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ABSTRACT 

 

This thesis compares different approaches to estimating budgets for Kuhn-Tucker (KT) 

demand systems, more specifically for the multiple discrete-continuous extreme value (MDCEV) 

model. The approaches tested include: (1) The log-linear regression approach (2) The stochastic 

frontier regression approach, and (3) arbitrarily assumed budgets that are not necessarily 

modeled as a function of decision maker characteristics and choice-environment characteristics.  

The log-linear regression approach has been used in the literature to model the observed 

total expenditure as way of estimating budgets for the MDCEV models. This approach allows 

the total expenditure to depend on the characteristics of the choice-maker and the choice 

environment. However, this approach does not offer an easy way to allow the total expenditure 

to change due to changes in choice alternative-specific attributes, but only allows a reallocation 

of the observed total expenditure among the different choice alternatives. To address this issue, 

we propose the stochastic frontier regression approach. The approach is useful when the 

underlying budgets driving a choice situation are unobserved, but only the expenditures on the 

choice alternatives of interest are observed. The approach is based on the notion that consumers 

operate under latent budgets that can be conceived (and modeled using stochastic frontier 

regression) as the maximum possible expenditure they are willing to incur.  

To compare the efficacy of the above-mentioned approaches, we performed two 

empirical assessments: (1) The analysis of out-of-home activity participation and time-use (with 

a budget on the total time available for out-of-home activities) for a sample of non-working 
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adults in Florida, and (2) The analysis of household vehicle type/vintage holdings and usage 

(with a budget on the total annual mileage) for a sample of households in Florida. A comparison 

of the MDCEV model predictions (based on budgets from the above mentioned approaches) 

demonstrates that the log-linear regression approach and the stochastic frontier approach 

performed better than arbitrarily assumed budgets approaches. This is because both approaches 

consider heterogeneity in budgets due to socio-demographics and other explanatory factors 

rather than arbitrarily imposing uniform budgets on all consumers. Between the log-linear 

regression and the stochastic frontier regression approaches, the log-linear regression approach 

resulted in better predictions (vis-à-vis the observed distributions of the discrete-continuous 

choices) from the MDCEV model. However, policy simulations suggest that the stochastic 

frontier approach allows the total expenditures to either increase or decrease as a result of 

changes in alternative-specific attributes. While the log-linear regression approach allows the 

total expenditures to change as a result of changes in relevant socio-demographic and choice-

environment characteristics, it does not allow the total expenditures to change as a result of 

changes in alternative-specific attributes. 
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CHAPTER 1 INTRODUCTION
1
 

 

1.1 Background 

Numerous consumer choices are characterized by “multiple discreteness” where 

consumers can potentially choose multiple alternatives from a set of discrete alternatives 

available to them. Along with such discrete-choice decisions of which alternative(s) to choose, 

consumers typically make continuous-quantity decisions on how much of each chosen 

alternative to consume. Such multiple discrete-continuous (MDC) choices are being increasingly 

recognized and analyzed in a variety of social sciences, including transportation, economics, and 

marketing.  

  A variety of approaches have been used to model MDC choices. Among these, an 

increasingly popular approach is based on the classical microeconomic consumer theory of 

utility maximization. Specifically, consumers are assumed to optimize a direct utility function 

( )U t  over a set of non-negative consumption quantities 1
( , .. . , , . . . , )

k K
t t tt  subject to a budget 

constraint, as below: 

     Max ( )U t such that 
1

K

k k

k

p t y



  and 0 1, 2 , ... ,
k

t k K  
                

(1) 

In the above Equation, ( )U t  is a quasi-concave, increasing, and continuously differentiable utility 

function of the consumption quantities, ( 1, 2 , .. . , )
k

p k K  are unit prices for all goods, and y is a 

budget for total expenditure. A particularly attractive approach for deriving the demand functions 

                                                            
1 Part of this thesis has been submitted for publication and conference proceeding please refer to Augustin et al (2014) and Pinjari 

et al (2014). 
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from the utility maximization problem in Equation (1), due to Hanemann (1978) and Wales and 

Woodland (1983), is based on the application of Karush-Kuhn-Tucker (KT) conditions of 

optimality with respect to the consumption quantities. When the utility function is assumed to be 

randomly distributed over the population, the KT conditions become randomly distributed and 

form the basis for deriving the probability expressions for consumption patterns. Due to the 

central role played by the KT conditions, this approach is called the KT demand systems 

approach (or KT approach, in short). 

Over the past decade, the KT approach has received significant attention for the analysis 

of MDC choices in a variety of fields, including environmental economics (von Haefen and 

Phaneuf, 2005), marketing (Kim et al., 2002), and transportation. In the transportation field, the 

multiple discrete-continuous extreme value (MDCEV) model formulated by Bhat (2005, 2008) 

has led to an increased use of the KT approach for analyzing a variety of choices, including 

individuals’ activity participation and time-use (Habib and Miller, 2008; Chikaraishi et al., 

2010), household vehicle ownership and usage (Ahn et al., 2008; Jaggi et al., 2011), 

recreational/leisure travel choices (von Haefen and Phaneuf, 2005; Van Nostrand et al., 2013), 

energy consumption choices, and builders’ land-development choices (Farooq et al., 2013; Kaza 

et al., 2010). Thanks to these advances, KT-based MDC models are being increasingly used in 

empirical research and have begun to be employed in operational travel forecasting models (Bhat 

et al., 2013
a
). On the methodological front, recent literature in this area has started to enhance the 

basic formulation in Equation (1) along three specific directions: (a) toward more flexible, non-

additively separable utility functions that accommodate rich substitution and complementarity 

patterns in consumption (Bhat et al., 2013
b
), (b) toward more flexible stochastic specifications  
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for the random utility functions (Pinjari, 2011), and (c) toward greater flexibility in the 

specification of the constraints faced by the consumer (Castro et al., 2012).  

