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Figure 6.6 Logic flow used for the dynamic simulation of the PTC solar power plant
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of the thermal inertia assumed through the solar field for I and H layouts. Figure 6.6 shows

the logic flow used for the dynamic simulation of the systems, in this case all the systems

should be simultaneously solved.

6.2 Economic Analysis

The levelized cost of energy (LCOE) is the cost that, if assigned to every unit of elec-

tricity produced by the solar power plant over the project life, will equal the total life-cycle

cost (TLCC) when discounted back to the base year [152]. LCOE is used to compare

the cost of electricity generated by a renewable resource (in this case solar energy) with

the equivalent fossil fuel unit or to optimize the solar field under different scenarios. The

LCOE without incentives is given by [152, 153]:

LCOE =

I +
N
∑

n=1

[
Costannual,n/(1+d)n] × (1−T R)

N
∑

n=1
Ėannual (1−Rd)

n /(1+d)n
(6.10)

where I is the initial investment, Costannual is the annual Fuel and O&M costs, d is the

discount rate, T R is the tax rate, Rd is the system degradation rate, Ėannual is the net annual

power output in kWh, and N is the project life. The total investment is the sum of direct

and indirect costs. The direct costs are given by [15, 152]:

DC = [(SI +SF +HT Fsystem) ASF +Cstorage +CFB +CPB] (1+Fcontingency) (6.11)

where SI is the site improvements cost, SF is the solar field cost, HT Fsystem is the cost of

the HTF, ASF is the total area of the solar field, Cstorage is the cost of the storage energy,
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CFB is the cost of fossil back up, CPB is the cost of the power block, and Fcontingency is the

contingency factor. The indirect costs are as follows:

IC = DC (EPC+PLM+ST ) (6.12)

where EPC is the engineer, procure and construct cost, PLM is the project, land and man-

agement cost, and ST is the sale Tax. The annual costs are calculated as:

Costannual = FC+FCC Pnom +VCG Ėannual (MWh)+CFuel (6.13)

where FC is the fixed annual Cost, FCC is the fixed cost by capacity, VCG is the variable

cost per generation, and CFuelis the fuel cost. Table 6.1 shows the values assumed for the

economic analysis. The discount rate is used for the calculation of the present value by

taking into account the time value. Two different analyses can be performed by accounting

for the inflation: nominal discount rate (include inflationary effects), and real discount rate

(exclude inflationary effects). Discount rate can be converted from real to nominal and vice

versa by using the following formulas [152]:

dn = (1+dr) (1+ e)−1

dr = [(1+dr)/(1+ e)]−1 (6.14)

where dn is the nominal discount rate, dr is the real discount rate, and e is the inflation rate.

On the other hand, the effective tax rate, or combined state and federal tax rate is calculated

as [152]:

T R = ST R+FT R (1−ST R) (6.15)

where ST R is the state tax rate, and FT R is the federal tax rate.
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Table 6.1 Costs, taxes and discount rate assumed for the economical analysis. Values taken
from [15, 140, 152]

Direct Cost Value Units

Site Improvements 25 $/m2

Solar Field 295 $/m2

HTF System 90 $/m2

Storage 80 $/kWht

Fossil Backup 0 $/kW

Power Block (Wet-Cooled) 940 $/kW

Power Block (Dry-Cooled) 1160 $/kW

Contingency 10 % DC

Indirect Cost

Engineer, Procure and Construct 15 %DC

Project, Land and Management 3.5 %DC

Sales Tax 7.75 % DC

O&M Cost

Fixed Annual Cost 0 $/yr

Fixed Cost by Capacity 70 $/kW-yr

Variable Cost per Generation 3 $/MWh

Fuel Cost 0 $/MWh

Taxes, Interest and System Degradation

Real Discount Rate 8 %

Inflation Rate 2.5 %

Federal Tax Rate 35 %

State Tax Rate 8 %

Annual Degradation Rate 0.5 %

Project Life 30 years
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6.3 Results

The solar power plant was simulated every hour by using the monthly average values.

Table 6.2 shows the parameters used for the hourly simulation. The solar field size was

increased by adding even collector loops to the solar layout, and a parametric analysis was

then carried out to get the optimum size.

