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Abstract 

The implicit assumption in conventional inventory models is that the stored 

products maintain the same utility forever, i.e., they can be stored for an infinite period of 

time without losing their value or characteristics. However, generally speaking, almost all 

products experience some sort of deterioration over time. Some products have very small 

deterioration rates, and henceforth the effect of such deterioration can be neglected.  

Some products may be subject to significant rates of deterioration. Fruits, vegetables, 

drugs, alcohol and radioactive materials are examples that can experience significant 

deterioration during storage. Therefore the effect of deterioration must be explicitly taken 

into account in developing inventory models for such products.  

In most existing deteriorating inventory models, time is treated as a continuous 

variable, which is not exactly the case in practice. In real-life problems time factor is 

always measured on a discrete scale only, i.e. in terms of complete units of days, weeks, 

etc. In this research, we present several discrete-in-time inventory models and identify 

optimal ordering policies for a single deteriorating product by minimizing the expected 

overall costs over the planning horizon. The various conditions have been considered, e.g. 

periodic review, time-varying deterioration rate, waiting-time-dependent partial 

backlogging, time-dependent demand, stochastic demand etc. The objective of our 

research is two-fold: (a) To obtain optimal order quantity and useful insights for the 

inventory control of a single deteriorating product over a discrete time horizon with 
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deterministic demand, variable deterioration rates and waiting-time-dependent partial 

backlogging ratios; (b) To identify optimal ordering policy for a single deteriorating 

product over a finite horizon with stochastic demand and partial backlogging. The 

explicit ordering policy will be developed for some special cases. 

Through computational experiments and sensitivity analysis, a thorough and 

insightful understanding of deteriorating inventory management will be achieved. 
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Chapter 1 

Introduction 

1.1 Background 

Nowadays, for most successful, well-organized businesses, inventory control 

systems play a critical role in ensuring that adequate inventories are on hand to satisfy 

their customer demand. In general, the inventories can be classified into the following 

four categories (Nahmias, 2001):  

(1) Raw materials. The raw materials are the resources required in the production or 

processing activity of a firm. 

(2) Components. The components correspond to items that have not yet reached 

completion in the production process. Sometimes components are referred to as 

subassemblies. 

(3) Work-in-process. This is the inventory either waiting in the system for processing 

or being processed. Work-in-process inventories include component inventories 

and may include some raw materials inventories as well.  

(4) Finished goods. The finished goods are also known as end items, which are the 

final products of the production process.  

As inventories are expensive and need careful control, a fundamental question 

arises: Why do organizations hold inventories? Generally speaking, the main reason why 

inventories are held is to provide a buffer between uncertain supply and demand. For 
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example, if a customer places an order and there are no items available immediately, it is 

very likely that the customer will go somewhere else and may never return. So the 

uncertainty of external demand is the most important reason to hold inventories. There 

are also some other reasons. For instance, if the fixed setup/ordering costs are high, it 

would be economical to produce/order a relatively large quantity and store them for 

future use. Also, sometimes if the price of a product increases over a short period of time, 

then it will be more economical to buy a large amount of the product at current price and 

put into storage than to pay a higher price in future. 

Since it is necessary to hold some inventories on hand, then it is essential to 

manage inventories economically. Inventory control consists of all the activities and 

procedures used to ensure the right amount of products is held in stock (Waters, 1992). A 

frequent objective of inventory control is to provide a moderate amount of inventories at 

minimum cost, so inventory control often relies on a tradeoff between conflicting costs. 

The relevant costs that are considered in most inventory systems are as follows (Nahmias, 

2001). 

(1) Fixed Order Cost. It is incurred independent of the size of the order as long as the 

order quantity is not zero. 

(2) Unit Purchasing Cost. It is incurred on a per-unit basis. 

(3) Inventory Holding Cost. It is also known as the inventory carrying cost, which is 

the sum of all costs that are proportional to the amount of inventory physically on 

hand. Some of the components of the holding cost include (i) Cost of providing 

the physical space to store the items. (ii) Taxes and insurance. (iii) Opportunity 

cost of alternative investment. The inventory holding cost ($/unit/year) is usually 
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measured by the product of unit purchasing cost and annual interest rate. The 

interest rate is an aggregated term comprised of some components like cost of 

capital, taxes and insurance, and cost of storage.  

(4) Backlogging Cost. It includes whatever bookkeeping and/or delay costs that 

might be involved and “loss-of-goodwill” cost. (Orders that cannot be filled 

immediately are held on the books until the next shipment arrives.) 

(5) Penalty Cost for Lost Sales. It includes the lost profit that would have been made 

from the sale and “loss-of-goodwill” cost.  

As one can see, the "loss-of-goodwill" cost is included in either backlogging or 

penalty cost, and is a measure of customer unsatisfaction. Estimation of the “loss-of-

goodwill” cost can be very difficult in practice. 

By using cost minimization as an optimization criterion, the following two 

questions which reflect the fundamental problem of inventory control can be answered.  

(1) When should an order be placed?  

(2) How many should be ordered? 

Regarding the time of ordering, there are two distinct inventory systems with 

different timing of replenishment: a periodic review system and continuous review 

system. A periodic review system allows inventory levels to be checked at discrete times 

periodically, and the order size is subject to change according to the variation in demand 

in each period. This system is often used in supermarkets, where stocks are reviewed at 

the end of each day and any sold units are replaced. A continuous review system allows 

the level of inventory to be monitored continuously and an order is placed whenever the 

inventory decreases to a specified level. The time between two consecutive orders is 
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subject to change according to the variation in demand over time. Minimizing the total 

costs of the inventory system can yield the optimal quantity of ordering.  

1.2 Inventory Control Models 

1.2.1 Classification Criteria 

The inventory control models in the literature can be classified according to the 

following criteria (Ravindran, 2008). 

(1) Stocking location: Single stocking location (single location models) and more 

than one stocking location (multi-echelon inventory models). 

(2) Supply process lead times: Deterministic lead time and stochastic lead time. 

(3) Demand: Deterministic demand and stochastic demand. The stochastic demand 

can be stationary or nonstationary. Stationary stochastic demand means all 

demand parameters are constant over time. If the parameters change over time, 

then the demand is said to be nonstationary. 

(4) Capacities: Uncapacitated inventory models and capacitated inventory models. 

(5) Number of items: Single product inventory models and multiple product 

inventory models. 

(6) Sourcing options: Single sourcing and multiple sourcing.   

In this proposal, we are considering single stocking location, zero lead time, 

deterministic/stochastic demand, uncapacitated, single product, and single sourcing 

inventory models. One commonly used criterion is demand pattern. Based on this, the 

inventory control models can be classified as deterministic inventory models and 

stochastic inventory models.  
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1.2.2 Deterministic Inventory Models 

Deterministic inventory models assume that the demand is fixed and known. Two 

most famous models of this kind are presented in the following section. 

1.2.2.1 The Economic Order Quantity (EOQ) Model 

The EOQ model lays the foundation for all inventory models. It is the most 

important analysis of inventory control and describes the important trade-off between 

fixed order cost and holding cost. The first reference to the EOQ model is by Harris 

(1913) but this model was popularized by Wilson (1934).  

In this model, the demand per unit time is assumed to be a known constant R. A 

constant fixed cost is incurred whenever an order is placed. An order of quantity Q is 

placed whenever the on-hand inventory becomes zero and the replenishment time is 

assumed to be zero. The unit purchasing cost c is constant and known. The on-hand 

inventory is charged with a constant holding cost h per unit per unit time. Shortages are 

not allowed. The objective is to determine Q so as to minimize the total average cost. The 

relationship between order and on-hand inventory can be depicted in Figure 1.1, where T 

(= Q/R) is called the cycle time. Without loss of generality, it is assumed that the initial 

inventory is zero. 

There are two cost components: ordering cost and inventory holding cost. Since 

all cycle are identical, it is only necessary to derive these costs in a cycle. The ordering 

cost consists of a fixed order cost K and purchasing cost cQ. The average inventory in a 

cycle is Q/2. Therefore, the total cost per unit time, C(Q), is 

22/2
)(

hQ
Rc

Q

KRhQ

RQ

cQKhQ

T

cQK
QC 





  
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Figure 1.1 Inventory Levels for the EOQ Model 

In C(Q), only ordering quantity Q is a decision variable. The first and second 

order derivatives of C(Q) are given by 
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The Q* is known as the economic order quantity. One of the main strengths of the 

EOQ model is that the average total cost increase only slightly for any order quantity Q 
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  C(Q*). For example, α = 3/2 
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total cost is only about 8% above the optimal cost. This is very important when there is 

uncertainty in data, or some other factors prevent the calculated EOQ from the true 

optimal value, a close estimation will yield good results too (Waters, 1992). 

1.2.2.2 The Wagner-Whitin Model 

Wagner and Whitin (1958) consider a finite planning horizon, discrete time 

dynamic lot sizing problem for a single product. Demand is known but varying for each 

period, i.e. time-varying demand. There are no shortages and backorders. No capacity 

constraints are considered. A positive fixed order cost is incurred each time an order is 

placed. In each period, you have to decide if an order should be placed and how many to 

order. The objective is to find the optimal order quantity in each period so that the total 

costs over the planning horizon are minimized. 

Notations are as follows. 

(1) N = number of periods in the planning horizon. 

(2) tK = fixed order cost in period t. 

(3) th = inventory holding cost per unit remaining at the end of period t. 

(4) td = demand in period t. 

(5) M = a large number. 

(6) tQ = order quantity in period t. 

(7) ty = binary variable. 

(8) tI = inventory remaining at the end of period t. 0I  denotes the initial inventory. 
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The mixed integer programming (MIP) model can be formulated as follows. 

Minimize    



N

t
tt

N

t
tt IhyK

11

 

Subject to    tttt IDQI 1  

tt QMy   for all t. 

0, tt IQ  for all t. 

ty  binary for all t. 

The follows are the main conclusions drawn from this dynamic lot size model 

(Ravindran, 2008; Wagner and Whitin, 1958). 

(1) Inventory is held over a period if and only if the ordering costs are bigger than the 

holding costs. 

(2) Replenishment occurs only when the inventory level goes to zero (zero inventory 

ordering property). Consequently, order quantity must cover demand over an 

integer number of periods. 

(3) 01  tt IQ  for all t.  

(4) If the ending inventory of one period is positive, then this ending inventory level 

is at least the next period’s demand. The maximum amount is all remaining 

period’s demand. 

(5) If the ending inventory of one period is zero, then an order must be placed in the 

next period. The lower bound of this order quantity is equal to the next period’s 

demand and the upper bound is the total demand of all remaining periods. 
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1.2.3 Stochastic Inventory Models 

Stochastic inventory models assume that the demand follows some known 

distributions.  

1.2.3.1 One-Period Stochastic Inventory Model 

This model is originated in terms of a newsboy who must decide how many units 

(newspapers) to buy at the beginning of a day before selling them on a street corner 

during the day. The problem arises because the customer demand is uncertain. If the 

newsboy buys too many, he will end up with unsold stock of newspapers which is 

valueless at the end of the day. If he buys too few, he will have unsatisfied demand which 

could have yielded a profit. The newsboy’s objective is to determine a proper number of 

units to buy so as to maximize his total profit per day. 

Notations and assumptions are as follows. 

(1) co is the cost of unit inventory that is left at the end of the period (overage cost). 

(2) cu is the cost of unit unsatisfied demand (underage cost). 

(3) The demand D is a continuous nonnegative random variable with a density 

function )(x  and a cumulative distribution function )(x . 

(4) The decision variable Q is the amount of units ordered at the beginning of the 

period. 

(5) C(Q, D) is the total cost incurred at the end of the period. 

If Q units are purchased and the demand is D, then the leftover at the end of the 

period will be DQ   if Q > D, and the unsatisfied demand will be QD   if Q < D. 

Hence, the total overage and underage cost can be written as 

),0max(),0max(),( QDcDQcDQC uo  . 
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Then the expected cost function is  

 
 


0 0

)(),0max()(),0max()),(()( xQxcdxxxQcDQCEQC uo   

      dxxQxcdxxxQc
Q

uo  



0 0

)()()()(   

Applying the Leibniz’s rule, we can obtain the first and second order derivatives 

of the expected cost function C(Q) as  

))(1()()()1()(1)(
0 0

QcQcdxxcdxxcQC uo

Q

uo   


  

and 0)()()(  QccQC uo   for all 0Q . 

Since 0)(  QC , it follows that C(Q) is a convex function of Q. The optimal value of Q 

occurs where 0)(  QC . So the optimal value of Q can be computed by  

uo

u

cc

c
Q


 )( * . 

The right-hand side of the above equation is called critical ratio, and such an 

optimal solution is called a critical ratio solution. Since uc  and oc  are both positive, then 

this critical ratio is strictly between 0 and 1. So the above equation is always solvable for 

a continuous demand distribution. 

1.2.3.2 Multi-Period Stochastic Inventory Model 

In this model, it assumes that the system will be run for a finite number of periods. 

Demand in each period is stochastic. Any remaining inventory left at the end of one 

period can be used in the following period. An inventory holding cost will be incurred for 

any positive leftover stock. If demand exceeds the on-hand inventory, the excess amount 
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C++/CPLEX to provide explicit ordering policies and comparisons with non-

deteriorating case. 

 Chapter 8 concludes the dissertation and discusses possible future work. 
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Chapter 2 

Literature Review 

2.1 Introduction 

There has been tremendous research work done for deteriorating inventory control 

problems during recent decades. A general literature review of deteriorating inventory 

models is given in section 2.2. As mentioned in Chapter 1, our research includes adding 

deterioration and partial backlogging to traditional periodic-review stochastic inventory 

model and stochastic lot-sizing model, so the periodic-review stochastic inventory control 

problems and the stochastic lot-sizing problems are reviewed in sections 2.3, 2.4 and 2.5 

respectively. 

2.2 Deteriorating Inventory Models 

As mentioned in Chapter 1, these types of models deal with products that have 

random life times, i.e. the amount of deterioration is a function of on-hand inventory 

level. Ghare and Schrader (1963) were the first to start the analysis of deteriorating 

inventory problems by developing an EOQ model with constant rate of deterioration. 

They formulated that the differential equation describing the inventory level )(tI  over a 

cycle is  

dtI
dt

tdI
 )(

)(  ,  



17 

 

where θ is the constant deterioration rate and d is the constant demand rate. The optimal 

inventory cycle time T* is determined by the following equation 

0
2 2

 Tdhcdhc
T

Kcd 
. 

where c is the unit purchasing cost, K is the fixed order cost, and h is the inventory 

holding cost.  The optimal order quantity *Q  is then 

2

2*
** Td

dTQ


 . 