1.2 Gaps in Research 

Despite the methodological advances and many empirical applications, one particular 

issue related to the budget constraint has yet to be resolved. Specifically, almost all KT model 

formulations in the literature, including the MDCEV model, assume that the available budget for 

total expenditure, i.e. y  in Equation (1), is fixed for each decision-maker (or for each choice 

occasion, if repeated choice data is available). Given the fixed budget, any changes in the choice 

alternative attributes, or the choice environment can only lead to a reallocation of the budget 

among different choice alternatives. The formulation itself does not allow either an increase or a 

decrease in the total available budget. Consider, for example, the context of households’ vehicle 

holdings and utilization. In most applications of the KT approach for this context (Bhat et al., 

2009, Ahn et al., 2008), a total annual mileage budget is assumed to be available for each 

household. This mileage budget is obtained exogenously for use in the KT model, which simply 

allocates the given total mileage among different vehicle types. Therefore, any changes in 

vehicle attributes (e.g., prices and fuel economy) and gasoline prices can only lead to a 

reallocation of the given mileage budget among the different vehicle types without allowance for 

either an increase or a decrease in the total mileage. Similarly, in the context of individuals’ out-

of-home activity participation and time-use, most applications of the KT approach consider an 

exogenously available total time budget that is allocated among different activity type 

alternatives. The KT model itself does not allow either an increase or decrease in the total time 

expended in the activities of interest due any changes in the alternative-specific characteristics. 
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It is worth noting that the fixed budget assumption is not a theoretical/conceptual flaw of 

the consumer’s utility maximization formulation per se. Classical microeconomics typically 

considered the consumption of broad consumption categories (such as food, housing, and 

clothing). In such situations, all consumption categories potentially can be considered in the 

model while considering natural constraints such as total income for the budget. Similarly, 

several time-use analysis applications can use natural constraints individuals face as their time 

budgets (e.g., 24 hours in a day). However, many choice situations of interest involve the 

analysis of a specific broad category of consumption, with elemental consumption alternatives 

within that broad category, as opposed to all possible consumption categories that can possibly 

exhaust naturally available time and/or money budgets. For example, in a marketing context 

involving consumer purchases of a food product (say, yogurt), one can observe the different 

brands chosen by a consumer along with the consumption amount of each brand, but cannot 

observe the maximum amount of expenditure the consumer is willing to allocate to the product. 

It is unreasonable to assume that the consumer would consider his/her entire income as the 

budget for the choice occasion.  

The above issue has been addressed in two different ways in the literature, as discussed 

briefly here (see Chintagunta and Nair, 2010; and von Haefen, 2010). The first option is to 

consider a two-stage budgeting process by invoking the assumptions of separability of 

preferences across a limited number of broad consumption categories and homothetic 

preferences within each broad category. The first stage involves allocation between the broad 

consumption categories while the second stage involves allocation among the elemental 

alternatives within the broad category of interest. The elemental alternatives in the broad 

consumption category of interest are called inside goods. The second option is to consider a 
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Hicksian composite commodity (or multiple Hicksian commodities, one for each broad 

consumption category) that bundles all consumption alternatives that are not of interest to the 

analyst into a single outside good (or multiple outside goods, one for each broad consumption 

category). The assumption made here is Hicksian separability, where the prices of all elementary 

alternatives within the outside good vary proportionally and do not influence the choice and 

expenditure allocation among the inside goods (see Deaton and Muellbauer, 1980). The analyst 

then models the expenditure allocation among all inside goods along with the outside good.  

Many empirical studies use variants of the above two approaches either informally or 

formally with well-articulated assumptions. For instance, one can informally mimic the two-

stage budgeting process by modeling the total expenditure on a specific set of choice alternatives 

of interest to the analyst in the first stage. The natural instinct may be to use linear (or log-linear) 

regression to model the total expenditure in the first stage. Subsequently, the second stage 

allocates the total expenditure among the different choice alternatives of interest. This approach 

is straightforward and also allows the total expenditure (in the first-stage regression) to depend 

on the characteristics of the choice-maker and the choice environment. The problem, however, is 

that the first-stage regression cannot incorporate the characteristics of choice alternatives in a 

straight forward fashion. Therefore, changes in the attributes of choice alternatives, such as price 

change of a single alternative, will only lead to reallocation of the total expenditure among 

choice alternatives without allowing for the possibility that the overall expenditure itself could 

increase or decrease. This is considered as a drawback in using the MDCEV approach for 

modeling vehicle holdings and usage (Fang, 2008) and for many other applications. Besides, 

from an intuitive standpoint, the observed expenditures may not necessarily represent the budget  
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for consumption. It is more likely that a greater amount of underlying budget governs the 

expenditure patterns, which the consumers may or may not expend completely. 

1.3 Objectives 

The purpose of this thesis is to compare different approaches to estimate budgets for the 

multiple discrete-continuous extreme value (MDCEV) models. One of the approaches is log-

linear regression. Specifically, log-linear regression is used to model the total expenditure on 

all choice alternatives available to the decision-maker. The total expenditure estimated using 

the log-linear regression approach is subsequently used as budget for the MDCEV model. We 

use log-linear regression as opposed to a standard linear regression in order to avoid situations 

of predicting negative budgets. This approach is straightforward and also allows the total 

expenditure (in the first-stage regression) to depend on the characteristics of the choice-maker 

and the choice environment. However, this approach does not offer an easy way to allow the 

budgets to vary with alternative-specific characteristics. 

To address the above issue, we propose the use of stochastic frontier regression approach 

to estimate budgets for the MDCEV models. Stochastic frontier regression models have been 

widely used in firm production economics (Aigner et al, 1977; Kumbhakar and Lovell, 2000) 

for identifying the maximum possible production capacity (i.e., production frontier) as a 

function of various inputs. While the actual production levels and the inputs to the production 

can be observed, a latent production frontier is assumed to exist. Such a production frontier is 

the maximum possible production that can be achieved given the inputs. Conversely, one can 

conceive of a cost frontier that is the minimum possible cost at which a good can be produced.  

