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Danger of Snow in the Sunshine State Danger of Snow in the Sunshine State 

Abstract Abstract 
The main purpose of the project is to investigate the maximum deflection of a rectangular 16 x 8 inches 
beam, supported on both ends under uniform loading stress under snow pressure in the event that Tampa 
experiences snowfall. The required information for the project is the material of the beam and its 
dimensions, measurement of the area of the roof that would accumulate snow, and calculations of the 
Moment of Inertia and Uniform Distributed Load for the beam. The maximum deflection of the beam can 
be calculated using the information above. 

The outcome of the research shows that the roof construction of the University of South Florida Marshall 
Student Center stage, can withstand all of Florida’s potential weather conditions, even in rare weather 
cases like the snowfall of March 6, 1954 when Florida experienced 4 inches of snow. The maximum 
deflection of the beam in this case is 1.1 cm, which is below the maximum allowable value of 3.0 cm for 
the 9.0 m spans according to AS 1170.1 Minimum design loads on structures. 
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PROBLEM STATEMENT  

 

The biggest snowfall in Florida 

occurred on March 6, 1954 

when Florida experienced 4 

inches of snow [5]. This event 

had been two years before the 

University of South Florida 

was founded. The calculation 

of maximum deflection of 

rectangular - 16 x 8 inches 

beam should show whether the roof of the University of South Florida Marshall Student Center 

stage is ready for snow or not if Tampa experiences such snowfall again. 

MATHEMATICAL DESCRIPTION AND SOLUTION APPROACH 

I. YOUNG’S MODULUS (E) 

Young's Modulus or Modulus of Elasticity - is a measure of stiffness of an elastic material. It is 

used to describe the elastic properties of objects like wires, rods, or columns when they are 

stretched or compressed. In our case, it can be used to predict the elongation or compression of 

an object as long as the stress is less than the yield strength of the material [2]. 

Young's modulus can be expressed as:    𝑬 =
|𝑺𝑻𝑹𝑬𝑺𝑺|

|𝑺𝑻𝑹𝑨𝑰𝑵|
    

 

Picture 1: Photo of the stage at University of South Florida Marshall 

Student Center 2016. 
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Stress 

Stress is force per unit area and can be expressed as: 

 σ =  
F

A
    

Where: 

σ = stress (N/m2) (lb/in2, psi) 

F = force (N) (lb) 

A = area of object (m2) (in2) 

• tensile stress - stress that tends to stretch or lengthen the material - acts normal to the 

stressed area 

• compressive stress - stress that tends to compress or shorten the material - acts normal to 

the stressed area 

• shearing stress - stress that tends to shear the material - acts in plane to the stressed area 

at right-angles to compressive or tensile stress [2] 

Strain 

Strain is "deformation of a solid due to stress" - a change in dimension divided by the original 

value of the dimension - and can be expressed as: 

ε =  
dL

L
      

Where: 

ε = strain (m/m) (in/in) 

dL = elongation or compression (offset) of the object (m)(in) 

L = length of the object (m) (in) 
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Modulus of Elasticity for a given material is a constant. Here is a table of Modulus of Elasticity 

for different materials [6]: 

Material Modulus of Elasticity (E) (109 N/m2, GPa) 

Aluminum 69 

Steel, Structural ASTM-A36 200 

Sapphire 435 

 

In this project we are interested in Modulus of Elasticity for the Steel, which is equal to 200 GPa 

or 200 000 000 000 Pa (Conversion into Pascal is important for the maximum deflection 

formula). 

II.  MOMENT OF INERTIA (I) 

Moment of inertia quantifies the resistance of a physical object to angular acceleration.  

Moment of inertia is to rotational motion as mass is to linear motion. 

Moment of inertia of hollow section can be found 

by first calculating the inertia of a larger rectangle 

and then by subtracting the hollow portion from this 

large rectangle [2]. 

Moment of Inertia about Y-axis: 

𝐼𝑦 =
𝐻𝐵3

12
−

ℎ𝑏3

12
     

The height and width of the beam we consider are H 

= 0.406 m, B = 0.2032 m (H x B =    16 x 8 inches 

b 

B 

Y

XHh

Figure 1: Model of a rectangular beam. 
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steel tube). According to Rectangular Structural Steel Tube Specification the average thickness 

for a rectangular 16 x 8 steel tube is 0.005 m [7]. 

