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ABSTRACT 

Tendons, essential tissues that connect muscles to bones, are susceptible to 

rupture/degeneration due to their continuous use for enabling movement. Often surgical 

intervention is required to repair the tendon; relieving the pain and fixing the limited 

mobility that occurs from the damage. Unfortunately, post-surgery immobilization 

techniques required to restore tendon properties frequently lead to scar formation and 

reduced tendon range of motion. Our ultimate goal is to create an optimal tendon 

prosthetic that can stabilize the damaged muscle-bone connection and then be remodeled 

by resident cells from the surrounding tissues over time to ensure long-term function. To 

achieve this, we must first understand how cells respond to and interact with candidate 

replacement materials.  

The most abundant extracellular matrix (ECM) protein found in the body, 

collagen, is chosen as the replacement material because it makes up the majority of 

tendon dry mass and it can be remodeled by cell-based homeostatic processes. Previous 

studies found that Di-catechol nordihydroguaiaretic acid (NDGA) cross-linked fibers 

have greater mechanical strength than native tendons; and for this reason this biomaterial 

could be used for tendon replacement.  

This work focuses on investigating the behavior of fibroblasts on NDGA cross-

linked and uncross-linked collagen samples to determine if cross-linking disrupts the cell 

binding sites affecting cell spreading, attachment, and migration.  The in-vitro platform 
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was designed by plasma treating 25 mm diameter cover slips that were exposed to 3-

aminopropyl-trimetoxysilane/toluene and glutaraldehyde/ethanol solutions. The collagen 

solution was then dispensed onto the glutaraldehyde-coated cover slip and incubated for 

fibrillar collagen matrix formation. The collagen matrices were submerged in NDGA 

cross-linking solution for 24 hours to ensure the surface was completely cross-linked. 

Collagen films were made by allowing the uncross-linked gels to dry overnight before 

and after NDGA treatment, resulting in a more compacted structure. 

A spinning disk device was employed to quantify the ability of cells to remain 

attached to the collagen samples when exposed to hydrodynamic forces. To avoid any 

cell-cell interaction and focus on cell-surface interactions, 50-100 cells/mm2 were seeded 

carefully on each sample. Temporal studies demonstrated that cell adhesion strength and 

spreading area reached steady-state by 4 hr. Adhesion and spreading studies along with 

migration experiments demonstrated that NDGA treatment affects cellular behavior on 

films, partially reducing adhesion strength, migration, and spreading area. However, on 

the cross-linked gels which are less dense, the only change in cell behavior observed was 

in migration speed.  

We hypothesize that these differences are due to the collapsing of the collagen 

films. This compaction suggests a less open organization and could be allowing the 

collagen fibers to form more inter-chain bonds as well as bonds with the small NDGA 

cross-linker; while NDGA treatment of the fully hydrated gels may rely more on NDGA 

polymerization to span the greater distance between collagen fibrils. From these results, 

we can determine that the chemical/physical masking of the adhesion sites by NDGA on 

collagen films affects cellular behavior more than the masking that occurs in the cross-
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linked gels. Although this study shows an effect in cell behavior on the cross-linked 

films, it also demonstrates that cells can adhere and migrate to this NDGA biomaterial 

supporting the idea that this biomaterial can be utilized for tendon replacement.  
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CHAPTER 1: INTRODUCTION 

1.1 Tendons 

Tendons are essential tissues that connect muscles to bones. The extracellular 

matrix (ECM) is made up mostly of Type I collagen (about 30% of the total weight) and 

elastin (2%), a protein that permits the tendons to be flexible. The rest of the tendon is 

primarily composed of water and tenocytes (cells that reside in the tendon) [1, 2]. 

Tendons are characterized as being stiff and flexible; they are able to stretch 

approximately 4% without becoming damaged [3].   

The primary function of the tendon is to transmit forces from the muscles to the 

bones, permitting movement of different sections of the body by the motion of the joints. 

These connective tissues are stronger than muscles and capable of supporting weights 

that are 17 times heavier than the regular body weight. The strength of the tendon 

depends on the properties of the collagen fibers such as their size, thickness, orientation, 

and fibrillar organization. The quantity of tendon fibers utilized in a certain movement is 

also important to the overall tendon force. [4]   

When a load is applied to the collagen fibers, the fibers rearrange themselves 

immediately parallel to the direction of the load. However, not all tendons are oriented in 

a parallel pattern; some are arranged longitudinally or in other forms, depending on the 

location and specific function of the tendon. Tendons also vary in shape and size 

depending on their location. [2]  
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Figure 1 The Achilles tendon (Gray, 1918 - public domain). [5] 
 

 There are various types of tendons; however, the strongest tendon in the body is 

the Achilles tendon (shown above). The Achilles tendon connects the calf muscle to the 

heel bone, it allows a person to walk, run, and do other activities. Although fibrous 

sheaths protect tendons when they are being stretched by the bone-muscle movement; 

sometimes they cannot prevent them from becoming ruptured or damaged. [2] 

 Damage to the tendon is most likely to occur in athletes that work their muscles 

more extremely than the normal population. Other factors that reduce the tendon’s 

properties, which ultimately affect and damage the tendon, are aging and the use of 

steroids [2]. Although all tendons are very important for proper body functionality; 

tendons located in the hand are the most difficult type of tendon to repair due to the 

higher likelihood of peripheral adhesion and scar formation post surgery. For this reason, 

a focus on flexor tendon repair through the development of a slowly degradable 

replacement will be taken. 
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1.2 Tendon Healing Process 

The three stages of the healing process are the inflammatory phase, the 

fibroblastic phase also known as the collagen producing phase, and the remodeling phase. 

The inflammation stage usually lasts approximately 2 to 3 days following surgery; during 

this stage inflammation occurs after the repair of the tendon. Inflammation often occurs 

either due to the suture utilized in the surgery or due to fibrin clots that may be located at 

the ends of the tendon. Once this stage is complete the healing process continues with the 

fibroblastic phase which lasts roughly 5 days to 4 weeks. [6] 

During the fibroblastic stage, fibroblasts migrate to the injured site, proliferate, 

and secrete new extracellular matrix. Peripheral adhesion occurs when tendon healing it 

is dominated by extrinsic factors; as the tendon is covered by the sheath, the extrinsic 

fibroblasts residing on the surrounding tissues of the tendon arrive to the injured site and 

begin to proliferate, overwhelming the tenocytes remaining in the injured tendon site. On 

the other hand, a reduction in peripheral adhesion occurs if the fibroblasts residing within 

the tendon populate the injured site and produce the new extracellular matrix. Therefore, 

the rapid rise of tensile strength throughout this stage could be due to the scar formation 

and production of extracellular matrix. [6, 7] 

The fibroblastic period is followed by the remodeling phase which can last for 

months. During the course of this stage, the newly formed tissue becomes reorganized 

into a network of collagen fibrils that begin to align parallel to the direction of the load. 

Once this stage is complete the tendon will re-gain some of its strength and functionality; 

however, it will never fully recover its properties and become fully functional.  [6, 7] 
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The limited number of fibroblasts that reside in adult tendons are very dispersed 

within the fibrous phase; for this reason, they were first considered to be unable to 

proliferate and produce extracellular matrix. Nevertheless, after several studies it was 

discovered that these resident fibroblasts produce and organize collagen and other 

macromolecules into a fibrous phase parallel to the direction of the tensile load. [7] 

Scientists have performed in vivo and in vitro studies to show that cells that reside 

on tendons respond to mechanical changes. Banes [8] and Hannafin [9] performed in 

vitro studies with cells isolated from tendons to show that fibroblasts respond to 

mechanical loads. Furthermore, Malaviya [10] and Woo [11], demonstrated that cells 

produce biochemical alterations when they are exposed to different mechanical stresses.  

Banes et al. [8, 12, 13] also demonstrated that fibroblasts that reside in the tendon 

tend to respond to induced strains via stretch activated channels. Prior to Banes 

discovery, McNeilly et al. had indicated that tendon fibroblasts respond in a coordinated 

manner due to their interconnection through cellular processes as well as gap junctions 

[14]. After these findings, it was determined that the proper biomaterial for tendon 

replacement should enable a direct attachment of cells (fibroblasts) that will endure the 

appropriate strains when loaded [7]. 

 1.3 Tendon Healing Techniques  

Due to their continuous usage, tendons tend to become damaged when they suffer 

either one of two types of ruinous failures: accidental lacerations or extreme 

instantaneous loads. Tendons contain collagen fibers and fascicles that are organized in a 

linear manner along the longitudinal axes. [7] Their hierarchical organization provides 
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the necessary strength for the tendon to handle its specific job in the body. However, this 

complex organization also makes it difficult for doctors/scientists to repair tendons and 

create techniques that will recover most of the tendon’s original strength and movement.  

Although there is a tremendous amount of research on methods to repair different 

types of damaged tendons, an enormous quantity of this research has focused on the 

repair of digital flexor tendons since there are more complications during surgery due to 

the higher likelihood of peripheral adhesion and scar formation. Therefore, the following 

suturing section will mostly focus on flexor tendon repair.  

1.3.1 Suturing Techniques 

Doctors who practiced medicine prior to the 1960s believed in the concept of “no 

man’s land” when faced with patients who had digital flexor atrophies. This theory stated 

that no repair should be done on tendons divided in the digit; however, this was later 

proven to be inaccurate. [6] Most of the suturing techniques nowadays utilized either core 

or circumferential sutures to repair flexor tendons. A group of scientists including 

Komanduri [15], Savage [16], and Silfverskiold [17] determined that the strength of the 

repair is dependent on the number of times the suture strand is crossed over the site of 

repair. It was also determined that post-surgery problems were often due to a rupture of a 

suture knot. [6] 

Other researchers such as Pruitt et al. [18] showed that gapping is the weakest part 

of the tendon. Gapping does not only draw tendon adhesion in the repair site but also 

damages the mechanics of the tendon. From the above studies and his own studies, Dr. 

Strickland [19] concluded that a principal flexor tendon repair should have minimal 

gapping at the repair site, minimal interference with the vascularity surrounding the 
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tendon, secure suture knots, and sufficient strength to allow early tendon movement. The 

tensile strength, the properties of the sutured tendon-gap units, and the efficiency of the 

gliding of the repair site must also be considered when designing a suturing technique. 

[7] 

Although various suturing techniques have been established to join and reduce 

any gaps found in the tendon. These current suturing techniques do not offer the 

necessary mechanical strength to handle the same loads handled by a normal tendon [7]. 

Therefore, other techniques and materials are been developed in an attempt to solve this 

problem by enabling easier suturing.   

1.4 Materials for Tendon Healing 

Researchers continue to investigate and create different materials that have the 

potential to be utilized for tendon repair. These materials range from tissue grafts 

extracted from another source (human or animal), to a variety of biomaterials. Only 

certain materials will be noted in this section in view of the fact that an immense amount 

of materials are being investigated in this field. 