In travel behavior research, the stochastic frontier approach has been used to analyze: 

(1) the time-space prism constraints that people face (Kitamura et al., 2000), and (2) the 
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maximum amount of time that people are willing to allocate to travel in a day (Banerjee et al., 

2007). In the former case, while the departure times and arrival times at fixed activities (such as 

work) are observed in the survey data, the latest possible arrival time or the earliest possible 

departure time are unobserved and therefore modeled as stochastic frontiers. In the latter case, 

while the daily total travel time can be measured, an unobserved Travel Time Frontier (TTF) is 

assumed to exist that represents the maximum possible travel time an individual is willing to 

undertake in a day.  

Analogous to the above examples, in many consumer choice situations, especially in 

time-use situations, one can conceive of latent time and/or money frontiers that govern choice 

making. In the case of household ownership and usage, one can also perceive a maximum total 

annual mileage. Such frontiers can be viewed as the limit, or maximum amount of expenditure 

the individuals/households are willing to incur, or the expenditure budget available for 

consumption. We invoke this notion to use stochastic frontier models for estimating the 

budgets for consumption. Following the two-stage budgeting approach discussed earlier, the 

estimated budgets can be used for subsequent analysis of choices and allocations to different 

choice alternatives of interest. The same assumptions discussed earlier, such as weak 

separability of preferences, are needed here. However, an advantage of using the stochastic 

frontier approach over the traditional regression models (to estimate budgets) is that the 

frontier, by definition, is greater than the observed total expenditure. Therefore, the budget 

estimated using the stochastic frontier approach provides a “buffer” for the actual total 

expenditure to increase or decrease. This can be easily accommodated in the second stage 

consumption analysis (using KT models) by designating an outside good that represents the 

difference between the frontier and the actual expenditure on all the inside goods (i.e., choice 
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alternatives of interest to the analyst). Given the frontier as the budget, if the attributes of the 

choice alternatives change, the second stage consumption analysis allows for the total 

expenditure on the inside alternatives to change (either increase or decrease). Specifically, 

within the limit set by the frontier, the outside good can either supply the additional resources 

needed for additional consumption of inside goods or store the unspent resources. The 

theoretical basis of the notion of stochastic frontiers combined with the advantage just 

discussed makes the approach particularly attractive for estimating the latent budgets necessary 

for Kuhn-Tucker demand analysis.  

Finally, we use various assumptions on the estimation of budgets for the MDCEV 

models. These assumptions on the budgets are not necessarily estimated as a function of socio-

demographic characteristics or built environment. Instead, we specify an arbitrary budget amount 

greater than the observed expenditure. Therefore, similar to the stochastic frontier approach, the 

analyst can specify an outside good in the MDCEV models to represent the difference between 

the arbitrary budget and the total available expenditure. The outside good, in turn, allows for the 

total expenditure to increase or decrease due to changes in alternative-specific attributes. In the 

context of time-use, the analyst can use the natural available budget which is 24 hours or just an 

assumed time budget. 

To compare the efficacy of the different approaches to estimate budgets for the 

MDCEV models, we performed two empirical assessments: (1) The analysis of out-of-home 

activity participation and time-use (time as budget) for non-working adults in the State of 

Florida, and (2) The analysis of household vehicle type/vintage holdings and usage (annual 

mileage as budget) in Florida. We present both empirical assessments to compare the efficacy  
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of all the above approaches both in terms of prediction accuracy and the reasonableness of the 

changes in the total expenditure due to changes in alternative-specific variables. 

1.4 Organization of the Thesis 

The rest of the thesis is organized as follows. Chapter 2 provides an overview of the 

stochastic frontier modeling methodology and the MDCEV model. Chapter 3 presents the 

application of the proposed approach for an empirical analysis of daily out-of-home activity 

participation and time-use patterns in a survey sample of non-working adults in Florida.  

Chapter 4 provides another case study for an empirical analysis of household vehicle holdings 

and usage in a sample of households in Florida. Finally, Chapter 5 discusses the conclusions of 

the thesis along with avenues for future research. 
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CHAPTER 2 MODELING METHODOLOGY 

 

2.1 Stochastic Frontier Model  

The stochastic frontier modeling methodology is employed to model the underlying 

budget driving a choice situation that is unobserved. While the actual production levels and the 

inputs to the production can be observed, a latent production frontier is assumed to exist. Such a 

production frontier is the maximum possible production that can be achieved given the inputs. 

Following Banerjee et al. (2007), consider the notation where Ti is the observed total 

expenditure for decision-maker i, τi is the unobserved frontier (i.e., the maximum possible total 

expenditure) for decision-maker i, vi is a normally distributed random component specific to 

decision-maker I and ui is a non-negative random component assumed to follow a half-normal 

distribution. Also, Xi is a vector of observable decision-maker characteristics, β is a vector of 

coefficients of Xi and )(
iii

u  . 

Let i
  be a log-normally distributed unobserved frontier of a decision-maker i, while i

T  

is a log-normally distributed observed expenditure of the decision. Both these variables are 

assumed to be log-normally distributed to recognize the positive skew in the distribution of 

observed expenditure and to ensure positive predictions. i
  of a decision-maker is assumed to be 

a function of the decision-maker demographic, attitudinal, and built environment characteristics, 

as: 

iii
v ')ln(                                  (2) 
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The unobserved frontier can be related to the observed expenditure Ti as: 

ln ( ) ln ( )
i i i

T u        (3) 

Note that since ui is non-negative, the observed expenditure is by design less than the unobserved 

frontier.   

Combining Equations (2) and (3) results in the following regression Equation:   

iiiiii
uvT   '')ln(      (4) 

In the above equation, the expression ii
v'  may be considered as representative of the 

location of the unobserved frontier for ln(Ti) with a random component vi. Consistent with the 

formulation of the stochastic frontier model (Aigner et al, 1977), a half-normal distribution (with 

variance 2

u
 ) is assumed for ui and a normal distribution (with mean 0 and variance 2

v
 ) is 

assumed for vi. These two error components are assumed to be independent of one another to 

derive the distribution of εi as: 












i

i
i

i
h 










 ;

2
exp)}(1{

2

2
)(

2

2

   (5) 

where, u
ii

u
222

)var(    , and 





 u . The ratio, λ, is an indicator of the relative 

variability of the sources of error in the model, namely vi, which represents the variability among 

decision-makers, and ui, which represents the portion of the frontier that remains unexpended 

(Aigner et al, 1977). The log likelihood function for the sample of observations is given by:  

                      




n

i

i
hLL

1

)(ln                                      (6) 

Maximum likelihood estimation of the above function yields consistent estimates of the 

unknown parameters,  , 
u

  and 
v

 . 
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From Equation (2), one can write the unobserved frontier as: )'exp(
iii

v  . Using 

this expression and the parameter estimates  and 
v

 , once can compute the expected value of 

frontier for decision-maker i as:  

  


















2
'exp)'exp(

2

v

iiii
vEE


     (7) 

The expected frontier may be used as the budget in the second-stage analysis. 

