better than arbitrarily assumed budgets approaches. This is because both approaches
consider heterogeneity in budgets due to socio-demographics and other explanatory factors
rather than arbitrarily imposing uniform budgets on all consumers. Between the log-linear
regression and the stochastic frontier regression approaches, the log-linear regression approach
resulted in better predictions (vis-a-vis the observed distributions of the discrete-continuous
choices) from the MDCEV model. However, policy simulations suggest that the stochastic
frontier approach allows the total expenditures to either increase or decrease as a result of
changes in alternative-specific attributes. While the log-linear regression approach allows the
total expenditures to change as a result of changes in relevant socio-demographic and choice-
environment characteristics, it does not allow the total expenditures to change as a result of

changes in alternative-specific attributes.
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CHAPTER 1 INTRODUCTION*

1.1 Background

Numerous consumer choices are characterized by “multiple discreteness” where
consumers can potentially choose multiple alternatives from a set of discrete alternatives
available to them. Along with such discrete-choice decisions of which alternative(s) to choose,
consumers typically make continuous-quantity decisions on how much of each chosen
alternative to consume. Such multiple discrete-continuous (MDC) choices are being increasingly
recognized and analyzed in a variety of social sciences, including transportation, economics, and
marketing.

A variety of approaches have been used to model MDC choices. Among these, an
increasingly popular approach is based on the classical microeconomic consumer theory of

utility maximization. Specifically, consumers are assumed to optimize a direct utility function
u (1) over a set of non-negative consumption quantities t=(t,...t,,...t,) subject to a budget

constraint, as below:

K
Max u (tysuch that 3 p,t, =y and t, 20vk=1,2,..,K (1)

k=1

In the above Equation, u (1) is a quasi-concave, increasing, and continuously differentiable utility

function of the consumption quantities, p, (k =1,2,...,K) are unit prices for all goods, and y is a

budget for total expenditure. A particularly attractive approach for deriving the demand functions

! Part of this thesis has been submitted for publication and conference proceeding please refer to Augustin et al (2014) and Pinjari
et al (2014).
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from the utility maximization problem in Equation (1), due to Hanemann (1978) and Wales and
Woodland (1983), is based on the application of Karush-Kuhn-Tucker (KT) conditions of
optimality with respect to the consumption quantities. When the utility function is assumed to be
randomly distributed over the population, the KT conditions become randomly distributed and
form the basis for deriving the probability expressions for consumption patterns. Due to the
central role played by the KT conditions, this approach is called the KT demand systems
approach (or KT approach, in short).

Over the past decade, the KT approach has received significant attention for the analysis
of MDC choices in a variety of fields, including environmental economics (von Haefen and
Phaneuf, 2005), marketing (Kim et al., 2002), and transportation. In the transportation field, the
multiple discrete-continuous extreme value (MDCEV) model formulated by Bhat (2005, 2008)
has led to an increased use of the KT approach for analyzing a variety of choices, including
individuals’ activity participation and time-use (Habib and Miller, 2008; Chikaraishi et al.,
2010), household vehicle ownership and usage (Ahn et al.,, 2008; Jaggi et al., 2011),
recreational/leisure travel choices (von Haefen and Phaneuf, 2005; Van Nostrand et al., 2013),
energy consumption choices, and builders’ land-development choices (Farooq et al., 2013; Kaza
et al., 2010). Thanks to these advances, KT-based MDC models are being increasingly used in
empirical research and have begun to be employed in operational travel forecasting models (Bhat
et al., 2013%). On the methodological front, recent literature in this area has started to enhance the
basic formulation in Equation (1) along three specific directions: (a) toward more flexible, non-
additively separable utility functions that accommodate rich substitution and complementarity

patterns in consumption (Bhat et al., 2013), (b) toward more flexible stochastic specifications



for the random utility functions (Pinjari, 2011), and (c) toward greater flexibility in the
specification of the constraints faced by the consumer (Castro et al., 2012).

1.2 Gaps in Research

Despite the methodological advances and many empirical applications, one particular
issue related to the budget constraint has yet to be resolved. Specifically, almost all KT model
formulations in the literature, including the MDCEV model, assume that the available budget for

total expenditure, i.e. y in Equation (1), is fixed for each decision-maker (or for each choice

occasion, if repeated choice data is available). Given the fixed budget, any changes in the choice
alternative attributes, or the choice environment can only lead to a reallocation of the budget
among different choice alternatives. The formulation itself does not allow either an increase or a
decrease in the total available budget. Consider, for example, the context of households’ vehicle
holdings and utilization. In most applications of the KT approach for this context (Bhat et al.,
2009, Ahn et al., 2008), a total annual mileage budget is assumed to be available for each
household. This mileage budget is obtained exogenously for use in the KT model, which simply
allocates the given total mileage among different vehicle types. Therefore, any changes in
vehicle attributes (e.g., prices and fuel economy) and gasoline prices can only lead to a
reallocation of the given mileage budget among the different vehicle types without allowance for
either an increase or a decrease in the total mileage. Similarly, in the context of individuals’ out-
of-home activity participation and time-use, most applications of the KT approach consider an
exogenously available total time budget that is allocated among different activity type
alternatives. The KT model itself does not allow either an increase or decrease in the total time

expended in the activities of interest due any changes in the alternative-specific characteristics.