The first EOQ model with varying rate of deterioration was developed by Covert 

and Philip (1973). They assume that the time to deterioration of an item follows a two-

parameter Weibull distribution. The Weibull density function they use is  

)exp()( 1   ttxf   , 

where 0  is the scale parameter, 0  is the shape parameter, and 0t  is the time to 

deterioration. This function can stand for a decreasing, constant or increasing rate of 

deterioration. Using same notations as the previous model, the differential equation 

describing the inventory level over a cycle is 

dtIt
dt

tdI
  )(

)( 1 . 

The optimal cycle time T* is obtained by solving the following equation 









1

2

)1(

0
2

)exp(

!)1(n

nn

T

KThd

nn

Tn
cd

 



. 

The optimal order quantity is then 











0

)1*(
*

)1(!n

nn

nn

T
dQ


 

. 
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The computational procedure for obtaining the optimal cycle time is given by the 

authors. 

Since then, many researchers have devoted to the deteriorating inventory issues 

and numerous models that consider the effect of deterioration were developed. Dave and 

Patel (1981) studied an inventory system with finite planning horizon, multiple 

replenishments but equal order cycles, constant deterioration rate, no shortages and 

linearly changing demand rate. The objective is to find the optimal number of 

replenishments. Sachan (1984) extended Dave and Patel’s (1981) model by allowing 

shortages and complete backlogging. He also corrected some approximation errors for 

their model. Bahari-Kashani (1989) extended Dave and Patel’s (1981) model by dropping 

off the assumption that the planning horizon is divided into multiple equal ordering 

cycles, i.e. the replenishment cycle length can be varying. A heuristic method was 

developed to find the near optimal solution. Pal etc. (1993) developed an inventory model 

with infinite planning horizon, constant deterioration rate, deterministic demand rate 

which is a known function of the instantaneous inventory level, and no shortages. The 

objective is to determine the optimal cycle length. Chakrabarty etc. (1998) extended 

Covert and Philip’s (1973) model by considering three-parameter Weibull distribution 

deterioration, shortages and time-varying demand. They provided a procedure to find the 

optimal cycle time. Wu (2000) considered a deteriorating inventory model with fixed 

cycle length, single replenishment per cycle, time-varying demand, Weibull distribution 

deterioration, and complete backlogging. The objective is to find the optimal time point 

at which inventory falls to zero, and hence identify the optimal order quantity. There are 
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two excellent review papers describing such models developed before 2001 in detail -- 

Raafat (1991) and Goyal and Giri (2001).  

More recently, some inventory models for deteriorating items take into 

consideration of the effect of partial backlogging. Wu (2002) extended Wu’s (2000) 

model by considering that the shortages are partially backlogged and the partial 

backlogging ratio is dependent on the length of the waiting-time until the next 

replenishment.  The inventory system developed is illustrated by Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Wu’s (2002) Inventory System 

The differential equations describing inventory level over time are formulated as follows. 

)()(
)( 1 tDtIt

dt

tdI
  , 10 tt  , 

where 1)(   tt  is Weibull distribution deterioration, )(tD  is the time-varying 

demand rate, and 1t  is the time point at which inventory level falls to zero. 
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)(1

)()(
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tD

dt

tdI







, Ttt 1 . 

where 
)(1

1

tT 
 is the partial backlogging ratio which decreases as waiting time (T-t) 

increases. The optimal *
1t  was found by minimizing the total costs per unit time )( 1tC . 

Unfortunately, it is very difficult to show that )( 1tC  is a convex function for all 1t  and 

the calculation of *
1t  is not very straight-forward. 

Teng etc. (2005) establish a deteriorating EOQ model in which the demand rate is 

a function of the on-hand inventory and no shortages are allowed. There are three 

possible cases for this inventory problem and they establish the necessary and sufficient 

conditions for each case. Moreover, an algorithm to determine the optimal replenishment 

cycle time and ordering quantity is proposed to maximize the total profit. Teng and 

Chang (2005) establish an EPQ model for deteriorating items when demand rate is 

function of both stock level and selling price per unit. They provide the necessary 

conditions to determine an optimal solution that maximizes profits for the EPQ model. 

Chang etc. (2006) establish a finite horizon EOQ model with deterioration for a retailer to 

determine its optimal selling price, replenishment number and replenishment schedule. 

They prove that the optimal replenishment schedule exists and unique. A simple 

algorithm is provided to find the optimal solutions. Dye etc. (2006) consider an inventory 

system with non-constant purchase cost, time-varying demand, and partial backlogging 

rate which linearly depends on the total number of customers in the waiting line. They 

also provide a simple solution procedure to find the optimal replenishment schedule. Hou 

(2006) derives a deteriorating inventory model with stock-dependent demand and 
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complete backlogging under inflation and time discounting of money over a finite 

planning horizon. They show that the total cost function is convex and an algorithm is 

presented to determine the optimal order quantity. Jolai etc. (2006) derive the optimal 

production over a finite planning horizon for items that follow a Weibull distribution 

deterioration with a stock-dependent demand, fixed partial backlogging rate and under 

inflation.  Manna and Chaudhuri (2006) develop an order-level inventory system for 

deteriorating items with ramp type demand rate, finite production rate and time-

dependent deterioration rate. The models of no shortage case and shortage case are 

discussed. Mandal etc. (2006) consider a deteriorating inventory model with finite 

demand rate and limited storage space. It is solved by modified geometric programming 

method and non-linear programming method. Ouyang etc. (2006) establish a general 

EOQ model for deteriorating items with waiting-time dependent partial backlogging and 

permissible delay in payments. They mathematically prove that the total cost function is 

strictly pseudo-convex so that the optimal not only exists but also is unique. Yang (2006) 

considers an inventory system with constant demand rate, Waiting-time-dependent partial 

backlogging and two warehouses under inflation. The own warehouse (OW) has a fixed 

capacity. The rented warehouse (RW) has unlimited capacity. The inventory holding and 

deterioration costs in RW are higher than those in OW. They prove that the optimal 

solution not only exists but also is unique. Dye etc. (2007) study an inventory system 

with constant demand rate, waiting-time-dependent partial backlogging and two 

warehouses. A rented warehouse is used when the ordering quantity exceeds the capacity 

of the owned warehouse. They obtain the condition when to rent the warehouse and 

provide simple solution procedures for finding the maximum total profit per unit time. 
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Dye (2007) develops a deteriorating inventory model with selling-price-dependent 

demand rate, time-dependent deterioration rate and waiting-time-dependent partial 

backlogging. They proved that the optimal replenishment schedule not only exists but 

also is unique for any given selling price. An algorithm to find the optimal selling price 

and replenishment schedule for the proposed model is developed. Balkhi and Tadj (2008) 

establish a generalized economic order quantity model for deteriorating items with time-

varying demand, time-varying deterioration rate and waiting-time-dependent partial 

backlogging. The cost parameters are also assumed to be general functions of time. 

Necessary and sufficient conditions for a unique optimal solution are derived. Chern etc. 

(2008) consider a deteriorating inventory system with finite planning horizon, time-

varying demand rate and waiting-time-dependent partial backlogging under inflation. 

They provide an algorithm for determining the optimal replenishment number and 

schedule. Rong etc. (2008) study a deteriorating inventory system with price-dependent 

demand, partial/fully backlogging, imprecise lead-time and two warehouses. Holding cost 

at rented warehouse decreases with the increase of distance from the market place. The 

optimal solutions are derived by maximizing the average profit. Roy (2008) develops a 

deteriorating inventory model with selling-price-dependent demand rate, time 

proportional deterioration rate and time-dependent holding cost. They considered both 

shortage case and no shortage case. Shah and Acharya (2008) formulate an order-level 

lot-size inventory model for a time-dependent deterioration and exponentially declining 

demand. The optimal solutions are obtained through minimizing the total cost per unit 

time. Lee and Hsu (2009) develop a two-warehouse inventory model for deteriorating 

items with time-dependent demand and a finite replenishment rate within a finite 
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planning horizon. One approach to determine the number of production cycles and 

replenishment schedule is developed which permits variation in production cycle times. 

Shah and Shukla (2009) study a deteriorating inventory model with constant demand rate, 

constant deterioration rate and waiting-time-dependent partial backlogging. The 

convexity of the total cost function is shown numerically and the optimal order quantity 

is obtained through minimizing the total cost. Skouri etc. (2009) consider a deteriorating 

inventory model with general ramp type demand rate, Weibull deterioration rate and 

waiting-time-dependent partial backlogging. The optimal replenishment policy is derived 

under two different replenishment policies: (a) starting with no shortages and (b) starting 

with shortages. Yang etc. (2010) extended Hou’s (2006) model by considering an 

deteriorating inventory lot-size model under inflation with stock-dependent demand rate, 

constant deterioration rate, and waiting-time-dependent partial backlogging. They proved 

that there exists a unique replenishment schedule and a good estimate for finding the 

optimal replenishment number is provided. Geetha and Uthayakumar (2010) studied an 

EOQ based model for deteriorating products with permissible delay in payments. They 

considered constant demand rate, non-instantaneous deterioration, and waiting-time-

dependent partial backlogging. The necessary and sufficient conditions of the existence 

and uniqueness of the optimal solutions are provided. An up-to-date review paper is 

published recently by Li etc. (2010). 

One common feature of the above deteriorating inventory models is that time is 

treated as a continuous variable, which may not always be the case in practice. For 

example, in some real-life problems, time may be better treated as a discrete variable and 

a result of say 6.65891 hours is difficult to measure and confusing. In this regard, some 
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researchers have attempted to study the deteriorating inventory by considering time as a 

discrete variable. Dave (1978) develops a discrete-in-time EOQ model for deteriorating 

items with constant demand rate, constant deterioration rate and no shortage. The optimal 

solution for cycle time is derived.  

Dave (1979) establishes a discrete-in-time order-level inventory model for 

deteriorating items with constant demand rate, constant deterioration rate, complete 

backlogging and predetermined fixed cycle length. Since time is considered as a discrete 

variable, the difference equations describing the inventory levels at different time points 

are formulated as 

dtItItI  )()()1(  , 1,,2,1,0 1  tt   

and dtItI  )()1( , Tttt ,,1, 11   

where 1t  is the time at which inventory level goes to zero. The total cost per unit time 

)( 1tC  is derived. Since 1t  is an integer, the necessary and sufficient conditions for )( 1tC  

to have a global minimum at *
1t  are 

)(0)1( *
1

*
1 tCtC   

and 0)( 1
2  tC  for all Tt ,,2,1,01  ,  

where )()1()( 111 tCtCtC   and ))(()( 11
2 tCtC  . The sufficient condition was 

satisfied and the optimal *
1t  is derived by testing the necessary condition.  

Dave and Jaiswal (1980) consider a discrete-in-time probabilistic inventory model 

for deteriorating items with stationary uniform demand, constant deterioration rate, and 

no shortages. The optimal solution for cycle time is derived. Dave and Shah (1982) 

extend Dave and Jaiswal's (1980) model by allowing lead time equal to one scheduling 
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period. The optimal solution for cycle time is derived. Rengarajan and Vartak (1983) 

extended Dave's (1979) model by allowing time-dependent demand which occurs at the 

end of each period. They find that the initial stock level is not at all affected by the nature 

of demand. Dave (1984) generalized Dave and Shah's (1982) model by allowing lead 

time equal to a fixed constant. The optimal solution for cycle time is derived. Dave (1985) 

establishes a discrete-in-time deteriorating inventory model with demand rate linearly 

changing with time, constant deterioration rate, no shortages and finite planning horizon. 

The optimal replenishment number and schedule are derived. Dave (1987) considers 

three inventory systems, i.e. EOQ, order-level and order-level lot-size inventory systems, 

for deteriorating items with finite replenishment rate, constant demand rate and constant 

deterioration rate. The EOQ does not allow shortage. The order-level system allows 

shortage but assume the cycle time is a predetermined constant. The order-level lot-size 

system allows shortage and does not consider the scheduling period as a prescribed 

constant. Searching procedures for finding the optimal solutions are derived for all three 

systems. Dave (1988) studies a discrete-in-time deteriorating inventory model with 

constant demand rate, constant deterioration rate and no shortages under permissible 

delay in payments. There is no charge if the due amount is paid within this permitted 

settlement period. The solution procedure for optimal cycle time is provided. Dave (1990) 

considers a discrete-in-time deteriorating inventory model with stationary uniform and 

instantaneous demand occurring at the beginning of the scheduling period, constant 

deterioration rate and no shortages. Three inventory models are developed, i.e. a model 

with no lead time, a model with a deterministic lead time and a model with a lead time 

equal to a multiple of the scheduling period. The optimal solution for cycle time is 
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derived for each model. Shah and Shah (1998) consider a discrete-in-time deteriorating 

inventory model with stationary uniform demand, constant deterioration rate and no 

shortages under permissible delay in payments. The optimal cycle time is derived by 

solving a sequence of inequalities. Shah (1998) considers a discrete-in-time deteriorating 

inventory model with stationary uniform demand, constant deterioration rate and no 

shortages. The unit purchase cost will increase from a specified future date. The 

procedure to find the optimal cycle time is provided. 

2.3 Periodic-Review Stochastic Inventory Control Problem 

In this type of problem, the planning horizon is finite. Demand in each period is 

stochastic. The system is under periodic review, i.e. the inventory level is checked at the 

beginning of each period and a decision is made on how many to order. The objective is 

to determine the optimal ordering policy at the beginning of each period with minimum 

expected overall purchasing, holding and shortage costs. 

Arrow (1958) started this type of research by considering that the demands that 

arise in successive periods are independent and identically distributed random variables 

with known distribution functions. Recently, Porteus (2002) reconsidered this problem in 

his book with stochastic i.i.d demand. The complete proof was provided and the explicit 

optimal base stock level was computed for some special case. Since our proposed model 

will be derived based on Porteus’s work, the detail review of his model is presented next. 

Notations in Porteus’ Model are as follows. 

(1) c – unit purchasing cost ($/unit) 

(2) Hc  – unit holding cost, charged against positive ending inventory ($/unit) 

(3) Pc  – unit shortage cost ($/unit) 
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(4) D – generic random variable representing demand, which is i.i.d over every 

period 

(5)   – demand density distribution 

(6) x – inventory level before ordering (the state of the system) 

(7) y – inventory level after ordering (the decision variable) 

(8) N – the length of the planning horizon 

(9) α – one-period discount factor ( ]1,0( ) 

(10) )0,max(xx   

(11) )0,min(xx   

The expected one-period holding and shortage cost function is 

)()( DyElyL   

where   )()( xcxcxl PH .   

He derived the optimality equations for Nt 1  as  









 



0

1 )()()()(min)( dDDDyfyLxycxf t
xy

t  , 

where )(1 xfN  is the terminal value function )(xv . Porteus proved that if the terminal 

value function is convex, then the optimal policy in each period is characterized by a 

single critical number, which is called base stock policy. That is, order up to the base 

stock level if the current inventory is less than the base stock and order nothing otherwise. 