Table 6.2 Parameter used for the hourly simulation

Nominal Power Output 50 MWe

Hours of Thermal Storage (TES): 0

Solar Radiation Data: TMY3

Location: Tampa, Daggett

HTF: VP1

Solar Collector: LS-3

Solar Receiver: UVAC
Annulus under vacuum, P = 10−4

Torr

Layout: H

ηSF,pump [5]: 60%

ṁSF,night [141]: 20%

ṁSF,day,min: 20%

Condenser: Cooling Tower
Air Cooled Condenser

The results obtained for the cooling tower used as the cooling system for the power

block are presented in Tables 6.3 and 6.4. As it was expected, there is a minimum LCOE

which corresponds to the optimum solar plant size. For Tampa this number corresponds

to 136 collector loops, while for Daggett the optimum LCOE corresponds to 88 collector

loops. The difference in the optimum number of loops is related to the solar radiation

distribution.
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Table 6.3 Results obtained for Tampa. Parameters used for the simulation are given in Table 6.2

ASF (m2) nloops Ẇnet,cycle(kW) Ẇpar(kW) CFactor( %) LCOER (¢/kWh) LCOEN(¢/kWh) Net Power (GWh)

246343.6 72 49312.8 2344.4 14.3 37.3 45.9 59.0

273715.2 80 49312.8 2532.2 16.3 35.1 43.2 66.8

301086.7 88 49312.8 2678.4 18.2 33.4 41.1 74.7

328458.2 96 49312.8 2863.4 20.3 32.0 39.4 82.6

355829.7 104 49312.8 3020.6 22.1 31.1 38.4 89.7

383201.2 112 49312.8 3202.7 23.8 30.4 37.6 96.4

410572.8 120 49312.8 3367.1 25.5 29.9 37.0 102.8

437944.3 128 49312.8 3555.7 27.1 29.7 36.7 108.8

465315.8 136 49312.8 3760.6 28.5 29.6 36.7 113.8

492687.3 144 49312.8 3899.6 29.6 29.8 36.8 118.2

520058.8 152 49312.8 4112.1 30.8 30.0 37.1 122.3

547430.4 160 49312.8 4294.4 31.8 30.3 37.6 125.7
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Table 6.4 Results obtained for Daggett. Parameters used for the simulation are given in Table 6.2

ASF (m2) nloops Ẇnet,cycle(kW) Ẇpar(kW) CFactor( %) LCOER (¢/kWh) LCOEN(¢/kWh) Net Power (GWh)

191600.6 56 49312.8 2481.3 18.8 24.8 30.3 77.1

218972.2 64 49312.8 2762.6 22.3 22.6 27.7 90.9

246343.7 72 49312.8 3053.1 25.6 21.3 26.1 103.6

273715.2 80 49312.8 3321.5 28.2 20.8 25.6 113.4

301086.7 88 49312.8 3619.3 30.2 20.7 25.5 120.7

328458.2 96 49312.8 3891.9 31.4 21.2 26.1 124.9

355829.8 104 49312.8 4197.1 32.7 21.6 26.7 129.0

383201.3 112 49312.8 4468.3 33.9 22.1 27.2 133.1

410572.8 120 49312.8 4766.8 34.9 22.6 28.0 136.2

437944.3 128 49312.8 5047.6 35.7 23.3 28.9 138.3

465315.8 136 49312.8 5360.0 36.2 24.2 29.9 139.5
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Figure 6.7 Frequency distribution of Direct Normal Irradiance (DNI)

As seen in Figure 6.7, the frequency distribution of Direct Normal Irradiance (DNI)

for Tampa shows that its DNI is below 500 W/m2 for almost 27% of the year the while

for Daggett it is only for 15.8 % of the year. This implies that , for Tampa, in order to

increase the annual output from the solar field an appreciable increase in the solar field size

is required to compensate for those months when the solar radiation is low. For the case

of Daggett, higher radiation is obtained during the whole year and therefore the solar field

size is smaller as compared with Tampa. This is evidenced by Figure 6.8, which shows that

for Daggett a more uniform monthly average net power output is obtained as compared to

Tampa.

In order to validate the results obtained from the proposed model, it was compared

with a model developed by NREL, the Solar Advisor Model (SAM) [15]. Figures 6.9

and 6.10 show the results obtained, levelized cost of electricity evaluated at real discount

rate (LCOER), and the annual net power output, for Tampa and Daggett respectively. The
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(a) Tampa (b) Daggett

Figure 6.8 Monthly average distribution of the net power output calculated at minimum
LCOER. Parameters used for the simulation are given in Table 6.2

results show that the proposed model follows the trend given by SAM, but there are some

discrepancies. The assumptions and modeling of the physical phenomena are different

in both of these models, hence it is expected that the results obtained would have some
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(b) Annual Net Power Output

Figure 6.9 Comparison of the LCOER and annual net power output between the proposed
model and System Advisor Model (SAM) [15], location: Tampa. Parameters used for the
simulation are given in Table 6.2
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Figure 6.10 Comparison of the LCOER and annual net power output between the proposed
model and System Advisor Model (SAM) [15], location: Daggett. Parameters used for the
simulation are given in Table 6.2

differences. As it was explained in chapter 3, the proposed model is more conservative

than the models developed by NREL, which explains why the net power output obtained

from the model is lower than the results obtained by SAM in both cities. The LCOER

calculated from the proposed model is also lower than the values obtained from SAM due

to the difference in the annual cost which is proportional to the annual net power output.