1.4.1 Tissue Grafts 

Tissue grafts are often used in surgeries to replace certain damaged tissues in the 

body. They are categorized as autografts, allografts, or xenografts. The easiest and most 

reliable graft is the autograft which is taken from a specific individual and then implanted 

back into the injured site in the same individual. These grafts are frequently studied 

because of their ability to keep the necessary biochemical properties of the extracellular 

matrix. They also reduce immune reactions and other rejections that may be caused after 



 
          7 

 

implantation. Common examples of autografts are tendons utilized for anterior cruciate 

ligament repair. [7, 20] 

Even though autografts have more advantages than other types of grafts, the 

technique to obtain this graft is very limited and time consuming since only a certain 

amount of tissue can be taken carefully from a person without compromising the graft 

during the resection. [20]   

Allografts, on the other hand, provide a greater source of structural material 

needed during tissue repair.  These grafts are taken from human corpses and as a result 

the cleaning process is more rigorous. To reduce immunogenic responses these tissues 

must be treated and cleaned by removing all the blood, cells, and other proteins that are 

found within the tissues. Unfortunately, even if these grafts are cleaned properly and able 

to retain their biochemical properties, inflammatory responses still occur. [20] 

The last and most problematic way to obtain tissue grafts is by removing tissues 

from animals, i.e. bovine or porcine sources. Although more grafts can be obtained using 

this method, it takes more effort, time, and money to remove all the unnecessary 

materials found in those tissues making the FDA approval process even more 

complicated than the one for allografts. [21] 

1.4.2 Synthetic Materials 

 Scientists have also explored various synthetic materials that could be use for 

tendon repair; some of these materials include carbon fibers, nylon, silicone, and Teflon 

[7]. Mendes et al. developed a carbon fiber strand comprised of long cylindrical 

collagenous fibers with cells that surround the center of each carbon fiber. Dogs’ tendons 

were replaced with these carbon fiber strands for histological investigation. The study 
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demonstrated that the irritation of the tissues, caused by the carbon fibers, reduced the 

density of collagen within the tissue affecting the healing repair. [22] 

 Other researchers utilize more than one synthetic material in an effort to construct 

an ideal implant for tendon repair. Hunter et al. performed a study of an implant that 

consists of a silicone rubber with a Dacron center that terminates in a loop at the proximal 

end and a metal plate at the distal end. From the experimental analysis, it was concluded 

that this material could be useful in tendon implantation surgeries. [23]   

 Many studies like the one done by Hunter et al. strengthen the idea that synthetic 

materials could be use as tendon repair implants. Nevertheless, the only synthetic 

material that has been presumed to be useful in the fixation of torn rotator cuffs and 

Achilles tendon’ ruptures is the Leeds-Keio ligament. [7]   

 The Leeds-Keio ligament is assembled with polyester fiber, shaped in the form of 

an open-weave mesh and containing rectangular holes. This implant has been studied in 

various parts of the body. Fujikawa et al. demonstrated that of several patients who had 

patellar ligament or quadriceps tendon surgery with this material implantation found that 

immobilization was not necessary post surgery. Also, unlike other synthetic materials, no 

cases of infection were found in this study. [24] 

 Apart from the Leeds-Keio ligament, other implants constructed with synthetic 

materials often induce some kind of body response which can either be an inflammatory 

response, an antigenic reaction, or both [7]. During these responses, the body 

immediately sends cells to the affected area to attempt to destroy the implant; this ends 

up not only affecting the tendon’ repair, but also causing additional damages to the body. 

Therefore, even though synthetic materials can handle strengths similar to that of the 
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human tendon, problems with biocompatibility demolish any possibility of them being 

utilized in any current clinical applications.  

1.4.3 Other Biomaterials 

Tissue engineering is a fast growing field, with the purpose of improving the 

quality of human life by discovering biomaterials that can repair tissue malfunctions 

inside the body (i.e. tendon injuries). This repair can be accomplished by manipulating 

cellular and biochemical factors that influence tissue remodeling. [25]  

Most cells in the body need to be in contact with a surface in order to survive and 

proliferate adequately. Therefore, surface’s properties are important factors that must be 

considered when designing a biomaterial. Some of the surface properties that are often 

taken into account when developing a useful biomaterial are hydrophobicity and 

roughness. [26] Cell-surface interactions are also essential when designing a biomaterial 

and for this reason throughout the years scientists have completed several studies on how 

to control cell function by engineering biomaterials [27].  

Various research groups are searching for the best methods to differentiate cells 

into distinct tissues by designing biomaterials with properties that direct cell function and 

which can be implanted. Usually these tissues are developed by combining cells and 

growth factors within a natural or synthetic scaffold. Stem cells are often utilized because 

of their ability to differentiate into various tissues when combined with progenitor cells 

or appropriate signals. [7]  

Many biomaterials known as natural biomaterials are created with components 

found inside the body to reduce the possibility of implant rejection. The materials’ design 

is based on the tissue that needs to be repaired; mechanical and chemical properties tend 
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to vary accordingly to these tissues. For example, cells in the brain are located in a soft 

environment with stiffness of approximately 2500 Pa, while cells that reside in the bone 

are accustomed to stiffer materials. [27]  

Tissues in the body become stiffer when problems such as diseases produce scar 

formation and tumors. Jacot et al. found that substrates with a stiffness of 1kPa have 

similar properties to soft tissue, while the substrates with a stiffness of 50kPa have 

similar properties to myocardial infarction-like tissue [28]. Whereas, Paszek et al. [29] 

demonstrated that tumors are significantly stiffer than regular tissue; breast cancer tumors 

have a stiffness of roughly 4000 Pa while the stiffness of normal tissue is about 150 Pa.  

Several investigations have been made to understand how cells behave in their 

normal environment as well as in the scar tissue/tumor environment. The knowledge 

gained from these studies helps scientists find the best technique to repair distinct tissues.  

For instance, Awad et al found that there was a significant increase in modulus, stress, 

and strain energy density in defected patellar tendons that were treated with a tissue-

engineering implant that consisted of collagen gels containing mesenchymal stem cells 

(MSCs) [30]. Young et al. also demonstrated an improvement in biomechanics repair 

after MSCs entrapped in collagen gels had been delivered to rabbit Achilles tendons. [31]  

1.5 Collagen 

Collagen is the most abundant protein found in the body, approximately 90% of 

the dry weight of tendon is composed of collagen [7].  Tropocollagen, the structural unit 

of collagen, is approximately 1.5 nm in width and 280 nm in length. The tropocollagen 

molecules are composed of three alpha chains, with different amino acid sequences, that 
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form a helical shape as they are wrapped around each other. As each amino acid sequence 

varies, it forms a different type of collagen. [2, 32] 

There are 1000 amino acid residues in each alpha chain; however, glycine, 

proline, hydroxyproline, and hydroxylysine are the four major amino acids found in these 

chains. Glycine, the most common amino acid, makes up approximately 33% of the 

entire collagen and it is found in every third amino acid within the sequence. [2, 32] 

Each of these amino acids is believed to play an important role in the formation of 

fibrils as well as in the increase of collagen’s strength. The job of hydroxyproline is to 

connect the three alpha chains (also known as preprocollagen molecules) together by 

hydrogen bonding, while the small glycine residues allow the alpha chains to join 

together very closely forming a procollagen molecule. Once these procollagen molecules 

are formed they again bind to each other in a helical manner, thanks to the hydroxylysine 

amino acid which covalently cross-links these tropocollagen molecules into bundles. The 

tropocollagen molecules self assemble with a head to tail interaction. [2, 32] 

These newly formed fibrils are 67 nm wide and based on the arrangement of their 

amino acid sequences they form different types of collagen. Gap regions found within the 

fibril are formed when there are spaces between the heads and tails of tropocollagen 

molecules located in different rows. Due to these gaps, collagen displays dark and light 

band under electron microscopy; the dark bands representing the gap regions. [32] 

The natural cross-linking of the collagen fibril leads to the formation of the main 

unit of the fiber system which is found in all connective tissues. Once these mature fibrils 

align, they begin to bundle with each other producing fibers. These fibers once again 

align to each other and bundle to form fascicles or bundle fibers which are found in 
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tissues such as tendons, shown in Figure 2. The collagen fibril organization allows for the 

formation of tissue’s structures which are necessary for the proper function of the tissues. 

[20, 32] 

 

Figure 2 Collagen fiber formation. Picture taken from Fedorczyk 2012. [33] 

 
The alignment of the fibrils and fiber bundles is based on the type of cell that is 

synthesizing the collagen. The specific cell type is responsible for orienting the fibers and 

pulling them around to fit them to the required shape, which depends on the tissue being 

formed. [32]  

1.5.1 Collagen Type I 

Scientists have discovered more than 20 types of collagens that differ based on 

the combination of alpha chain sequences [21]. Each type of collagen is organized and 

assembled with other types of collagen depending on their tissue location [20]. In this 
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study, we will focus on collagen type I since it is the major component of tendon dry 

mass and it is the most abundant collagen found in the body [20, 21].  

The major function of collagen type I is to resist tension. This collagen is 

composed of two alpha 1 chains and one alpha 2 chain. Collagen type I is found in 

various parts of the body, including the dermis, ligaments, bones, organ’ capsules, and 

tendons; for this reason, fibroblasts, osteoblasts, odontoblast, and cementoblasts 

synthesize this collagen in their respective tissues. [21]    

1.5.2 Utilization of Collagen in Biomedical Applications 

Collagen is commonly used as a biomaterial because of all its properties, 

especially its native structure. The assembly of its fibers provides the necessary support 

to the structures of all the tissues found in the body and also gives it the ability to arrange 

itself into scaffolds to achieve the required physiochemical properties necessary for a 

specific implant. [20] Collagen is utilized for biomedical applications in different forms 

such as collagen fibers and reconstructive fibrils. 

1.5.2.1 Collagen Fibers 

The use of collagen fibers for the production of scaffolds is a strategy that takes 

advantage of the structure of collagen. Collagen fibers are often employed for prostheses 

manufacturing, they can be treated as an allograft as long as the fibers are handled 

properly. Proper handling ensures that the biomechanical properties of collagen are being 

retained which leads to proper functional properties of the tissues. Once clean, these 

naturally cross-linked collagen fibers, commonly known as insoluble collagen, are 

reassembled and fixed during prostheses’ production. [20] 
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Collagen fibers are produced from tissues found in the body, such as the Achilles 

tendon. Nowadays the tissues being employed for the production of insoluble collagen 

are taken from animals. Although the reassembling process of these fibers is complicated, 

it provides scientists the opportunity to shape fibers in different structures and with 

various geometries/sizes that satisfy the necessary graft production requirements. So far 

some of the biomaterials composed of insoluble collagen fibers have been developed for 

tendon and ligament repair. [20] 

1.5.2.2 Reconstructive Fibrils 

Reconstituted fibrils from native collagen are also utilized for various biomedical 

applications such as collagen scaffolds’ production. These fibrils are obtained from 

tissues that contain collagen molecules that have a sequence of amino acids also known 

as telopeptides. There are two techniques that can be employed to obtain reconstituted 

fibrils: acid extraction and the digestive enzyme method. [20]  

The acid extraction technique is done on newborn or growing animals, since 

telopeptides become scarce once the animal is completely grown. The extraction must 

occur at a stage where it is easy to alter the acid component; for that reason, this process 

is completed before the formation of intermolecular covalent cross-links and the 

advancement of the allysine pathway. [20, 34, 35] Unfortunately, only a small amount of 

collagen can be absorbed when using this technique. 

 The enzyme extraction method, on the other hand, allows scientists to acquire a 

larger amount of collagen. This method employs a digestive enzyme, pepsin, which is 

treated in acid to cleave the telopeptide region of the collagen that is located in the cross-
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linking section. Once this is done, the molecule is absorbed and it goes through 

purification. [7, 20] 

Once the collagen has been extracted, either by the acid extraction or digestive 

enzyme method, it goes through the purification process. This process utilizes acetic acid 

and is done with salt fractionation. The collagen concentration is adjusted to 0.7M NaCl 

by the addition of NaCl in acetic acid. The collagen solution is centrifuged in order to 

collect the major fibrillar collagen and then re-dissolved in acetic acid. Any remaining 

salts are removed from the final solution during dialysis. Verification of the purification 

of the collagen solution is done by an amino acid analysis and electrophoresis. Once the 

collagen solution is pure, it can be utilized for implant studies since these techniques 

follow FDA regulation. [20] 

It must be noted that the acid extraction and purification protocols mentioned 

above are employed by the company, MiMedx Inc., that provided the collagen for all the 

experiments described in Chapter 2.  