It is worth noting that the fixed budget assumption is not a theoretical/conceptual flaw of
the consumer’s utility maximization formulation per se. Classical microeconomics typically
considered the consumption of broad consumption categories (such as food, housing, and
clothing). In such situations, all consumption categories potentially can be considered in the
model while considering natural constraints such as total income for the budget. Similarly,
several time-use analysis applications can use natural constraints individuals face as their time
budgets (e.g., 24 hours in a day). However, many choice situations of interest involve the
analysis of a specific broad category of consumption, with elemental consumption alternatives
within that broad category, as opposed to all possible consumption categories that can possibly
exhaust naturally available time and/or money budgets. For example, in a marketing context
involving consumer purchases of a food product (say, yogurt), one can observe the different
brands chosen by a consumer along with the consumption amount of each brand, but cannot
observe the maximum amount of expenditure the consumer is willing to allocate to the product.
It is unreasonable to assume that the consumer would consider his/her entire income as the
budget for the choice occasion.

The above issue has been addressed in two different ways in the literature, as discussed
briefly here (see Chintagunta and Nair, 2010; and von Haefen, 2010). The first option is to
consider a two-stage budgeting process by invoking the assumptions of separability of
preferences across a limited number of broad consumption categories and homothetic
preferences within each broad category. The first stage involves allocation between the broad
consumption categories while the second stage involves allocation among the elemental
alternatives within the broad category of interest. The elemental alternatives in the broad

consumption category of interest are called inside goods. The second option is to consider a



Hicksian composite commodity (or multiple Hicksian commodities, one for each broad
consumption category) that bundles all consumption alternatives that are not of interest to the
analyst into a single outside good (or multiple outside goods, one for each broad consumption
category). The assumption made here is Hicksian separability, where the prices of all elementary
alternatives within the outside good vary proportionally and do not influence the choice and
expenditure allocation among the inside goods (see Deaton and Muellbauer, 1980). The analyst
then models the expenditure allocation among all inside goods along with the outside good.
Many empirical studies use variants of the above two approaches either informally or
formally with well-articulated assumptions. For instance, one can informally mimic the two-
stage budgeting process by modeling the total expenditure on a specific set of choice alternatives
of interest to the analyst in the first stage. The natural instinct may be to use linear (or log-linear)
regression to model the total expenditure in the first stage. Subsequently, the second stage
allocates the total expenditure among the different choice alternatives of interest. This approach
is straightforward and also allows the total expenditure (in the first-stage regression) to depend
on the characteristics of the choice-maker and the choice environment. The problem, however, is
that the first-stage regression cannot incorporate the characteristics of choice alternatives in a
straight forward fashion. Therefore, changes in the attributes of choice alternatives, such as price
change of a single alternative, will only lead to reallocation of the total expenditure among
choice alternatives without allowing for the possibility that the overall expenditure itself could
increase or decrease. This is considered as a drawback in using the MDCEV approach for
modeling vehicle holdings and usage (Fang, 2008) and for many other applications. Besides,

from an intuitive standpoint, the observed expenditures may not necessarily represent the budget



for consumption. It is more likely that a greater amount of underlying budget governs the
expenditure patterns, which the consumers may or may not expend completely.

1.3 Objectives

The purpose of this thesis is to compare different approaches to estimate budgets for the
multiple discrete-continuous extreme value (MDCEV) models. One of the approaches is log-
linear regression. Specifically, log-linear regression is used to model the total expenditure on
all choice alternatives available to the decision-maker. The total expenditure estimated using
the log-linear regression approach is subsequently used as budget for the MDCEV model. We
use log-linear regression as opposed to a standard linear regression in order to avoid situations
of predicting negative budgets. This approach is straightforward and also allows the total
expenditure (in the first-stage regression) to depend on the characteristics of the choice-maker
and the choice environment. However, this approach does not offer an easy way to allow the
budgets to vary with alternative-specific characteristics.

To address the above issue, we propose the use of stochastic frontier regression approach
to estimate budgets for the MDCEV models. Stochastic frontier regression models have been
widely used in firm production economics (Aigner et al, 1977; Kumbhakar and Lovell, 2000)
for identifying the maximum possible production capacity (i.e., production frontier) as a
function of various inputs. While the actual production levels and the inputs to the production
can be observed, a latent production frontier is assumed to exist. Such a production frontier is
the maximum possible production that can be achieved given the inputs. Conversely, one can
conceive of a cost frontier that is the minimum possible cost at which a good can be produced.

In travel behavior research, the stochastic frontier approach has been used to analyze:

(1) the time-space prism constraints that people face (Kitamura et al., 2000), and (2) the



maximum amount of time that people are willing to allocate to travel in a day (Banerjee et al.,
2007). In the former case, while the departure times and arrival times at fixed activities (such as
work) are observed in the survey data, the latest possible arrival time or the earliest possible
departure time are unobserved and therefore modeled as stochastic frontiers. In the latter case,
while the daily total travel time can be measured, an unobserved Travel Time Frontier (TTF) is
assumed to exist that represents the maximum possible travel time an individual is willing to
undertake in a day.

Analogous to the above examples, in many consumer choice situations, especially in
time-use situations, one can conceive of latent time and/or money frontiers that govern choice
making. In the case of household ownership and usage, one can also perceive a maximum total
annual mileage. Such frontiers can be viewed as the limit, or maximum amount of expenditure
the individuals/households are willing to incur, or the expenditure budget available for
consumption. We invoke this notion to use stochastic frontier models for estimating the
budgets for consumption. Following the two-stage budgeting approach discussed earlier, the
estimated budgets can be used for subsequent analysis of choices and allocations to different
choice alternatives of interest. The same assumptions discussed earlier, such as weak
separability of preferences, are needed here. However, an advantage of using the stochastic
frontier approach over the traditional regression models (to estimate budgets) is that the
frontier, by definition, is greater than the observed total expenditure. Therefore, the budget
estimated using the stochastic frontier approach provides a “buffer” for the actual total
expenditure to increase or decrease. This can be easily accommodated in the second stage
consumption analysis (using KT models) by designating an outside good that represents the

difference between the frontier and the actual expenditure on all the inside goods (i.e., choice



alternatives of interest to the analyst). Given the frontier as the budget, if the attributes of the
choice alternatives change, the second stage consumption analysis allows for the total
expenditure on the inside alternatives to change (either increase or decrease). Specifically,
within the limit set by the frontier, the outside good can either supply the additional resources
needed for additional consumption of inside goods or store the unspent resources. The
theoretical basis of the notion of stochastic frontiers combined with the advantage just
discussed makes the approach particularly attractive for estimating the latent budgets necessary
for Kuhn-Tucker demand analysis.