Another important parameter for the design of the PTC solar power plant is the utiliza-

tion of solar energy which is a measure of how much of the collected solar energy is used

by the power block [12]. The utilization is defined as:

Utilization =
(Collected-Dissipated)Solar energy

CollectedSolar energy
(6.16)
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Figure 6.11 Effect of the number of loops on the LCOER and the utilization factor. Param-
eters used for the simulation are given in Table 6.2

A utilization value less than unity means that the collected energy is more than what

can be used to run the power block, and therefore a part of the energy collected by the solar

field is dumped. Figure 6.11 shows the utilization value as function of the solar field size.

Utilization values equal to unity are obtained for solar field sizes close to the reference

conditions, but in order to decrease the LCOE, it is necessary to increase the net power

output by increasing the solar field size and consequently the utilization factor decreases

due to more energy having to be dumped. This can be avoided by incorporating a storage

system to the solar plant or by defocusing the solar collectors at high solar irradiance.

6.3.1 Results for Air Cooled Condensers

After performing the analysis using the convectional wet cooling method for con-

densers, an analysis of the effect of the alternative condensing method (air cooled con-

denser) on the solar power plant performance was carried out. Initially the number of air

cooled condenser units was determined. The results obtained are presented in Figure 6.12;
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Figure 6.12 Effect of the condensing method on the power cycle performance

the best performance corresponds to the evaporative method since the minimum condens-

ing water temperature is limited by the wet bulb air temperature. For the case of air cooled

condenser, the net power output is lower than the evaporative case owing to the high fan

power requirement.

As seen in Figure 6.12, the performance of air cooled condenser has an optimum num-

ber of condenser units, in which there is a balance between the cycle power output and

parasitic losses. For both cities, the optimum number of air cooled condenser units are 15.

For the case of Tampa, the condenser pressure near the design conditions (0.08 bar) can

be achieved, but for Daggett higher condenser pressures are expected due to its location.

Figure 6.13 shows the monthly average distribution of the condenser pressure for the two

cooling methods proposed. For Tampa, high relative humidity and relative high air tem-

perature are present during most of the year, therefore air cooled condenser gives a little

improvement in the condenser pressure but its high power requirements decrease the net
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Cooling Tower Air Cooled Condenser
(a) Tampa

Cooling Tower Air Cooled Condenser
(b) Daggett

Figure 6.13 Monthly average distribution of the condenser pressure. Parameter used for the
simulation are given in Table 6.2
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power output. The opposite is seen in Daggett, where low relative humidity and conse-

quently low wet bulb temperature are present; for this location evaporative cooling method

provides acceptable condensing pressures to the power block. For Daggett, the air cooled

condensers generate a decrease in the cycle performance due to the higher condensing pres-

sures and higher parasitic losses due to the high air temperatures.

The evaluation of the air cooled condenser was performed for the solar field size corre-

sponding to the minimum LCOE. Table 6.5 shows the results obtained for evaporative and

air cooled condenser.

Table 6.5 Effect of the condenser type on the annual performance of the PTC solar power
plant. Parameters used for the simulation are given in Table 6.2

Ẇnet,cycle(kW) Ẇpar(kW) LCOER (¢/kWh) LCOEN(¢/kWh) Net Power (GWh)

Tampa, Cooling Tower

49312.8 3760.6 29.6 36.7 113.8

Tampa, Air Cooled Condenser

49312.8 5088.9 31.9 39.5 110.7

Daggett, Cooling Tower

49312.8 3619.3 20.7 25.5 120.7

Daggett, Air Cooled Condenser

49312.8 5363.3 22.8 28.1 116.2

The monthly performance of the PTC solar plant is shown in Figure 6.14. As it was

mentioned before, the fan power requirements and the high air temperatures decrease the

net power output, the difference is remarkable during summer days.
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Figure 6.14 Effect of the condenser type on the monthly net power output. Parameter used
for the simulation are given in Table 6.2

Figure 6.15 shows the annual output obtained for each cooling method; for Tampa the

reduction in the net power output is 2.8% while for Daggett is 3.7%. This reduction in

net power output also affects the LCOE, the increase in the LCOE is 7.7% and 10.1% for

Tampa and Daggett respectively.
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Figure 6.15 Annual net power output for cooling tower and air cooled condenser. Parameter
used for the simulation are given in Table 6.2
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Chapter 7

Conclusions and Recommendations

In this dissertation a comprehensive methodology for designing parabolic trough solar

power plants without thermal storage was developed. The methodology is based on the

individual design of different components and subsequent integration of the components

into the whole system.