The explicit optimal base stock level was derived for the case that the terminal value 

function has a slope of –c.  
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Karlin (1960) considered that the demands in successive periods are not 

identically distributed. He proved that the optimal ordering policy in each period is a base 

stock policy, but the base stock level may vary in successive periods. Karlin (1960) 

studied this dynamic stochastic inventory problem with demand distribution varying over 

successive periods in a cyclical fashion. The optimal ordering policies are derived for 

both backlogging and non-backlogging cases. Iglehart (1964) considered the dynamic 

inventory system with demand distribution possessing a density belonging to either 

exponential or range family of densities and having an unknown parameter. They applied 

a Bayesian estimation method to obtain the optimal ordering policies as the amount of 

demand information varies. Azoury (1985) considered the periodic review inventory 

problem in which one or more parameters of the demand distribution are unknown but 

with a known prior distribution chosen from the natural conjugate family. An explicit 

form of the optimal ordering policy is given. Gavirneni (2004) considered this type of 

problem with i.i.d demand and fluctuating purchasing cost. He showed that an order up to 

policy is optimal and proposed a method to predict the effectiveness of myopic heuristics. 

Bertsimas and Thiele (2006) proposed a general methodology based on robust 

optimization to study this type of stochastic inventory problem without assuming a 

specific distribution of the demand. They showed that the structure of the optimal robust 

policy is of the same base stock character. Levi etc. (2007) considered this type of 

stochastic inventory problem under the assumption that the explicit demand distributions 

are not known and that the only information available is a set of independent samples 

drawn from the true distributions. They described how to compute the optimal policies 

based only on the observed samples of the demands.  
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2.4 Stochastic Lot-Sizing Problem 

This type of problem is just the periodic-review stochastic inventory control 

problem with fixed order cost. 

It was Scarf (1960) who first established the optimal ordering policy structure for 

the stochastic lot-sizing problem with independent and identically distributed demands in 

successive periods. This problem was re-studied by Porteus (2002) and a complete proof 

was provided. Since our proposed model builds on Porteus’s work, the detail review of 

his model is given below. 

Notations in Porteus’ Model are as follows. 

(1) c – unit purchasing cost ($/unit) 

(2) Hc  – unit holding cost, charged against positive ending inventory ($/unit) 

(3) Pc  – unit shortage cost ($/unit) 

(4) K – fixed order cost ($/order) 

(5) D – generic random variable representing demand, which is i.i.d over every 

period 

(6)   – demand density distribution 

(7) x – inventory level before ordering (the state of the system) 

(8) y – inventory level after ordering (the decision variable) 

(9) N – the length of the planning horizon 

(10) α – one-period discount factor ( ]1,0( ) 

(11) )0,max(xx   

(12) )0,min(xx   
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The expected one-period holding and shortage cost function is 

)()( DyElyL   

where   )()( xcxcxl PH .   

The optimality equations for Nt 1  was derived as  

 )]([min),(min)( yGKxGcxxf t
xy

tt 


, 

where 


 
0

1 )()()()( dDDDyfyLcyyG tt   and )(1 xf N   is the terminal value 

function )(xv . Porteus proved that if the terminal value function is continuous and K-

convex, then a (s, S) policy is optimal in each period. That is, order up to inventory level 

S if the current inventory is less than the level s and order nothing otherwise. 

Schal (1976) generalized Scarf’s result by finding some new conditions for the 

optimality of an (s, S) policy and a special case without assuming particular demand 

distributions was obtained. Iyer etc. (1992) analyzed the deterministic (s, S) inventory 

problem which is to determine parameters s and S such that implementing this (s, S) 

policy results in the minimum possible total costs given a set of demands for n periods. A 

polynomial time algorithm for finding an optimal (s, S) for the deterministic problem was 

provided. Sox (1997) considered the case in which the demand is random and the costs 

are non-stationary. He modeled the problem as a mixed integer nonlinear program. An 

optimal solution algorithm was developed. Then Gallego etc. (2000) studied the finite 

ordering capacity and they showed that the optimal capacitated policy has an (s, S)-like 

structure. Sobel and Zhang (2001) considered that the demands arrive simultaneously 

from a deterministic source and a random source. The deterministic demand has to be 
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satisfied immediately and demand from a stochastic source can be backlogged if 

necessary. They proved that a modified (s, S) policy is optimal assuming that the 

stochastic demand is satisfied immediately if there is sufficient stock on hand. Dellaert 

and Melo (2003) considered a stochastic manufacturing system with only partial 

knowledge on future demand because customers tend to order in advance of their actual 

needs. A Markov decision model was formulated to find the optimal policy. Two 

approximate strategies for obtaining near-optimal production lot sizes were proposed. 

More recently, Ozer and Wei (2004) considered a capacitated production system faced by 

a manufacturer who has the ability to obtain advance demand information. The capacity 

constraint is that the number of production periods is limited. Two cases were analyzed. 

When there is no fixed cost, the optimal policy is of a state-dependent modified base 

stock policy. When there is positive fixed cost, they analyzed a class of production 

policies under which the manager is restricted to either producing at full capacity or not 

at all. Bensoussan etc. (2006) considered the effect of information delay between the 

current time and the time of the most recent inventory level known to the inventory 

manager. A constant delay and a random were both discussed. The optimal ordering 

policy is base stock level when there is no fixed order cost and (s, S) policy when fixed 

order cost exists. 

When there are non-homogeneous stochastic demands and fixed order costs, the 

computation of the optimal ordering policies are extremely difficult, so a lot of 

researchers have attempted to develop some efficient computational algorithms to 

approximate the optimal ordering policies. Most of them are based on heuristic methods 

(Porteus 1985, Bollapragada and Morton 1999, Levi etc. 2007), while Gavirneni and 
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Tayur (2001) developed an efficient solution method – Direct Derivative Estimation 

(DDE) – for computing optimal order-up-to levels for a discrete time non-stationary 

inventory control model. 

2.5 Summary 

 The following gaps are identified from literature review. 

(1) Literatures for discrete-in-time deteriorating inventory models are very limited. 

(2) No closed-form solutions for deteriorating inventory problems. 

(3) When considering time-varying demand, variable deterioration rate, and waiting-

time-dependent partial backlogging, the convexity of total cost function is not 

proved. 

(4) No literatures for multi-period stochastic inventory model with deterioration and 

partial backlogging.  

(5) No literatures for stochastic deteriorating inventory control under service-level 

constraints. 

Our dissertation completes the current literature by filling up all those gaps. The 

results of this research have the potential to positively influence industrial engineering 

and management science curricula related to production and inventory control, large scale 

optimization, optimization modeling, and supply chain management. Furthermore our 

work could enhance student learning by providing practical examples and by 

development of case-studies on the design of control systems for deteriorating inventory. 
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Chapter 3 

A Discrete-in-Time Inventory Model with Deterioration and Backlog  

 There is a single product with a constant rate of demand. Any physical inventory 

experiences a constant rate of deterioration, and any unsatisfied demand is completely 

backlogged. A previous model was presented to determine the optimal order-level for a 

given constant cycle time, where time is treated as a discrete variable. However, the 

optimal solution derived is only valid under the restriction that the physical inventory 

level goes to zero at an integer time. This is totally unnecessary from the practical view 

point. This chapter relaxes this restriction. Furthermore, a closed-form equation is derived 

to compute the optimal solution, while no closed-form solution was presented in 

literature (even for the integer-restrictive case). This greatly reduces the computational 

effort to identify the optimal solutions, and makes sensitivity analysis possible. Some 

insights are provided through sensitivity analysis. 

3.1 Assumptions and Notations 

The following assumptions are made. 

(1) The cycle has T unit times, where T is a known constant. 

(2) The demand rate of R units per unit time is a known constant. 

(3) Rate of replenishment is infinite and lead time is zero. The fixed lot-size q raises 

the inventory at the beginning of each cycle to stock level S. 

(4) Shortages are made up immediately after a fresh lot arrives. 
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(5) There is neither repair nor replacement for the deteriorated items in the inventory 

during a cycle. 

(6) The unit purchasing cost c, inventory carrying cost h per unit per unit time and the 

shortage cost b per unit per unit time are known and constant. 

(7) The deterioration rate   is a constant (i.e., a constant fraction   of the on-hand 

inventory deteriorates per unit time). 

(8) The inventory level at any time t  within the cycle is denoted as I(t), Tt 0 . 

3.2 Model 

     

 

       

 

 

 

 

 

 

Figure 3.1 Inventory Level of the System 

As illustrated in Figure 3.1, the fixed lot-size q raises the inventory at the 

beginning of a cycle to stock level S. This initial inventory is gradually reduced due to 

both demand and deterioration. At time 1tt  , for all Tt  10 , the inventory level goes 

to zero, i.e., 0)( 1 tI . All demands occurring after time 1t  are fully backlogged and will 
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be fulfilled by the new order from the next cycle. Therefore, the total backlog is equal to 

)( 1tTR  . 

Since the lot-size q raises the initial inventory to S during every cycle, we have  

StTRq  )( 1  .                                                                                           (3.1) 

With the depletion of inventory determined by both demand and deterioration, the 

difference equations describing the inventory level )(tI  of the system from time 0 to time 

1t  are  

RtItItI  )()()1(   , ]1,0[ 1  tt .                                                         (3.2) 

Equation (3.2) can be rewritten as 

RtItI  )()(  , ]1,0[ 1  tt  ,                                                                    (3.3) 

where  

)()1()( tItItI   .                                                                             (3.4) 

Since there are no units held in inventory from time 1t  to time T , the 

deterioration will not exist during this time span. Hence, the difference equations 

describing the inventory level )(tI  of the system from time 1t  to time T  are 

RtItI  )()1( , ]1,[ 1  Ttt  ,                                                             (3.5) 

which can be rewritten as 

RtI  )( , ]1,[ 1  Ttt  .                                                                            (3.6) 

Solving (3.3) and using the boundary condition 0)( 1 tI , we obtain 

]1)1[()( 1  ttR
tI 


, ],0[ 1tt  .                                                                  (3.7) 
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Similarly, from equation (3.6) we get 

)()( 1 ttRtI  , ],[ 1 Ttt  .                                                                               (3.8) 

At time 0, the inventory level SI )0( . Substituting this into (3.7) yields 

]1)1[( 1  tR
S 


 .                                                                                         (3.9) 

Then from equation (3.1), we get 

]1)1[()( 1
1  tR

tTRq 


 .                                                                   (3.10) 

Since the lot-size q  is depleted by both demand and deterioration, and the total demand 

during one cycle is RT, then the total number of units, )( 1tD , that deteriorate during a 

cycle T will be 

11 ]1)1[()( 1 Rt
R

RTqtD t  


 .                                                         (3.11) 

Given unit cost c, the average deterioration cost per unit time is 

T

tcD )( 1  .                                                                                                         (3.12) 

When 1t  is restricted to an integer, the average number of units in inventory 

during T can be computed as follows. 

)]()(2)0([
2

1
)( 1

1
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Note that (3.13) differs from Dave’s in that the mean inventory in a period is set here as 

the average of the beginning and ending inventories for the period. However, when t1 can 

be any real value, to compute )( 1tI  becomes much more complicated if not impossible. 

This dilemma can be resolved by using the Trapezoid method. Since I(t) is a polynomial 
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function of t, it is a smooth function. Then (3.13) can be approximated by integration. In 

particular, the following is valid (Bronshtein, et al., 1997) 

)( 1tI
 
 = ))((

1 1

0

 dttI
T

t

, (3.14) 

where ε is the approximation error and can be computed by ε = t1I"(η)/12, 0 ≤ η ≤ t1.  I"(t) 

= )1(ln)1( 21 


 ttR
, 0 ≤ t ≤ t1. Therefore, I"(η) ≤ max{I"(t): 0 ≤ t ≤ t1} = 
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, and the error term is bounded by  
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 When this error bound is small, the approximation is good. In doing so, the 

average inventory is computed by 

 )( 1tI  = 
)1ln(

)]1ln(1)1[( 1
1


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
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
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T

tR t

.        (3.16) 

 The use of this approximation will greatly simplify the computation of )( 1tI . 

More importantly, this approximation will lead to a closed-form solution for the optimal 

t1, which will be given at the end of this section. 
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From equation (3.7), the average number of units in inventory during T is 

calculated as follows: 

)1ln(
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                                                (3.17) 

The average inventory holding cost per unit time is 

)( 1tIh  .                                                                                                         (3.18) 

From equation (3.8), the average shortage during T is  
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Hence, the average shortage cost per unit time is 

)( 1tSb  .                                                                                                         (3.20) 

Adding up costs given by (3.12), (3.18) and (3.20) leads to the following total average 

cost of the system per unit time during one cycle  
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The first-order derivative of )( 1tC  is given by 
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Similarly, the second-order derivative of )( 1tC  is given by 
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Since all the parameters are positive and 10   , it is obvious to see from equation 

(3.23) that 0)( 1
" tC , for all ],0[ Tt . Therefore, )( 1tC  is a strictly convex function. 

This means that the solution to the equation 0)( 1
' tC  is optimal to 

 ],0[)(min 111
TttCt  . Solving equation 0)( 1

' tC , we get the optimal 1t , denoted as *
1t , 

as follows: 
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where W is  
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The Lambert W function is defined as   

xexLambertW xLambertW )]([)( , for 
e

x
1

 .                  

The result obtained here shows that the optimal value of t1 is not affected by the 

demand rate. Substituting *
1t  into equations (3.9) and (3.10) yields the optimal lot-size 

and order-level. 

3.3 A Numerical Example 

The same example from Dave’s paper is used to illustrate our methodology. The 

values of the parameters are given as follows. 
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(1) R = 200 units/month; 

(2) c = $80.00/unit; 

(3) h = $1.00/unit/month; 

(4) b = $9.00/unit/month; 

(5) T = 12 months; 

(6) 05.0  

Substituting these numbers into equation (3.24) and solving by Maple 10.0, we obtain the 

following optimal value of 1t  as 

93.6*
1 t  months. 

From (3.9) and (3.10), the optimal order-level and lot-size are 

1708* S  and 2722* q . 

Also, substituting *
1t  into equation (3.21), the minimum average cost per month obtained 

by this method is 

monthtC /$4534.13)( *
1  . 

 By Dave’s method, *
1t  is computed as 7 months. Substituting this *

1t  value into 

equation (3.21), one gets the corresponding total monthly cost at $4534.82, which is 

almost the same as the optimal total monthly cost given above. This should be expected, 

as the optimal *
1t  of 6.93 months is so close to 7 months. As a matter of fact, the total 

monthly cost as a function of t1 is pretty flat around the optimal *
1t  as shown in Figure 3.2.  