Finally, we use various assumptions on the estimation of budgets for the MDCEV
models. These assumptions on the budgets are not necessarily estimated as a function of socio-
demographic characteristics or built environment. Instead, we specify an arbitrary budget amount
greater than the observed expenditure. Therefore, similar to the stochastic frontier approach, the
analyst can specify an outside good in the MDCEV models to represent the difference between
the arbitrary budget and the total available expenditure. The outside good, in turn, allows for the
total expenditure to increase or decrease due to changes in alternative-specific attributes. In the
context of time-use, the analyst can use the natural available budget which is 24 hours or just an
assumed time budget.

To compare the efficacy of the different approaches to estimate budgets for the
MDCEV models, we performed two empirical assessments: (1) The analysis of out-of-home
activity participation and time-use (time as budget) for non-working adults in the State of
Florida, and (2) The analysis of household vehicle type/vintage holdings and usage (annual

mileage as budget) in Florida. We present both empirical assessments to compare the efficacy



of all the above approaches both in terms of prediction accuracy and the reasonableness of the
changes in the total expenditure due to changes in alternative-specific variables.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 provides an overview of the
stochastic frontier modeling methodology and the MDCEV model. Chapter 3 presents the
application of the proposed approach for an empirical analysis of daily out-of-home activity
participation and time-use patterns in a survey sample of non-working adults in Florida.
Chapter 4 provides another case study for an empirical analysis of household vehicle holdings
and usage in a sample of households in Florida. Finally, Chapter 5 discusses the conclusions of

the thesis along with avenues for future research.



CHAPTER 2 MODELING METHODOLOGY

2.1 Stochastic Frontier Model

The stochastic frontier modeling methodology is employed to model the underlying
budget driving a choice situation that is unobserved. While the actual production levels and the
inputs to the production can be observed, a latent production frontier is assumed to exist. Such a
production frontier is the maximum possible production that can be achieved given the inputs.

Following Banerjee et al. (2007), consider the notation where T; is the observed total
expenditure for decision-maker i, z; is the unobserved frontier (i.e., the maximum possible total
expenditure) for decision-maker i, v; is a normally distributed random component specific to
decision-maker | and u; is a non-negative random component assumed to follow a half-normal

distribution. Also, X; is a vector of observable decision-maker characteristics, f is a vector of
coefficients of Xjande, = (v, - u,) .

Let 7, be a log-normally distributed unobserved frontier of a decision-maker i, while T,

is a log-normally distributed observed expenditure of the decision. Both these variables are

assumed to be log-normally distributed to recognize the positive skew in the distribution of
observed expenditure and to ensure positive predictions. 7, of a decision-maker is assumed to be

a function of the decision-maker demographic, attitudinal, and built environment characteristics,

as.:

In(7,)=p'X, +v, (2)
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The unobserved frontier can be related to the observed expenditure T;as:

DU ©)
Note that since u; is non-negative, the observed expenditure is by design less than the unobserved
frontier.

Combining Equations (2) and (3) results in the following regression Equation:

IN(T,)=4'X,+v,-u, =X +¢, 4)

In the above equation, the expression A'X; + Vv, may be considered as representative of the

location of the unobserved frontier for In(T;) with a random component v;. Consistent with the
formulation of the stochastic frontier model (Aigner et al, 1977), a half-normal distribution (with

variance . :) is assumed for u; and a normal distribution (with mean 0 and variance,:) is

assumed for v;. These two error components are assumed to be independent of one another to

derive the distribution of ¢; as:

2 g_ﬂ/ F é‘zi —|
h(e.) = 1-o (] e - ;—00 < oo (5)
(¢, \/E{ QR xpL zUZJ <& <
where, o2 - var(v, +u) = o2 + o2, aNd 2 = G/ . The ratio, 4, is an indicator of the relative
o

variability of the sources of error in the model, namely v;, which represents the variability among
decision-makers, and u;j, which represents the portion of the frontier that remains unexpended

(Aigner et al, 1977). The log likelihood function for the sample of observations is given by:

LL = z In[h(e,)] (6)

i=1
Maximum likelihood estimation of the above function yields consistent estimates of the

unknown parameters, s , - and .
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From Equation (2), one can write the unobserved frontier as: 7, = exp( #'X, +v;). Using
this expression and the parameter estimates s and . , once can compute the expected value of

frontier for decision-maker i as:

E[ri]zE[exp(ﬁ"Xi+vi):exp{ﬂ'xi+G%J (7)

The expected frontier may be used as the budget in the second-stage analysis.

2.2 MDCEV Model Structure

The models estimated in this study are based on Bhat’s (2008) linear expenditure system

(LES) utility form for the MDCEV model:

K [t B
U (0 =% 7y In| 2| ®)
k=1 \yik )

In the above function, U (t) is the total utility derived by a decision maker i from the decision

maker consumption. Decision-makers are assumed to choose consumption patterns (i.e., which

product to consume and the amount to consume) to maximize u (1) subject to a linear budget

constraint on the available budget. The specification of this constraint depends on the approach
used for the total available budget. As discussed earlier, we tested three different approaches, as

discussed next.