2.2 MDCEV Model Structure 

The models estimated in this study are based on Bhat’s (2008) linear expenditure system 

(LES) utility form for the MDCEV model: 

1

( ) ln 1

K

ik

i ik ik

k ik

t
U  



 
  

 
t                                                   (8) 

In the above function,
 

( )
i

U t  is the total utility derived by a decision maker i from the decision 

maker consumption. Decision-makers are assumed to choose consumption patterns (i.e., which 

product to consume and the amount to consume) to maximize ( )U t  subject to a linear budget 

constraint on the available budget. The specification of this constraint depends on the approach 

used for the total available budget. As discussed earlier, we tested three different approaches, as 

discussed next. 

The first approach is the stochastic frontier approach, where the frontier ( i
 ) is used as 

the budget; i.e., the linear constraint then becomes
1  to  

ik i

k K

t 



 . We use the expected value of 

frontier as an estimate for i
 , resulting in  

1  to  

ik i

k K

t E 



  as the actual budget constraint used. 

The second approach is to simply use the total expenditure (Ti), which is observed in the data for 

model estimation purposes and can be estimated via a log-linear regression model for prediction 
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purposes. In this case, the budget constraint would be
1  to  

ik i

k K

t T



 , where Ti  is the total 

expenditure. The third approach is to specify an arbitrarily assumed budget amount (greater than 

the observed expenditures in the sample) on the right side of the budget constraint. 

In the above formulation, when the stochastic frontier approach is used to determine the 

budget, the first choice alternative (k = 1) in the utility function is designated as the outside good 

that represents the difference between the expected frontier and the observed expenditure (i.e.,

1 i i
t T  ), while the other alternatives (k = 2, 3,…, K) are the inside goods representing 

different alternatives. Similarly, when an arbitrarily assumed budget (greater than the observed 

expenditure) is used, the outside good represents the difference between the assumed budget and 

the observed expenditure. On the other hand, when the observed expenditure (Ti ) is itself used as 

the budget, there is no outside good in the formulation. 

In the utility function, i k
 , labelled the baseline marginal utility of decision-maker i  for 

alternative k, is the marginal utility of consumption with respect to alternative k at the point of 

zero consumption. Between two choice alternatives, the alternative with greater baseline 

marginal utility is more likely to be chosen. In addition, i k
  influences the consumption 

quantities to alternative k, since a greater i k
  value implies a greater marginal utility of 

consumption. i k


 
allows corner solutions (i.e., the possibility of not choosing an alternative) and 

differential satiation effects (diminishing marginal utility with increasing consumption) for 

different alternatives. Specifically, when all else is same, an alternative with a greater value of 

i k
  will have a slower rate of satiation and therefore a greater amount of consumption quantities. 
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The influence of observed and unobserved decision-maker characteristics and built 

environment measures are accommodated as )'exp(),exp(
11 kkk

z    and 

)'exp(
kk

w   where, k
z and k

w  are vectors of observed socio-demographic and built 

environment measures influencing the choice of and consumption quantity to alternative k,  and 

  are corresponding parameter vectors, and k
  (k=1,2,…,K) is the random error term in the 

sub-utility of alternative k. Assuming that the random error terms k
  (k=1,2,…,K) follow the 

independent and identically distributed (iid) standard Gumbel distribution leads to a simple 

probability expression (see Bhat, 2005) that can be used in the familiar maximum likelihood 

routine to estimate the unknown parameters in   and  . 

For more details on the formulation, properties, and estimation of the MDCEV model, the 

reader is referred to the papers by Bhat (2005) and Bhat (2008). 
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CHAPTER 3 ANALYSIS OF INDIVIDUAL’S ACTIVITY PARTICIPATION AND 

 

TIME-USE PATTERNS 

 

3.1 Introduction 

This chapter presents an empirical analysis of individuals’ activity participation and 

time-use choices for assessing the efficacy of the different approaches to estimate (or assume) 

budgets for the MDCEV model. In the context of individuals’ out-of-home activity 

participation and time-use, most applications of the KT approach consider an exogenously 

available total time budget that is allocated among different activity type alternatives. As 

discussed earlier, the KT approach itself does not allow either an increase or decrease in the 

total time expended in the activities of interest due to changes in the alternative-specific 

characteristics. In this chapter, we use the different approaches mentioned earlier to estimate 

time budgets of the MDCEV models.  

The first approach used is the log-linear regression approach which models the total 

observed expenditure to estimate time budgets. Log-linear regression is used as opposed to 

linear regression to avoid situations where negative time budgets might be predicted. The 

concept of out-of home activity time expenditure (OH-ATE) is used to represent amount of 

time that people are spending in out-of home activities. Then, the estimated total OH-ATE is 

used in the MDCEV model prediction. Next, we propose the use of stochastic frontier approach 

to estimate time budgets for the MDCEV models. In the stochastic frontier approach, we use 

the notion of an out-of-home activity time frontier (OH-ATF) that represents the maximum 
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amount of time that an individual is willing to allocate to out-of-home (OH) activities in a day. 