Now we can find the inside height 𝒉 = 0.406 − 0.005 ∗ 2 = 𝟎. 𝟑𝟗𝟔𝒎 and inside width  𝒃 =

0.2032 − 0.005 ∗ 2 = 𝟎. 𝟏𝟗𝟑𝟐 𝒎. Then 

Moment of Inertia = 𝑰𝒚 =
0.406 ∗ 0.20323

12
−

0.396 ∗ 0.19323

12
= 𝟎. 𝟎𝟎𝟎𝟎𝟒𝟓𝟖𝟗 𝒎𝟒  

III. TOTAL LENGTH (L) 

Total length is the overall length of the beam under consideration. In our case it is 9.0 meter 

beam. 

IV. UNIFORM DISTRIBUTED LOAD (Q)  

Uniform distributed load is a force applied over an area, denoted by q which is force per unit 

length [2].  

There are three types of load: 

a) POINT LOAD. 

b) TRIANGULAR LOAD 

c) UNIFORMLY DISTRIBUTED LOAD (UDL) 
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POINT LOAD 

Point load is the load that acts over a small distance. Because of concentration over a small 

distance this load can be considered as acting on a point. Point load is denoted by P and symbol 

of point load is arrow heading downward (↓) [2]:  

TRIANGULAR LOAD 

Triangular load is that whose magnitude is zero at one end of span and increases constantly till 

the 2nd end of the span. As shown in the diagram: 

UNIFORMLY DISTRIBUTED LOAD (UDL) 

Uniformly distributed load is that whose magnitude remains uniform throughout the length.                                                                                                                                                             

P 

Figure 2: Example of point load. 

W/Unit Length 

Figure 3: Example of triangular load. 

W/Unit Length 

Figure 4: Example of uniformly distributed load. 
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In our case, the roof is flat, snow is going to accumulate even on each part of the roof which is a 

good example of Uniformly Distributed Load.  

The density of the wet snow ranges between 200 
𝑘𝑔

𝑚3  and 600
𝑘𝑔

𝑚3.  

It is always important for an engineer to make all calculations for the worst case that is why we 

choose the snow density as 600
𝑘𝑔

𝑚3
.  

The middle beam we make calculations for is 2 meters away from the left beam and 2 meters 

away from the right beam, and then (
2

2
+

2

2
) ∗ 9.0 =  18.0 m2 of the roof is significantly 

affecting the middle beam.  

Florida’s record snowfall for one day is 4.0 inches, which is equal to 0.10 m (March 6, 1954) [5]. 

Within the area of 18 m2 and such snow thickness the weight of snow is equal to 1080 kg. Then 

𝑭𝒐𝒓𝒄𝒆 𝒂𝒄𝒕𝒊𝒏𝒈 [𝒐𝒏] (𝒕𝒐) 𝒕𝒉𝒆 𝒃𝒆𝒂𝒎 =  𝑚𝑔 =  1080 ∗  9.81 =  𝟏𝟎𝟓𝟗𝟒. 𝟖 𝑵 

Picture 2: Photo of the rectangular 16 x 8 inches beam, supported on both sides. 

University of South Florida Marshall Student Center. 
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𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝐿𝑜𝑎𝑑 (𝑞) =  
𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 (𝑡𝑜)[𝑜𝑛] 𝑡ℎ𝑒 𝑏𝑒𝑎𝑚

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑒𝑎𝑚
=

10594.8 𝑁

9. 0 𝑚

= 1177.2 
𝑁

𝑚
 

 

 

V. MAXIMUM DEFLECTION (Y) 

Maximum deflection (y) is the greatest distance the end of the beam could move up (+) or down 

(-) when a load of the specified magnitude is applied to the beam [4].  

When we calculate the maximum deflection we must remember that the formula used for the 

calculation may have a slightly different view if the calculation is carried out for different types 

of loads, it will have a different impact on the beam. We do calculations to determine the 

maximum deflection of a beam when it is supported on both ends as a uniformly loading stress 

beam. 