 1.6 Collagen Fixation Methods 

Due to its biological properties, collagen is employed in various research 

laboratories. One of the major focuses of collagen research is in discovering and gaining 

a better understanding of the different methods available to cross-link collagen. If a 

collagen material was implanted in the body with no cross-linking reagents, then it will 

degrade at a fast rate.  

The purpose of an implant is to stay in the body long enough to regenerate the 

damaged tissue; therefore, the collagen material must be engineered in a way to reduce its 
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degradation rate. It has been found that by using a collagen fixation method, the collagen 

material will not only have greater mechanical properties, but also stay in the body for the 

extended periods of time necessary for tissue regeneration.  

The viscosity of the collagen solution allows researchers to cast collagen gels on 

different surfaces and in different shapes. Unfortunately, these gels are very delicate and 

difficult to handle. Therefore, collagen fixation is also necessary to facilitate the handling 

of collagen materials for tendon and ligament repairs. [20]  

The fixation of collagen is either accomplished as a traditional, physiochemical, 

chemical, or polymerization approach. Although all these methods are important, this 

section will focus on the three best studied collagen cross-linkers: glutaraldehyde, 

carbodiimide, and nor-dihydroguaiaretic acid (NDGA).    

1.6.1 Glutaraldehyde Treatment 

Glutaraldehyde is the most common reagent employ to cross-link collagen fibers 

[36]. This very inexpensive aqueous solution is able to cross-link collagen during short 

periods of time. The glutaraldehyde treatment makes the collagen material stiffer and 

provides better stabilization than other cross-linking reagents, including carbodiimide, 

epoxy, and genipin. [37]   

This fixation technique covalently cross-links glutaraldehyde with the collagen 

molecule through the amine groups (R-NH2), as shown in the figure below. The number 

of bonds that are formed by this cross-linking method is based on the distance between 

each molecule and the quantity of available amine groups. Even though glutaraldehyde 

reacts with amine groups, it can also react to a lesser degree with carboxyl groups [20] 
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The effect of glutaraldehyde collagen fixation varies with the concentration of 

glutaraldehyde employed to cross-link the collagen material. Unfortunately, as the 

glutaraldehyde residues start leaving the material, they automatically become toxic to the 

body. Careful consideration of glutaraldehyde concentration is needed to continue 

exploring collagen cross-linking with glutaraldehyde for tissue implantations. [37]  

 

 

Figure 3 Glutaraldehyde cross-linked collagen. 

1.6.2 Carbodiimide Treatment 

 Unlike the glutaraldehyde method, the carbodiimide cross-linking method does 

not cause any toxicity problems since all the un-reacted groups can be removed if the 

proper reagent utilized to active the carboxylic acid is utilized [38].  
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Figure 4 Chemical structure of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). 

 
 The carbodiimide compound that is most often used for collagen cross-linking is 

the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) shown in Figure 4. The 

reaction of this compound with the collagen side chains that contain aspartic and 

glutamic acid’ carboxylic groups, form another compound that reacts with the amine 

groups of the lysine side chains of collagen generating an amide cross-link [20].   

 Although this cross-linking method produces a collagen product that is more 

biocompatible than glutaraldehyde, other cross-linking agents including glutaraldehyde 

increase the stabilization and tensile properties of collagen more significantly which is 

necessary for tendon implants. [36] 

1.6.3 NDGA Treatment 

Nor-dihydroguaiaretic acid (NDGA) is an antioxidant that has a 6-carbon alkane 

chains with a functional ortho-catechol on each side. The reactive end catechol groups of 

this antioxidant extracted from Larrea divaricata or creosote bush (~ 5 to 10% of the 

leaves dry weight is made of NDGA), cause polymerization [39]. This polymerization 

first occurs when these catechols begin to auto-oxidized and become ortho-quinones, at a 

slow rate and neutral pH [40, 41]; these two quinones proceed to form bisquinones cross-

links at the end of the NDGA molecule by oxidative coupling and aryloxy free radical 
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formation. The bisquinones cross-links are continued, forming a polymer network that 

ends up entrapping the collagen fibers within it. [39]  

 

Figure 5 Diagram of NDGA molecule. 

 
Although this NDGA mechanism is based on the polymerization technique, recent 

studies by MiMedx Inc. (Personalized communication with Dr. Thomas J. Koob) have 

found that NDGA may also be employing the cross-linking technique, bonding itself with 

the amino acid side chains of the collagen molecule.   

This antioxidant treatment provides many benefits to collagen including 

stabilization, anti-inflammatory capabilities, and enhancement of its mechanical 

properties. For this reason, it is employed in various medical applications for the 

treatment of several diseases [39]. Moussy et al. [42] utilized NDGA collagen fibers to 

develop a local drug delivery system, while Lu et al. [43] demonstrated that by cross-

linking NDGA decellularized heart valve scaffold, the biomaterial became more stable, 

durable, and stronger. In addition to the cardiovascular and drug delivery fields, this 

biomaterial is also being investigated in the neurological and cancer treatment areas.  
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Studies done by others have demonstrated that the treatment of collagen fibrils 

with NDGA can be ideal for tendon tissue replacement. This is because NDGA enhances 

the tensile properties of the collagen fibrils, making it comparable to the ones of the 

human tendon and because is not cytotoxic, permitting the cells to attach, migrate, and 

proliferate within the material. [40] 

 

Figure 6 Properties of 5% gelatin gels with different NDGA concentrations. [40] 

 
The figure above taken from Koob et al. [40] shows that there is an increase in 

stiffness and stress between untreated 5% gelatin gels and the ones treated with 3.0 mg 

NDGA. The two symbols were added to the figure to show our comparison between the 

two groups. Although the focus of this thesis is on collagen gels instead of gelatin, we 

undertake that the relation between the untreated and treated collagen gels will be similar 

to the ones shown above. This assumption is made not only because gelatin is the product 
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of denatured collagen but also because previous studies have shown that collagen fibers 

treated with this concentration of NDGA enhances the tensile properties of the material.  

 1.7 Adhesion Assays 

Molecular interactions occur when ligands and receptors match each other and 

form conformations. When a good conformation occurs between the cells’ receptor and 

the ligand, the cell adheres strongly to the surface with strong bonds that last for long 

periods of time. These non-covalent bonds (i.e. hydrogen bonds) are individually weak; 

however, once they get close together they form strong bonds between the cell and its 

surface. [44] 

Mechanical forces applied to these bonds usually lead to deformation of the 

receptor, altering the matching conformation between itself and the ligand. The 

deformation of the receptor can also affect its specificity for the ligand, causing a 

possible conformational match between this same receptor but to a different type of 

ligand.  All these changes alter the adhesion strength of the cell to its surface. [44] 

When cells are seeded on a surface, they originally bind to this surface weakly 

with a small number of receptors; however, as time progresses they begin to spread on 

the substrate increasing the number of receptors at the cell-substrate interface. The local 

increase in number of receptors leads to an increase in bond formation and subsequent 

enhancement of adhesion force between the cell and its substrate. [45] 

The primary family of cell-surface receptors that bind extracellular matrix 

proteins are the integrins. Integrins are transmembrane glycoproteins composed of alpha 

and beta chains that link the cell’s actin cytoskeleton to the ECM with the aid of other 
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intermediate proteins [45]. These integrins play a major role in cell adhesion and 

migration since they facilitate the adhesion of cells to different substrates. [46] 

Shear stress, which is a force applied over a finite area, is the measurement 

utilized to quantify cell adhesion strength [45]. All the techniques utilized for cell 

adhesion measurements are classified based on the forces employ to detach the cells from 

the surface. Each cell adhesion characterization technique is considered to be either part 

of the centrifugation, micromanipulation, or hydrodynamic shear methods. Although all 

of the techniques are useful, only some of them provide a quantitative measurement of 

cell adhesion strength. [45, 47]  

1.7.1 Centrifugation  

The centrifugation method applies centrifugal forces, forces normal to cell 

adhesive area, which occur when samples are placed in a usual centrifuge. Once the 

sample has gone through the centrifugal method, the quantity of cells remaining in the 

surface is compared to the initial number in order to determine the adhesion strength. 

Various scientists such as Chu et al [48], Reyes et al [49], and Giacomello et al [50] have 

utilized this method to investigate the strength of the cells on different surfaces. Although 

this method is very convenient due to its simplicity, it is limited to short term studies and 

it only allows one single force to be applied at a time. [45] 

1.7.2 Micromanipulation 

Micromanipulation is the second method that is employed for cell adhesion 

measurements. Micropipettes, microprobes, AFM cantilever, or laser tweezers are 

employed in this technique. Various scientists such as McKeever et al. [51] utilized the 
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micromanipulation technique for studies such as the investigation of the adhesion of 

alveolar macrophages. Unfortunately, this technique utilizes expensive specialized 

equipment and it is limited to single cell or receptor-ligand pair measurements. [45] 

1.7.3 Hydrodynamic Shear Assay 

The third method is the hydrodynamic shear assay which allows for adhesion 

studies on a larger cell population. This method consists of different flow systems that 

utilize a variety of forces to detach cells from different surfaces. This technique is 

considered the most reliable for cell adhesion measurements because researchers have the 

ability to control and reproduce the forces for different sets of experiments. [45] 

Parallel plates, radial flow between parallel disks, and rotating disks are the three 

systems considered part of the hydrodynamic shear assay classification. They are 

distinguished from each other based on flow configuration which depends on their 

geometry.  

1.7.3.1 Parallel Plates  

The parallel plate technique is often utilized because observations of the 

attachment and detachment processes can be done directly with a microscope [52]. 

Several experiments must be done to determine the cell adhesion strength since only one 

force can be applied per experiment. The radial flow between parallel disks also allows 

direct observation of the attachment and detachment forces. However, cells at the central 

flow are subject to complex hydrodynamic conditions. [45] 
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1.7.3.2 Spinning Disk 

Unlike other devices such as the parallel plate where turbulent flow may occur, 

affecting the controlled hydrodynamic forces being applied to the sample, the spinning 

disk device applies a well-defined range of forces that are strong enough to detach the 

cells from their surface while keeping the flow in laminar conditions. [53, 54] 

The flow patterns that occur in the spinning disk have been approximated based 

on the flow patterns that occur in an infinite disk that is spinning in an infinite fluid [53, 

55]. Shear stress (τ) is applied at the disk’s surface by the creation of a velocity gradient 

that occurs if an assumption that no slip occurs between the surface of the sample and the 

fluid [53].  

 

Figure 7 Spinning disk device and radial/shear stress relation (an increase in the radius (r) is related 
to a linear increase in shear stress (τ). 

 
As shown by the figure above, a linear relationship exists between the radius and 

shear stress. Although the radius is an important factor to determine the shear stress, the 
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fluid density (ρ), fluid viscosity (μ), and rotational velocity (ω) are also necessary to 

calculate the shear stress applied to a cell at a specific radius. [53] 

 
𝝉 = 𝟎.𝟖𝒓�𝝆µ𝝎𝟑                                          (Eq. 1) 

 
Equation 1 demonstrates that at the center of the circle (r =0), cells do not 

experience any detachment forces (τ =0). On the other hand, the closer the cells are to the 

edge, the more detachment forces they must handle in order to remain on the surface. For 

this reason, the quantity of cells remaining in the surface decreases as the distance of the 

radius from the center of the surface increases. 

After the cells have experienced the range of hydrodynamic shear stress from the 

spinning disk, sixty-one fields are imaged from the sample and the number of cells 

remaining in the surface is counted. The fraction of adherent cells left after the spin (f) is 

then calculated by dividing the cell count of each field by the number of cells located at 

the center of the circular sample, which experiences zero shear stress.  The adhesion 

profile (Figure 8) is then graphed by plotting the ratio of cells remaining in the surface of 

the sample versus the shear stress. 