This result echoes the behavior of the well-known EOQ model.  

By Equation (3.15), the relative error, RE(θ), is computed as RE(0.05) < 0.17%. 

Since the inventory holding cost is only one of 3 cost components, the actual impact of 
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the approximation by Equation (3.16) on the optimal total cost is far less than 0.17%. 

Therefore, the use of approximation (3.16) is appropriate. 

 

 

Figure 3.2 Total Monthly Cost C(t1) as a Function of t1 

3.4 Sensitivity Analysis 

The sensitivity of *
1t , )( *

1tC , *q  and *s  with respect to parameters θ, c, h, b and T 

is studied numerically in this section. The results are illustrated in Figure 3.3 to Figure 

3.7. We use the values given in Section 4 as the base values for the various parameters. It 

is worth mentioning that the time unit considered in this paper is month. Moreover, to put 

the values of *
1t  in a perspective relative to cycle time T, we present the computational 

results using the ratio 
T

t*
1  instead of the absolute value of *

1t . The ratio 5.0
*
1 
T

t
 means 

that the inventory goes to zero in the middle of a cycle T. A ratio below or above 0.5 

indicates the inventory goes to zero early or late in a cycle, respectively. Alternatively, a 

small ratio 
T

t*
1  means a large backlog, while a large ratio indicates less backlogging. 
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The sensitivity study is conducted as follows. Only one parameter value is altered 

at a time, while holding all the other parameters constant. The range of θ is chosen from 

0.001 to 0.5. This range represents a very little to significant deterioration. The ranges of 

c and b considered are, respectively, 40 ~ 360 ($/unit) and 3 ~ 24 ($/unit/month). The 

range of T is set to be from 3 to 24 (months). In practice, the annual inventory holding 

cost per unit can usually be expressed as the product of the unit purchasing cost c and an 

annual interest rate I (i.e., h=Ic), where the annual interest rate is an aggregated term 

comprised of cost of capital, taxes and insurance, cost of storage, and breakage and 

spoilage, etc. In the sensitivity study, we consider the range of the annual interest rate 

from 1% to 75%. This leads to the range of h values from 0.067 to 5 ($/month). The 

computational results and analyses are represented next. 

Table 3.1 Different Optimal Values w.r.t. θ 

θ 0.001 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

t1* 0.891 0.5775 0.395 0.2875 0.2191 0.171 0.1366 0.11 0.089 0.07 0.058 

S* 2152 1708 1295.5 1002.5 798.3 694.9 529.93 437.63 363.6 303 249 

q* 2412 2721.4 2747.5 2712.5 2672.3 2634 2601.9 2573.6 2549 2529 2509 

C(t1*) 1168 4534.1 6504.3 7696.7 8479.3 9026 9428.6 9734.0 9972 10162 10315 
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Figure 3.3 Sensitivity Analysis w.r.t. θ 

 

(a)       (b)       

T

t*
1  

 

(1) From Table 3.1 and Fig. 3.3(a), as θ increases from 0, the optimal ratio 
T

t*
1  

decreases rapidly from almost 1 until θ reaches about 0.2, and then the pace of 

decrease levels off and approaches close to 0. That is, for a rapidly deteriorating 

product (i.e., a large θ), it is better to have substantial backlogging to keep costs 

low, as expected. From Fig. 3.3(b), interestingly, as θ increases, the optimal lot-

size *q  increases at first, peaks at around θ = 0.08, and then decreases slowly. In 

general, *q  stays pretty steady, for all θ. However the optimal order-level *s  

keeps decreasing at a much faster pace as θ increases. Moreover, the total optimal 

cost )( *
1tC  increases very dramatically as θ increases from 0, and levels off after 

around θ = 0.3. This indicates that at small values of θ, a little reduction of θ can 

lead to significant improvement of cost reduction.  
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Table 3.2 Different Optimal Values w.r.t. c 

c 40 80 120 160 200 240 280 320 360 

t1* 0.6908 0.5775 0.496667 0.436667 0.388333 0.35 0.318333 0.290833 0.2675 

S* 2119.7 1708 1430.3 1233.45 1080.05 961.59 865.82 784.15 715.93 

q* 2861.7 2721.4 2638.3 2585.45 2548.05 2521.59 2501.82 2486.15 2473.93 

C(t1*) 3251.8 4534.1 5456.69 6157.28 6709.53 7157.04 7527.48 7839.42 8105.79 

 

 
 

 
Figure 3.4 Sensitivity Analysis w.r.t. c 

(a)       (b)       

T

t*
1

 

 

(2) As shown in Table 3.2 and Figure 3.4, there is a decrease in the optimal ratio 
T

t*
1  

with an increase in the unit price c. The optimal lot-size *q  and the optimal order-

level *s  decrease as the unit price c increases. It should be noted that *s  is more 

sensitive than *q  with respect to the parameter c. In other words, the change of 

*q  is smaller than that of *s  with the increase of c. In fact, *q  is almost flat, as c 

changes. The optimal total monthly cost )( *
1tC  increases more significantly as c 

increases. 
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Table 3.3 Different Optimal Values w.r.t. h 

h 0.067 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

t1* 0.62 0.6 0.5775 0.55666 0.5375 0.52 0.5033 0.4875 0.473 0.46 0.44 

S* 1861 1786.9 1708 1634.64 1568.5 1508.9 1452.6 1399.7 1352 1309 1265 

q* 2771 2746.9 2721.4 2698.64 2678.5 2660.9 2644.6 2629.7 2616 2605 2593 

C(t1*) 4066 4292.6 4534.1 4757.1 4963.9 5156.19 5335.5 5503.1 5660 5808 5947 

 

 

(a)                                                                (b) 

Figure 3.5 Sensitivity Analysis w.r.t. h 

 

(3) From Table 3.3 and Fig. 3.5, when h increases from 0.067 to 5, the optimal ratio 

T

t *
1  decreases almost linearly within a relatively small range from 0.62 to 0.45. 

The trends of changes in )( *
1tC , *q  and *s with respect to inventory holding cost 

h are similar to the trends with respect to c but in a more or less linear fashion. 

Again, *s  is a little more sensitive to the changes in h than in *q . 
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Table 3.4 Different Optimal Values w.r.t. b 

b 3 6 9 12 15 18 21 24 

t1* 0.321667 0.481667 0.5775 0.641667 0.689167 0.725 0.753333 0.775833 

S* 875.81 1380.44 1708 1937.29 2113.44 2249.78 2359.73 2448.42 

q* 2503.81 2624.44 2721.4 2797.29 2859.44 2909.78 2951.73 2986.42 

C(t1*) 2484.78 3746.72 4534.13 5078.34 5478.98 5787.11 6031.86 6231.15 

 

 
 

Figure 3.6 Sensitivity Analysis w.r.t. b 

(a)       (b)       

T

t*
1  

 

(4) As shown in Table 3.4 and Fig. 3.6, the optimal ratio 
T

t*
1  increases pretty 

dramatically as the backlogging cost b increases from 3 to about 12, and then the 

slope of the increase becomes steady as b further increases. The total monthly 

cost )( *
1tC  and the optimal order-level *s  behave in a very similar manner with 

respect to b. However, the lot-size *q slightly increases in an almost linear fashion 

as b increases. This phenomenon is reasonable, since the higher the backlogging 

cost is, the less backlogging should be expected, which translates into larger ratio 
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T

t*
1 , and larger q*, s* and )( *

1tC . Again, s* is more sensitive to b than q*, especially 

when b is small.  

Table 3.5 Different Optimal Values w.r.t. T 

T 3 6 9 12 15 18 21 24 

t1* 0.573333 0.586667 0.584444 0.5775 0.569333 0.560556 0.551429 0.542083 

S* 368.93 791.52 1238.82 1708 2189.7 2711.64 3244.7 3796.07 

q* 624.93 1287.52 1986.82 2721.4 3490.7 4293.64 5128.7 5994.07 

C(t1*) 1260.61 2314.63 3405.17 4534.13 5701.29 6906 8147.47 9424.8 

 

 

 
 

Figure 3.7 Sensitivity Analysis w.r.t. T 

(a)       (b)       

T

t*
1  

 

(5) From Table 3.5 and Figure 3.7, as T increases, the optimal ratio 
T

t*
1  almost 

remains constant around 0.56. The optimal )( *
1tC , *q  and *s  all increase 

dramatically in more or less linear fashions, with respect to T. This is somewhat 

expected, as larger T leads to higher inventory and more backlogging, since only 

one replenishment is considered in a cycle of T time units. 
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In conclusion, the optimal cost )( *
1tC  always increases as the value of any 

parameter increases. The parameter θ plays a very important role in total cost, which 

explains why it is essential to consider the effect of deterioration for products that 

deteriorate. The parameter T is also very important too because all the optimal values are 

very sensitive to it as mentioned in part (5). 

In real life, the inventory carrying cost and the shortage backlogging cost may be 

assessed as a given proportion to the unit price of goods. To examine the system behavior 

for such cases, this paper considers fixing the ratio c:h:b while altering all three 

parameter values simultaneously. In particular, consider ch 1  and cb 2 , where 1  

and 2  are constants. Substituting these into equations (3.24) and (3.25) leads to the 

following.  
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As one can see clearly from this equation, the optimal *
1t  is now independent of all three 

parameters c, h, and b, provided that 1 and 2  are constants. Consequently, the optimal 

*s  and *q  are also independent of all c, h, and b, by equations (3.9) and (3.10). Similarly, 

the following equation can be obtained by using equation (3.21). 
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The term in the brackets of equation (3.26) is independent of all c, h, and b. Therefore, 

the optimal cost )( *
1tC  is a linear function of c (h or b), provided that 1 and 2  are 

constants. This insight is very significant in the sense that for companies with a fixed 

ratio bhc :: , the total cost depends strictly linearly on the unit price of a product and the 

optimal lot-size stays constant.   

3.5 Conclusion 

In this chapter, we generalized an existing inventory model by allowing the time 

at which inventory level reaches zero to be non-integer. Explicit formulas for order-level, 

lot-size, and total cost are derived. As a result, the computation is much simplified. 

Furthermore, the derived explicit total cost equation makes sensitivity analysis possible. 

 From the sensitivity analysis, it is found that the cost )( *
1tC  always increases as 

any parameter value increases. The deterioration rate θ contributes pretty significantly to 

total cost, which explains why it is imperative to address the effect of deterioration for 

products that do deteriorate. The cycle time T also plays a rather important role as all the 

optimal solutions are very sensitive to it. This should be expected, though, as a single 

replenishment is restricted for each cycle. Another insight is that the optimal cost )( *
1tC  

is a linear function of c, provided that ch 1  and cb 2 , where 1 and 2  are constants. 

This finding is pretty significant in the sense that for companies with a fixed ratio bhc :: , 

the total cost depends strictly linearly on the unit price of a product.   
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Chapter 4  

A Discrete-in-Time Deteriorating Inventory Model with Time-Varying Demand, 

Variable Deterioration Rate and Waiting-Time-Dependent Partial Backlogging  

A new inventory system is considered for a single deteriorating item in which the 

demand is varying over time, unsatisfied demands are partially backlogged depending on 

the waiting time up to the next replenishment, and deterioration is assumed to be a 

variable fraction of the on hand inventory at the beginning of each period. Time is treated 

as a discrete variable because in real life we always consider time on a discrete scale, i.e. 

in terms of complete units of days, weeks, months, etc. (Dave, 1979). Under this 

consideration, we are able to derive explicit solutions based on the sufficient optimality 

condition. The necessary optimality condition is easily proved to be true, while it is not 

provable in continuous time case. The first example demonstrates that our model can 

reduce to Dave’s (1979) by considering constant demand, constant deterioration rate and 

complete backlogging. The second example considers a more general case with variable 

deterioration rate and waiting-time-dependent partial backlogging.  

4.1 Assumptions and Notations 

The model under consideration is developed with the following assumptions. 

(1) The cycle time of T periods is known and constant.  

(2) The demand of iR  units in period i is given and occurs at the end of the period. 
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(3) iS  denotes the inventory level at time point ),,2,1,0( Tii  . The inventory level 

becomes zero at the end of time period k, i.e. 0kS . 

(4) The replenishment rate is infinite and lead time is zero. At the beginning of a 

cycle, a fixed lot-size Q raises the inventory level to 0S . 

(5) A constant fraction i  of the beginning on- hand inventory in period 

),,2,1( Tii   deteriorates during that period. 

(6) The fraction of shortages backlogged for period i is denoted as B(τi), for i = 1, 

2, …, T, where i  is the waiting time until the next replenishment. It is assumed 

B(τi) is a decreasing function of τi. One possible form of )( iB   could be 
i1

1
 , 

where the backlogging parameter   is a positive constant (Chang and Dye, 1999).  

This function guarantees that 1)(0  iB  , for all i, and when the waiting time τi 

is zero for i = T, 1)( TB  , which is complete backlogging. 

(7) There is neither repair nor replacement for the deteriorated items. 

(8) The unit purchasing cost c, inventory holding cost h per unit per unit time, 

backlogging cost b per unit per unit time, and the penalty cost p per unit lost sale 

are all known and constant. 

4.2 Model 

As illustrated in Figure 4.8, the fixed lot-size Q raises the inventory at the 

beginning of the cycle to stock level 0S . This inventory of 0S  is gradually reduced due to 

both demand and deterioration. By assumption, 0kS  for some k. Demands occurring 

after time k are partially backlogged. 
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               Figure 4.1 Inventory Level for the Model over the Cycle 

With the depletion of inventory by both demand and deterioration, the difference 

equation describing the inventory level for period )0,1,(  kkii  is  
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Therefore, the inventory levels from time 0 to time k can be rewritten as 
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The order-level of the inventory system is 
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Since there are no units held in inventory from time k to time T , the deterioration 

will not exist during this time span. By assumptions, the shortages are partially 

backlogged and the partial backlogging ratio is determined by the waiting time until the 

next replenishment. Hence, the difference equation describing the inventory level for 

period ),1,( Tkkii   is    

)( 111   iiii BRSS   , Tkki ,1,   

From this recursive relation, we can obtain 

)( 111   kkk BRS  , since 0kS . 

Similarly, we can get                                    

)()( 22112   kkkkk BRBRS   

)()()( 3322113   kkkkkkk BRBRBRS   

. 

. 

