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Figure 8. B. henselae-induced CXCL8 production assayed by ELISA.  (A) B. 

henselae induced CXCL8 production from human umbilical vein endothelial cells 

(HUVEC) and; human microvascular endothelial cells (HMEC-1).  (B) B. henselae-

induced CXCL8 production from hepatocytes (HepG2).  (C) B. henselae-induced 

CXCL8 production from monocyte-derived macrophages (THP-1). (Un=Uninfected 

cells;  Bh=B. henselae-infected cells; *P<0.001). 
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CXCR2 levels were around four times higher in B. henselae-infected cells than in 

uninfected cells (Fig. 9A, B).  B. henselae causes CXCL8 production from macrophages, 

endothelial cells, and hepatocytes; B. henselae also induces CXCL2 expression in 

endothelial cells, indicating a putative autocrine mechanism during B. henselae infection 

of endothelial cells. 

 

Effect of Blocking CXCL8 on B. henselae-Induced Endothelial Cell Proliferation. 

B. henselae causes more endothelial cell proliferation at MOIs of under 50 than at 

higher MOIs (77).  This is most likely due to a cytotoxic effect from a factor coded by the 

virB operon at higher MOIs.  However, other aspects of B. henselae-induced 

angiogenesis such  as inhibition of apoptosis, capillary tube formation, and NFκB-

dependent proinflammatory activation correlate positively with bacterial numbers(42, 43, 

72).  Since it has been reported that CXCL8 directly mediates endothelial cell survival 

and proliferation (46),  we examined the role of CXCL8 in B. henselae-induced HUVEC 

proliferation (Fig. 10A).  Cells were incubated with B. henselae (MOI of 50) or rCXCL8 

(100 ng/ml).  Cells were also treated with anti-human CXCL8 or a control IgG1 (10 

µg/ml).  After 3 days, pictures were taken of the wells (Fig. 9A) and cells were counted 

(Fig. 10B).  Both B. henselae and rCXCL8 induced proliferation as compared to 

unstimulated cells. The presence of a CXCL8 antibody quenched the proliferative effect 

of B. henselae and rCXCL8, while an isotype control did not.  These data point to a 

putative role for CXCL8 during B. henselae-induced proliferation. 
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Figure 9.  CXCR2 expression in HUVEC.  (A) RNA was extracted from uninfected 

and B. henselae-infected HUVEC and subjected to semi-quantitative RT-PCR.  (B) 

Scanning densitometry determined the relative intensities of CXCR2 expression when 

normalized to β-actin house-keeping gene expression.  Relative CXCR2 induction was 

measured as a ratio of CXCR2 to β-actin when this ratio in uninfected cells was 

normalized to 1.  (UN=uninfected HUVEC; BH= B. henselae-infected HUVEC). 
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Figure 10. Effect of CXCL8 on HUVEC proliferation in response to B. 

henselae.  HUVEC were uninfected (UN) or infected with B. henselae (BH) or 

incubated with rCXCL8 in either the presence or absence of a neutralizing anti-

CXCL8 antibody or an isotype control (mouse IgG1) for 3 days.  (A) Digital 

pictures of typical phase-contrast microscopic fields. (B) Cell proliferation 

expressed as a graph of average cell number per high-powered field.  *P<0.008. 
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Role of CXCL8 in B. henselae-Induced Endothelial Cell Survival. 

The balance between Bax (apoptotic) and Bcl-2 (anti-apoptotic) is important for 

endothelial cell survival or apoptosis.  We examined HUVEC infected with B. henselae 

at an MOI of 100 for expression of Bcl-2 family members Bcl-2 and Bax.  CXCL8 

induces increased Bcl-2 expression and decreased Bax expression (53).  While it has been 

reported that B. henselae inhibits apoptosis of HUVEC though inhibition of caspases 

(43), the Bcl-2 and Bax levels in uninfected and B. henselae-infected HUVEC have not 

been previously compared.  We examined Bax and Bcl-2 levels in HUVEC by real-time 

PCR.  We found that B. henselae-infected HUVEC had almost undetectable levels of Bax 

expression and about four times enhanced Bcl-2 expression (Fig. 11A) when compared 

with uninfected controls and normalized to a β-actin housekeeping gene.  This increased 