 

Figure 8 The adhesion profile of a typical cell adhesion curve. 
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The τ50 value from the figure above is calculated after fitting the f vs. τ data to a 

sigmoid curve (Equation 2) [54, 55]. The shear stress that causes 50% of the cells to 

detach from the surface (τ50) represents the average adhesion strength of the cells on a 

specific surface. The adhesion strength will vary based on the location of the sigmoid 

curve; the adhesion strength increases when the sigmoid curve shifts to the right.  

 

𝒇(𝝉) =  
𝟏

𝟏 + 𝒆𝒃(𝝉−𝝉𝟓𝟎)                                    (Eq. 2) 

 
Because of the range of forces and large number of fields analyzed in each 

experiment, this adhesion strength assay is more robust than other methods and for this 

reason it is the technique utilized in all the adhesion experiments described in Chapter 2. 

 1.8 Migration Assays 

Cell migration is an important factor in many biological events including wound 

healing [56], cancer metastasis, and embryonic development. This process involves the 

mechanical interactions of the cells with the surrounding surface. In order for a cell to 

migrate, it must go through a process that requires the formation of new attachments from 

the surrounding ECM as well as detachment from other sites of this ECM. [46, 57]  

The migration process is often separated into three different stages. The first stage 

is when the cell adheres to the environment, the second stage is when the cell generates 

the necessary forces to propel itself forward, and once this occurs, the cell detaches from 

the substrate from its rear during this last stage. Integrins not only play an important role 

in cell adhesion but also are important in cell migration. They augment contractility of 

the cell and promote changes in the organization of the cytoskeleton [57-60]. 
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Cells first adhere to its surrounding environment by forming membrane 

protrusions at the leading edge. The existing integrins attach the protrusions of the cells 

to the ECM and leads them to interact with the actin cytoskeleton. This interaction leads 

to the formation of focal points, which occurs when various signaling molecules get 

together at certain sites. The signals then promote contractility in the cells encouraging 

their propulsion to different sites of the substrate. Once the cells are ready to move to the 

direction they have propelled to, they begin to detach from the surface at their rear. 

Although cells leave some integrins on the surface once they detach from the integrin-

cytoskeleton connection, they end up taking proteins associated with integrin (i.e. 

vinculin). The rear sites no longer have integrins forming adhesion complexes making it 

easier for cell detachment. These same integrins also help in the cell migration process by 

activating enzymes that can degrade the ECM. [57-60]  

There are many variables related to integrin-ligand interactions, such as ligand 

and integrin levels, which affect the behavior of the cells’ migration process (i.e. speed) 

[61]. It has been predicted by mathematical models [60] that the cell migration speed 

reaches its maximum when the cell and substrate adhesiveness to intracellular contractile 

forces, which allow the cell to detach from the rear while forming new attachments at the 

front, occurs at an intermediate ratio. [61] Rapid cell migration can only occur efficiently 

when the formation and breakdown of adhesions is continuously going on thanks to the 

smooth cycling process, from the back to the front of the cell, of various components that 

are necessary for this migration process. [59]  

This migration process is similar for most mammalian cell types; however, this 

does not mean that all cells migrate at the same rate. Fibroblasts have been found to 
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migrate 10 to 60 times more slowly than leukocytes due to the fact that they are 3 to 20 

times more adhesive to a surface than these other cells. These cells also direct their 

morphology and migration path based on the coordinated mechanical interactions that 

occur at hundreds of focal adhesions. [58, 62]   

It is also believed that fibroblasts’ calcium channels are activated by the stretching 

that occurs after their contraction at their rear edges occurs. Once activated these 

channels produce higher calcium levels within the cell which have been found in certain 

migration studies. [58] Unlike other cells such as keratinocytes which move at a constant 

velocity in a gliding manner, fibroblasts tend to migrate slower with a reduced extensions 

and retractions over smaller distances. Higher forces are required to detach fibroblasts 

from the rear which could be due to their strong attachment to the surface. Scientists have 

hypothesized that cells that move faster than fibroblasts do not utilize the same amount of 

integrins employed in the fibroblast migration process. [57] 

Various techniques are employed to study cell migration on different surface. The 

techniques are chosen based on the specific topic being studied, whether it is a two-

dimensional or three-dimensional study, or whether the purpose of the study is to 

understand how fast the cells can repair a wound. Since the focus of this thesis is on 

fibroblast behavior on 2D collagen gels, the two techniques discussed below are often 

used for this type of study. 

1.8.1 Wound Healing Assay 

The wound healing assay is a very common technique employed to investigate 

cell migration [63]. As the name describes it; this assay works by inflicting a wound to a 

surface and then observing the behavior of this damaged monolayer during the recovering 
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and healing process. Prior to forming a wound in the surface, a confluent cell monolayer 

must be formed. Damage in the surface can be done physically by utilizing an object such 

as a needle or pipette tip, or electrically by destroying and killing cells with electricity. 

[64, 65] 

Unfortunately, cell migration is not the only factor that occurs in this assay; 

matrix remodeling, cell proliferation, and cell polarization also take place in the wound 

healing process. Therefore, it is necessary for the samples to be continuously monitored 

through the entire experiment in order to differentiate cell migration from other processes 

occurring within the wound. [64]  

1.8.2 Compartmentalization Techniques 

The compartmentalization technique is also another method utilized for cell 

migration studies. Unlike the wound healing assay, no damage has to be done to the 

surface. A fence or barrier, often in a hollow cylindrical shape, is placed on top of the 

surface being studied. Cells are seeded inside the cylinder and left inside the incubator 

the necessary time (usually 24 hr) to allow them to form a confluent monolayer in the 

circular area. Once this monolayer is formed, the fence is removed from the surface and 

cells being to migrate outward. [66-68]   

Once the targeted migration time has been reached, cells are analyzed to 

determine the distance they have travelled during this time period. This technique will be 

utilized in the migration experiments described in Chapter 2 due to its simplicity and its 

typically reproducible migration results. 
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 1.9 Thesis Objectives 

Our major goal is to someday create an optimal tendon prosthetic that can 

stabilize the damaged muscle-bone connection and then be remodeled by resident cells 

from the surrounding tissues to ensure long-term function. There are several tendon 

repair studies that focus on collagen. However, as previously mentioned, scientists have 

developed NDGA-treated fibers that have tensile properties comparable to that of a 

human tendon. These fibers have an average tensile strength of 90 MPa and an elastic 

modulus of 580 MPa [41]. 

Although studies by Koob et al. [41, 69, 70] have been done on NDGA fibers, our 

focus was on studying cell behavior on collagen gels/films since they can be formed on 

cover-slips allowing adhesion measurements to be gathered with the use of the spinning 

disk. Since it was found that 5% gelatin gels treated with 3.0 mg NDGA were stiffer and 

stronger than gels treated with other NDGA concentrations, we utilized this 3.0 mg 

NDGA concentration for polymerization purposes in all our experiments.  

Once these collagen samples were manufactured with the same ingredients and 

protocol utilized to make the NDGA-fibers. Cells were seeded on top of the surfaces and 

their behavior was studied to determine if NDGA cross-linking affects their spreading, 

migration, and/or adhesion strength. Based on the results, we will proceed to conclude 

whether this NDGA-collagen material is adequate for tendon tissue replacement.  
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Cell Culture Reagents 

NIH 3T3 Fibroblasts were purchased from the American Type Culture Collection, 

(Manassas, VA). The culture reagents Dulbecco’s modified Eagle’s medium (DMEM), 

10% newborn calf serum (NCS), and 1% penicillin-streptomycin (P/S) (Invitrogen, 

Carlsbad, CA) were mixed to produce the complete growth media utilized in all cell 

experiments. Other reagents employed in the experiments described below, including 

Dulbecco’s phosphate-buffered saline (DPBS), CellTracker Green CMFDA C2925, and 

Hoechst-33242, were purchased from Invitrogen (Carlsbad, CA). 

 2.2 Collagen Gel and Film Preparation 

Type I R&D bovine collagen (0.5%) in hydrochloric acid (HCl) solution, 

provided by MiMedx Inc., was utilized to manufacture the gels and films for all the 

experiments. The details of the purification and preparation of this collagen is described 

by Koob et al [41]. The acidic collagen solution was stored at 4°C to prevent gel 

formation, which occurs over time. The final collagen solution was produced by 

combining the collagen-HCl solution with a salt solution (pH 7.4), composed of 105 mM 

NaCl and 53 mM NaH2PO4 in deionized water, in a 1:1 ratio and adjusting the pH to 7.2. 

Circular glass cover slips (25mm diameter) were utilized as supporting platforms for the 

collagen gel formation. The cover slips were cleaned with a compressed nitrogen gun and 
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then oxygen plasma treated (PE50; Plasma Etch, Carson City, NV) for 5 minutes to 

remove any residues. 

The cover slips were immediately exposed to 0.2% 3-aminopropyl-

trimetoxysilane in toluene solution for 30 minutes, and after that rinsed with 70% 

ethanol. They were subsequently immersed in a 4% glutaraldehyde in ethanol solution for 

an additional 30 minutes. The silane and glutaraldehyde treatments were necessary for 

collagen to strongly adhere to the glass surface. Samples were rinsed once again with 

70% ethanol, dried with a compressed nitrogen gun and placed inside 35mm tissue 

culture dishes (TCDs). 

 

Figure 9 Activation of glass cover slips with amine groups. 

 

200 µL or 800 µL of the collagen solution was dispensed on top of the treated 

cover slips and placed inside the incubator at 37°C, 5% CO2 for a minimum of 4hr to 

ensure complete formation of collagen fibrils. The 200 µL gels were left inside the 

incubator so they would remain hydrated; whereas the 800 µL gels were taken out, rinsed 

with deionized water (DI) water (3mL), and placed on the rocker for 10 minutes (2X) to 

ensure salts were removed from the gels.  
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Figure 10 Rinsing of 800μL collagen gels with deionized water. 

 
Each gel was carefully wiped to remove any leftover water from the glass and left 

out to dry overnight at ambient temperature, on top of Parafilm sheets. Once these 

samples were completely dried, they were considered films instead of gels due to their 

collapsed structure and reduced thickness.  

 

 

Figure 11 Wet collagen gels (800μL) left to dry overnight to form films. 
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It must be noted that the 800μL gels which have four times the collagen volume 

of the 200μL gels required a more stringent rinsing to remove most of the salts from their 

surfaces. Removal of these salts was done to prevent any negative effects of high salt 

concentrations on cell attachment or survival.  

2.3 NDGA Cross-Linking 

Once the gels/films were cleaned and manufactured accordingly to their specific 

treatment shown above, they were exposed to a similar NDGA treatment. The protocol 

for NDGA treatment was based on the procedure designed by Koob et al [40]; however, 

modifications were made for the fabrication of wet, dry, and re-hydrated collagen 

gels/films.  

2.3.1 Films - NDGA Treatment   

The NDGA powder from Cayman Chemical Company (Ann Arbor, MI), was 

dissolved (30mg/mL) in 0.1M NaOH. The solution was vortexed to assure the powder 

was completely dissolved in the NaOH solution. 18mL of 0.1M NaH2PO4 (pH 9.0) 

solution (Fisher Scientific) was then added on top of the NDGA/NaOH solution and 

mixed thoroughly for a final concentration of 3.0 mg/mL. 2mL of the cross-linking 

solution was dispensed atop of each collagen film positioned inside a 35mm polystyrene 

culture dish. The films covered in the cross-linking solution were placed on top of a 

rocker at the maximum speed for 24hr to allow complete NDGA polymerization in the 

presence of ambient oxygen.  
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Figure 12 NDGA cross-linking of 800μL collagen films. 