. 
)()()( 2211 TTkkkkT BRBRBRS      

 



54 

 

So the general expression of inventory levels from time k+1 to time T is  
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The lot-size Q is the summation of the order-level and total backlogging amount, i.e. 
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From Equation (4.1), the average number of units in inventory per time unit during a 

cycle is 
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The average inventory holding cost per unit time is 

)( 1tIh  .   (4.6)                        

Since deterioration rate varies each period, according to Equation (4.1), the number of 

units that deteriorate during a cycle is 
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Given unit cost c, the average deterioration cost per unit time is 

T

tcD )( 1  .   (4.8)                        

From Equation (4.2), the average backlogging per unit time during a cycle is 
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Hence, the average backlogging cost per unit time is 

)(2 kbI .  (4.10) 

Since the partial backlogging ration is  )( iB  , the number of lost sales per cycle will be 
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Therefore, the average penalty cost for lost sales per unit time is  

T

kpLS )(
.  (4.12) 

Adding up costs given by (4.6), (4.8), (4.10) and (4.12) leads to the following total 

average cost of the system per unit time during one cycle  
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Since k is a non-negative integer, the following two conditions should be satisfied by the 

optimal value of k, denoted by *k , that minimizes )(kC  (Sasieni et al., 1959): 

)(0)1( ** kCkC  , for Tk ,,1,0  , and  (4.14) 

0)(2  kC , for Tk ,,1,0  .   (4.15) 

Using Equation (4.13), we can obtain )(kC  and )(2 kC  as 
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and )()1()(2 kCkCkC 
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Since all the parameters are positive, 10   and )()( 12   kk BB  , it is obvious 

to see from Equation (4.17) that 0)(2  kC , for all Tk ,,1,0  . Therefore, condition 

(4.15) is satisfied. If condition (4.14) is also satisfied, then )(kC will be minimized at *k . 

Using Equations (4.13) and (4.16), the condition (4.14) simplifies to 

)()1( ** kMpkM  ,  (4.18) 
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The result obtained here shows that the optimal value of k is not affected by the 

demand rate and pattern. Substituting *k  into Equations (4.2) and (4.4) yields the optimal 

order-level and lot-size. 

4.3 Numerical Examples 

This section presents several numerical examples to illustrate the developed 

method. 

The first example uses the same basic data from Dave’s 1979 paper. However, 

additional data, regarding lost sales penalty cost p and partial backlogging ratio B(τi), 

must be added. The data are given below. 

(1) R = 200 units/month; 

(2) c = $80.00/unit; 

(3) h = $1.00/unit/month; 
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(4) b = $9.00/unit/month; 

(5) p = $50/unit; 

(6) 1)( iB  ; 

(7) T = 12 months; 

(8) 05.0 . 

Such a data setting represents a constant demand rate, a constant deterioration rate, 

and complete backlogging. In doing so, our results can be compared to Dave’s. Note that 

complete backlogging means no lost sales. Therefore, the results for this case are 

independent of p values. 

 The M(k) values are computed by using Equation (4.19) and presented in Table 

4.1 below (for k = 1 to 12).  

Table 4.1 First Computational Results for M(k) Values 

k 1 2 3 4 5 6 7 8 9 10 11 12 

M(k) -38 -23.3 -8.2 7.24 23.04 39.2 55.73 72.67 90.02 107 126 144.8 

 

 Since the value of p (=50) is between )6(M  and )7(M , the optimal *k = 7 

months, by condition (18). Substituting this optimal value into Equations (4.2) and (4.4), 

one can obtain the optimal order-level 1728*
0 S  units, and the optimal lot-size 

2728* Q  units. These results conform to Dave’s.  As mentioned earlier, these results 

are independent of lost sales penalty cost p, since 1)( iB  , for all i. In fact, various 

values of p were tried, and the same k* (= 7 months) was obtained. 

The rest of this section extends to a case with variable deterioration rates and 

waiting-time-dependent partial backlogging ratios. Since the optimal value of k is 
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independent of demand rate and pattern, the constant demand rate is considered in the 

illustration of computation. But demand patterns do have an effect on optimal order-level, 

lot-size, lost sales, etc. Therefore, at the end of the section, two other different demand 

patterns are included to illustrate such effects.   

The new data are given below. 

1  ii ,  12,,2,1 i        (K. Skouri, 2009); 

)(1

1
)(

iT
B i 




 , 12,,2,1 i     (Chang and Dye, 1999). 

 β = 0.003 and γ = 2 are used in our computational experiments. These values lead 

to deterioration rates slightly smaller than 5%, on the average. In addition, α = 0.5 is 

considered. This α value results in backlogging ratios B(τi) gradually increase to 1 as i 

increases to T. That is, the percentage of backlogging gradually decreases as waiting time 

increases. Such considerations are reasonable in the practical sense, as one gets less 

patient when waiting time becomes longer. 

 The M(k) values are computed and presented in Table 4.2 below (for k = 1 to 12).  

Table 4.2 Second Computational Results for M(k) Values 

k 1 2 3 4 5 6 7 8 9 10 11 12 

M(k) -7.4 -4.6 -1.2 2.87 7.84 13.77 20.85 29.38 39.85 53.18 71.46 100.68 
 

 

By condition (4.18), p = 50 leads to 10* k  months. This *k  is bigger than that 

of the previous case, because the average deterioration rate is small (< 0.05), and there is 

a large penalty cost for lost sales. So it is economical to keep more inventories and to 

have less lost sales. The corresponding optimal order-level *
0S , the optimal lot-size Q*, 

the total lost sales )( *kLS  and the total amount of deterioration )( *kD  during one cycle 
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are presented in Table 4.3. This table also presents all the optimal values under two other 

demand patterns: linearly increasing and linearly decreasing demands, while keeping the 

total demands the same at 2400 units/cycle. As shown from the table, the optimal *k  

stays the same (10 months) for all demand patterns. But the rest are all different. The 

optimal lot-sizes are almost the same for all three demand patterns, since the total 

demands are the same and the differences between deterioration and lost sales for all 

three cases are very close (See the last column of Table 4.3). However, the optimal order-

levels differ dramatically. In particular, the decreasing demand case has less lost sales, 

while the increasing demand case has much more lost sales. The lost sales and 

deterioration quantities increase as the demand pattern changes from decreasing to 

uniform, or from uniform to increasing, as expected.   

Table 4.3 The Optimal Solutions for 3 Demand Patterns 

Demand Pattern k* 
*
0S   Q*  )( *kD   )( *kLS   )()( ** kLSkD   

200iR , for all i  10 2300.9 2634.3 301 66.7 234.3 

iRi 13

400
 , for all i  10 2056.2 2651.1 363.9 112.8 251.1 

)13(
13

400
iRi  , for all i  10 2545.7 2617.5 238 20.5 217.5 

 

4.4 Sensitivity Analysis 

This section first presents the sensitivity of *k , )( *kC , *Q , *
0S  and LS with 

respect to parameters  ,  ,   and T through numerical experiments. The sensitivity of 

the quantities with respect to parameters c, h, b and p is analytically studied and 

presented at the end of this section.  
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The parameter values of the second case in Section 4 are used as the base values. 

It is worth mentioning that the time unit considered in this paper is month. The sensitivity 

study is conducted as follows. Only one parameter value is altered at a time, while 

holding all the other parameters constant. The values of parameters we select are mostly 

the critical values at which the optimal *k  changes. The computational results and 

analyses are presented next. 

Table 4.4 Different Optimal Values w.r.t. α 

α 0 0.25 0.5 0.75 1 5 20 

k* 10 10 10 10 11 11 11 

S* 2300.9 2300.9 2300.9 2300.9 2600.9 2600.9 2600.9 

q* 2700.9 2660.9 2634.3 2615.2 2800.9 2800.9 2800.9 

LS 0 40 66.7 85.7 0 0 0 

C(k*) 3509.6 3616.3 3687.4 3738.2 4121.1 4121.1 4121.1 

 

 

 

Figure 4.2 Sensitivity Analysis w.r.t. α 

 The range of α is chosen from 0 to 20. While α = 0 means a complete backlogging, 

α > 5 results in very little backlogging. Consequently, as α increases from 0 (i.e., the 

(a) (b) 

k* 

C(k*) 

Q* 

*
0S  

LS 
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backlogging ratio decreases from 1), the optimal *k  jumps from 10 to 11 at α=1, and 

then stays constant at 11, afterwards. This is somewhat expected because when α ≥ 1, the 

partial backlogging ratio is small, which means a lot of lost sales. With lost sales penalty 

cost of $50/unit which is high compared to inventory and backlogging costs, there should 

be little or no lost sales. When *k  = 11, there are no lost sales. From Figure 4.2(b), the 

optimal order-level *s  has exactly the same trend as *k  because α affects *s  directly 

through *k . The lot-size *Q  decreases at the beginning as α increases from 0 to 1, and 

then jumps to a constant after α reaches 1. This is because for *k  = 10, the optimal lot-

size decreases as partial backlogging amount decreases, and *k =11 represents complete 

backlogging. The amount of lost sales LS, on the other hand, increases rapidly at the 

beginning when *k =10, and becomes zero after α reaches 1 (i.e. *k =11). The total 

average cost per month )( *kC  increases quickly as α changes from 0 to 1, and then 

remains constant. 

Table 4.5 Different Optimal Values w.r.t. β 

β 0.0001 0.002 0.003 0.005 0.006 0.008 0.011 0.016 0.025 0.041 

k* 12 11 10 9 8 7 6 5 4 3 

S* 2414.6 2453.3 2300.9 2197.7 1946.2 1727.9 1505.8 1284.9 1063.6 824.1 

q* 2614.6 2653.3 2634.3 2631 2459.5 2307.9 2142.9 1972.1 1795.2 1595.7 

LS 0 0 66.7 166.7 286.7 420 562.9 712.9 868.4 1028.4 

C(k*) 1555.6 3064.3 3687.4 4117.1 5045.8 5576 6144.3 6774.8 7448.4 8037.5 
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Figure 4.3 Sensitivity Analysis w.r.t. β 

The range of β considered is from 0.0001 to 0.041. This range represents very 

little to significant deterioration. From Figure 4.3(a), the optimal *k  decreases 

dramatically as β increases. That is, for a rapidly deteriorating product, it is better to have 

higher backlogging amount and even more lost sales to keep costs low, as expected. From 

Fig. 4.4.2(b), when β increases, the optimal order-level *
0S  and lot-size Q* decrease, 

while the lost sales LS increase. The total average monthly cost )( *kC  increases rapidly 

as β increases. This indicates that a little reduction of deterioration can lead to significant 

improvement of cost reduction. This is especially true when the deterioration rate is small. 

Table 4.6 Different Optimal Values w.r.t. γ 

γ 1 1.8 2 2.2 2.3 2.5 2.7 

k* 12 11 10 9 8 7 6 

S* 2447.5 2444.9 2300.9 2151.3 1902.6 1702.5 1468.5 

q* 2647.5 2644.9 2634.3 2584.7 2415.9 2282.5 2105.6 

LS 0 0 66.7 166.7 286.7 420 562.9 

C(k*) 1784.8 2997.8 3687.4 4513.2 4746.7 5409.1 5896 

 

(a) (b) 

k* 

C(k*) 

Q* 
*
0S  

LS 
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Figure 4.4 Sensitivity Analysis w.r.t. γ 

Figure 4.4 depicts the sensitivity with respect to γ. The range of γ considered is 

from 1 to 2.7. For γ = 1, 003.0   is a very small constant, for all i = 1, 2, …, 12. On 

the other extreme, when γ = 2.7, 7.1081.0 i  ( 12,,2,1 i ) which indicates very 

significant deterioration. As one can see from Fig. 4, the changes in all quantities become 

significant only when γ > 1.9. This is because the deterioration rates are kind of small 

when γ ≤ 1.9.  

Table 4.7 Different Optimal Values w.r.t. Cycle Time T 

T 6 9 12 15 18 24 

k* 6 9 10 11 12 12 

S* 1271 2020.8 2300.9 2600.9 2924.2 2924.2 

q* 1471 2220.8 2634.3 3114.3 3561.3 3796.3 

LS 0 0 66.7 286.7 562.9 1527.9 

C(k*) 994.1 2463 3687.4 5980.5 8742 14387.1 

 

(a) (b) 

k* C(k*) 

Q* 

*
0S  

LS 
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Figure 4.5 Sensitivity Analysis w.r.t. Cycle Time T 

The range of T considered is set to be from 6 to 24 (months). From Fig. 4.4(a), the 

optimal *k  increases as T increases. This should be expected, as only one replenishment 

is considered in one cycle. The optimal order-level *
0S  and lot-size Q* increase in the 

same fashion with respect to T. Again, this is somewhat expected, as larger T leads to 

higher inventory and more backlogging and lost sales, since only one replenishment is 

allowed in a cycle of T time units. Similarly, the amount of lost sales LS increases as T 

increases and the total average monthly cost )( *kC  increases rapidly. All these point to 

one conclusion: it is better to keep cycle time small. 

The rest of this section will discuss the sensitivity with respect to parameters c, h, 

b and p. In real life, the inventory carrying cost, the shortage backlogging cost and the 

penalty cost for lost sale may be assessed as some given proportions to the unit price of 

goods. To examine the system behavior for such cases, this paper considers fixing the 

ratio c:h:b:p while altering all four parameter values simultaneously. In particular, 

(a) (b) 

k* 
C(k*) 

Q* 

*
0S  LS 
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consider ch 1 , cb 2  and cp 3 , where 1 , 2  and 3  are constants. Substituting 

these into Equations (4.18) and (4.19) leads to the following.  
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As one can see clearly from the above, the optimal *k  is now independent of all 

four parameters c, h, b, and p, provided that 1 , 2  and 3  are constants. Consequently, 

the optimal *
0S , *Q  and LS are also independent of all c, h, b and p, by Equations (4.2), 

(4.4) and (4.11), respectively. Similarly, the following equation can be derived from 

Equation (4.13). 
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 The terms in the brackets of the above equation are independent of all c, h, b and 

p. Therefore, the optimal cost )( *kC  is a linear function of c (h, b, or p), provided that 1 , 

2  and 3  are constants. This insight is very significant in the sense that for companies 

with a fixed ratio pbhc ::: , the total cost depends strictly linearly on the unit price of a 

product and the optimal lot-size is independent of the product price when the cycle time T 

is given.   

4.5 Conclusions 

A discrete-in-time deteriorating inventory model with time-varying demands, 

variable deterioration rates and waiting-time-dependent partial backlogging ratios is 
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addressed in this paper. This model deals with a very general case and solutions can be 

computed easily. This model extends a model in the literature where there is a constant 

deterioration rate and complete backlogging. Through extensive numerical experiments, a 

sensitivity study is conducted to illustrate the robustness of the proposed model.  