The first approach is the stochastic frontier approach, where the frontier (7, ) is used as

the budget; i.e., the linear constraint then becomes > t, =7,. We use the expected value of

k=1to K

frontier as an estimate for 7, resulting in >  t, = E[7,] as the actual budget constraint used.

The second approach is to simply use the total expenditure (T;), which is observed in the data for

model estimation purposes and can be estimated via a log-linear regression model for prediction
12



purposes. In this case, the budget constraint would be » t, =T, where T; is the total

k=110 K
expenditure. The third approach is to specify an arbitrarily assumed budget amount (greater than
the observed expenditures in the sample) on the right side of the budget constraint.

In the above formulation, when the stochastic frontier approach is used to determine the
budget, the first choice alternative (k = 1) in the utility function is designated as the outside good

that represents the difference between the expected frontier and the observed expenditure (i.e.,
t =7,-T,), while the other alternatives (k = 2, 3,..., K) are the inside goods representing

different alternatives. Similarly, when an arbitrarily assumed budget (greater than the observed
expenditure) is used, the outside good represents the difference between the assumed budget and
the observed expenditure. On the other hand, when the observed expenditure (T;) is itself used as

the budget, there is no outside good in the formulation.
In the utility function, v, labelled the baseline marginal utility of decision-maker i for

alternative k, is the marginal utility of consumption with respect to alternative k at the point of

zero consumption. Between two choice alternatives, the alternative with greater baseline

marginal utility is more likely to be chosen. In addition, v, influences the consumption
quantities to alternative k, since a greater v, value implies a greater marginal utility of

consumption. 7, allows corner solutions (i.e., the possibility of not choosing an alternative) and

differential satiation effects (diminishing marginal utility with increasing consumption) for

different alternatives. Specifically, when all else is same, an alternative with a greater value of

7. Will have a slower rate of satiation and therefore a greater amount of consumption quantities.

13



The influence of observed and unobserved decision-maker characteristics and built

environment measures are accommodated as v,=ep( &) v, =ep( 0'z, +&,) and

7y =e9( d'w,) where, z,and W, are vectors of observed socio-demographic and built
environment measures influencing the choice of and consumption quantity to alternative k, ¢ and

s are corresponding parameter vectors, and &, (k=1,2,...,K) is the random error term in the

sub-utility of alternative k. Assuming that the random error terms ¢, (k=1,2,...,K) follow the

independent and identically distributed (iid) standard Gumbel distribution leads to a simple
probability expression (see Bhat, 2005) that can be used in the familiar maximum likelihood
routine to estimate the unknown parametersin ¢ and s .

For more details on the formulation, properties, and estimation of the MDCEV model, the

reader is referred to the papers by Bhat (2005) and Bhat (2008).
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CHAPTER 3 ANALYSIS OF INDIVIDUAL’S ACTIVITY PARTICIPATION AND

TIME-USE PATTERNS

3.1 Introduction

This chapter presents an empirical analysis of individuals’ activity participation and
time-use choices for assessing the efficacy of the different approaches to estimate (or assume)
budgets for the MDCEV model. In the context of individuals’ out-of-home activity
participation and time-use, most applications of the KT approach consider an exogenously
available total time budget that is allocated among different activity type alternatives. As
discussed earlier, the KT approach itself does not allow either an increase or decrease in the
total time expended in the activities of interest due to changes in the alternative-specific
characteristics. In this chapter, we use the different approaches mentioned earlier to estimate
time budgets of the MDCEV models.

The first approach used is the log-linear regression approach which models the total
observed expenditure to estimate time budgets. Log-linear regression is used as opposed to
linear regression to avoid situations where negative time budgets might be predicted. The
concept of out-of home activity time expenditure (OH-ATE) is used to represent amount of
time that people are spending in out-of home activities. Then, the estimated total OH-ATE is
used in the MDCEV model prediction. Next, we propose the use of stochastic frontier approach
to estimate time budgets for the MDCEV models. In the stochastic frontier approach, we use

the notion of an out-of-home activity time frontier (OH-ATF) that represents the maximum

15



amount of time that an individual is willing to allocate to out-of-home (OH) activities in a day.
Stochastic frontier regression is performed on the observed total out-of-home activity time
expenditure to estimate the unobserved out-of-home activity time frontier (OH-ATF). The
estimated frontier is viewed as a subjective limit or maximum possible time individuals can
allocate to out-of-home activities and used to inform time budgets for a subsequent MDCEV
model of activity time-use. Finally, we use various assumptions on the time budget, without
necessarily estimating it as a function of individuals’ demographic characteristics. These
assumed time budgets include:

1. An arbitrarily assumed time budget of 875 minutes for every individual, which is
equal to the total maximum observed OH-ATE in the sample plus 1 minute,

2. An arbitrarily assumed time budget of 918 minutes for every individual, which is
equal to 24 hrs minus an average of 8.7 hours of sleep time for non-workers (obtained
from the 2009 American Time-use Survey),

3. An arbitrarily assumed time budget of 1000 minutes for every individual,

4. 24 hrs (1440 minutes) as the total time budget for every individual in the sample, and

5. 24 hrs minus observed in-home activity duration.