Stochastic frontier regression is performed on the observed total out-of-home activity time 

expenditure to estimate the unobserved out-of-home activity time frontier (OH-ATF). The 

estimated frontier is viewed as a subjective limit or maximum possible time individuals can 

allocate to out-of-home activities and used to inform time budgets for a subsequent MDCEV 

model of activity time-use. Finally, we use various assumptions on the time budget, without 

necessarily estimating it as a function of individuals’ demographic characteristics. These 

assumed time budgets include:  

1. An arbitrarily assumed time budget of 875 minutes for every individual, which is 

equal to the total maximum observed OH-ATE in the sample plus 1 minute,  

2. An arbitrarily assumed time budget of 918 minutes for every individual, which is 

equal to 24 hrs minus an average of 8.7 hours of sleep time for non-workers (obtained 

from the 2009 American Time-use Survey), 

3. An arbitrarily assumed time budget of 1000 minutes for every individual,  

4. 24 hrs (1440 minutes) as the total time budget for every individual in the sample, and 

5. 24 hrs minus observed in-home activity duration. 

The approaches listed above (1 to 5) specify an arbitrary budget amount greater than the 

observed OH-ATEs
2
. Therefore, similar to the stochastic frontier approach, the analyst can 

specify an outside good in the time-use model to represent the difference between the arbitrary 

budget and the total OH-ATE. The outside good, in turn, allows for the total OH-ATE to 

increase or decrease due to changes in alternative-specific attributes. The different approaches 

                                                            
2 Among the approaches listed from 1 through 5, all approaches except e assume an equal amount of budget across all 

individuals, while 5 allows the budget to be different across individuals depending on the differences in their in-home activities. 

While the approach e (i.e., utilizing 24 hrs. minus in-home duration as the budget) does allow for different budgets across 

different individuals, it does not recognize the variation as a result of systematic demographic heterogeneity. 
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are compared based on the predictive accuracy (of the corresponding MDCEV models) and the 

reasonableness of the changes in time-use patterns due to changes in alternative-specific 

variables. 

 The rest of the chapter is organized as follows. Section 3.2 describes the Florida 

sample of the National Household Travel Survey (NHTS) data used for the empirical analysis. 

Section 3.3 presents the empirical results, and Section 3.4 concludes the chapter. 

3.2 Data 

3.2.1 Data Sources 

The primary data source used for the analysis is the 2009 National Household Travel 

Survey (NHTS) for the state of Florida. The survey collected detailed information on all out-of-

home travel undertaken by the respondents. The information includes trip purpose, mode of 

travel, and travel start and end time, and dwell time (time spent) at the trip destination. Several 

secondary data sources were used to derive activity-travel environment measures of the 

neighborhoods in which the sampled households are located. The secondary sources are: (1) 

2009 property appraiser data for all 67 counties in Florida, (2) 2007 infoUSA business 

directory, (3) 2010 NAVTEQ data, and (4) GIS layers of: (a) all parcels in Florida from the 

property appraiser data, (b) employment from the 2007 infoUSA business directory, and (c) 

intersections from the NAVTEQ data. 

3.2.2 Sample Formation  

In order to prepare data for the analysis of the activity participation and time-use, several 

steps were undertaken: 

1. In the person file, only the adult non-workers (aged 18 years or over) who were 

surveyed on a weekday that was not a holiday were selected.  
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2. Using the activity file, all out-of-home activities in the NHTS data were aggregated 

into eight broad activity categories: (1) Shopping, (2) Other maintenance (buying 

goods/services), (3) Social/Recreational (visiting friends/relatives, go out/hang out, 

visit historical sites, museums and parks), (4) Active recreation (exercise and playing 

sports), (5) Medical, (6) Eat out (going out for meal) (7) Pick up/drop, and (8) Other 

activities. 

3. The amount of time spent in each of these activity categories was calculated by using 

the “dwell time” variable in the NHTS data.  The time spent in in-home activities was 

computed as total time in a day (24 hours) minus the time allocated to the above 

mentioned out-home activities, sleep (8.7 hours , 2010 American Time Use Survey) , 

and travel activities.   

4. To develop the activity-travel environment measures from secondary data sources, 

various GIS layers (from property appraiser, infoUSA and NAVTEQ data) were 

overlaid onto circular buffers centered on the NHTS household locations. The buffer 

sizes used for this purpose are: ¼ mile, ½ mile and 1 mile. Accessibility variables such 

as recreational accessibility (such as gymnasiums, parks), retail accessibility (such as 

department stores, financial institutions), and other accessibility were also created for a 

5 mile buffer size centered on the household locations. 

5. After preparing the data from the activity file and the person file, the activity-travel 

environment measures and the accessibility variables were added based on the 

household file. The records with missing or inconsistent data were removed from the 

final data set. 
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3.2.3 Data Description 

 Table 3.1 provides descriptive information on the estimation sample used in this analysis. 

The sample comprises 6218 individuals who participated in at least one out-of-home activity on 

the survey-day. Only the interesting characteristics of the sample are discussed here. A large 

portion of the sample comprises elderly; partly due to a large share of elderly in Florida’s 

population and also due to a skew in the response rates of different age groups to the survey.  

The dominant share of elderly in the sample explains a greater share of females, a higher 

than typical proportion of smaller size households, larger share of households without children 

and those with no workers, and predominantly urban residential locations. A large share of the 

sample is Caucasian, able to drive, and owns at least one vehicle in the household. Several other 

demographic variables reported in the table are relevant to the models estimated in this paper. 

The last part of the table presents the OH activity participation and time-use statistics 

observed in the sample. On average, individuals in the sample spent around two-and-half hours 

on OH activities. Majority of them participated in shopping activities, followed by personal 

business, social/recreation, eat out, medical, active recreation, pickup/drop-off, and other 

activities. Note that the percentages of participation in different activities add up to more than 

100, because a majority of individuals participate in multiple activities. On average, individuals 

in the sample participated in 2.6 OH activities; 32% participated in two activities and 36% 

participated in at least 3 activities. This calls for the use of the multiple-discrete choice modeling 

approach for modeling time-use. In terms of time allocation, those who participate in social 

recreation do so for an average of 2 hours. The average time allocation to shopping, personal 

business, active recreation, eat out, or medical activities ranges from 45 minutes to an hour, 

while that for pickup/drop-off and other activities is around 15 minutes.  
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While not reported in the tables, some useful patterns observed in the data and relevant to 

the modeling results presented later are: (a) greater proportion of females participate in shopping 

and social/recreation activities and for larger durations, (b) older people participate more in 

medical activities while younger people participate more in social/recreational activities, (c) 

those with a driver’s license are likely to do more out of home activities, especially pickup/drop-

off, (d) those with children undertake more pickup/drop-off activities, and (e) higher income 

individuals participate more in social and active recreation and eat out activities. In summary, the 

sample shows reasonable time allocation patterns that are typical of the non-working population 

in Florida. 