From the sensitivity analysis, it is found that the optimal total cost always 

increases as any parameter value increases. The deterioration rate (through parameters β 

and γ) has a significant impact on total cost. This explains why it is imperative to address 

the effect of deterioration for products that do deteriorate. The cycle time T also plays a 

rather important role as all the optimal solutions are very sensitive to it. In addition, T 

should be set as small as possible. All these should be expected, though, as a single 

replenishment is restricted for each cycle. Another rather interesting insight is that the 

optimal total cost is a linear function of unit product price c and the optimal k* is 

independent of c, h, b and p, provided that inventory holding cost ch 1 ,  backlog cost 

cb 2  and  lost sales penalty cost cp 3 , where 1 , 2  and 3  are constants. This 

finding is pretty significant in the sense that for companies with a fixed ratio pbhc ::: , 

the total cost depends strictly linearly on the unit price of a product and the optimal lot-

size is independent of the product price when the cycle time T is fixed. 
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Chapter 5  

Periodic-Review Stochastic Inventory Control Problem 

A finite horizon inventory model for a single product is considered. The system is 

under periodic review and there is no fixed order cost associated with any placed order. 

The demand in successive periods is independent and identically distributed. A constant 

fraction of any positive leftover stock is deteriorated at the end of each period. Any 

unsatisfied demand is partially backlogged and fulfilled immediately as a new order 

arrives. It was proved (Porteus, 2002) that a base stock policy is optimal under complete 

backlogging and non-deterioration. Then this chapter can be treated as a generalization of 

Porteus’ model by considering deterioration and partial backlogging. It is shown that the 

base stock policy is still optimal as long as the terminal value function is convex and 

second-order differentiable. The explicit base stock level is derived for a special case.  

5.1 Problem Description 

The problem studied in this chapter is as follows. There is a single product. The 

product has a random life and will deteriorate over time. The system will be run for N 

periods. The demand Di in period i (= 1, 2, …, N) is stochastic. At the beginning of each 

period, one needs to decide if it is necessary to place an order, and if so, how much to 

order. When an order is placed, there is no fixed cost. There is a per-unit cost, though. 

Any on-hand inventory at the end of a period can be used in the next period. Any 
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unsatisfied demand can be partially backlogged until fulfilled, or lost. The order decisions 

are made such that the total expected long-run cost is minimized. 

 It is assumed that  

(1) All demands are independent and identically distributed. 

(2) A constant fraction of the positive leftover stock will deteriorate. 

(3) The excess demand will be partially backlogged at the end of the period 

A penalty cost will be incurred for any backlogging and lost sale amount. The 

system is under periodic review, i.e. the inventory level is checked at the beginning of 

each period and a decision is made on how many to order. 

Porteus (2002) has shown that a base stock level policy is optimal under complete 

backlogging and non-deterioration. We will follow the same logic of Porteus’ and some 

of his proof. Our objective is to identify under what conditions the base stock level policy 

still holds when deterioration and partial backlogging are taken into account.  

5.2 Notations 

(1) c – unit purchasing cost ($/unit) 

(2) h – unit holding cost, charged against positive ending inventory ($/unit) 

(3) b – unit backlogging cost, charged against shortages backlogged at the end of a 

period ($/unit) 

(4) p – penalty cost of a lost sale including lost profit ($/unit) 

(5) D – generic random variable representing demand, which is i.i.d over every 

period 

(6)   – one-period demand distribution 

(7)   – demand density distribution 
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(8) x – inventory level before ordering (the state of the system) 

(9) y – inventory level after ordering (the decision variable) 

(10) θ – contant fraction of positive leftover stock at the end of the period that is 

deteriorated 

(11)   – constant fraction of unsatisfied demand during a period that is backlogged 

(12) N – the length of the planning horizon 

(13) )0,max(xx   

(14) )0,min(xx   

5.3 Model 

To build the model, we first study the one-period problem. Expected one-period 

holding, backlogging, shortage and deteriorating cost function of level y of inventory 

after ordering is as follows 

                   

 
 

)(        

))(())((        

))(1()()()()(

DyEl

yDppbDychE

yDpyDbDycDyhEyL













 

where   ))(()()( xppbxchxl  . 

If the inventory level at the end of period N is x, then the terminal cost )(xv  is 

incurred. We assume the terminal cost function is convex and second-order differentiable, 

one example can be 

cxxv )( . 

This case happens if we can obtain reimbursement of the unit cost for each leftover unit 

and must incur the unit cost for each unit backlogged.  
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The optimality equations for this model, for Nt 1 , consist of purchasing cost 

from inventory x to inventory y, one-period expected cost and minimum expected cost in 

future: 

 








 





0

1 )())(1()()()(min)( dDDDyDyDyfyLxycxf t
xy

t   

where )()(1 xvxf N  .  

Let  



 

0

1 )())(1()()()( dDDDyDyDyfyLcyyG tt  , 

then 

 cxyGxf t
xy

t 


)(min)( . 

Thus, the optimal decision starting with inventory level x in period t can be determined 

by minimizing )(yGt  over  xyy  .  

In Porteus’ book (2002), 


 
0

1 )()()()( dDDDyfyLcyyG tt  . As one can 

see, there are two additional terms   )( Dy  and  ))(1( Dy  in the optimality 

equations if we consider the effects of deterioration and partial backlogging. These two 

terms complicates the proof. 
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5.4 Base Stock Policy 

As illustrated by Figure 5.1, if tG  is given as the above figure, then, if the 

inventory level is lower than tS , then we should order up to it. If the inventory level is 

higher than tS , we should order nothing. In other words, the decision rule is a base stock 

policy, which can be represented as follows (Porteus, 2002): 



 


otherwise        

 if        
)( tt Sx

x

S
x  

 

 

                Figure 5.1 Base Stock Policy 

5.5 Optimality of Base Stock Policies 

Lemma 1   If 1tf  is convex and second-order differentiable, then the following holds. 

(a) tG  is convex. 

(b) A base stock policy is optimal in period t. Indeed, any minimize of tG  is an 

optimal base stock level. 

)(xGt

tS
x
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(c) tf  is convex and second-order differentiable. 

Proof    (a) tG  can be written as: 

]))(1()([)()( 1


  DyDyDyEfDyElcyyG tt  . 

We know l  is convex, then according to the following Theorem 1, )( DyEl   is convex. 

Theorem 1   Suppose that l  is a convex function defined on R and the real valued 

function H is defined on R by )()( DylERH D  , where D is a random variable with a 

density  . Then H is convex on R without assuming that l  is differentiable everywhere. 

Proof   Let 1y  and 2y  be arbitrary elements of y. Let 10  p  and let pq  1 . Then  

 

)(

 ofconvexity                       )()(

)()]()([

)()()()(

)()(

21

0

21

0
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dDDDyqlDypl

dDDDylqdDDDylp

DylqEDylpE

D

DD





























 

which implies )( DylED   is convex. Proof of Thm 1 is completed. 

To show ]))(1()([1


  DyDyDyEft   is convex, since 1tf  is 

convex and second-order differentiable, we have 

  
 ]))(1()([1 DyDyDyEft   













 




y

t

y

t dDDDyfdDDDyf )()]([)()])(1[( 1

0

1   
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






















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






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
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t

t

y

t
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
 

 11

0

1

11

1

0

1

 ofconvexity          0)()]([)()])(1[(

)]([)()]([

)])(1[()()])(1[(



























t

y

t

y

t

t

y

t

t

y

t

fdDDDyfdDDDyf

yyfdDDDyf

yyfdDDDyf







 

So ]))(1()([1


  DyDyDyEft   is convex. Then tG  is the sum of three 

convex functions and therefore convex itself.  

Proof of (a) is completed. 

(b) (Porteus, 2002) We know  cxyGxf t
xy

t 


)(min)( . Let tS  denote a minimizer of 

)(yGt  over all real y. If tSx  , then the minimizing xy   is at tSy  , whereas, if 

tSx  , then the minimizing y is at xy  . That is, a base stock policy with base stock 

level tS  is optimal for period t.  

Proof of (b) is completed. 

(c) According to the following Theorem 2, tf  is convex. 

Theorem 2   (Heyman and Sobel, 1984) If X is a convex set, Y(x) is nonempty set for 

every Xx , the set  )(,),( xYyXxyxC   is a convex set, ),( yxg  is a convex 

function on C, ),(inf)(
)(

yxgxf
xYy


 
and )(xf  for every Xx , then f  is a convex 

function on X. 
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Proof   Let x  and x  be arbitrary elements of X. Let 10   , and let   1 . Select 

arbitrary 0 . By the definition of f , there must exist )(xYy  such that 

 )(),( xfyxg  and  )(),( xfyxg . Then, 

C])yy,xx[(                                        -)xxf(                         

C]on  ),g( of [convexity                          ),(                         

] and  of s[propertie                             ),(),()()(











yyxxg

yyyxgyxgxfxf

 

Assume the inequality does not hold for 0 , that is  













)()(

)0(  )()()(

)()()(

*

**

xxfzxxf

zzxxfxfxf

xxfxfxf

 

Since   can be arbitrarily small, a contradiction is reached. So the inequality must hold 

for 0 , which means f  is convex. Proof of Thm 2 is completed. 

Since all three terms of tf  are second-order differentiable, then tf  is second-

order differentiable itself. 

Proof of (c) is completed. 

Lemma 2   (Porteus, 2002) A base stock policy is optimal in each period of a finite-

horizon problem. 

Proof   By assumption, the terminal value function is convex and second-order 

differentiable. Thus, by Lemma 1, NG  is convex and a base stock policy is optimal for 

period N. By Lemma 1 (c), Nf  is convex as well. Thus, the argument iterates backward 

through the periods in the sequence .1,1,  NNt  
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5.6 Explicit Optimal Base Stock Level 

Although we have already illustrated that a base stock policy is optimal for this 

periodic-review stochastic inventory control problem, it is very difficult to derive the 

explicit form of base stock level. However, the explicit solution can be obtained for a 

very special case. As we mentioned before, if we assume the terminal value function is 

cxxv )( , then the explicit optimal base stock level can be derived as following. 

Let us examine the one-period problem at the end of the time horizon. The 

expected ordering, holding, backlogging, shortage and deterioration cost, less any 

expected salvage value, in that period, starting with zero inventory and ordering y units 

can be written as 

 











y

y

N

dDDyDcppbdDDDyccchcy

DDyDyDycyLcyyG

0

0

)())(()())((

)(]))(1()()[()()(





. 

Let S denote a solution to 0)(  SGN , then S is a minimize of NG  and can be 

found as 

)1()(

)1()1(
)(








pcbh

pcb
S                                                           (5.1) 

Examine Nf  by plugging in the optimal decision for each state (Porteus, 2002) 









otherwisecxxG

SxifcxSG
xf

N

N
N )(

)(
)(  

Therefore, 








otherwisecxG

Sxifc
xf

N
N )(

)(  .                                                       (5.2) 

That is, )(xf N  has a slope of c  for Sx  . 
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Lemma 3   If 1tf  is convex and cxft  )(1  for Sx  , where S is as defined in (5.1), 

then the following hold. 

(a) S minimizes )(yGt  over all real y. 

(b) The optimal base stock level in period t is also S. 

(c) tf  is convex and cxf  )(  for Sx  . 

Proof  (a) As in Lemma 1, tG  is convex. To see that S is a minimize of tG , 

0          

)](1[)()1()](1)[()()(          

)()]([)()])(1[()()(
0

11
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






  





ScScSppbSchc

dDDDSfdDDDSfSLcSG
S

S

ttt





 

Hence, S must be a minimize of tG , and, therefore, by Lemma 1, part (b) must also hold. 

(c) Lemma 1 ensures that tf  is convex. By calculating the consequences of using the 

optimal base stock level in period t, as was done in (5.2) for period N, we get 









otherwisecxG

Sxifc
xf

t
t )(

)(  

Proof of Lemma 3 is completed. 

Theorem 3   (Porteus, 2002) If the terminal value function v  has a slope of c , then a 

base stock policy with base stock level S defined by (2.1) is optimal for every t. 

Proof   By assumption, the terminal value function is convex and has a slope of c . Thus, 

by Lemma 3, the optimal base stock level in period N is S. By Lemma 3 (c), Nf  is 

convex and has a slope of c  (if x<S) as well. Thus, the argument iterates backward 

through the periods in the sequence .1,1,  NNt  
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5.7 Summary 

A finite horizon inventory model for a single product is considered. The system is 

under periodic review and there is no fixed order cost associated with any placed order. 

The demand in successive periods is independent and identically distributed. A constant 

fraction of any positive leftover stock is deteriorated at the end of each period. Any 

unsatisfied demand is partially backlogged and fulfilled immediately as a new order 

arrives. It was proved (Porteus, 2002) that a base stock policy is optimal under complete 

backlogging and non-deterioration. Then this chapter can be treated as a generalization of 

Porteus’ model by considering deterioration and partial backlogging. It was shown that 

the base stock policy is still optimal as long as the terminal value function is convex and 

second-order differentiable. The explicit base stock level was derived for a special case.  
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Chapter 6 

Stochastic Lot-Sizing Problem 

The problem concerned here can be described as follows. It is a single product, 

single location problem. The system will be run for N periods. The product has a random 

life and will deteriorate over time. The customer demand in each period is stochastic. At 

the beginning of each period, one needs to decide if it is necessary to place an order, and 

if so, how much to order. A fixed order cost is incurred whenever an order is placed. 

There is a per-unit cost associated with each order too. Any on-hand inventory at the end 

of a period can be used in the next period. Any unsatisfied demand can be partially 

backlogged until fulfilled, or lost. The order decisions are made such that the total 

expected long-run cost is minimized. 

 It is assumed that  

(1) All demands are independent and identically distributed. 

(2) A constant fraction of the positive leftover stock will deteriorate. 

(3) The excess demand will be partially backlogged at the end of the period 

A penalty cost will be incurred for any backlogging and lost sale amount. The 

system is under periodic review, i.e. the inventory level is checked at the beginning of 

each period and a decision is made on how many to order. As one can see, the only 

difference between Chapter 5 and Chapter 6 is that the fixed order cost will be considered 

explicitly in this chapter. 
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Porteus (2002) has shown that a (s, S) ordering policy (see Chapter 2) is optimal 

under complete backlogging and non-deterioration. We will follow the same logic of 

Porteus’ and some of his proof. Our objective is to identify under what conditions the (s, 

S) policy still holds when deterioration and partial backlogging are taken into account.  

6.1 Notations 

(1) c – unit purchasing cost ($/unit) 

(2) h – unit holding cost, charged against positive ending inventory ($/unit) 

(3) b – unit backlogging cost, charged against shortages backlogged at the end of a 

period ($/unit) 

(4) p – penalty cost of a lost sale including lost profit ($/unit) 

(5) K – fixed ordering cost 

(6) α–one period discount factor 

(7) D – generic random variable representing demand, which is i.i.d over each period 

(8)   – one-period demand distribution 

(9)   – demand density distribution 

(10) x – inventory level before ordering (the state of the system) 

(11) y – inventory level after ordering (the decision variable) 

(12) θ – constant fraction of positive leftover stock at the end of the period that is 

deteriorated 
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(13)   – constant fraction of unsatisfied demand during a period that is backlogged 

(14) N – the length of the planning horizon 

(15) )0,max(xx   

(16) )0,min(xx   

6.2 Model 

6.2.1 Formulation 

Let us first examine the one-period problem. Expected one-period holding, 

backlogging, shortage and deteriorating cost function of level y of inventory after 

ordering is 

                   

 
 

)(        

))(())((        

))(1()()()()(
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yDppbDychE

yDpyDbDycDyhEyL
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
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



 

where   ))(()()( xppbxchxl  . 