 
The solution was aspirated, and 2mL of 0.1M NaH2PO4 solution was added to 

each film. This solution was left inside the 35mm tissue culture dishes for 1 hour to 

assure that any un-reacted residue was completely removed from the cross-linked 

samples. The films were also washed 3X with Di water (20 minutes each time) to prepare 

the samples for the cell seeding procedure. 

Koob et al. not only demonstrated that good rinsing eliminated un-reacted 

intermediates from collagen fibers but also that this rinsing made the cross-linking 

process more effective [41]. For this reason, the films were placed on top of the rocker at 

the maximum speed during their NaH2PO4 solution and DI water rinses. Once the films 

were completely washed, they were placed on top of Kim Wipes to remove any excess 

water. After that, they were left to dry overnight on top of a Parafilm sheet to avoid the 

collagen samples from attaching to the TCDs. 
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Figure 13 Dry NDGA cross-linked collagen films (800μL) left to dry overnight. 

 
The figure above shows the 800μL dry collagen films following their NDGA 

cross-linking and rinsing treatments. The films are no longer transparent; instead they 

take the brownish color of the NDGA solution.    

2.3.2 Gels - NDGA Treatment 

The NDGA treatment of the 200μL wet collagen gels is very similar to the one 

employed for the 800μL dry films. However, instead of leaving the gels to dry overnight, 

they were placed in new TCDs inside the safety cabinet. The TCDs were then covered 

with 1mL of 70% ethanol and left for at least 12 hours under UV treatment.  

Once all the gels were completely cross-linked, they were rinsed with ethanol for 

5 minutes prior to starting seeding experiments to assure that samples were completely 

sterile and that there was no un-reacted intermediates left that could disrupt cell-surface 

interactions. Unlike the brownish color taken by the 800μL NDGA cross-linked films, the 

200μL cross-linked gels had more of a yellowish color. 
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 2.4 Absorbance of Collagen Networks  

Absorbance measurements of collagen control and NDGA cross-linked samples 

were completed using the Synergy HT Multi-Mode Microplate Reader (Biotek 

Instruments, Inc). The optical density (O.D.) was measured over a broad range of 

wavelengths to determine if the collagen samples were properly cross-linked with the 

NDGA cross-linking solution. 

 

 

Figure 14 Synergy HT multi-mode microplate reader (Biotek Instruments, Inc). 

 
  These results were compared to the ones completed by MiMedx Inc. in order to 

determine whether the gels were being cross-linked in the same manner (see results 

section). By doing so, the understanding of the in-vitro characterization done in the 

following experiments will be useful for the NDGA-collagen materials designed by 

MiMedx Inc. 
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2.5 Gel and Film Thickness Measurements 

2.5.1 Thickness Measurements Using Contact Angle Software 

A Contact Angle Measurement (CAM) device (KSV) was utilized to take side-

view images of the collagen gels. An image of a millimeter ruler was also taken in order 

to create a conversion factor of pixels (px) to millimeters (mm): 5 mm = 487.86 px. 

 

Figure 15 Images taken with contact angle software- Part I. (A) Image of a millimeter ruler. (B) 
Image of 800μL wet collagen gel. 

 
Once the conversion factor was determined, the thickness of each gel was 

calculated as shown below.  

 
𝟓 𝒎𝒎

𝟒𝟖𝟕.𝟖𝟔 𝒑𝒙
∗ 𝟏𝟕𝟑.𝟎𝟒 𝒑𝒙 = 𝟏.𝟕𝟕 𝝁𝒎 

 
Measurements were done on at least 3 samples to determine the average thickness 

of the 800μL wet collagen gels, as well as of the 200μL wet collagen gels, the 800μL re-

hydrated uncross-linked and cross-linked collagen films. Collagen samples were 
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weighted before and after the drying process to determine the reduction of collagen 

volume due to water loss, which was found to be approximately 90%. 

 

Figure 16 Images taken with contact angle software- Part II. (A) Image of 200μL wet collagen gel. (B) 
Image of 800μL re-hydrated uncross-linked collagen film. (C) Image of 800μL re-hydrated cross-

linked collagen film. 
  
 Unfortunately, the thickness of 800μL dry films could not be calculated using the 

contact angle software because films are too thin to be differentiated from the glass 

cover-slip (shown below).  
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Figure 17 Image of 800μL dry collagen film using the contact angle software. 
 

2.5.2 Contact Profiler Measurements 

 The Dektak 150 Surface Profiler (Veeko Instruments, Inc.) from NREC was 

employed to measure the thickness of the 800μL dry collagen films. Half of the collagen 

surface was scratched off the sample in order to measure the thickness of the dry collagen 

samples. The profiler (radius of 12.5μm) measures the sample by touching its surface 

along the horizontal axis.  

The results displayed by this software (shown in figure below) are in the form of 

line profiles of the vertical displacement when the needle goes from the collagen surface 

down to the glass surface. The two flat horizontal surfaces are selected (the left one being 

collagen and the right one glass). The distance between the two gives the thickness of the 

samples; in this technique the thickness is given in Angstroms (Å) is 48,200Å which is 

approximately 4.8μm. 



 
          41 

 

 

Figure 18 Graph of thickness of 800μL dry collagen gel using contact profiler (x-axis: micrometer, y-axis: Angstrom).
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2.5.3 Optical Profiler Measurements 

To corroborate the thickness of the 800μL dry collagen films, the Wyko NT9100 

Optical Profiler (Veeko Instruments, Inc.), located in the Nanotechnology Research and 

Education Center (NREC) was utilized. The optical profiler is able to calculate a 

difference in thickness between two surfaces without physically contacting the samples. 

The samples analyzed using this equipment were the same samples measured in the 

contact profiler, which had half of the surface scratched off.  

 The 3D profiler utilizes white light that does not contact nor destroy the samples 

being measured [71]. Three dimensional interactive maps (one is shown below) of 

collagen-glass samples were acquired using this equipment. The glass surface can be seen 

in blue, which means that the software considers this plane to have a height of zero. The 

collagen sample, which can be seen on the left side of the figure below, has a green color 

which represents a height of approximately 5 microns (μm).  

 

Figure 19 Three dimensional interactive display of collagen - glass border with optical profiler. 
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To get a numerical value of the thickness of the collagen film, the x-profile 

analysis (shown below) was utilized. This graph automatically provides a height 

difference (Z-value) between the two horizontal surfaces. In this case, the height 

difference is 5.3μm which is the average value of the thickness of this collagen film. 

 

Figure 20 X-profile graph of thickness of 800μL dry collagen film using optical profiler. 
 

2.6 Cell Adhesion Strength Experiments 

 

Figure 21 Diagram of spinning disk device. 



 
          44 

 

Hydrodynamic flow systems are among the most reliable methods used to 

measure adhesion strength since a wide range of detachment forces can be applied to 

large cell populations. Of these, the spinning disk device (shown in Figure 21) applies a 

linear range of forces for detachment under constant and uniform conditions at the 

surface. [45] 

 The collagen samples containing the cells were taken out of the incubator and 

placed on top of the spinning disk platform. Application of the vacuum was done to 

assure that the samples would stay in the platform during the spinning process. The 

valves were closed immediately to maintain the vacuum seal between the sample and 

substrate. The platform was then placed inside the chamber and the device was switched 

on for 4.5 minutes, with an acceleration time of approximately 30 seconds.  

 1 L of the filtered spinning buffer (2mM dextrose in PBS) was dispensed into the 

spinning device chamber. The speed of the device was adjusted based on preliminary 

experiments to optimize detachment profiles; however it must be noted that the adhesion 

strength is independent of singular speed. Cells that were adhered to the samples for 1 hr 

were spun at 3000 revolution per minute (rpm) in order to detach them from the collagen 

surface. If seeding time was four hours or more, the speed was increased to 5000 rpm. 

 Once the spinning process was complete, samples were immediately taken off the 

platform and placed in a cytoskeleton (CSK)–Triton X-100 buffer for 10 minutes to 

puncture holes in the cells and stabilize their cytoskeletons. The cytoskeleton buffer (pH 

6.8) was prepared with 3 mM MgCl2, 50 mM sodium chloride, 10 mM PIPES buffer, and 

0.15 mM sucrose in the DI water and 0.5% Triton X-100 solution [72]. The CSK-Triton 

X-100 buffer was then aspirated off before the samples were fixed with 3.7% 
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formaldehyde solution for 5 minutes and placed in a blocking buffer (1% BSA in PBS) 

solution for a minimum of 1 hr. 200μL of Hoechst (1:500) – BSA solution was dispensed 

on Parafilm sheets in the form of drops. The fixed collagen samples were then placed on 

top of the drops, and left in the dark for 45 minutes to allow the stain to penetrate into the 

nucleus of the cells. Samples were rinsed three times with DI water and then mounted on 

slides for analyzing purposes. 

 The samples were examined using a motorized stage and an Eclipse Ti-U 

fluorescent microscope (Nikon Instruments, Melville, NY). Most samples were examined 

with a Circular Cell Count Macro and NIS-Elements Advanced Research Software 

(Nikon Instruments) designed to take 61 pictures at different locations of the sample. The 

program displays an excel file with the number of cells found at each location. These 

counts were analyzed using the sigmoid adhesion fit created in the SigmaPlot 11 Program 

(Systat Software, San Jose, CA). It must be noted that some of the adhesion experiments 

were analyzed with Final Circular Cell Count – AnaRioja2012 Macro designed in the 

NIS-Elements AR Software due to software issues with the Circular Cell Count Macro. 

However, the only difference between the two macros is that the Final Circular Cells 

Count – AnaRioja2012 Macro takes 45 images from different locations of the sample 

instead of 61. These differences do not affect the results of the experiments; the only 

restraint is that cell seeding must be more accurate when using the 45 image macro in 

order to get good results.  
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2.7 Cell Spreading Area and Morphology 

 Fibroblasts were seeded on the four types of collagen samples and left inside the 

incubator for 4 hr to allow them to adhere to the surface. Cells were placed for 45 

minutes in a CellTracker Green CMFDA fluorescent solution made of 25μL CMFDA and 

12 mL DMEM, to permit the solution to penetrate the cell membranes. Once inside the 

cell, CMFDA is converted to a membrane impermeable fluorescent product. Spreading 

area quantification and shape analysis was done using the NIS-Elements Advanced 

Research Software (Nikon Instruments). At least four images per sample were taken; the 

images were taken at the same locations around the center of each sample. 

Approximately 200 cells were analyzed per sample.  

2.8 Cell Migration Experiments 

All four types of collagen substrates were cleaned and sterilized with ethyl 

alcohol (200 proof) and DPBS and placed inside 35mm TCDs (5 minutes with each 

solution). Scienceware Polystyrene Cloning Cylinders (6.4 mm diameter), purchased 

from Thermo Fisher Scientific Inc, were placed on top of the collagen samples. 

Approximately 33,437 cells were seeded in each cylinder and placed inside the incubator 

at 37°C for 24 hours to allow fibroblasts to adhere and form a uniform monolayer. The 

number of cells needed for these experiments was determined by calculating the ratio of 

number of cells needed per area, this ratio was based on Kondo et al.’s protocol [68]. 

 

1,000,000 𝑐𝑒𝑙𝑙𝑠
926 𝑚𝑚2 ∗ 32.17 𝑚𝑚2 = 33,437 𝑐𝑒𝑙𝑙𝑠 
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The cylinder was then removed and rinsed with DPBS to remove any cells that 

did not adhere to the surface. 2mL of complete growth media was added to each sample 

and taken to the Eclipse Ti-U fluorescent microscope (Nikon Instruments, Melville, NY) 

for analysis. By using the motorized stage and an image stitching program developed in 

the ND Sequence Acquisition, a 14 by 13 mm compilation picture was taken (shown 

below in Figure 22).  