3.3 Empirical Results 

3.3.1 Stochastic Frontier Model of OH Activity Time Frontier (OH-ATF) 

Table 3.2 presents the results of the stochastic frontier model for OH-ATFs. Interestingly, 

female non-workers are found to have larger OH ATFs than male non-workers in Florida. Upon 

closer examination, this result can be traced to larger participation of females in shopping and 

social/recreation activities that tend to be of larger duration. As expected, the frontier is larger for 

people of younger age groups and for those who have driver licenses. Blacks seem to have larger 

frontiers than Whites and others; see Banerjee et al. (2007) for a similar finding. Internet use is 

positively associated with OH-ATF. People from single person households, high income 

households, and zero-worker households tend to have larger OH-ATFs; presumably because of 

the greater need for social interaction for single-person households, greater amount of money 

among higher income households to buy home maintenance services and free-up time for OH 

activity (as well as greater affordability to consume OH activities), and lower time-constraints of 

zero-worker households. People living in urban locations have larger OH-ATFs than those in 
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rural locations, perhaps due to a greater presence of OH activity opportunities in urban locations. 

Mondays are associated with smaller perceived frontiers for OH non-worker activity, possibly 

due to pronounced OH activity pursued over the weekend just before Monday and also due to the 

effect of Monday being the first work day of the week. Several other demographic variables were 

explored but turned non-influential in the final model. These include education status, vehicle 

ownership, presence of children, and own/rent house. This may be because the income effects in 

the model act as surrogate for many of these variables. 

 The stochastic frontier models can be used to estimate the expected OH-ATF for each 

individual in the survey sample to generate a distribution of expected ATFs. The average value 

of the expected ATF in the estimation sample is around 400 minutes (6 and half hours), whereas 

the average total OH time expenditure is 152 minutes (about 2 and half hour), suggesting that 

people are utilizing close to 40% of their perceived time budgets for OH activity. Of course, the 

percentage utilization varies significantly with greater utilization for those with larger observed 

OH activity expenditures and smaller utilization for those with smaller observed expenditures. 

3.3.2 Out-of-home Activity Time-use Model Results 

We estimated seven different MDCEV models of time-use with different assumptions 

discussed earlier on time budgets. Overall, the parameters estimates from all the models were 

found to be intuitive and consistent (in interpretation) with each other and previous studies. This 

section presents (in Table 3.3) and discusses only the results of the model in which the expected 

OH-ATFs (estimated using the stochastic frontier approach) were used as the available time 

budgets. 

 The baseline utility parameters suggest that females are more likely (than males) to 

participate in shopping and pickup/drop-off activities but less likely to participate in active 
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Figure 4.2 (Continued) 
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Figure 4.2 (Continued) 
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Table 4.8 Impact of Increasing Fuel Economy for New (0-5 years) Compact, Subcompact, Large and Mid-size Vehicles 

Vehicle Type and Vintage Log-linear Regression Stochastic Frontier AME + Non-motorized Budget = 119505 miles 

 

% Change 

in Holdings 

Change in 

Mileage* 

% Change 

in Holdings 

Change in 

Mileage 

% Change 

in Holdings 

Change in 

Mileage 

% Change 

in Holdings 

Change in 

Mileage 

Unspent Mileage - - - -258 - -10 - -554 

Compact 0 to 5 years 1.03% 404 1.28% 431 1.04% 267 1.16% 669 

Compact 6 to 11 years -0.36% -292 -0.12% -153 -0.26% -308 -0.07% -100 

Compact 12 years or older -0.70% -345 -0.33% -179 -0.49% -339 -0.06% -113 

Subcompact 0 to 5 years 0.09% 193 0.95% 243 0.63% 202 0.59% 314 

Subcompact 6 to 11 years -0.43% -345 -0.25% -174 -0.47% -401 -0.21% -114 

Subcompact 12 years or older -0.44% -340 -0.30% -164 -0.55% -312 -0.18% -108 

Large 0 to 5 years 0.81% 352 1.02% 322 0.96% 225 1.20% 538 

Large 6 to 11 years -0.48% -404 -0.26% -164 -0.40% -344 -0.14% -95 

Large 12 years or older -0.71% -550 -0.40% -231 -0.50% -475 -0.29% -145 

Mid-size 0 to 5 years 0.93% 348 1.12% 325 0.76% 209 0.95% 546 

Mid-size 6 to 11 years -0.35% -270 -0.17% -144 -0.30% -274 -0.06% -86 

Mid-size 12 years or older -0.43% -404 -0.31% -175 -0.37% -365 -0.20% -109 

Two-seater 0 to 5 years 0.00% -161 -0.18% -126 -0.23% -185 -0.39% -78 

Two-seater 6 to 11 years -0.25% -267 -0.22% -164 -0.78% -257 0.00% -92 

Two-seater 12 years or older -0.61% -216 -0.58% -121 -0.46% -225 0.00% -83 

Van 0 to 5 years -0.53% -370 -0.17% -149 -0.37% -361 -0.09% -97 

Van 6 to 11 years -0.61% -367 -0.12% -151 -0.47% -322 -0.21% -102 

Van 12 years or older -0.61% -445 -0.35% -202 -0.69% -469 -0.05% -116 

SUV 0 to 5 years -0.20% -214 -0.10% -107 -0.24% -191 -0.04% -68 

SUV 6 to 11 years -0.26% -257 -0.16% -138 -0.28% -252 -0.09% -93 

SUV 12 years or older -0.74% -326 -0.22% -171 -0.65% -349 -0.14% -91 

Pickup Truck 0 to 5 years -0.35% -278 -0.19% -159 -0.32% -291 -0.10% -102 

Pickup Truck 6 to 11 years -0.33% -310 -0.22% -170 -0.37% -314 -0.04% -107 

Pickup Truck 12 years or older -0.58% -319 -0.29% -205 -0.64% -318 -0.23% -123 

Motorcycle 0 to 5 years -0.74% -170 -0.51% -75 -0.48% -144 -0.18% -51 

Motorcycle 6 to 11 years -0.63% -134 -0.08% -82 -0.83% -132 0.00% -63 

Motorcycle 12 years or older -0.29% -89 -0.65% -55 -0.55% -95 -0.47% -34 

Change in total expenditure 
 

0  258 
 

10 
 

554 

*These numbers indicate the average change in the mileage allocated for households that a change in the mileage allocation occurred to this vehicle type/vintage. 
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CHAPTER 5 CONCLUSION 