Let  



 

0

1 )())(1()()()( dDDDyDyDyfyLcyyG tt  , then 

the optimality equations (OE) will be 

  )(min),(min)( yGKxGcxxf t
xy

tt 


. 

That is, there is no fixed order cost associated with zero order and a fixed order cost K 

will be incurred if we order something. We have to make a choice on placing an order or 

not. In Porteus’ book, 


 
0

1 )()()()( dDDDyfyLcyyG tt  . As one can see, if we 

consider the effects of deterioration and partial backlogging, there will be two additional 
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terms   )( Dy  and  ))(1( Dy  in the optimality equations. These two terms make 

the proof more challenging. 

Letting   )(min),(min)(* yGKxGxG t
xy

tt 


, then the OE can be rewritten as 

)()( * xGcxxf tt  . 

6.2.2 (s, S) Policy 

Since there is a fixed ordering cost incurred for any non-zero order, then the 

ordering cost function is concave, which is different from Periodic-Review Stochastic 

Lot-Sizing model. If there is no deterioration and backlogging is complete, a (s, S) policy 

will be optimal in each period. This policy means whenever the inventory is below some 

amount s, we will place an order to bring the inventory level up to S (where Ss  ). The 

order quantity is greater than or equal to S-s. If the inventory level is above s, we will not 

place an order. This ensures that the fixed ordering cost only occurs for a certain amount 

(i.e. ≥S-s). The order will not be placed if the amount is too small. 

6.2.3 K-Convex Functions 

A function f: R→R (a real valued function of a single real variable) is K-convex if 

K≥0, and for each yx  , 10   , and   1  (Porteus, 2002): 

 )()()( yfKxfyxf   . 

The following Lemma (Porteus, 2002) provides some important properties of K-

convex function. 

Lemma 6.1  

(a) If f is K-convex and α is a positive scalar, then f  is k-convex for all Kk  .  

(b) The sum of a K-convex function and a k-convex function is (K+k)-convex. 
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(c) If f is K-convex, yx  , and )()( yfKxf  , then )()( yfKzf   for all 

],[ yxz  . 

6.2.4 Optimality of (s, S) Policy 

In this section, the proof is presented about under what conditions the (s, S) policy 

is still optimal in each period. 

Lemma 6.2   If 1tf  is a continuous K-convex function and   1 , then the following 

hold. 

(a) tG  is a continuous K-convex function. 

(b) A (s, S) policy is optimal in period t. 

(c) *
tG  is a continuous K-convex function. 

(d) tf  is a continuous K-convex function. 

Proof       (a) From section 6.2.1, we know that  

 



 

0

1 )())(1()()()( dDDDyDyDyfyLcyyG tt  .
 

Define  

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 

0

1 )())(1()()( dDDDyDyDyfyg t  , then 

)()()( ygyLcyyGt  . 

If we can show that for each 21 yy  , 10   , and   1 , the following holds:  

 )()()( 2121 ygKygyyg   . 
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Then according to Lemma 6.1 (a), )( yg  is a K -convex function. Since cy  and )( yL  

are convex, then according to Lemma 6.1 (b), it can be shown that )(yGt  is k-convex. 

The following is to show that  )()()( 2121 ygKygyyg   . 

)( 21 yyg    

 



 

0

2121211 )())(1()( dDDDyyDyyDyyft   

   

1

0

211 )())(1(
y

t dDDDyyf   

  
 

2

1

)())(1()( 2121211

y

y

t dDDDyyDyyDyyf   

 



 

2

)()( 211

y

t dDDDyyf   

   

1

0

211 )())(1(
y

t dDDDyyf   

   






 
2

21

21

1

)()()())(1( 211211

y

yy

t
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y

t dDDDyyfdDDDyyf




  

 


 
2

)()( 211

y

t dDDDyyf   

   

1

0

211 )())(1(
y

t dDDDyyf   

    


 
21

1

)())(1())(1( 2111

yy

y

tt dDDkDyfDyf


  
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    


 
2

21

)()()( 2111

y

yy

tt dDDkDyfDyf


  

 


 
2

)()( 211

y

t dDDDyyf 
 

   

1

0

211 )())(1(
y

t dDDDyyf   

    


 
21

1

)())(1()( 2111

yy

y

tt dDDkDyfDyf


  

    


 
2

21

)())(1()( 2111

y

yy

tt dDDkDyfDyf


  

 


 
2

)()( 211

y

t dDDDyyf   

 )()( 21 ygKyg    

 Proof of (a) is completed. 

(b) Please refer to (Porteus, 2002). 

(c) Please refer to (Porteus, 2002). 

(d) Please refer to (Porteus, 2002). 

 The proof is completed. 

Lemma 6.3 If 1tf  is a continuous decreasing K-convex function,   1  and 




ppbch

pcpb
xi 


 )(  ( Ni ,2,1 ) where ix  is the inventory level before 

ordering for each period, then the following hold. 
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(a) tG  is a continuous K-convex function. 

(b) A (s, S) policy is optimal in period t. 

(c) *
tG  is a continuous K-convex function. 

(d) tf  is a continuous decreasing K-convex function. 

Proof    (a) As of Lemma 6.2, the objective is to show that for each 21 yy  , 10   , 

and   1 ,  )()()( 2121 ygKygyyg   . 

)( 21 yyg    

 



 

0

2121211 )())(1()( dDDDyyDyyDyyft   
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t dDDDyyfdDDDyyf
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 


 
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)()( 211

y

t dDDDyyf   

   
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211 )())(1(
y

t dDDDyyf   
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    
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t dDDDyyf   

 )()( 21 ygKyg    
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t dDDDyfdDDDyf
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    


 
2

21

)())(1()( 2111

y
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tt dDDkDyfDyf

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 


 
2

)()( 211

y

t dDDDyyf   

 Since   1  and 1tf  is a decreasing function according to the assumption, the 

following must hold: 

   






 
21

1

21

1

)())(1()()( 1111

yy

y

t

yy

y

t dDDDyfdDDDyf


  

and    





 
2

21

2

21

)()()())(1( 2121

y

yy

t

y

yy

t dDDDyfdDDDyf


 . 

Then  )()()( 2121 ygKygyyg   , i.e. )( yg  is a K-convex function.  

 The proof of (a) is completed. 

(b) Please refer to (Porteus, 2002). 

(c) Please refer to (Porteus, 2002). 

(d) According to section 6.2.1, we have: 

  )(min),(min)( yGKxGcxxf t
xy

tt 


, 

where  



 

0

1 )())(1()()()( dDDDyDyDyfxLcxxG tt 
 
and 

 

 
    








x

x

dDDxDppbdDDDxch

xDpxDbDxcDxhExL

0

)())(()())((        

))(1()()()()(




. 

To prove )(xGt  is a decreasing function, we only need to prove  )(xLcx  is decreasing 

because )(1 xft  is given to be a decreasing function. 
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 The first derivative of  )(xLcx  is given by: 

  )()()()()()( xppxppxbbxcxhcxLcx    

)()( xppbchppbc   , since 



ppbch

pcpb
y




 )( 1 , 

then   0)(  xLcx . So  )(xLcx  is a decreasing function, and therefore, tG  is a 

decreasing function. 

 Since   )()(min yGKyGK tt
xy




, which is a constant, we obtain that 

  )(min),(min)( yGKxGcxxf t
xy

tt 


 is a decreasing function.  

 From part (3) we know that *
tG  is k-convex, then )(xf t  is the summation of a 

convex function and a k-convex function, therefore, k-convex itself. 

The proof is completed. 

6.3 Summary 

A finite horizon inventory model for a single product is considered in this chapter. 

The system is under periodic review and there is a fixed order cost associated with any 

non-zero order. The demand in successive periods is independent and identically 

distributed. A constant fraction of any positive leftover stock is deteriorated at the end of 

each period. Any unsatisfied demand is partially backlogged and fulfilled immediately as 

a new order arrives. Porteus (2002) proved that a (s, S) policy is optimal under complete 

backlogging and non-deterioration. This chapter generalized Porteus’ model by 

considering deterioration and partial backlogging. It was shown that the (s, S) policy is 

still optimal for the following two cases: 
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(1) Tv  is a continuous K-convex function and   1 . 

(2) Tv  is a continuous decreasing K-convex function,   1  and 




ppbch

pcpb
xi 


 )(  ( Ni ,2,1 ) where ix  is the inventory level 

before ordering for each period. 

One drawback is that the two conditions are both rigid to some level. The explicit 

form of (s, S) is very difficult to obtain. We will discuss how to overcome this in Chapter 

8.  
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Chapter 7 

The Stochastic Lot-Sizing Problem with Deterioration and  

Service-Level Constraints 

The problem considered in this chapter can be described as follows. It is a single 

product, single location problem. The product has a random life and will deteriorate over 

time. The system will be run for N periods. The customer demand in each period is 

stochastic. At the beginning of each period, one needs to decide if it is necessary to place 

an order, and if so, how much to order. A fixed order cost is incurred whenever an order 

is placed. There is a per-unit cost associated with each order too. Any on-hand inventory 

at the end of a period can be used for the next period. The net inventory at the end of each 

period not being negative is set to be a probability of at least α (service level). It is 

assumed that the value α is quite high, so that this service level incorporates the 

perception of the cost of backorders already and shortage cost can be neglected. The 

system is under periodic review, i.e. the inventory level is checked at the beginning of 

each period and a decision is made on how many to order. 

Bookbinder and Tan (1988) first studied this problem without considering the 

effect of deterioration. They developed a strategy called “static-dynamic uncertainty” 

strategy, in which they determine the number of replenishments at the beginning of the 

planning horizon, and then obtain the order quantity based on the realized demand. Tarim 

and Kingsman (2004) improved this strategy by presenting a mixed-integer programming 
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formulation that simultaneously determines both number of replenishments and order 

quantity in a single step and gives the optimal solution rather than the heuristic results 

given by Bookbinder and Tan.     

In this chapter, we follow Tarim and Kingsman’s method but take into account of 

the effect of deterioration. The computational results were obtained and 100 random 

cases were simulated for the optimal ordering policy. 

7.1 Assumptions and Notations 

(1) The demand td  in period t is a random variable with known probability density

)( tt dg . The demands are independent and the distribution of demand may vary 

from period to period. 

(2) Lead time is zero, i.e. the replenishment order tX
 
arrives immediately at the 

beginning of period t, before the demand in that period occurs. 

(3) The service level is α, i.e. the probability that at the end of each period the net 

inventory will not be negative is set to be at least α. It is assumed that the value α 

is quite high, so that this service level incorporates the perception of the cost of 

backorders already and shortage cost can be neglected.  

(4) A constant fraction θ of positive leftover stock is deteriorated over one period. 

(5) The length of the planning horizon is N.  

(6) The inventory level at the end of period t is denoted as tI . The initial on-hand 

inventory is 0I . 

(7) The unit purchasing cost c, unit holding cost h and fixed ordering cost a are 

known. 
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7.2 Model  

The problem can be formulated as minimizing the total expected cost ][TCE  over 

the planning horizon, as following: 

Min ][TCE  

  



1 2

)()()()()()())(( 21
1

2211

d d d

N

N

t
NNttt

N

dddddddgdgdgcXIcha    (7.1)   

subject to 



 


,0

,0 1

otherwise

Xif t
t          Nt ,,1   (7.2) 

))(1( 1 tttt dXII   , Nt ,,1   (7.3) 

 )0Pr( tI , Nt ,,1   (7.4) 

0, tt IX , Nt ,,1   (7.5) 

The objective function (7.1) consists of fixed order cost, inventory holding cost, 

deterioration cost and purchasing cost. Constraint (7.2) means that δt takes the value of 1 

if an order is placed in period t and 0 otherwise. Constraint (7.3) shows the balance of the 

inventory flow, i.e. inventory level is determined by order quantity, demand and 

deterioration. Constraint (7.4) guarantees that the service level is at least α. Constraint 

(7.5) makes sure all the decision variables are positively defined. 
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From the recursive relationship of inventory levels described by Equation (7.3), 

we can obtain the general expression of inventory level at period t as 

 k

t

k

kt
k

t

k

ktt
t dXII 







 
1

1

1

1
0 )1()1()1(  . (7.6) 

 

Figure 7.1 Illustration of Notation Index 

We assume that there are m reviews over the N period planning horizon with 

orders arriving at  mTTT ,,, 21  , where 1 jj TT , NTm  . Set 11 T  and 11  NTm . 

Define 
iTR  as the order-up-to level to which inventory level should be reached after 

replenishment at the beginning of the ith review period iT . Then according to Fig.7.1 and 

equation (7.6), we have the following relationship: 




 
t

Tk
k

kt
T

Tt
t

i

i

i dRI 11 )1()1(  , 1 ii TtT , .,,1 mi   (7.7) 

If there is no replenishment in period t, then tR  is explained as the opening stock level in 

period t. The relationship between tR  and tI  is as following: 

))(1( ttt dRI   . (7.8) 
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From Figure 7.1, it is clear that if there is no replenishment in period t, tR  will be 

equal to 1tI . This relationship can be defined by the following two inequalities: 

ttt MIR  1 , Nt ,,1  (7.9) 

1 tt IR , Nt ,,1  (7.10) 

Applying Equation (7.7) to the service-level constraint  )0Pr( tI , we have  

  
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In constraint (7.11), )(1

)1()1()1( 1
1 




 


tiT
iTt

iT
iTt ddd

G


 can only be determined if the 

replenishment timing Ti is known. But Ti is also a decision variable in our model, so there 
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is circularity here. Tarim and Kingsman addressed this issue by defining a new binary 

variable to formulate this problem as a mixed-integer programming model. Since the 

planning horizon is finite and consists of N periods, the following binary variable Ptj is 

defined to calculate all relevant cases of )(1

)1()1()1( 1
1 


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So from Equation (7.11), we have  
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According to Bookbinder and Tan’s (1988) argument, )(1
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can be calculated as  
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The following constraint (7.13) guarantees that there can at most be only one most 

recent order received prior to period t and constraint (7.14) depicts the relationship 

between Ptj and δ (Tarim and Kingsman, 2004). 
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1 , Nt ,,1 . (7.13) 
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
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 
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kjttjP

2
1  , Nt ,,1 , tj ,,1  . (7.14) 

In order to determine the timing of the replenishments before any demands 

become known under the “static-dynamic uncertainty” strategy, the expected values of 

the stochastic variables tI , tR  and td  must be applied.  