 

Figure 22 Stitching image of fibroblasts on a wet cross-linked surface taken immediately after fence 
removal. 

 
The radius was found with the NIS Elements program: once three points were 

selected around the circumference of the circle, the program automatically drew a circle 

around the cells and calculated its radius. After the images were taken, the samples were 

returned to the incubator and left there for an additional 24 hours. Samples were taken 

again to the microscope in order to acquire the stitching images and the radius of each 

circle.  
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It must be noted that in the first few experiments, cells were stained with 

CellTracker Green CMFDA to ease the visibility of the cells on the surface from the 

stitching image. Soon after, it was found that cells did not need to be stained with this 

CellTracker because there was enough contrast between the cells and the substrates, 

especially when zooming into the image. The radius of each image was compared to 

determine the distance the cells traveled within the 24 hour period. By doing so, cell 

migration speed was determined for each of the four collagen sample and plain glass 

cover slips. Three to five different experiments were done per surface type. 
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CHAPTER 3: RESULTS 

3.1 Optical Density (O.D.) vs. Wavelength of Collagen Networks 

The graph shown below compares optical density between 800μL native and 

NDGA cross-linked samples. This volume was chosen since migration, adhesion, and 

spreading studies were done on gels containing this collagen volume.  

 

 

Figure 23 Absorbance of native and cross-linked collagen networks. An absorbance peak can be 
observed at approximately 420 nm, which indicates that collagen gel has been properly cross-linked 

with the NDGA solution. (N=5) 
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The absorbance peak observed around 420 nm indicates NDGA cross-linking 

within the collagen gel. This peak is not present in the uncross-linked collagen gel data. 

The graphs represent the average of five different measurements; the standard deviation 

was also calculated based on the data of these five samples. These results have been 

corroborated with studies performed by MiMedx Inc (not shown).  

 3.2 Collagen Gel/Film Thickness Measurements 

 

 

Figure 24 Thickness of collagen samples using different measuring techniques (N = 3). The thickness 
of the 800μL collagen gel decreases drastically once it dries out and becomes a film. The thickness is 
partially recovered once the 800μL film is rehydrated but decreases again after being cross-linked 

and re-hydrated once again. There is a statistical significance between each sample P< 0.05. 
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Thickness measurements were calculated using three techniques: contact angle 

camera, contact profiler, and optical profiler. The results of the thickness of each sample 

are shown above. The thickness of the collagen samples (except for the 800μL dry 

collagen samples) was quantified using pictures taken with the side-view camera on a 

contact angle measurement system. The average thickness of the 200μL wet collagen gels 

was found to be 416μm (± 62 SEM) while the average thickness of the 800μL wet 

collagen gels was discovered to be 1813μm (± 95 SEM).  

After the 800μL wet collagen gels were dried, these films were washed with 

ethanol and left in PBS for at least one hour, the thickness of the re-hydrated film was 

then estimated to be 262μm (± 44 SEM). The average thickness of the cross-linked re-

hydrated samples was found to be 63μm (± 5 SEM).  These samples were prepared by 

cross-linking the dry films with NDGA and then re-hydrating them with PBS once the 

films were completely dried. 

The contact and optical profilers were employed to measure the dry films. Both 

techniques measure the difference (step-change) between the collagen sample and the 

glass substrate. Half of the collagen was removed from each sample in order for the 

profilers to identify the height difference. The thickness measurements of the 800μL dry 

collagen samples were done with both techniques and averaged (8 points, 3 samples). 

The average thickness of the 800μL dry collagen film was found to be approximately 

4.5μm (± 0.5 SEM). T-tests (α = 0.05) confirmed there was a significant difference 

between these and the average thickness of the 800μL re-hydrated collagen films (262μm 

± 44 SEM). 
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3.3 Cell Adhesion Strength Experiments 

Cell adhesion strength on collagen gels and films was determined using a 

spinning disk device, which applies a linear range of forces for detachment under 

constant and uniform chemical conditions at the surface [45].   

3.3.1 Temporal Studies of Adhesion Strength 

Figure 25 shown below displays the adhesion strength of cells adhered to 200μL 

wet collagen gels for different periods of times (incubation time). The graph shows an 

increase in adhesion strength from 1hr to 4hr, reaching steady-state at the 4 hr incubation 

time. At least 3 different experiments were completed to construct this graph.  

A simple exponential curve was used to fit the adhesion strength versus seeding 

time data of both 200μL gels and 800μL uncross-linked films. This same fit has been 

utilized by others, such as Gallant et al [72]. A minimum of 3 experiments were done for 

each time point to assure that results were representative. 

Statistical analysis was calculated between each time point to determine that 

adhesion strength reached steady-state at 4hr. No statistical significant difference 

(P=0.065) was found between the adhesion strength at 4hr (597 dyne/cm2 ± 37 SEM) and 

24hr (503 dyne/cm2± 27 SEM). On the other hand, at 1hr the adhesion strength (297 

dyne/cm2± 43 SEM) was found to be lower than the 4 hr time point demonstrating that 

adhesion strength keeps increasing between these two time points (P ≤ 0.001).  

Temporal adhesion studies were also done on 800μL collagen films. The result of 

this study is shown below. The adhesion strength of the cells on this sample also 
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increased from 1hr (249 dyne/cm2 ± 36 SEM) to 4hr (554 dyne/cm2 ± 23 SEM) showing 

that there is a statistical significant difference between the two time points (P ≤ 0.001). 

 

 

Figure 25 Temporal studies of adhesion strength for NIH 3T3 on 200µL collagen gels (N ≥ 4). 
Adhesion strength increases from 1 hr to 4hr and reaches steady-state at 4hr (R2 = 0.73). 

 
The adhesion strength of the cells at 24hr was found to be 503 dyne/cm2 ± 14 

SEM) demonstrating that there is no statistical difference (P = 0.087) between this time 

point and the 4hr time point. Therefore, the steady-state of this sample was also reached 

at the 4 hr time point. These results are similar to observations that fibroblasts reach 

steady state adhesion on fibronectin-coated surfaces [72]. Based on these results, steady 

state adhesion strength was quantified on control and uncross-linked collagen gels and 

films.  
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Figure 26 Temporal studies of adhesion strength for NIH 3T3 on 800µL collagen films (N ≥ 4). 
Adhesion strength once again increases from 1 hr to 4 hr and then reaches steady-state at that time 

point (R2 = 0.85). 

 

3.3.2 Comparison of Adhesion Strength between Wet Gels, Dry, Native, and Cross-
Linked Films 

The mean adhesion strength of the 200μL gels was found to be 597 ± 37 dyne/cm2 

(uncross-linked) and 606 ± 25 dyne/cm2 (cross-linked). No statistical significant 

difference in cell adhesion strength was found between the two 200μL samples (P = 

0.859), or between uncross-linked collagen films and either cross-linked or uncross-

linked collagen gels (P>0.05). On the other hand, the t-test performed on the adhesion 

strength of the 800μL uncross-linked (554 ± 23 dyne/cm2) and cross-linked samples (456 

± 35 dyne/cm2) demonstrated a significant difference in adhesion strength between the 

samples (P = 0.038). 
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Figure 27 Adhesion data of fibroblast on wet (200µL) and dry (800µl) collagen gels (N ≥ 6). There is 
no statistical significance between 200μL uncross-linked and cross-linked gels.  However, there is a 
difference between the 800μL uncross-linked and cross-linked films as well as between the 200μL 

cross-linked gels and 800μL cross-linked films. Statistical significance difference: P*<0.05, P**<0.01 

 
In addition, there was a difference in the adhesion strength between cells that had 

been seeded on the cross-linked wet gels versus dry films that had been cross-linked (P = 

0.006).  At least three different adhesion experiments were performed for each sample, 6 

to 9 data points of each sample were collected in order to graph Figure 27. 

 3.4 Spreading/Circularity Experiments 

 Cells were stained with the Green CellTracker dye prior to cell spreading and 

circularity analysis. Cells had been incubated on uncross-linked and cross-linked collagen 

gels for 4hr and 24hr.  
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3.4.1 Temporal Cell Spreading Studies on Cross-Linked and Native Wet Collagen 
Gels 

 

 

Figure 28 Cell spreading area of NIH 3T3 on 200μL uncross-linked and cross-linked wet collagen gels 
at 4hr and 24hr (N = 3). 

 
Each histogram was graphed with average points from three different sets of 

experiments (approximately 200 cells per experiment). Cell frequencies were normalized 

for direct comparisons between experiments and the standard deviations shown in the 

graph were calculated for each area bin. However, statistical comparisons of mean area 

were made by comparing the average cell area from three different experiments. The 

average cell spreading area of cells seeded for 4 hr on top of 200μL uncross-linked 

collagen gels was calculated to be 985 μm2 ± 111 SEM, while at 24hr incubation time it 

was determined to be 892 μm2 ±  98 SEM. No significant difference in cell spreading 
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area was discovered by increasing the incubation time on uncross-linked samples (P = 

0.565); this was also true on the cross-linked surfaces (P = 0.211) where the cell 

spreading area was found to be 728 μm2 ± 32 SEM (4hr incubation time), and 843 μm2 ± 

70 (24hr incubation time). No significant difference was found between uncross-linked 

and cross-linked samples when being compared based on incubation times. A summary 

of the statistical analysis of these experiments is shown in the following diagram. 

 

Figure 29 Statistical analysis of cell spreading area on 200μL wet collagen gels. 

 

3.4.2 Temporal Cell Circularity Studies on Cross-Linked and Native Wet Collagen 
Gels 

As a measure of cell morphology, the shape parameter circularity (closeness to a 

circle; =4π*area/perimeter2) was also compared between these four samples. Average 

circularity was determined by the NIS Elements software from randomly selected cells 

(approximately 200 cells per experiment). The measure of circularity ranges from 0 to 1, 

where 1 describes a cell that is a perfect circle.  

The average cell circularity for the 200μL uncross-linked at 4hr incubation time 

was 0.50 ± 0.04 SEM, while at 24hr incubation time was 0.57 ± 0.08 SEM. No statistical 
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difference (P = 0.130) was determined between the two uncross-linked samples (P = 

0.486) or between the cross-linked samples at distinct incubation periods (4hr: 0.63 ± 

0.02, and 24hr: 0.57 ± 0.02). Surprisingly, a significant statistical difference (P = 0.046) 

was discovered between the uncross-linked and cross-linked samples at the 4hr 

incubation time. However, no statistical significant difference was found between cells 

seeded on cross-linked and uncross-linked after the 24hr incubation time (P = 0.942). 

 

 

Figure 30 Cell circularity of NIH 3T3 on uncross-linked and cross-linked wet collagen gels at 4hr and 
24hr. A difference in circularity is observed between the 200μL uncross-linked versus cross-linked 

samples. * indicates a significant difference (P< 0.05). 

 
3.4.3 Temporal Cell Spreading Studies on Cross-Linked and Native Re-hydrated 

Collagen Films 

The same temporal studies of cell spreading and morphology for uncross-linked 

and cross-linked collagen gels were done with the 800μL dried and rehydrated films. 
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Again it was found that there was no significant difference in spreading area of cells on 

800μL films that underwent different incubation times. After a 4hr incubation time, cells 

on uncross-linked films had an average spreading area of 1049 μm2 ± 11 SEM, while the 

average spreading area of cells on those same samples at the 24hr incubation time was 

found to be 1047 μm2 ± 81 SEM (P = 0.983). Similarly no difference was observed 

between cells on cross-linked samples that had an average spreading area of 685 μm2 ± 

59 (4hr incubation time) and the spreading area of cells that were left on the samples for a 

24hr incubation time 753 μm2 ± 57 SEM (P=0.453). 

 

 

Figure 31 Cell spreading area of NIH 3T3 on 800μL uncross-linked and cross-linked re-hydrated 
collagen films at 4hr and 24hr (N = 3). 