The approaches listed above (1 to 5) specify an arbitrary budget amount greater than the
observed OH-ATEs?. Therefore, similar to the stochastic frontier approach, the analyst can
specify an outside good in the time-use model to represent the difference between the arbitrary
budget and the total OH-ATE. The outside good, in turn, allows for the total OH-ATE to

increase or decrease due to changes in alternative-specific attributes. The different approaches

2 Among the approaches listed from 1 through 5, all approaches except e assume an equal amount of budget across all
individuals, while 5 allows the budget to be different across individuals depending on the differences in their in-home activities.
While the approach e (i.e., utilizing 24 hrs. minus in-home duration as the budget) does allow for different budgets across
different individuals, it does not recognize the variation as a result of systematic demographic heterogeneity.
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are compared based on the predictive accuracy (of the corresponding MDCEV models) and the
reasonableness of the changes in time-use patterns due to changes in alternative-specific
variables.
The rest of the chapter is organized as follows. Section 3.2 describes the Florida
sample of the National Household Travel Survey (NHTS) data used for the empirical analysis.
Section 3.3 presents the empirical results, and Section 3.4 concludes the chapter.

3.2 Data
3.2.1 Data Sources

The primary data source used for the analysis is the 2009 National Household Travel
Survey (NHTS) for the state of Florida. The survey collected detailed information on all out-of-
home travel undertaken by the respondents. The information includes trip purpose, mode of
travel, and travel start and end time, and dwell time (time spent) at the trip destination. Several
secondary data sources were used to derive activity-travel environment measures of the
neighborhoods in which the sampled households are located. The secondary sources are: (1)
2009 property appraiser data for all 67 counties in Florida, (2) 2007 infoUSA business
directory, (3) 2010 NAVTEQ data, and (4) GIS layers of: (a) all parcels in Florida from the
property appraiser data, (b) employment from the 2007 infoUSA business directory, and (c)
intersections from the NAVTEQ data.

3.2.2 Sample Formation

In order to prepare data for the analysis of the activity participation and time-use, several
steps were undertaken:
1. In the person file, only the adult non-workers (aged 18 years or over) who were

surveyed on a weekday that was not a holiday were selected.
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2. Using the activity file, all out-of-home activities in the NHTS data were aggregated
into eight broad activity categories: (1) Shopping, (2) Other maintenance (buying
goods/services), (3) Social/Recreational (visiting friends/relatives, go out/hang out,
visit historical sites, museums and parks), (4) Active recreation (exercise and playing
sports), (5) Medical, (6) Eat out (going out for meal) (7) Pick up/drop, and (8) Other
activities.

3. The amount of time spent in each of these activity categories was calculated by using
the “dwell time” variable in the NHTS data. The time spent in in-home activities was
computed as total time in a day (24 hours) minus the time allocated to the above
mentioned out-home activities, sleep (8.7 hours , 2010 American Time Use Survey) ,
and travel activities.

4. To develop the activity-travel environment measures from secondary data sources,
various GIS layers (from property appraiser, infoUSA and NAVTEQ data) were
overlaid onto circular buffers centered on the NHTS household locations. The buffer
sizes used for this purpose are: ¥a mile, %2 mile and 1 mile. Accessibility variables such
as recreational accessibility (such as gymnasiums, parks), retail accessibility (such as
department stores, financial institutions), and other accessibility were also created for a
5 mile buffer size centered on the household locations.

5. After preparing the data from the activity file and the person file, the activity-travel
environment measures and the accessibility variables were added based on the
household file. The records with missing or inconsistent data were removed from the

final data set.
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3.2.3 Data Description

Table 3.1 provides descriptive information on the estimation sample used in this analysis.
The sample comprises 6218 individuals who participated in at least one out-of-home activity on
the survey-day. Only the interesting characteristics of the sample are discussed here. A large
portion of the sample comprises elderly; partly due to a large share of elderly in Florida’s
population and also due to a skew in the response rates of different age groups to the survey.

The dominant share of elderly in the sample explains a greater share of females, a higher
than typical proportion of smaller size households, larger share of households without children
and those with no workers, and predominantly urban residential locations. A large share of the
sample is Caucasian, able to drive, and owns at least one vehicle in the household. Several other
demographic variables reported in the table are relevant to the models estimated in this paper.

The last part of the table presents the OH activity participation and time-use statistics
observed in the sample. On average, individuals in the sample spent around two-and-half hours
on OH activities. Majority of them participated in shopping activities, followed by personal
business, social/recreation, eat out, medical, active recreation, pickup/drop-off, and other
activities. Note that the percentages of participation in different activities add up to more than
100, because a majority of individuals participate in multiple activities. On average, individuals
in the sample participated in 2.6 OH activities; 32% participated in two activities and 36%
participated in at least 3 activities. This calls for the use of the multiple-discrete choice modeling
approach for modeling time-use. In terms of time allocation, those who participate in social
recreation do so for an average of 2 hours. The average time allocation to shopping, personal
business, active recreation, eat out, or medical activities ranges from 45 minutes to an hour,

while that for pickup/drop-off and other activities is around 15 minutes.
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While not reported in the tables, some useful patterns observed in the data and relevant to
the modeling results presented later are: (a) greater proportion of females participate in shopping
and social/recreation activities and for larger durations, (b) older people participate more in
medical activities while younger people participate more in social/recreational activities, (c)
those with a driver’s license are likely to do more out of home activities, especially pickup/drop-
off, (d) those with children undertake more pickup/drop-off activities, and (e) higher income
individuals participate more in social and active recreation and eat out activities. In summary, the
sample shows reasonable time allocation patterns that are typical of the non-working population
in Florida.