The validation of the results obtained showed that the proposed methodology is suitable

for any location and that an optimum configuration can be achieved by sensitivity analysis.

In this case, the levelized cost of electricity (LCOE) is a useful parameter for obtaining the

optimum size of the solar field. LCOE is one of the main parameters to analyze, but the

utilization factor is also important to assure that the solar energy collected is almost totally

used by the power block.

On the other hand, the analysis of alternative condensers showed that although air

cooled condensers are an excellent alternative, the parasitic losses (fan power requirements)

and the higher condensing pressures, especially in hot locations, make this technology less

attractive except in certain locations where there is water available.
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The following recommendations should be considered for further research in this area:

• In order to simulate the power block at different reference conditions, a correction

factor that can be applied to the original power block fitting equation should be de-

termined.

• Alternative and different combinations (bottoming cycles) of power blocks should be

studied for maximizing the net power output.

• The design of the air cooled and evaporative condenser should be improved by using

more comprehensive models.

• A more detailed cost analysis and LCOE calculation should be included. The cost

analysis proposed in the present work is simple and did not include tax incentives

and commercial loans.

• Thermal storage model should be included in future work. The heat transfer model

used for the thermal expansion tank can be extended for the heat losses in the thermal

storage system.

• More realistic control strategies should be implemented in the program to keep the

collector outlet temperature almost constant without dumping energy.
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Appendix A: Thermophysical Properties of Gases

The specific heats, absolute viscosities, and thermal conductivities are only function of

the temperature. To obtain the density of a gas, the perfect gas law may be used [55]:

P = ρ R T (A.1)

Specific heat (kJ/kgK), absolute viscosity (µ Pa · s), and thermal conductivity (W/mK)

are defined by [55]:

Cp =
N

∑
i=0

Ai T i (A.2)

µ =
N

∑
i=0

Bi T i (A.3)

k =
N

∑
i=0

Ci T i (A.4)

where T is in K
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Appendix A: (Continued)

Physical properties of air [55]:

• Molecular weight (kg/mol): 28.966

• Gas Constant R (kJ/kg K): 0.287040

• Critical Temperature Tc (K): 132.6

• Critical Pressure Pc (Mpa): 3.77

Table A.1 Thermophysical coefficients of air (Equations (A.2)-(A.4)). Adapted from [55]
(1) 250 ≤ T < 1050 K, (2) 250 ≤ T < 600 K, (3) 600 ≤ T < 1050 K

i Ai
(1) Bi

(2) Bi
(3) Ci

(1)

0 1.03409 −9.8601 × 10−1 4.8856745 −2.276501 × 10−3

1 −0.2848870 × 10−3 9.080125 × 10−2 5.43232 × 10−2 1.259848 × 10−4

2 0.7816818 × 10−6 −1.17635575 × 10−4 −2.4261775 × 10−5 −1.481523 × 10−7

3 −0.4970786 × 10−9 1.2349703 × 10−7 7.9306 × 10−9 1.735506 × 10−10

4 0.1077024 × 10−12 −5.7971299 × 10−11 −1.10398 × 10−12 −1.066657 × 10−13

5 0 0 0 2.476630 × 10−17

6 0 0 0 0
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Appendix A: (Continued)

Physical properties of hydrogen [55]:

• Molecular weight (kg/mol): 2.016

• Gas Constant R (kJ/kg K): 4.124289

• Critical Temperature Tc (K): 33.3

• Critical Pressure Pc (Mpa): 1.3

Table A.2 Thermophysical coefficients of hydrogen (Equation (A.2)). Adapted from [55]
(1) 250 ≤ T < 425 K, (2) 425 ≤ T < 490 K, (3) 490 ≤ T < 1050 K

i Ai
(1) Ai

(2) Ai
(3)

0 5.00662530 14.4947 14.920082

1 1.01569422 × 10−1 0 −1.996917584 × 10−3

2 −6.02891517 × 10−4 0 2.540615 × 10−6

3 2.73758940 × 10−6 0 −4.7588954 × 10−10

4 −8.47582750 × 10−9 0 0

5 1.43800374 × 10−11 0 0

6 −9.80724030 × 10−15 0 0
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Appendix A: (Continued)