 

5.1 Summary and Conclusions 

This thesis compares different approaches to estimating budgets for Kuhn-Tucker (KT) 

demand systems, more specifically for the multiple discrete-continuous extreme value (MDCEV) 

model. The approaches tested include: (1) The log-linear regression approach (2) The stochastic 

frontier regression approach, and (3) arbitrarily assumed budgets that are not necessarily 

modeled as functions of socio-demographic characteristics of decision makers and choice-

environment characteristics.  

The log-linear regression approach has been used in the literature to model the observed 

total expenditure as way of estimating budgets for the MDCEV models. This approach allows 

the total expenditure to depend on the characteristics of the choice-maker and the choice 

environment. However, this approach does not offer an easy way to allow the total expenditure 

to change due to changes in choice alternative-specific attributes, but only allows a reallocation 

of the observed total expenditure among the different choice alternatives. To address this issue, 

we propose the stochastic frontier regression approach when the underlying budgets driving a 

choice situation are unobserved, but only the expenditures on the choice alternatives of interest 

are observed. The approach is based on the notion that consumers operate under latent budgets 

that can be conceived (and modeled using stochastic frontier regression) as the maximum 

possible expenditure they are willing to incur. The estimated stochastic frontier, or the 

subjective limit, or the maximum amount of expenditure consumers are willing to allocate can 
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be used as the budget in the MDCEV model. Since the frontier is by design larger than the 

observed total expenditure, the MDCEV model needs to include an outside alternative along 

with all the choice alternatives of interest to the analyst. The outside alternative represents the 

difference between the frontier (i.e., the budget) and the total expenditure on the choice 

alternatives of interest. The presence of this outside alternative helps in allowing for the total 

expenditure on the inside alternatives to increase or decrease due to changes in decision-maker 

characteristics, choice environment attributes, and more importantly the choice alternative 

attributes.  The other assumptions used for the budgets also follow the same logic as the 

stochastic frontier except that their budgets are not estimated as function of socio-demographics 

or built environment. 

To compare the efficacy of the above-mentioned approaches, we performed two 

empirical assessments: (1) The analysis of out-of-home activity participation and time-use (with 

a budget on the total time available for out-of-home activities) for a sample of non-working 

adults in Florida, and (2) The analysis of household vehicle type/vintage holdings and usage 

(with a budget on the total annual mileage) for a sample of households in Florida. A comparison 

of the MDCEV model predictions (based on budgets from the above mentioned approaches) to 

the observed discrete-continuous distributions in the data suggests that the log-linear regression 

approach and the stochastic frontier approach performed better than using arbitrarily assumed 

budgets. This is because both approaches consider heterogeneity in budgets due to socio-

demographics and other explanatory factors rather than arbitrarily imposing uniform budgets on 

all consumers. Between the log-linear regression and the stochastic frontier regression 

approaches, the log-linear regression approach resulted in relatively better predictions from the 

MDCEV model. However, policy simulations suggest that the stochastic frontier approach 
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allows the total expenditures to either increase or decrease as a result of changes in alternative-

specific attributes. While the log-linear regression approach allows the total expenditures to 

change as a result of changes in relevant socio-demographic and choice-environment 

characteristics, it does not allow the total expenditures to change as a result of changes in 

alternative-specific attributes. This is an important advantage of the stochastic frontier approach 

over the traditional log-linear regression approach to estimating budgets for the MDCEV model. 

5.2 Future Research 

Based on the findings from this thesis, there are at least a couple of avenues for further 

research, as discussed below. 

5.2.1 Heteroskedastic Extreme Value Distribution of the Random Utility Components in 

MDC Models 

Based on the comparison of the predictive assessments of households’ vehicle 

type/vintage holdings and usage in chapter 4 , the results suggested that the MDCEV models 

using budgets from the stochastic frontier and log-linear regression approaches performed well 

in predicting the aggregate-level discrete choices observed in the validation data (i.e., the 

percentage of holding for each vehicle type/vintage). However, for the aggregate allocation of 

annual mileage expenditures, the MDCEV models using budgets from the log-linear regression 

approach performs relatively better than the MDCEV models using budgets from the stochastic 

frontier approach. Specifically, the MDCEV model using budgets from the stochastic frontier 

approach over-predicts the annual mileage expenditures. It is possible that this problem in 

prediction is due to the fat right tail of the extreme value distributions assumed in the MDCEV 

model. This can be rectified to a considerable extent by using heteroskedastic extreme value 

distributions in the model structure. Specifically, one can use the multiple discrete-continuous 
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heteroskedastic extreme value (MDHCEV) model proposed by Sikder and Pinjari (2014) to 

recognize the differences in the variation of unobserved influences on the preferences for 

different vehicle types/vintages
8
. 

The MDCHEV model, when used in conjunction with the budgets from the stochastic 

frontier approach can address the issue of over-prediction in the allocation of annual mileage 

expenditures to different vehicle types. To test this hypothesis, we estimated the MDCHEV 

model for the household vehicle holdings and utilization data discussed in Chapter 4. In the 

MDCHEV model, we also estimate one scale parameter for all vehicle types/vintages (i.e., 

inside goods) and fixed the scale parameter for the unspent mileage (i.e., outside good) to 1. 

The estimated scale parameter for all vehicle types/vintages was 0.70 suggesting that the 

outside good’s utility function has higher variance than that of the inside goods.  