3.3 Empirical Results
3.3.1 Stochastic Frontier Model of OH Activity Time Frontier (OH-ATF)

Table 3.2 presents the results of the stochastic frontier model for OH-ATFs. Interestingly,
female non-workers are found to have larger OH ATFs than male non-workers in Florida. Upon
closer examination, this result can be traced to larger participation of females in shopping and
social/recreation activities that tend to be of larger duration. As expected, the frontier is larger for
people of younger age groups and for those who have driver licenses. Blacks seem to have larger
frontiers than Whites and others; see Banerjee et al. (2007) for a similar finding. Internet use is
positively associated with OH-ATF. People from single person households, high income
households, and zero-worker households tend to have larger OH-ATFs; presumably because of
the greater need for social interaction for single-person households, greater amount of money
among higher income households to buy home maintenance services and free-up time for OH
activity (as well as greater affordability to consume OH activities), and lower time-constraints of

zero-worker households. People living in urban locations have larger OH-ATFs than those in

20



rural locations, perhaps due to a greater presence of OH activity opportunities in urban locations.
Mondays are associated with smaller perceived frontiers for OH non-worker activity, possibly
due to pronounced OH activity pursued over the weekend just before Monday and also due to the
effect of Monday being the first work day of the week. Several other demographic variables were
explored but turned non-influential in the final model. These include education status, vehicle
ownership, presence of children, and own/rent house. This may be because the income effects in
the model act as surrogate for many of these variables.

The stochastic frontier models can be used to estimate the expected OH-ATF for each
individual in the survey sample to generate a distribution of expected ATFs. The average value
of the expected ATF in the estimation sample is around 400 minutes (6 and half hours), whereas
the average total OH time expenditure is 152 minutes (about 2 and half hour), suggesting that
people are utilizing close to 40% of their perceived time budgets for OH activity. Of course, the
percentage utilization varies significantly with greater utilization for those with larger observed
OH activity expenditures and smaller utilization for those with smaller observed expenditures.

3.3.2 Out-of-home Activity Time-use Model Results

We estimated seven different MDCEV models of time-use with different assumptions
discussed earlier on time budgets. Overall, the parameters estimates from all the models were
found to be intuitive and consistent (in interpretation) with each other and previous studies. This
section presents (in Table 3.3) and discusses only the results of the model in which the expected
OH-ATFs (estimated using the stochastic frontier approach) were used as the available time
budgets.

The baseline utility parameters suggest that females are more likely (than males) to

participate in shopping and pickup/drop-off activities but less likely to participate in active
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Table 4.8 Impact of Increasing Fuel Economy for New (0-5 years) Compact, Subcompact, Large and Mid-size Vehicles

Vehicle Type and Vintage

Log-linear Regression

Stochastic Frontier

AME + Non-motorized

Budget = 119505 miles

% Change Changein | % Change | Changein | % Change | Changein | % Change | Changein
in Holdings Mileage* | in Holdings Mileage in Holdings Mileage in Holdings Mileage
Unspent Mileage - - - -258 - -10 - -554
Compact 0 to 5 years 1.03% 404 1.28% 431 1.04% 267 1.16% 669
Compact 6 to 11 years -0.36% -292 -0.12% -153 -0.26% -308 -0.07% -100
Compact 12 years or older -0.70% -345 -0.33% -179 -0.49% -339 -0.06% -113
Subcompact 0 to 5 years 0.09% 193 0.95% 243 0.63% 202 0.59% 314
Subcompact 6 to 11 years -0.43% -345 -0.25% -174 -0.47% -401 -0.21% -114
Subcompact 12 years or older -0.44% -340 -0.30% -164 -0.55% -312 -0.18% -108
Large O to 5 years 0.81% 352 1.02% 322 0.96% 225 1.20% 538
Large 6 to 11 years -0.48% -404 -0.26% -164 -0.40% -344 -0.14% -95
Large 12 years or older -0.71% -550 -0.40% -231 -0.50% -475 -0.29% -145
Mid-size 0 to 5 years 0.93% 348 1.12% 325 0.76% 209 0.95% 546
Mid-size 6 to 11 years -0.35% -270 -0.17% -144 -0.30% -274 -0.06% -86
Mid-size 12 years or older -0.43% -404 -0.31% -175 -0.37% -365 -0.20% -109
Two-seater 0 to 5 years 0.00% -161 -0.18% -126 -0.23% -185 -0.39% -78
Two-seater 6 to 11 years -0.25% -267 -0.22% -164 -0.78% -257 0.00% -92
Two-seater 12 years or older -0.61% -216 -0.58% -121 -0.46% -225 0.00% -83
Van 0 to 5 years -0.53% -370 -0.17% -149 -0.37% -361 -0.09% -97
Van 6 to 11 years -0.61% -367 -0.12% -151 -0.47% -322 -0.21% -102
Van 12 years or older -0.61% -445 -0.35% -202 -0.69% -469 -0.05% -116
SUV 0to 5 years -0.20% -214 -0.10% -107 -0.24% -191 -0.04% -68
SUV 6 to 11 years -0.26% -257 -0.16% -138 -0.28% -252 -0.09% -93
SUV 12 years or older -0.74% -326 -0.22% -171 -0.65% -349 -0.14% -91
Pickup Truck 0 to 5 years -0.35% -278 -0.19% -159 -0.32% -291 -0.10% -102
Pickup Truck 6 to 11 years -0.33% -310 -0.22% -170 -0.37% -314 -0.04% -107
Pickup Truck 12 years or older -0.58% -319 -0.29% -205 -0.64% -318 -0.23% -123
Motorcycle 0 to 5 years -0.74% -170 -0.51% -75 -0.48% -144 -0.18% -51
Motorcycle 6 to 11 years -0.63% -134 -0.08% -82 -0.83% -132 0.00% -63
Motorcycle 12 years or older -0.29% -89 -0.65% -55 -0.55% -95 -0.47% -34
Change in total expenditure 0 258 10 554

74

*These numbers indicate the average change in the mileage allocated for households that a change in the mileage allocation occurred to this vehicle type/vintage.