 
On the other hand, unlike the spreading area studies of cells on 200μL uncross-

linked versus cross-linked which demonstrated that there was no difference between 
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these two samples, a clear difference was found between the cells seeded on uncross-

linked and cross-linked 800μL samples at both 4hr (P = 0.004), and 24hr incubation 

periods (P = 0.041). 

 

Figure 32 Statistical analysis of cell spreading area on 800μL re-hydrated collagen films. 

 
 The figure above illustrates whether there are statistical significant differences 

between the four samples. No difference exists between 4hr and 24hr spreading area 

experiments; however, a significant difference on cell spreading area between uncross-

linked and cross-linked samples can be observed. All the statistical analysis was 

completed using the statistical functions of SigmaPlot 11.  

3.4.4 Temporal Cell Circularity Studies on Cross-Linked and Native Re-hydrated 
Collagen Films 

 The circularity of the cells seeded on the four 800μL re-hydrated collagen 

surfaces was also investigated. Similar to the wet gel studies, a significant difference in 

cell circularity was observed between the cells on the dried film uncross-linked and 

cross-linked samples at the 4hr incubation time (P = 0.008). At 4hr, the average 
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circularity of the cells on top of 800μL uncross-linked films was 0.52 ± 0.03 SEM, while 

0.67 ± 0.02 SEM was the average circularity of the cells seeded on the cross-linked 

samples. However, this difference was no longer apparent at 24hr. Cells that went 

through a 24hr incubation time had an average circularity of 0.58 ± 0.07 (uncross-linked) 

and 0.59 ± 0.08 (cross-linked). No significant difference was found between these two 

samples (P = 0.988). There was also no significant difference in circularity between the 

cells that were seeded at 4hr versus 24hr on both uncross-linked (P = 0.412) and cross-

linked samples (P = 0.404). 

 

 

Figure 33 Cell circularity of NIH 3T3 on 800μL uncross-linked and cross-linked dry collagen films at 
4hr and 24hr. Statistical significant difference: P* <.005 
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3.5 Cell Migration Experiments 

Migration was also studied on cells seeded on the four different collagen samples. 

The figure below shows an increase in cell coverage area due to migration, which is 

observed as radial expansion following the removal of a circular barrier.   

 

Figure 34 Analysis of 24 hours migration experiments (change in radius) with  NIS 
Elements software. 

 
The average radial migration speed in 24 hours was calculated by subtracting the 

radius of the circle from the image taken after 24hr fence removal minus the radius of the 

circle from the image taken as soon as the fence was removed from the sample, all 

divided by the 24hr time period. 

 
𝑨𝒗𝒈. 𝒓𝒂𝒅𝒊𝒂𝒍 𝒎𝒊𝒈𝒓𝒂𝒕𝒊𝒐𝒏 𝒔𝒑𝒆𝒆𝒅 𝒊𝒏 𝟐𝟒 𝒉𝒓 = (𝑭𝒊𝒏𝒂𝒍 𝒓𝒂𝒅𝒊𝒖𝒔−𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑹𝒂𝒅𝒊𝒖𝒔)

𝟐𝟒 𝒉𝒐𝒖𝒓𝒔 
   (Eq. 3) 

 
An example calculation is shown below using data taken from the figures above.    

 

𝐴𝑣𝑔. 𝑟𝑎𝑑𝑖𝑎𝑙 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑 =  
 (4268.56 𝜇𝑚 − 3848.65 𝜇𝑚)

24 ℎ𝑜𝑢𝑟𝑠
= 17.50 𝜇𝑚 ∗ ℎ𝑟−1 
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Figure 35 Average radial migration speed in 24 hours (N ≥ 8). Statistical significance: P*< 0.05, P** 
< 0.001.  

 
The average radial migration of the cells seeded on top of the 200μL cross-linked 

collagen gels (8.70μm ± 2.49 SEM) was very similar to the one found from the cells 

residing on the 800μL cross-linked surface (6.02μm ± 1.38 SEM), and there is no 

statistical significant difference between these two samples (P = 0.362). There was also 

no significant difference (P = 0.492) between the average radial speed travelled by the 

cells on the 200μL uncross-linked collagen gels (15.39μm ± 1.08 SEM) and on the 800μL 

uncross-linked samples (17.13μm ± 2.16 SEM).  

Cells migrated faster on the 200μL uncross-linked surfaces than on the 200μL 

cross-linked ones (P=0.017). A similar difference was also observed when the cells on 
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the 800μL uncross-linked samples where compared to the ones seeded on the 800μL 

cross-linked surfaces (P = 0.001).  
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CHAPTER 4: DISCUSSION 

Nordihydroguaiaretic acid (NDGA) has been demonstrated to be beneficial for 

many clinical applications. It does not only have anti-inflammatory capabilities, but it is 

also utilized in medicine to aid with the cure of various diseases such as diabetes and 

rheumatism. Due to all the benefits that have been discovered of this antioxidant 

extracted from the creosote bush, various studies are being conducted to learn more about 

the general properties of NDGA and its possible use in the clinical environment. [39] 

Various scientists such as Koob et al. [40, 69, 70] and Ju et al. [73] have 

investigated for years and discovered that collagen materials treated with NDGA cross-

linking solutions have higher tensile strength and enhanced compatibility when implanted 

in the body. In-vivo and in-vitro studies on other cross-linking agents such as 

glutaraldehyde and carbodiimide have been conducted to gain a better understanding of 

these materials; however, most of the NDGA-collagen biomaterials information has been 

gathered from animal studies (in-vivo).  

These animal studies have been very useful for gaining a better understanding on 

the properties and advantages of this cross-linking agent on tendon replacement 

(biocompatibility, material with tendon-like strength). However, in-vitro studies will help 

us learn more about cellular behavior on this material, which is necessary to determine if 

the material would be ideal for implantation as a tendon replacement.  
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The goal of this thesis was to investigate whether cells seeded on NDGA cross-

linked collagen samples would adhere and migrate on this collagen material. If adhesion 

and migration occurs, then it is expected that resident cells will be able to populate and 

regenerate the tendon and possibly reduce the immobilization time post-surgery. 

This study is based on previous investigations done by Koob et al. [41, 69, 70] 

that focused on exploring the capabilities of NDGA collagen fibers for future tendon 

replacement; however, instead of fibers, gels and films were utilized to facilitate cell 

adhesion analysis. Thus despite the difference in geometry between the flat gels/films 

described here, there are comparable to the extruded fibers typically used for tendon 

replacement products. An optical density’ analysis of the native and NDGA cross-linked 

samples was done to demonstrate that this biomaterial was manufactured with the same 

constituents and protocols utilized to make NDGA collagen fibers. The absorbance peak 

discovered at approximately 420 nm of the wavelength was compared  to the one found 

by MiMedx Inc (data not shown) indicating that the material utilized for the studies 

described in Chapter 3 was the same one employed by Koob et al [41, 69, 70].  

It has been discovered that a surface must have a certain thickness in order for 

cells to sense the material; however, a specific sensing thickness value has not been 

found. Some scientists suggest that this value is approximately 100μm [74], while others 

estimated it to be much smaller [75]. Based on these studies, it was determined that the 

collagen gel and film’ thickness should be greater than 50microns, not only to avoid cells 

from sensing the underlying substrate but also to approximate the size of the fibers that 

MiMedx Inc. is manufacturing. 
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Since both gels and re-hydrated films are wet, the contact angle camera was 

employed to determine the thickness of the both uncross-linked and cross-linked gels and 

films (details described in Chapter 2). The measurements done by this equipment were 

corroborated by the calculations of the 800μL gels shown below.  

 

𝑨𝒓𝒆𝒂𝒄𝒐𝒗𝒆𝒓−𝒔𝒍𝒊𝒑 =  𝝅 ∗ 𝒓𝟐 =  𝝅 ∗ �𝟐𝟓𝒎𝒎
𝟐

�
𝟐

 ≈ 𝟒𝟗𝟏 𝒎𝒎𝟐                  (Eq. 4) 

 

 
𝑻𝒉𝒊𝒄𝒌𝒏𝒆𝒔𝒔𝒈𝒆𝒍 = 𝑽𝒐𝒍𝒖𝒎𝒆 𝒐𝒇 𝒄𝒐𝒍𝒍𝒂𝒈𝒆𝒏

𝑨𝒓𝒆𝒂 𝒐𝒇 𝒄𝒐𝒗𝒆𝒓−𝒔𝒍𝒊𝒑
                             (Eq. 5) 

 

 

𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝑔𝑒𝑙 =
800𝜇𝐿

491 𝑚𝑚2 =
0.8 𝑚𝐿

491 𝑚𝑚2 ∗
1000 𝑚𝑚3

1 𝑚𝐿
≅ 1.63𝑚𝑚  

 

The thickness measurements found for both 200μL and 800μL collagen gels were 

similar to the ones calculated. Therefore, all the film measurements done with this 

machine were considered to be accurate. An 85.5% thickness reduction between 800μL 

wet gels and re-hydrated films was observed. This drop in thickness is not surprising 

since approximately 90% of the collagen volume was reduced due to water loss (change 

in weight before (gel) and after the drying process (film)). Cross-linking of the films was 

found to cause an even bigger reduction in film thickness (96.5%).  

NDGA fibers manufactured by MiMedx Inc. were found to rebound 

approximately 60% in diameter after they had been cross-linked and re-hydrated the 

second time (Personal communication with Dr. Thomas J. Koob). However, thickness 
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results demonstrate that our films do not have a similar rebound percentage which could 

be due to the geometry of the sample. Fibers are able to re-hydrate themselves and 

increase in volume in all radial directions; on the other hand, gels and films are only able 

to increase their volume in a single direction.  

Once the measurements for both gels and films were proven to be thicker than 50 

microns, cell studies were performed to determine if cell behavior was affected by the 

cross-linking treatment of the collagen samples. Collagen gels (200μL) were 

manufactured and cross-linked with the NDGA solution based on an adaptation from the 

protocol designed by Koob et al [41]. Once these in-vitro platforms were manufactured, 

NIH 3T3 cells were seeded on these surfaces to determine whether cell behaviors on 

collagen materials were affected by NDGA cross-linking.  

Prior to seeding the cells on these platforms, the 200μL cross-linked collagen gels 

were treated with ethanol and UV light for sterilization purposes. Past studies determined 

that the extent of UV light exposure to a sample not only affects the cross-linking of the 

collagen surface but also tends to fragment the collagen triple helical formation [20]. For 

this reason, the 800μL samples that were dried and re-hydrated before and after cross-

linking (same procedure utilized by MiMedx to manufacture the collagen fibers [41]) 

were only sterilized with ethanol. These films did not undergo any UV treatment in order 

to avoid changes in the material properties. 

Previous adhesion studies have demonstrated that the strengthening kinetics of 

NIH 3T3 fibroblasts on fibronectin leads to rapid enhancement of adhesion strength at 

early seeding time points and saturation being reached at the 4hr time period [45]. 

Temporal adhesion studies were done to corroborate that fibroblast adhesion strength 
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reached steady-state at the 4hr time period on both 200μL collagen gels and 800μL films. 

The temporal studies of both 200μL gels and 800μL films demonstrated that cellular 

adhesion strength did not increase between the 4hr and 24hr seeding period. Therefore, 

additional adhesion studies of cells seeded on all the four different samples (200μL 

uncross-linked gel, 200μL cross-linked gel, 800μL uncross-linked film, and 800μL cross-

linked film) were only done at the 4 hour time point.  

Although temporal adhesion experiments demonstrated that cells reach steady-

state at 4hr, it was also investigated whether cell spreading varied from 4hr to 24hr; it 

was observed that no difference exists in cell spreading between these two time points. 