To get the final formula we first use the Equation of the Elastic Curve. The curvature of a plane 

curve at a point Q (x, y) of the curve may be expressed as [4]:  

 

1

𝑝
=

𝑑2𝑦
𝑑𝑥2

[1 + (
𝑑𝑦
𝑑𝑥)

2

]

3/2
 (1) 

where  
𝑑𝑦

𝑑𝑥
  and 

𝑑2𝑦

𝑑𝑥2
 are the first and second derivatives of the function y(x) represented by that 

curve and p is the radius of curvature. But in the case of the elastic curve of a beam the slope 
𝑑𝑦

𝑑𝑥
 

is very small, and its square is negligible:  
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 1

𝑝
≈

𝑑2𝑦

𝑑𝑥2
 (2) 

 

The obtained equation is a second-order linear differential equation which is the governing 

differential equation for the elastic curve.  Now, let us determine the equation of the elastic curve 

and the maximum deflection of the beam. The simply supported prismatic beam AB carries a 

uniformly distributed load W per unit length (Figure 5). 

 

It follows that 𝑑2𝑦

𝑑𝑥2
=

𝑀(𝑥)

𝐸𝐼
 (3) 

Figure 5: Example of uniformly distributed load to 

determine the maximum deflection of the beam. 

L

                                W 

A B

V

w 

D 
x

N

MD 

A V

wx 

D 
x

N

MD 

A 

𝑥

2
 

= 
Figure 6: The free-body diagram of the portion AD 

of the beam. 
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Drawing the free-body diagram (Figure 6) of the portion AD of the beam, and taking moments 

about D, we find that: 

𝑀 =
1

2
𝑤𝐿𝑥 −

1

2
𝑤𝑥2 

Substituting for M into equation (3) and multiplying both members of this equation by the 

constant EI, we write  

𝐸𝐼
𝑑2𝑦

𝑑𝑥2
=  −

1

2
 𝑤𝑥2 +

1

2
 𝑤𝐿𝑥 

Integrating twice in x, we have 

 

Observing that y = 0 at both ends of the 

beam (Figure 7), we first let x = 0 and y = 0 

in equation (5) and obtain C2 = 0. We then 

make x = L and y = 0 in the same equation 

and write: 

0 =  −
1

24
𝑤𝐿4 +

1

12
𝑤𝐿4 + 𝐶1𝐿 

 
𝐸𝐼

𝑑𝑦

𝑑𝑥
=  −

1

6
𝑤𝑥3 +

1

4
𝑤𝐿𝑥2 + 𝐶1 (4) 

 
𝐸𝐼𝑦 =  −

1

24
𝑤𝑥4 +

1

24
𝑤𝐿𝑥3 + 𝐶1𝑥 + 𝐶2 (5) 

x 

L 

y 

A 
[x=0, y=0] 

[x=L, y=0] 

B 

Figure 7 
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𝐶1 =  −
1

24
𝑤𝐿3 

Carrying the values of C1 and C2 back into 

equation (5), we obtain the equation of the 

elastic curve:                                                                                                                      

 𝐸𝐼𝑦 =  −
1

24
𝑥4 +

1

12
𝑤𝐿𝑥3 −

1

24
𝑤𝐿3𝑥  

Or 

 

Substituting into equation (4) the value obtained for C1, we check that the slope of the beam is 

zero for x = L/2 and that the elastic curve has a minimum at the midpoint C of the beam (Figure 

8) [4]. Letting x = L/2 in equation (6), we have 

𝑦𝑐 =
𝑤

24𝐸𝐼
(−

𝐿4

16
+ 2𝐿

𝐿3

8
− 𝐿3

𝐿

2
) =  −

5𝑤𝐿4

384𝐸𝐼
 

The maximum deflection or, more precisely, the maximum absolute value of the deflection, is  

|𝑦|𝑚𝑎𝑥 =
5𝑤𝐿4

384𝐸𝐼
 

or   

|𝑦|𝑚𝑎𝑥 =
5𝑞𝐿4

384𝐸𝐼
 

 
𝑦 =

𝑤

24𝐸𝐼
(−𝑥4 + 2𝐿𝑥3 − 𝐿3𝑥) (6) 

B 

x 

C 

y 

A 
L/2 

Figure 8 
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Now let us put the known values into the maximum deflection equation: 

|𝒚|𝒎𝒂𝒙 =  
5 ∗ 1177.2

𝑁
𝑚

 ∗  9.04𝑚4

384 ∗ 200 000 000 000 𝑃𝑎 ∗  0.00004589 𝑚4
=  0.01096 𝑚 ≈ 𝟏. 𝟏 𝒄𝒎  

VI. Deflection Limits 

According to AS 1170.1 Minimum design loads on structures (known as the SAA Loading 

Code) [3] are:  

Maximum allowable deflection = span ÷ 300  

9.0 𝑚 ÷  300 = 0.03 𝑚 =  3.0 𝑐𝑚 

A 9.0 m beam has a maximum allowable deflection of 3.0 cm. 