CHAPTER 5 CONCLUSION

5.1 Summary and Conclusions

This thesis compares different approaches to estimating budgets for Kuhn-Tucker (KT)
demand systems, more specifically for the multiple discrete-continuous extreme value (MDCEV)
model. The approaches tested include: (1) The log-linear regression approach (2) The stochastic
frontier regression approach, and (3) arbitrarily assumed budgets that are not necessarily
modeled as functions of socio-demographic characteristics of decision makers and choice-
environment characteristics.

The log-linear regression approach has been used in the literature to model the observed
total expenditure as way of estimating budgets for the MDCEV models. This approach allows
the total expenditure to depend on the characteristics of the choice-maker and the choice
environment. However, this approach does not offer an easy way to allow the total expenditure
to change due to changes in choice alternative-specific attributes, but only allows a reallocation
of the observed total expenditure among the different choice alternatives. To address this issue,
we propose the stochastic frontier regression approach when the underlying budgets driving a
choice situation are unobserved, but only the expenditures on the choice alternatives of interest
are observed. The approach is based on the notion that consumers operate under latent budgets
that can be conceived (and modeled using stochastic frontier regression) as the maximum
possible expenditure they are willing to incur. The estimated stochastic frontier, or the

subjective limit, or the maximum amount of expenditure consumers are willing to allocate can
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be used as the budget in the MDCEV model. Since the frontier is by design larger than the
observed total expenditure, the MDCEV model needs to include an outside alternative along
with all the choice alternatives of interest to the analyst. The outside alternative represents the
difference between the frontier (i.e., the budget) and the total expenditure on the choice
alternatives of interest. The presence of this outside alternative helps in allowing for the total
expenditure on the inside alternatives to increase or decrease due to changes in decision-maker
characteristics, choice environment attributes, and more importantly the choice alternative
attributes. The other assumptions used for the budgets also follow the same logic as the
stochastic frontier except that their budgets are not estimated as function of socio-demographics
or built environment.

To compare the efficacy of the above-mentioned approaches, we performed two
empirical assessments: (1) The analysis of out-of-home activity participation and time-use (with
a budget on the total time available for out-of-home activities) for a sample of non-working
adults in Florida, and (2) The analysis of household vehicle type/vintage holdings and usage
(with a budget on the total annual mileage) for a sample of households in Florida. A comparison
of the MDCEV model predictions (based on budgets from the above mentioned approaches) to
the observed discrete-continuous distributions in the data suggests that the log-linear regression
approach and the stochastic frontier approach performed better than using arbitrarily assumed
budgets. This is because both approaches consider heterogeneity in budgets due to socio-
demographics and other explanatory factors rather than arbitrarily imposing uniform budgets on
all consumers. Between the log-linear regression and the stochastic frontier regression
approaches, the log-linear regression approach resulted in relatively better predictions from the

MDCEV model. However, policy simulations suggest that the stochastic frontier approach
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allows the total expenditures to either increase or decrease as a result of changes in alternative-
specific attributes. While the log-linear regression approach allows the total expenditures to
change as a result of changes in relevant socio-demographic and choice-environment
characteristics, it does not allow the total expenditures to change as a result of changes in
alternative-specific attributes. This is an important advantage of the stochastic frontier approach
over the traditional log-linear regression approach to estimating budgets for the MDCEV model.

5.2 Future Research

Based on the findings from this thesis, there are at least a couple of avenues for further
research, as discussed below.
5.2.1 Heteroskedastic Extreme Value Distribution of the Random Utility Components in
MDC Models
Based on the comparison of the predictive assessments of households’ vehicle
type/vintage holdings and usage in chapter 4 , the results suggested that the MDCEV models
using budgets from the stochastic frontier and log-linear regression approaches performed well
in predicting the aggregate-level discrete choices observed in the validation data (i.e., the
percentage of holding for each vehicle type/vintage). However, for the aggregate allocation of
annual mileage expenditures, the MDCEV models using budgets from the log-linear regression
approach performs relatively better than the MDCEV models using budgets from the stochastic
frontier approach. Specifically, the MDCEV model using budgets from the stochastic frontier
approach over-predicts the annual mileage expenditures. It is possible that this problem in
prediction is due to the fat right tail of the extreme value distributions assumed in the MDCEV
model. This can be rectified to a considerable extent by using heteroskedastic extreme value

distributions in the model structure. Specifically, one can use the multiple discrete-continuous
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heteroskedastic extreme value (MDHCEV) model proposed by Sikder and Pinjari (2014) to
recognize the differences in the variation of unobserved influences on the preferences for
different vehicle types/vintages®.

The MDCHEV model, when used in conjunction with the budgets from the stochastic
frontier approach can address the issue of over-prediction in the allocation of annual mileage
expenditures to different vehicle types. To test this hypothesis, we estimated the MDCHEV
model for the household vehicle holdings and utilization data discussed in Chapter 4. In the
MDCHEV model, we also estimate one scale parameter for all vehicle types/vintages (i.e.,
inside goods) and fixed the scale parameter for the unspent mileage (i.e., outside good) to 1.
The estimated scale parameter for all vehicle types/vintages was 0.70 suggesting that the
outside good’s utility function has higher variance than that of the inside goods.