Table A.3 Thermophysical coefficients of hydrogen (Equations (A.3)-(A.4)). Adapted from
[55]
(1) 250 ≤ T < 500 K, (2) 500 ≤ T < 1050 K

i Bi
(1) Bi

(2) Ci
(1) Ci

(2)

0 −0.135666 2.72941 2.01 × 10−2 0.108

1 6.84115878 × 10−2 2.3224377 × 10−2 3.23 × 10−4 2.21 × 10−4

2 −3.928747 × 10−4 −7.6287854 × 10−6 2.16 × 10−6 2.26 × 10−7

3 1.8996 × 10−6 2.92585 × 10−9 −6.49 × 10−9 −1.74 × 10−10

4 −5.23104 × 10−9 −5.2889938 × 10−13 5.52 × 10−12 4.65 × 10−14

5 7.4490972 × 10−12 0 0 0

6 −4.250937 × 10−15 0 0 0
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Appendix A: (Continued)

Physical properties of argon [55]:

• Molecular weight (kg/mol): 39.948

• Gas Constant R (kJ/kg K): 0.208129

• Critical Temperature Tc (K): 150.8

• Critical Pressure Pc (Mpa): 4.87

Table A.4 Thermophysical coefficients of argon (Equations (A.2)-(A.4)). Adapted from
[55]
(1) 200 ≤ T < 1600K, (2) 200 ≤ T < 1000K, (3) 200 ≤ T < 540K, (4) 540 ≤ T < 1000K

i Ai
(1) Bi

(2) Bi
(3) Ci

(4)

0 0.52034 −5.2839462 × 10−4 1.22573 4.03764

1 0 7.60706705 × 10−5 5.9456964 × 10−2 7.3665688 × 10−2

2 0 −6.4749393 × 10−8 1.897011 × 10−4 −3.3867 × 10−5

3 0 5.41874502 × 10−11 −8.171242 × 10−7 1.127158 × 10−8

4 0 −3.22024235 × 10−14 1.2939183 × 10−9 −1.585569 × 10−12

5 0 1.17962552 × 10−17 −7.5027442 × 10−13 0

6 0 −1.86231745 × 10−21 0 0
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Appendix A: (Continued)

Physical properties of nitrogen [55]:

• Molecular weight (kg/mol): 28.013

• Gas Constant R (kJ/kg K): 0.296798

• Critical Temperature Tc (K): 126.2

• Critical Pressure Pc (Mpa): 3.4

Table A.5 Thermophysical coefficients of nitrogen (Equations (A.2)-(A.4)). Adapted from
[55]
(1) 280 ≤ T < 590 K, (2) 590 ≤ T < 1080 K, (3) 250 ≤ T < 1050 K

i Ai
(1) Ai

(2) Bi
(3) Ci

(3)

0 1.08804 1.405507 2.5465 × 10−2 −1.523178 × 10−3

1 −3.55968 × 10−4 −2.189456 × 10−3 7.533653 × 10−2 1.1887996 × 10−4

2 7.290760 × 10−7 4.785289 × 10−6 −6.5156624 × 10−5 −1.209284 × 10−7

3 −2.886155 × 10−10 −4.54016 × 10−9 4.34945 × 10−8 1.1556780 × 10−10

4 0 2.0849125 × 10−12 −1.562245 × 10−11 −6.3653734 × 10−14

5 0 −3.790303 × 10−16 2.24966 × 10−15 1.4716702 × 10−17

6 0 0 0 0
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Appendix B: Data of Parabolic Trough Collectors

Table B.1 Geometrical and optical data for parabolic trough collectors. Adapted from [4]

Collector w (1) (m) f (2) (m) Le
(3) (m) Lc

(4) (m)

LS-1 2.55 0.94 6.3 50.2

LS-2 5.00 1.49 8 49.0

LS-3 5.76 1.71 12 99.0

IST (8) 2.30 0.76 6.1 49.0

EuroTrough 5.76 1.71 12 150.0

SkyTrough (9) 6.00 1.71 13.9 115.0

Collector Mirror area (m2) D (5) (m) C (6) ηo
(7) (%)

LS-1 128 0.04 61:1 71

LS-2 235 0.07 71:1 76

LS-3 545 0.07 82:1 80

IST (8) 424 0.04 50:1 78

EuroTrough 817 0.07 82:1 80

SkyTrough (9) 750 0.08 75:1 77

(1) Aperture width
(2) Focal length
(3) Length per element
(4) Length per collector
(5) Receiver diameter
(6) Geometric concentration
(7) Peak optical efficiency
(8) Industrial Solar Technology
(9) Taken from: [154]
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Appendix C: Thermophysical Properties of Heat Transfer Fluid (HTF)