Using the MDCHEV model, we predicted the annual mileage expenditure for each 

vehicle type/vintage. The distributions of the predicted annual mileage expenditures are plotted 

in Figure A.2 using the validation data. When comparing the results of the MDCEV model and 

the MDCHEV models using stochastic frontier as budgets, it clearly shows a reduction in the 

over-prediction of annual mileages for different vehicle types/vintages. By doing so, the 

predictions from the MDCHEV model (with stochastic frontier estimated budgets) are closer to 

those of the MDCEV model (with log-linear estimated budgets).  

These preliminary results demonstrate the value of using a heteroskedastic extreme value 

distribution for the random utility components in MDC choice models. Of course, additional 

empirical testing is needed in the context of different geographical contexts and different 

empirical applications before reaching conclusions on this. 

                                                            
8 For the structure of the MDCHEV model, please refer to Sikder and Pinjari (2014). 
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5.2.2 Other Future Research 

1. In this study, the regression models for budgets (i.e., the stochastic frontier regression 

model and the log-linear regression model) were estimated separately from the 

corresponding MDCEV models. In future research, it will be useful to integrate the 

budget regression model equations with the MDCEV models into an integrated model 

system using latent variable modeling approaches. That way, the budget estimation 

would be endogenous to the MDCEV model. 

2. While the current empirical applications are in the context of time-use and mileage-

use in Florida, it will be useful to test the performance of different approaches (to 

estimate budgets) for other empirical applications and other geographical contexts 

involving MDC choices, including long-distance vacation time and money budgets, 

and market basket analysis.  
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Appendix A: Additional Tables 

Table A.1 Log-Linear Regression for Total Annual Mileage Expenditure (AME) 

Variables Coefficients t-stats 

  Constant 10.77 13.29 

Head Household Characteristics   

  Male 0.08 4.36 

  Age 18 to 29 (age 55 to 74 is base) 0.28 4.46 

  Age 30 to 54 (age 55 to 74 is base) 0.18 7.94 

  Age >75 (age 55 to 74 is base) -0.25 -11.01 

Household Characteristics   

  Income < 25k/year (Income 25k to 50k is base ) -0.09 -3.86 

  Income >=50 and < 75 (Income 25 k to 50k is base) 0.15 5.90 

  High Income >=75k/year (Income 25k to 50k is base) 0.24 10.30 

  Number of drivers 0.31 15.77 

  Number of workers 0.18 13.11 

  Presence of children 0.05 1.78 

  2+ household members 0.25 9.29 

Fuel Cost ($/gallon)   

  Fuel Cost -0.76 -2.86 

Household Location Attributes   

  Rural(Urban is base) 0.17 7.60 

  Employment Density -0.003 -3.96 

  Residential Density -0.008 -2.20 

ˆ
v

  0.773 

R-squared 0.354 

Adjusted R-squared 0.353 

Number of observations 8500 
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Table A.2 Observed and Predicted Vehicle Type/Vintage Holding Using Estimation Data 

Vehicle Type/Vintage Observed 

Log-

Linear 

Regression 

Stochastic 

Frontier 

AME + 

Non-

Motorized 

Budget = 

119505 

miles 

Unspent Mileage - - 90.2% 100.0% 100.0% 

Compact 0 to 5 years 10.4% 11.2% 9.5% 10.4% 9.6% 

Compact 6 to 11 years 9.4% 9.1% 9.7% 10.4% 9.7% 

Compact more than 12 years 4.6% 5.0% 3.9% 4.6% 3.9% 

Subcompact 0 to 5 years 3.5% 3.9% 3.1% 3.7% 3.0% 

Subcompact 6 to 11 years 2.9% 2.8% 2.3% 2.8% 2.2% 

Subcompact more than 12 years 3.0% 3.2% 3.9% 4.7% 3.9% 

Large 0 to 5 years 7.3% 8.0% 6.5% 7.2% 6.4% 

Large 6 to 11 years 6.7% 7.6% 6.0% 7.0% 6.0% 

Large more than 12 years 4.0% 4.5% 3.3% 4.0% 3.2% 

Mid-size 0 to 5 years 15.3% 16.2% 15.3% 16.5% 15.3% 

Mid-size 6 to 11 years 14.4% 12.9% 13.2% 14.3% 13.2% 

Mid-size more than 12 years 4.9% 5.5% 4.2% 5.0% 4.2% 

Two-seater 0 to 5 years 1.2% 1.2% 1.3% 1.5% 1.2% 

Two-seater 6 to 11 years 1.1% 0.9% 1.1% 1.4% 1.1% 

Two-seater more than 12 years 1.1% 1.2% 1.0% 1.0% 1.0% 

Van 0 to 5 years 6.1% 6.6% 5.4% 6.3% 5.2% 

Van 6 to 11 years 6.1% 12.6% 5.1% 6.0% 5.0% 

Van more than 12 years 2.3% 2.5% 2.4% 2.9% 2.3% 

SUV 0 to 5 years 17.8% 18.6% 16.8% 17.5% 16.5% 

SUV 6 to 11 years 12.6% 11.6% 13.7% 14.7% 13.6% 

SUV more than 12 years 3.3% 3.5% 2.7% 3.3% 2.5% 

Pickup Truck 0 to 5 years 10.0% 10.4% 10.4% 11.8% 10.3% 

Pickup Truck 6 to 11 years 9.6% 9.2% 8.5% 9.6% 8.1% 

Pickup Truck more than 12 years 6.4% 6.5% 5.3% 6.2% 5.1% 

Motorcycle 0 to 5 years 1.8% 1.9% 1.4% 1.7% 1.3% 

Motorcycle 6 to 11 years 1.5% 1.3% 1.4% 1.9% 1.4% 

Motorcycle more than 12 years 1.2% 1.2% 1.3% 1.7% 1.2% 

Mean Absolute Error 
 

0.7 0.6 0.4 0.6 
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Figure A.1 (Continued) 
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Figure A.1 (Continued) 
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Figure A.1 (Continued) 
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Figure A.2 Observed and Predicted Distributions of Total Annual Mileage by Vehicle Type/Vintage to MDCHEV Model 
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Figure A.2 (Continued) 
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Figure A.2 (Continued) 
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