Using the MDCHEV model, we predicted the annual mileage expenditure for each
vehicle type/vintage. The distributions of the predicted annual mileage expenditures are plotted
in Figure A.2 using the validation data. When comparing the results of the MDCEV model and
the MDCHEV models using stochastic frontier as budgets, it clearly shows a reduction in the
over-prediction of annual mileages for different vehicle types/vintages. By doing so, the
predictions from the MDCHEV model (with stochastic frontier estimated budgets) are closer to
those of the MDCEV model (with log-linear estimated budgets).

These preliminary results demonstrate the value of using a heteroskedastic extreme value
distribution for the random utility components in MDC choice models. Of course, additional
empirical testing is needed in the context of different geographical contexts and different

empirical applications before reaching conclusions on this.

8 For the structure of the MDCHEV model, please refer to Sikder and Pinjari (2014).
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5.2.2 Other Future Research

1.

In this study, the regression models for budgets (i.e., the stochastic frontier regression
model and the log-linear regression model) were estimated separately from the
corresponding MDCEV models. In future research, it will be useful to integrate the
budget regression model equations with the MDCEV models into an integrated model
system using latent variable modeling approaches. That way, the budget estimation
would be endogenous to the MDCEV model.

While the current empirical applications are in the context of time-use and mileage-
use in Florida, it will be useful to test the performance of different approaches (to
estimate budgets) for other empirical applications and other geographical contexts
involving MDC choices, including long-distance vacation time and money budgets,

and market basket analysis.
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Appendix A: Additional Tables

Table A.1 Log-Linear Regression for Total Annual Mileage Expenditure (AME)

Variables Coefficients | t-stats
Constant 10.77 13.29
Head Household Characteristics
Male 0.08 4.36
Age 18 to 29 (age 55 to 74 is base) 0.28 4.46
Age 30 to 54 (age 55 to 74 is base) 0.18 7.94
Age >75 (age 55 to 74 is base) -0.25 -11.01
Household Characteristics
Income < 25k/year (Income 25k to 50Kk is base ) -0.09 -3.86
Income >=50 and < 75 (Income 25 k to 50k is base) 0.15 5.90
High Income >=75k/year (Income 25k to 50K is base) 0.24 10.30
Number of drivers 0.31 15.77
Number of workers 0.18 13.11
Presence of children 0.05 1.78
2+ household members 0.25 9.29
Fuel Cost ($/gallon)
Fuel Cost -0.76 -2.86
Household Location Attributes
Rural(Urban is base) 0.17 7.60
Employment Density -0.003 -3.96
Residential Density -0.008 -2.20
g, 0.773
R-squared 0.354
Adjusted R-squared 0.353
Number of observations 8500
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Table A.2 Observed and Predicted Vehicle Type/Vintage Holding Using Estimation Data

L-og- Stochastic | ~\ME+ | Budget =
Vehicle Type/Vintage Observed Linear ; Non- 119505
. Frontier . .

Regression Motorized miles
Unspent Mileage - - 90.2% 100.0% 100.0%
Compact 0 to 5 years 10.4% 11.2% 9.5% 10.4% 9.6%
Compact 6 to 11 years 9.4% 9.1% 9.7% 10.4% 9.7%
Compact more than 12 years 4.6% 5.0% 3.9% 4.6% 3.9%
Subcompact 0 to 5 years 3.5% 3.9% 3.1% 3.7% 3.0%
Subcompact 6 to 11 years 2.9% 2.8% 2.3% 2.8% 2.2%
Subcompact more than 12 years 3.0% 3.2% 3.9% 4.7% 3.9%
Large O to 5 years 7.3% 8.0% 6.5% 7.2% 6.4%
Large 6 to 11 years 6.7% 7.6% 6.0% 7.0% 6.0%
Large more than 12 years 4.0% 4.5% 3.3% 4.0% 3.2%
Mid-size 0 to 5 years 15.3% 16.2% 15.3% 16.5% 15.3%
Mid-size 6 to 11 years 14.4% 12.9% 13.2% 14.3% 13.2%
Mid-size more than 12 years 4.9% 5.5% 4.2% 5.0% 4.2%
Two-seater 0 to 5 years 1.2% 1.2% 1.3% 1.5% 1.2%
Two-seater 6 to 11 years 1.1% 0.9% 1.1% 1.4% 1.1%
Two-seater more than 12 years 1.1% 1.2% 1.0% 1.0% 1.0%
Van 0 to 5 years 6.1% 6.6% 5.4% 6.3% 5.2%
Van 6 to 11 years 6.1% 12.6% 5.1% 6.0% 5.0%
Van more than 12 years 2.3% 2.5% 2.4% 2.9% 2.3%
SUV 0 to 5 years 17.8% 18.6% 16.8% 17.5% 16.5%
SUV 6 to 11 years 12.6% 11.6% 13.7% 14.7% 13.6%
SUV more than 12 years 3.3% 3.5% 2.7% 3.3% 2.5%
Pickup Truck 0 to 5 years 10.0% 10.4% 10.4% 11.8% 10.3%
Pickup Truck 6 to 11 years 9.6% 9.2% 8.5% 9.6% 8.1%
Pickup Truck more than 12 years 6.4% 6.5% 5.3% 6.2% 5.1%
Motorcycle 0 to 5 years 1.8% 1.9% 1.4% 1.7% 1.3%
Motorcycle 6 to 11 years 1.5% 1.3% 1.4% 1.9% 1.4%
Motorcycle more than 12 years 1.2% 1.2% 1.3% 1.7% 1.2%
Mean Absolute Error 0.7 0.6 0.4 0.6
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