Density (kg/m3) is defined by:

ρ =
N

∑
i=0

ai T i (C.1)

where T is in ºC

Table C.1 Coefficients for use in Equation (C.1)

HTF a0 a1 a2 a3

VP-1 (1) [155] 1083.22 −0.902 7.369 × 10−4 −2.287 × 10−6

D- Q (1) [156] 982.18 −0.776 4.827 × 10−5 0

D- RP (1) [157] 1042.39 −0.668 −1.924 × 10−4 0

Solar Salt (1) [158] 2090.18 −0.640 0 0

Hitec (1) [159, 160] 2081.44 −0.728 0 0

Hitec XL (2) [15] 2240.00 −0.826 0 0

(1) R2 = 0.99
(2) R2 is not given
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Figure C.1 Density for different HTFs
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Appendix C: (Continued)

Specific heat at constant pressure (kJ/kgK) is defined by:

Cp =
N

∑
i=0

bi T i (C.2)

where T is in ºC

Table C.2 Coefficients for use in Equation (C.2)

HTF b0 b1 b2 b3 b4

VP-1 (1) [155] 1.471 3.497 × 10−3 −4.817 × 10−6 8.400 × 10−9 0

D- Q (1) [156] 1.589 3.198 × 10−3 −5.288 × 10−7 0 0

D- RP (1) [157] 1.561 2.975 × 10−3 0 0 0

Solar Salt (1) [158] 1.093 3.755 × 10−3 −1.322 × 10−5 2.112 × 10−8 −1.2 × 10−11

Hitec [159, 160] 1.560 0 0 0 0

Hitec XL (2) [15] 1.536 −2.624 × 10−4 −1.139 × 10−7 0 0

(1) R2 = 0.99
(2) R2 is not given
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Figure C.2 Specific heat at constant pressure for different HTFs
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Appendix C: (Continued)

Specific enthalpy (kJ/kg) is defined by:

h =
N

∑
i=0

ci T i (C.3)

where T is in ºC

Table C.3 Coefficients for use in Equation (C.3)

HTF c0 c1 c2 c3

VP-1 (1) [155] −18.977 1.513 1.2908 × 10−3 1.201 × 10−7

D-Q (1) [156] 53.671 1.589 1.599 × 10−3 −1.762 × 10−7

D-RP (1) [157] −15.759 1.561 1.4875 × 10−3 0

Solar Salt (1) [158] −354.845 1.092 1.877 × 10−3 −4.409 × 10−6

Hitec [159, 160] −232.360 1.560 0 0

Hitec XL (2) [15] 0 1.536 −1.312 × 10−4 −3.796 × 10−8

c4 c5

VP-1 (1) [155] 0 0

D- Q (1) [156] 0 0

D-RP (1) [157] 0 0

Solar Salt (1) [158] 5.282 × 10−9 −2.4 × 10−12

Hitec [159, 160] 0 0

Hitec XL (2) [15] 0 0

(1) R2 = 0.99
(2) R2 is not given
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Appendix C: (Continued)
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Figure C.3 Specific enthalpy for different HTFs
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Appendix C: (Continued)

Thermal conductivity (W/mK) is defined by:

k =
N

∑
i=0

di T i (C.4)

where T is in ºC

Table C.4 Coefficients for use in Equation (C.4)

HTF d0 d1 d2 d3 d4

VP-1 (1) [155] 0.138 −8.738 × 10−5 −1.720 × 10−7 0 0

D-Q (1) [156] 0.124 −1.239 × 10−4 −6.320 × 10−8 0 0

D-RP (1) [157] 0.133 −1.296 × 10−4 0 0 0

Solar Salt (1) [158] 0.441 1.953 × 10−4 0 0 0

Hitec [159, 160] 0.221 3.457 × 10−4 −3.669 × 10−7 −4.165 × 10−9 6.07 × 10−12

Hitec XL [141] 0.519 0 0 0 0

(1) R2 = 0.99
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Figure C.4 Thermal conductivity for different HTFs
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Appendix C: (Continued)

Absolute viscosity (cP) is defined by:

ln µ =
N

∑
i=0

ei T i (C.5)

For Hitec and Hitec XL the next equation is used:

ln µ =
N

∑
i=0

ei (ln T )i (C.6)

For solar salt:

µ =
N

∑
i=0

ei T i (C.7)

where T is in ºC

Table C.5 Coefficients for use in Equations (C.5)-(C.7)