Under our conditions the maximum deflection is 1.1 cm, which is completely allowable. 

DISCUSSION 

The biggest snowfall in the US for a single calendar day belongs to Georgetown, Colorado where 

63 inches landed on December 4, 1913 [5]. Now let us try to imagine our stage there.  

When 63 inches or 1.6 meter land, the area turns to accumulate the volume of    

𝑉 = 18 𝑚2 ∗ 1.6 𝑚 = 28.8 𝑚3 

It is easy for the snow to lay a long time without melting in Colorado. This causes the density 

increase from 60 kg/m3 (fresh snow) up to 300 kg/m3 which means:                                 

28.8 𝑚3 ∗ 300 𝑘𝑔/𝑚3  =  8640 𝑘𝑔 or 84758.4 N of force to the beam. 
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In this case: 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝐿𝑜𝑎𝑑 (𝑞) =  
𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑏𝑒𝑎𝑚

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑒𝑎𝑚
=

84758.4 𝑁

9.0 𝑚
= 9417.6

𝑁

𝑚
 

This leads us to Maximum deflection which is: 

|𝑦|𝑚𝑎𝑥 =
5𝑞𝐿4

384𝐸𝐼
=  

5 ∗ 9417.6 
𝑁
𝑚 ∗ 9.04 𝑚4

384 ∗ 200 000 000 000 𝑃𝑎 ∗ 0.00004589 𝑚4 
=  𝟎. 𝟎𝟖𝟕𝟔𝟔 𝒎 ≈ 𝟖. 𝟖 𝒄𝒎 

This deflection is almost 3 times more than the maximum allowable.  
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CONCLUSION AND RECOMMENDATIONS 

 

Figure 9:  Graph of relation between maximum deflection in centimeters of rectangular - 16 x 8 

inches beam and amount of snow in inches (snow density 600
𝑘𝑔

𝑚3) landed on the flat 

18m2 roof. 

The roof construction of the University of South Florida Marshall Student Center stage can hold 

all the potential Florida weather conditions, even in rare weather cases like a snowfall of March 

6, 1954 when Florida experienced 4 inches of snow [5]. The maximum deflection of the beam in 

this case is 1.1 cm which is still below the maximum allowable (Figure 9), 3.0 cm according to 

AS 1170.1 Minimum design loads on structures [3]. 

However, for Colorado this stage construction does not apply due to the different weather 

conditions in Georgetown, Colorado where 63 inches of snow landed on December 4, 1913 [5]. 

The maximum deflection of the beam in this case is 8.8 cm which is almost three times more 

than allowable 3.0 cm. This deflection might cause the beam destruction (Figure 10). 
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Figure 10: Graph of relation between maximum deflection in centimeters of rectangular - 16 x 8 

beam and amount of snow in inches (snow density 300
𝑘𝑔

𝑚3) landed on the flat 18m2 roof 

in Georgetown, Colorado. 
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NOMENCLATURE 

Symbol Description Units 

E 
Young’s Modulus 

or Modulus of 

Elasticity 

𝑃𝑎 

σ Stress 
𝑁

𝑚2
 

F Force 𝑁 

A Area of object 𝑚2 

𝛆 Strain 𝑚/𝑚 

dL 
Elongation or 

compression of 

the object 

𝑚 

L Length of the 

object 
𝑚 

Iy 
Moment of Inertia 

about Y-axis 
𝑚4 

dy/dx First derivatives 𝑚 

d2y/dx2 
Second 

derivatives 
𝑚 

EI Flexural rigidity 𝑚 

q 
Uniform 

Distributed Load 
𝑁/𝑚 

C1 
Constant of 

integration 
 

C2 
Constant of 

integration 
 

ymax 
Maximum 

Deflection 
𝑚 

H Beam height m 

B Beam width m 

h 
Beam inside 

height 
m 

b 
Beam inside 

width 
m 
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