Total cost in (7.1) can also be expressed as 

 
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Taking expected values of both sides yields the following 

 



N

t
tttt IEREcIEchaTCE

1
1])[][(][)(][  . 

Putting together constraints (7.8), (7.9), (7.10), (7.12), (7.13), and (7.14), the final 

model, denoted by M-1, is obtained as follows. Minimizing (7.1) subject to (7.2) - (7.5) is 

equal to solving the model M-1. In the rest of this chapter, we will use this new model M-

1 to do computational tests. 

Model M-1 is expressed as follows. 

Min  



N

t
tttt IEREcIEchaTCE

1
1])[][(][)(][   

Subject to ])[][)(1(][ ttt dEREIE   , Nt ,,1 . 

][][ 1 tt IERE , Nt ,,1 . 



97 
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0][],[ tt REIE ,  1,0, tjt P , Nt ,,1 , tj ,,1 . 

7.3 A Numerical Example 

To examine if our new model works, the same numerical example from Tarim 

and Kingsman’s paper is applied except that a deterioration rate   is added based on our 

extension. The purpose of this numerical example is to compare our model with the 

model without deterioration and show how the effect of deterioration plays a role in 

decision-making. Since the objective of the final model is the total expected cost, a 

simulation of random cases will be conducted to show how the optimal ordering policy 

works on each individual case. Then the comparison of each individual cost with the 

expected cost will reveal how the actual cost deviates from the optimal cost in practice. 

Also, the actual fill rate can be calculated to compare with the designated service level. 
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(1) ordera /2500$  

(2) periodunith //1$  

(3) 05.0  

(4) 95.0  

(5) 645.195.0 z  

(6) 333.0/  ttC   

Table 7.1 Forecasted Values of Demands 

Period (k) 1 2 3 4 5 6 7 8 9 10 

E[dk] 800 850 700 200 800 700 650 600 500 200 

 

Table 7.1 gives the forecasted values of expected demands. It is assumed that the 

initial inventory level is zero and the demand in each period is assumed to be normally 

distributed about the forecasted value under a constant coefficient of variation C=0.333. 

Since the service level α=0.95, then the z value for standardized normal distribution is 

1.645. 
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Table 7.2 The Calculated Values of the Inverse Cumulative Distribution Function )(1
)( 
G

 

a. 

t 
j 

1 2 3 4 5 

1 1239 0 0 0 0 

2 1316 2234.595 0 0 0 

3 1084 2092.902 2935.981 0 0 

4 310 1245.395 2198.945 2998.065 0 

5 1239 1440.418 2189.761 3044.783 3782.77 

6 1084 2025.997 2215.069 2902.639 3695.909 

7 1006 1824.389 2681.901 2860.181 3501.309 

8 929 1689.138 2434.231 3230.4 3399.004 

9 774 1485.342 2181.765 2876.348 3623.417 

10 310 957.3219 1626.003 2284.564 2942.64 

 

b. 

t 
j 

6 7 8 9 10 

1 0 0 0 0 0 

2 0 0 0 0 0 

3 0 0 0 0 0 

4 0 0 0 0 0 

5 0 0 0 0 0 

6 4386.898 0 0 0 0 

7 4243.853 4893.81 0 0 0 

8 4000.861 4699.103 5312.113 0 0 

9 3783.181 4350.952 5010.124 5589.814 0 

10 3651.025 3802.74 4341.529 4967.113 5517.409 

 

Table 7.2 shows the calculated )(1

)1()1()1( 2
1

1





 
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 tjt
j

jt
j ddd

G


 values. For 

example, the element for t=6 and j=2 is calculated as 2025.997. That means the opening 
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inventory level in period t-j+1=5 is 2025.997 and this inventory can satisfy the demands 

from period 5 to period 6 with a probability of at least α=0.95. 

Table 7.3 Results for 0c  

Period (t) 1 2 3 4 5 6 7 8 9 10 

Order decision (Delta) 1 0 1 0 1 0 0 1 0 0 

Closing inv. level (E[It]) 1507 624 600 380 2098 1328 644 1164 631 409 

Opening inv. level (E[Rt]) 2386 1507 1332 600 3009 2098 1328 1825 1164 631 

Order-up-to-level 2386 -- 1332 -- 3009 -- -- 1825 -- -- 

Total expected cost 19390 

 

Table 7.4 Tarim’s Results for c=0. (Tarim and Kingsman, 2004) * 

Period (t) 1 2 3 4 5 6 7 8 9 10 

Order decision (Delta) 1 0 1 0 1 0 0 1 0 0 

Closing inv. Level (E[It]) 1490 640 599 399 2033 1333 683 1142 642 442 

Opening inv. Level (E[Rt]) 2290 1490 1299 599 2833 2033 1333 1742 1142 642 

Order-up-to-level 2290 -- 1299 -- 2833 -- -- 1742 -- -- 

Total expected cost 19404 

(*) 2nd row is added. 

Table 7.3 and Table 7.4 show both our results and Tarim’s results when the unit 

purchasing cost is not considered. From the tables, it is clear that the optimal 

replenishment timings for both models are the same, which are in periods 1, 3, 5 and 8. 

The order-up-to level is higher in our model. This is because the effect of deterioration 

plays an important role and we have to raise the inventory level much higher since it is 

determined by both demand and deterioration. The total expected cost is a little bit lower 

in our model because the unit purchasing cost is not considered and hence the 

deterioration cost is not considered either. 
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Table 7.5 Results for 4c  

Period (t) 1 2 3 4 5 6 7 8 9 10 

Order decision (Delta) 1 0 1 0 1 0 1 0 1 0 

Closing inv. Level (E[It]) 1507 624 600 380 1295 566 1096 471 497 282 

Opening inv. Level (E[Rt]) 2386 1507 1332 600 2164 1295 1804 1096 1023 497 

Order-up-to-level 2386 -- 1332 -- 2164 -- 1804 -- 1023 -- 

Total expected cost 47957 

 

Table 7.6 Tarim’s Results for 4c  

Period (t) 1 2 3 4 5 6 7 8 9 10 

Order decision (Delta) 1 0 1 0 1 0 1 0 1 0 

Closing inv. level (E[It]) 1490 640 599 399 1283 583 1085 485 495 295 

Opening inv. level (E[Rt]) 2290 1490 1299 599 2083 1283 1735 1085 995 495 

Order-up-to-level 2290 -- 1299 -- 2083 -- 1735 -- 995 -- 

Total expected cost 45036 

 

Table 7.5 and Table 7.6 show both our results and Tarim’s results when the unit 

purchasing cost is at c=4. From both tables, we can see that the replenishments arrive in 

the same periods, which are periods 1, 3, 5, 7 and 9. The opening inventory level of our 

model is higher than that of Tarim’s model, which means the order-up-to level is also 

higher in our model. This is because the inventory level in our model is determined by 

both demand and deterioration, so it needs to be raised much higher since deterioration 

plays a very important role. The total expected cost is much higher in our model because 

the effect of deterioration is taken into account explicitly and the unit purchasing cost is 

nonzero. 
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Table 7.7 Results for 6c  

Period (t) 1 2 3 4 5 6 7 8 9 10 

Order decision (Delta) 1 0 1 0 1 0 1 0 1 0 

Closing inv. Level (E[It]) 1508 624.6 600.4 380.4 1296 566 1097 471.6 497.2 282.3 

Opening inv. Level (E[Rt]) 2387 1508 1332 600.4 2164 1296 1804 1097 1023 497.2 

Order-up-to-level 2387 -- 1332 -- 2164 -- 1804 -- 1023 -- 

Total expected cost 62025.2 

 

Table 7.8 Tarim’s Results for 6c  

Period (t) 1 2 3 4 5 6 7 8 9 10 

Order decision (Delta) 1 0 1 0 1 0 1 0 1 0 

Closing inv. level (E[It]) 1490 640 599 399 1283 583 1085 485 495 295 

Opening inv. level (E[Rt]) 2290 1490 1299 599 2083 1283 1735 1085 995 495 

Order-up-to-level 2290 -- 1299 -- 2083 -- 1735 -- 995 -- 

Total expected cost 57624 

 

Table 7.7 and Table 7.8 show both our results and Tarim’s results when the unit 

purchasing cost is set at c=6. Similarly, we can see from both tables that the 

replenishments still arrive in the same periods, which are periods 1, 3, 5, 7 and 9. The 

order-up-to level is higher in our model than that of Tarim’s model. The reason is similar, 

i.e., the inventory level has to be raised higher since it is depleted by both demand and 

deterioration. The total expected cost is much higher in our model than that of Tarim’s 

model and the difference of the total costs is higher than the case when c=4. This is 

because the effect of deterioration is taken into account explicitly and the unit purchasing 

cost in this case is higher than the previous one. 

 

 



103 

 

Table 7.9 Service Level and Actual Fill Rate 

Service Level 95% 90% 85% 

Average Fill Rate 99.70% 99.10% 98.40% 

 

A simulation of 100 random cases is conducted for the case of c=4. As shown in 

Table 7.5, the optimal ordering policy for the case of c=4 is that replenishments take 

place in periods 1, 3, 5, 7 and 9, and the inventory levels will be raised to 2386.8, 1332, 

2164, 1804.2, and 1023.4 respectively. This ordering policy will guarantee the minimum 

expected long-run cost. 

In this simulation, we test 100 random cases each for service levels of 95%, 90% 

and 85%. Through the random experiment, it is found out that the actual fill rate is much 

higher than the service level, which one can see from Table 7.9. Actually, there is only 

one case for 95% service level that fill rate is lower than 95%. 

Table 7.10 Worst Scenario Cost  

Service Level 95% 90% 85% 

Expected Cost 47957.5 46222.9 45047.4 

Worst Scenario Cost 51038.4 49306.4 48129.6 

Percentage Increase 6.42% 6.67% 6.84% 

 

Table 7.10 shows that the total expected cost decreases as service level decreases. 

From our optimal ordering policy, one can see that it guarantees a minimum expected 

cost, but not necessarily minimum cost for each case. From the simulation, the worst 

scenario, i.e. case with maximum cost, is illustrated in Table 7.10 for each service level. 

As shown in Table 10, the worst case cost is about 6% higher than the total expected cost 

for each service level, and this percentage increases as service level decreases.  
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7.4 Summary 

A stochastic lot-sizing problem with deterioration and service-level constraints is 

considered in this chapter. The system is under periodic review. The demand in 

successive periods is independent but not necessarily identical. A constant fraction of any 

on-hand inventory is deteriorated over one period. The service level is assumed to 

incorporate the perception of the cost of backlogging so that the shortage cost can be 

ignored. It was found that the order-up-to level is higher in our model than that of Tarim 

and Kingsman’s because the inventory is depleted by both demand and deterioration. 

Through a simulation of 100 random cases, it was found that the actual fill rate is much 

higher than the service level and the total expected cost decreases as service level 

decreases. 
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Chapter 8 

Conclusions and Future Work 

8.1 Conclusions 

This dissertation presents several discrete-in-time deteriorating inventory models 

and identifies optimal ordering quantities or policies for a single deteriorating product 

under deterministic or stochastic demand by minimizing the expected overall costs over 

the planning horizon. The various conditions have been considered, e.g. periodic review, 

time-varying deterioration rate, waiting-time-dependent partial backlogging, time-

dependent demand, stochastic demand, service-level constraints etc. The computational 

experiments and sensitivity analysis bring a thorough and insightful understanding of the 

inventory control for deteriorating products. The major contributions of this dissertation 

are summarized as follows. 

 Deterministic inventory control for a single deteriorating product. Under the 

conditions of constant demand and constant deterioration rate, a closed-form 

equation is derived to compute the optimal solution, while no closed-form 

solution was presented in literature. This greatly reduces the computational effort 

to identify the optimal solutions, and makes sensitivity analysis possible. Under 

the conditions of time-dependent demand, time-dependent deterioration rate and 

waiting-time-dependent partial backlogging, we are able to derive explicit 

solutions based on the sufficient optimality condition. The necessary optimality 
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condition is easily proved to be true, while it is not provable in continuous time 

case as stated by Wu (2002). 

 Stochastic inventory control for a single deteriorating product. To the best of our 

knowledge, all the deteriorating inventory control models in the existing literature 

are dealing with deterministic customer demand. Hence, this dissertation fills the 

vacancy by studying the deteriorating inventory models with stochastic customer 

demand and periodic review. All the findings are clearly stated in Chapter 5 and 

Chapter 6. 

 Stochastic inventory control for a single deteriorating product under service-level 

constraints. The deteriorating inventory control model with stochastic demand 

and service-level constraints is first studied in this dissertation. It was found that 

the actual fill rate is much higher than the service level and the total expected cost 

decreases as service level decreases.  

The 21st Century Engineering Grand Challenges, identified by National Academy 

of Engineering, requires innovative approaches to effectively use and manage finite 

resources. This will positively impact the sustainability, health, security and living of 

different species. Of particular importance is the reduction and management of various 

wastes generated in the world. Our research addresses this challenge by optimally 

controlling the inventory of deteriorating products and minimizing the enormous cost due 

to deterioration. Our efforts could be applied and yield positive results in a variety of 

sectors that stock deteriorating products. 
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8.2 Future Work 

This study aims to (a) obtain optimal order quantity and useful insights for the 

inventory control of a single deteriorating product over a discrete time horizon with 

deterministic demand, variable deterioration rates and waiting-time-dependent partial 

backlogging ratios and (b) identify optimal ordering policy for a single deteriorating 

product over a finite horizon with stochastic demand and partial backlogging. For part (a), 

the demand patterns we consider are constant and time-varying demands. In future, more 

demand patterns could be taken into consideration, such as stock-dependent demand, 

price-dependent demand, ramp type demand, etc. The partial backlogging behaviors we 

consider are constant and waiting-time-dependent partial backlogging. For future 

research, more partial backlogging behaviors could be studied, such as exponential partial 

backlogging ratio, shortage-dependent partial backlogging ratio, etc. For the stochastic 

lot-sizing model with deterioration and backlogging in part (b), the conditions for the (s, 

S) policy to hold are very restrictive and the explicit optimal ordering policy is rather 

difficult to develop. One possible future work will be to study this problem by 

discretizing the customer demand into several discrete scenarios. For example, we could 

have three customer demand scenarios, low customer demand, high customer demand 

and most likely customer demand. This customer demand uncertainty could be resolved 

by applying multi-stage mixed-integer stochastic programming techniques, but the 

computation will be time-consuming since the size of the problem grows exponentially as 

the number of scenarios increases. A superior future research study could concentrate on 

the development of efficient computational algorithms for this type of problem. 
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