HTF e0 e1 e2 e3 e4

VP-1 (1) [155] 2.008 −2.989 × 10−2 1.207 × 10−4 −2.714 × 10−7 2.370 × 10−10

D-Q (1) [156] 2.125 −3.960 × 10−2 2.090 × 10−4 −5.935 × 10−7 6.460 × 10−10

D-RP (1) [157] 5.147 −7.174 × 10−2 3.981 × 10−4 −1.087 × 10−6 1.108 × 10−9

Solar Salt (1) [158] 22.713 −1.200 × 10−1 2.281 × 10−4 −1.474 × 10−7 0

Hitec (1) [159, 160] 33.324 −9.270 6.364 × 10−1 0 0

Hitec XL (2) [141] 14.132 −3.364 0 0 0

(1) R2 = 0.99
(2) R2 is not given

252



Appendix C: (Continued)
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Figure C.5 Absolute viscosity for different HTFs
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Appendix C: (Continued)

Vapor pressure (kPa) is defined by:

Pv =
N

∑
i=0

fi T i (C.8)

where T is in ºC

Table C.6 Coefficients for use in Equation (C.8)

HTF f0 f1 f2 f3 f4

VP-1 (1) [155] 0.789 −1.379 × 10−1 3.783 × 10−3 −3.387 × 10−5 1.056 × 10−7

D-Q (1) [156] 24.738 −7.325 × 10−1 8.525 × 10−3 −4.684 × 10−5 1.080 × 10−7

D-RP (2) [157] −354.560 4.768 −2.155 × 10−2 3.318 × 10−5 0

(1) R2 = 0.99
(2) R2 = 1.00
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Figure C.6 Vapor pressure for different HTFs
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Appendix D: Pipe Geometry

Table D.1 Wall thickness, in mm, for different nominal pipe sizes (Pipe Schedule A-G).
Adapted from [141]

Nominal Pipe Schedule

Pipe Size, in A B C D E F G

2.5 2.11 3.05 5.16 7.01 9.53 14.02 . . .

3 2.11 3.05 5.49 7.62 11.13 15.24 . . .

4 2.11 3.05 3.96 4.78 6.02 8.56 11.13
6 2.77 3.40 4.78 7.11 10.97 14.27 18.26
8 2.77 3.76 6.35 7.04 8.18 10.31 12.70
10 3.40 4.19 4.78 6.35 7.80 9.27 12.70
12 3.96 4.57 6.35 8.38 9.53 10.31 12.70
14 4.78 6.35 7.92 9.53 11.13 12.70 15.09
16 4.78 6.35 7.92 9.53 12.70 14.35 21.44
18 4.78 6.35 7.92 9.53 11.13 12.70 14.27
20 5.54 6.35 9.53 12.70 15.09 20.62 26.19
22 6.35 9.53 12.70 22.23 28.58 34.93 41.28
24 6.35 9.53 12.70 14.27 17.48 24.61 30.96
26 7.92 9.53 12.70 . . . . . . . . . . . .

28 7.92 9.53 12.70 15.88 . . . . . . . . .

30 7.92 9.53 12.70 15.88 . . . . . . . . .

32 7.92 9.53 12.70 15.88 17.48 . . . . . .

34 7.92 9.53 12.70 15.88 17.48 . . . . . .

36 7.92 9.53 12.70 15.88 19.05 . . . . . .

42 9.53 12.70 15.88 19.05 . . . . . . . . .

48 9.53 12.70 19.05 25.40 . . . . . . . . .

54 9.53 12.70 19.05 25.40 . . . . . . . . .

60 9.53 12.70 19.05 25.40 . . . . . . . . .

66 9.53 12.70 19.05 25.40 . . . . . . . . .

72 9.53 12.70 19.05 25.40 . . . . . . . . .
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Appendix D: (Continued)

Table D.2 Wall thickness, in mm, for different nominal pipe sizes (Pipe Schedule H-M).
Adapted from [141]

Nominal Pipe Schedule

Pipe Size, in H I J K L M

2.5 . . . . . . . . . . . . . . . . . .

3 . . . . . . . . . . . . . . . . . .

4 13.49 17.12 . . . . . . . . . . . .

6 21.95 . . . . . . . . . . . . . . .

8 15.09 18.26 20.62 22.23 23.01 . . .

10 15.09 18.26 21.44 25.40 28.58 . . .

12 14.27 17.48 21.44 25.40 28.58 33.32
14 19.05 23.83 27.79 31.75 35.71 . . .

16 26.19 30.96 36.53 40.49 . . . . . .

18 19.05 23.83 29.36 34.93 39.67 45.24
20 32.54 38.10 44.45 50.01 . . . . . .