The results of the temporal cell spreading area support the temporal adhesion strength 

experiments, demonstrating that by 4 hours cells stop spreading on the collagen surfaces 

and their strength to adhere to these surface reaches steady-state. 

Cells that were seeded on both 200μL uncross-linked and cross-linked gels did 

not have a statistical significant difference in adhesion strength (1.5% difference) or cell 

spreading area (26.1% difference at 4hr, and 5.6% difference at 24hr). These observations 

lead to the hypothesis that cross-linking did not alter fibroblast behavior. However, 24hr 

radial migration studies between the uncross-linked and cross-linked surfaces 

demonstrated that cell behavior was definitely affected by a significant 43.5% reduction 

in migration speed for cells residing on the NDGA cross-linked collagen gels.   

These conflicting results, however, were not consistent with our studies of 

adhesion and migration on gels that had be dried into films and then partially re-

hydrated. When analyzing the cellular studies done on the 800μL collagen films, a 

difference was not only found in migration studies but also in adhesion strength and 
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spreading area studies. A 17.7% reduction in adhesion strength was discovered between 

cells seeded on uncross-linked versus cross-linked samples. A decrease in cell spreading 

area was also found on cells residing on the cross-linked surfaces at both 4hr (34.7%) and 

24hr incubation time (28.1%). Similar to the results of the migration studies done on the 

200μL gels, a difference in speed was also discovered in the 24hr migration studies of the 

800μL films. However, the reduction in the cell’s speed (64.9%) on the cross-linked films 

was larger than the one found for the cells residing on the cross-linked gels; although no 

statistical significant difference exists between the two values.  

  No significant difference was found between the average cell spreading area of 

the cells seeded on the uncross-linked and cross-linked collagen gels or between the 

adhesion strength of the cells residing on the two different samples. On the other hand, a 

difference in cell spreading area between the cells located on uncross-linked versus cross-

linked films also agree with a difference found in their adhesion strength. These 

observations demonstrate a possible correlation between adhesion strength and spreading 

area analysis. This correlation is supported by the findings acquired by others studies [52] 

that state that cells with higher spreading areas remain attach to the surface for longer 

periods of time and have higher adhesion strength. 

 Cell spreading and migration are both multistep processes that strongly depend on 

adhesion strength for proper functionality. Various studies, including the one done by 

Palecek et al. [61] have been accomplished to gain a better understanding on how 

adhesion strength and biochemical modifications of anchoring sites alter migration speed. 

This group found a correlation between cell migration speed and cell-substrate 
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adhesiveness, which depend in various factors such as extracellular matrix (ECM) 

concentration and integrin expression. [61] 

 Even though studies of ECM concentration and integrin expression were not done 

in this thesis, adhesion strength measurements, which are direct quantifications of cell-

substrate adhesiveness, were performed and compared to cell migration studies. No 

correlation was observed between cell-substrate adhesiveness and cell migration speed of 

the fibroblasts on the 200μL collagen gel studies. On the other hand, a correlation 

between these two variables was discovered in the 800μL collagen films’ studies.   

 DiMilla et al stated that the spreading area of a cell or its adhesiveness is related 

to its migration rate; however, the relationship is biphasic. Cells that are weakly adhered 

to a surface won’t be able to migrate because of the lack of traction forces necessary for 

migration. At the same time, cells that are too strongly attached to the surface augmenting 

the bonds between the cell and the surface and limiting the possibility of migration. [60] 

 The adhesion, spreading, and migration studies of the 800μL films support the 

observation described by DiMilla. However, it is difficult to understand why even though 

there are no differences in cells spreading area and adhesion strength between the 200μL 

uncross-linked and cross-linked samples, a difference in cell migration speed does exists 

between these two samples.   

 Fibroblasts that are seeded on a surface tend to have a circular shape, and as they 

begin spreading they become elongated and less circular. Therefore, it is interesting to 

find a difference in cell circularity on cells seeded for 4hr on uncross-linked versus cross-

linked films (22.4% difference) since a reduction in spreading area was not only observed 

on 800μL cross-linked films at 4hr but also at the 24hr incubation time. Circularity values 
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of cells residing on uncross-linked versus cross-linked gels were also significantly 

different (20.6% difference) at the 4hr incubation time; however, no statistical difference 

was found between the spreading areas values of cells  placed atop of the two types of 

200μL gels.  

Cellular analysis of the 200μL uncross-linked gels versus the 800μL uncross-

linked films was also compared; no difference was found in adhesion strength, cell 

spreading area, cell circularity, or cell migration studies. Consequently, it is interesting 

that a difference in adhesion strength and spreading area does exist between 800μL 

uncross-linked and cross-linked films but not between uncross-linked and cross-linked 

gels.  

At first, the NDGA treatment on collagen was considered to be a complete 

polymerization technique [70]; however, recent studies done by MiMedx Inc. 

(Personalized communication with Dr. Thomas J. Koob) have demonstrated that 

chemical cross-linking is likely also occurring when the NDGA solution is added onto 

the collagen substrates. It is hypothesized that this cross-linking takes place when the 

collagen’s amino acids, arginine and lysine, react with the NDGA compound. 

Based on our observations and the ones gathered from MiMedx Inc., we believe 

that the drying process employed to make the films is the reason why a difference in cell 

behavior exists between gels and films. Collagen gels begin to dry and start to collapse 

forming films; however, this does not occur in the swollen gels. Therefore, we 

hypothesize that this collapse makes the substrate denser; pushing the collagen fibers 

closer to each other possibly promoting an interaction between them and allowing for the 

available shorter links of the NDGA to more extensively cross-link to the collagen 
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networks. This natural cross-linking between the collagen fibers within the film and with 

NDGA may reduce the amount of NDGA polymerization required to enhance the tensile 

properties of the material. On the other hand, gels that are always wet may not be able to 

form as many collagen links with themselves and with NDGA since they lack the 

necessary proximity for natural cross-linking to occur.  

Consequently, we also hypothesize that the reason there is a difference between 

uncross-linked and cross-linked films is that NDGA treatment could be masking the cell 

receptor binding sites either physically, chemically, or both. Without the necessary 

binding sites, cells are not able to adhere as strongly to a surface and resist detachment 

forces. NDGA may also be taking up chemical residues necessary for cells to adhere to 

these films affecting the cellular behavior. 

Although adhesion, spreading, and migration is lower for fibroblasts seeded on 

top of cross-linked films, the reduction is not an impediment for this biomaterial to be 

used as a tendon replacement. This is especially true since other cross-linking solutions 

such as carbodiimide, which does not provide the same tensile strength as NDGA, also 

demonstrate that the cell spreading area is reduced when cells are seeded on the cross-

linked surfaces [76]. 

This study was able to determine that cells are able to migrate and adhere to the 

NDGA cross-linked collagen surfaces, which is necessary for recruitment of other cells 

for faster tendon regeneration. And even though the investigation was focused on 

collagen films as opposed to fibers; these results bring support to the idea that cells will 

also migrate and proliferate in the fibers since the same protocol and components were 

utilized to create both NDGA-collagen biomaterials.  
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK  

 NDGA cross-linking on collagen materials has been studied by others due to its 

various advantages such as biocompatibility, biodegradability, and enhancement of 

tensile strength [40, 69, 70, 73]. Although other cross-linking approaches (e.g. 

carbodiimide and glutaraldehyde) also augment the tensile strength of collagen materials, 

the increase in this strength is not comparable to the degree of enhancement achieved 

with the NDGA treatment.  

 The results of this study demonstrate that NDGA cross-linking affects cell 

behavior (cell spreading and adhesion) on collagen films but not on gels. We hypothesize 

that the difference in cell behavior only exists on the films because of the collapsing that 

occurs in the collagen gel once it is completely dried. Observations by MiMedx Inc. 

support our hypothesis that this collapsing allows the collagen fibers to naturally begin to 

cross-link with each other and with the NDGA solution. On the other hand, NDGA 

treatment of gels may be mostly due to polymerization instead of cross-linking, since 

collagen fibers are located farther apart in the swollen gels.  

Cross-linkers such as glutaraldehyde employ both polymerization and cross-

linking; however, it has been discovered that cross-linking occurs at a faster rate than 

polymerization, and for this reason glutaraldehyde treatment is mostly considered a cross-

linking technique. Based on our studies, we have determined that NDGA treatment also 
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utilizes both cross-linking and polymerization techniques to enhance tensile strength of 

the material.  

 The difference in cell behavior may exist because NDGA treatment of the 

collagen samples could be masking possible adhesion sites necessary for cells to strongly 

adhere to these substrates. The masking could be either physically (NDGA 

polymerization), chemically (NDGA- collagen and collagen-collagen cross-linking), or 

both.  NDGA cross-linking, which we hypothesize is mostly happening in the films may 

be affecting cell behavior more than NDGA polymerization which we believe is mostly 

occurring in the gels. This is hypothesized since cell adhesion strength and spreading area 

between 200μL uncross-linked and cross-linked samples were not affected by the NDGA 

polymerization. 

It is believed that the NDGA treatment of these gels is mostly based on 

polymerization than on cross-linking since the swollen gels do not provide enough 

proximity for natural cross-linking (collagen-collagen interaction) to occur.  On the other 

hand, collapsed collagen films could have the necessary proximity for cross-linking to 

occur at a faster rate than polymerization affecting the behavior of the cells residing on 

top of this surface. 

Even though NDGA cross-linking affects cell behavior, this effect is not 

tremendous enough to eliminate the possibility of the employment of this biomaterial in 

implantation purposes (i.e. tendon replacement). This is especially true since it has been 

demonstrated that other cross-linking solutions, such as carbodiimide, that have fewer 

benefits than NDGA also show that cell spreading area is reduced on their cross-linked 

surfaces.  
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Based on all the results found in this study, we can be concluded that NDGA 

cross-linked biomaterials are likely to be appropriate for future tendon implantations. 

However, other studies should be done to provide additional support to this idea. 

 First, the extent of NDGA cross-linking should be investigated by amino acid 

analysis on both formed gels and re-hydrated films to determine the difference in 

available lysine residues. We expect to find a greater reduction in free lysine residues on 

the collagen films than on the gels which would support the idea that more NDGA cross-

linking is occurring on the films via amine groups in lysine residues.  This experiment 

will also help us understand whether binding is occurring mostly with the collagen fibers 

themselves or with the NDGA solution.  ELISA testing should also be done to determine 

the number of available receptor binding sites on these four different collagen surfaces. 

These two experiments will help us determine if NDGA treatment is masking the 

adhesion sites physically, chemically, or both.  

Gallant et al [72] demonstrated that integrin binding and the formation of focal 

adhesion complexes are the two main factors that provide mechanical strength for 

attaching to materials. A reduction in either factor reduces the adhesion strength between 

the cell and its surface. Therefore, the next experiment will be focused on quantifying the 

number of integrins bound in the surface as well as the recruitment of focal adhesion 

proteins. By doing this, we will be able to gain a mechanistic understanding of why cells 

residing on the 800μL NDGA cross-linked films have lower adhesion strength than the 

ones seeded on the 800μL uncross-linked films. Techniques such as the wet-cleaving 

assay described by Michael et al. [53], will provide the necessary information to 

determine the distribution of  focal adhesion areas and bound integrins within the areas of 
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adhesion. By utilizing this technique, the difference in the number of bound integrins and 

focal adhesion proteins found on the uncross-linked and cross-linked films will be 

determined.  

Lastly, understanding cell interactions with collagen-based biomaterials is of 

fundamental importance since collagen is the most abundant protein in the body and is 

found in nearly all tissues including the skin, ligaments, and bones. The in-vitro platforms 

(collagen gels and films) developed in this work could be utilized to investigate the 

behavior of different cell types on collagen materials with varied properties, broadening 

their use to other tissue engineering and biomaterials applications.   
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