22 47.63 53.98 . . . . . . . . . . . .

24 38.89 46.02 52.37 59.54 . . . . . .

26 . . . . . . . . . . . . . . . . . .

28 . . . . . . . . . . . . . . . . . .

30 . . . . . . . . . . . . . . . . . .

32 . . . . . . . . . . . . . . . . . .

34 . . . . . . . . . . . . . . . . . .

36 . . . . . . . . . . . . . . . . . .

42 . . . . . . . . . . . . . . . . . .

48 . . . . . . . . . . . . . . . . . .

54 . . . . . . . . . . . . . . . . . .

60 . . . . . . . . . . . . . . . . . .

66 . . . . . . . . . . . . . . . . . .

72 . . . . . . . . . . . . . . . . . .
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Appendix D: (Continued)

Table D.3 Inside diameter, in mm, for different nominal pipe sizes (Pipe Schedule A-G).
Adapted from [141]

Nominal Pipe Schedule

Pipe Size, in A B C D E F G

2.5 68.8 66.9 62.7 59.0 54.0 45.0 . . .

3 84.7 82.8 77.9 73.7 66.6 58.4 . . .

4 110.1 108.2 106.4 104.7 102.3 97.2 92.0
6 162.7 161.5 158.7 154.1 146.3 139.7 131.7
8 213.5 211.6 206.4 205.0 202.7 198.5 193.7

10 266.2 264.7 263.5 260.4 257.5 254.5 247.7
12 315.9 314.7 311.2 307.1 304.8 303.2 298.5
14 346.0 342.9 339.8 336.6 333.3 330.2 325.4
16 396.8 393.7 390.6 387.4 381.0 377.7 363.5
18 447.6 444.5 441.4 438.2 434.9 431.8 428.7
20 496.9 495.3 489.0 482.6 477.8 466.8 455.6
22 546.1 539.8 533.4 514.4 501.7 489.0 476.3
24 596.9 590.6 584.2 581.1 574.6 560.4 547.7
26 644.6 641.4 635.0 . . . . . . . . . . . .

28 695.4 692.2 685.8 679.5 . . . . . . . . .

30 746.2 743.0 736.6 730.3 . . . . . . . . .

32 797.0 793.8 787.4 781.1 777.8 . . . . . .

34 847.8 844.6 838.2 831.9 828.6 . . . . . .

36 898.6 895.4 889.0 882.7 876.3 . . . . . .

42 1047.8 1041.4 1035.1 1028.7 . . . . . . . . .

48 1200.2 1193.8 1181.1 1168.4 . . . . . . . . .

54 1352.6 1346.2 1333.5 1320.8 . . . . . . . . .

60 1505.0 1498.6 1485.9 1473.2 . . . . . . . . .

66 1657.4 1651.0 1638.3 1625.6 . . . . . . . . .

72 1809.8 1803.4 1790.7 1778.0 . . . . . . . . .
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Appendix D: (Continued)

Table D.4 Inside diameter, in mm, for different nominal pipe sizes (Pipe Schedule H-M).
Adapted from [141]

Nominal Pipe Schedule

Pipe Size, in H I J K L M

2.5 . . . . . . . . . . . . . . . . . .

3 . . . . . . . . . . . . . . . . . .

4 87.3 80.1 . . . . . . . . . . . .

6 124.4 . . . . . . . . . . . . . . .

8 188.9 182.5 177.8 174.6 173.1 . . .

10 242.9 236.5 230.2 222.3 215.9 . . .

12 295.3 288.9 281.0 273.1 266.7 257.2
14 317.5 307.9 300.0 292.1 284.2 . . .

16 354.0 344.5 333.3 325.4 . . . . . .

18 419.1 409.5 398.5 387.4 377.9 366.7
20 442.9 431.8 419.1 408.0 . . . . . .

22 463.6 450.9 . . . . . . . . . . . .

24 531.8 517.6 504.9 490.5 . . . . . .

26 . . . . . . . . . . . . . . . . . .

28 . . . . . . . . . . . . . . . . . .

30 . . . . . . . . . . . . . . . . . .

32 . . . . . . . . . . . . . . . . . .

34 . . . . . . . . . . . . . . . . . .

36 . . . . . . . . . . . . . . . . . .

42 . . . . . . . . . . . . . . . . . .

48 . . . . . . . . . . . . . . . . . .

54 . . . . . . . . . . . . . . . . . .

60 . . . . . . . . . . . . . . . . . .

66 . . . . . . . . . . . . . . . . . .

72 . . . . . . . . . . . . . . . . . .
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