Bcl-2/Bax ratio probably biases the cell into an anti-apoptotic state.  We examined the 

role of CXCL8 on B. henselae-enhanced HUVEC survival.  When anti-CXCL8 was 

added to HUVEC in the presence of B. henselae, the anti-apoptotic response of the cells 

decreased markedly (Fig. 11B, C).  Bax levels were raised about fivefold in the presence 

of anti-CXCL8 but not in the presence of control IgG1 (Fig. 11B).  Conversely, Bcl-2 

levels induced by B. henselae infection dropped six fold in the presence of a CXCL8 

neutralizing antibody (Fig. 11C).  These results reveal a possible autocrine role for 

CXCL8 in B. henselae-stimulated endothelial cell survival. 
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Figure 11.  Effect of anti-CXCL8 on inhibition of HUVEC apoptosis induced by 

B. henselae.  (A) B. henselae causes enhanced Bcl-2 expression and decreased Bax 

expression in HUVEC. Results are expressed as relative expression units, a ratio of 

amounts of Bcl-2 or Bax transcripts to β-actin transcript amounts.  (B) Bax expression 

reduced by B. henselae is increased in the presence of a neutralzing antibody to 

CXCL8.  (C) Bcl-2 expression increased by B. henselae is decreased in the presence 

of anti-CXCL8. (UN=uninfected HUVEC; BH=B. henselae–infected HUVEC; 

rCXCL=rCXCL8-treated HUVEC; *P<0.01). 
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Role of CXCL8 in B. henselae-Induced Capillary Tube Formation.  

In vitro angiogenesis assays have revealed a pro-angiogenic response of HUVEC 

to B. henselae infection (42).  HUVEC infected with B. henselae seeded on a GFR 

matrigel exhibited advanced capillary tube formation when compared to uninfected 

HUVEC (Fig. 12).  HUVEC incubated with rCXCL8 also showed enhanced capillary 

tube formation.  When anti-CXCL8 was present in the matrigel, the capillary tube 

formation was visibly diminished (Fig. 12).  The presence of an isotype control, however, 

had no such effect on tube formation. These data delineate further an autocrine role for 

CXCL8 during B. henselae infection. 

 

B. henselae Secreted Proteins (BHSP) Contain GROEL and BadA.   

B. henselae secreted proteins have been implicated in endothelial cell 

proliferation (59).  However, the TFSS encoded by the virB operon is not responsible for 

endothelial cell proliferation, and is turned on only inside the endothelial cell (77, 79).  

Thus in order to avoid this cytotoxic effect and study simply the effect of TFSS-

independent secreted proteins, we isolated secreted proteins (SP) from B. henselae 

conditioned media as described in Materials and Methods.  The proteins were analyzed 

by electrophoresis and tested for the presence of GROEL, a heat shock protein that is 

potentially secreted, and BadA, an immunogenic adhesion (Fig. 13A, B), by western blot 

and dot blot, respectively.  Both proteins were present in the SP fractions.  The presence 

of GROEL was expected, as it has been previously found in conditioned media from B.  
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Figure 12.  Effect of anti-CXCL8 on B. henselae-induced capillary formation 

in a GFR matrigel.  HUVEC were infected with B. henselae (BH) or uninfected 

(UN) and seeded on a GFR matrigel containing no antibody, a control antibody 

(mouse IgG1, 10 µg/ml), or anti-CXCL8 (10 µg/ml).  Uninfected HUVEC were 

then either stimulated with CXCL8 (100 ng/ml) or left alone.  Pictures were taken 

after 24 hours.  
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Figure 13.  B. henselae secreted proteins (BHSP) contain BadA and GROEL.  

BHSP were analyzed by western blot for GROEL (A) and dot blot for BadA (B).  A 

medium control (MC) served to rule out non-specific antibody binding to proteins in 

the medium.  Secreted proteins from a BadA mutant (∆BadA) were also used as a 

negative control for the BadA dot blot. 



 51

henselae (63).  However, the presence of BadA was unexpected since it is an adhesin; 

perhaps it is shed from the bacteria during liquid culture.  Thus we identified two 

potentially important proteins in the B. henselae secreted protein (BHSP) fraction. 

 

BHSP Induce a Proliferative Response in HUVEC.   

There has been controversy in the literature concerning whether bacteria-host cell 

contact is needed for endothelial cell proliferation to occur (20, 59).  Therefore we tested 

the ability of BHSP to cause proliferation in HUVEC.  At a concentration of 250 µg/ml, 

the BHSP caused HUVEC proliferation, while a medium control (MC) at the same 

concentration did not (Fig. 14A, B).  The proliferative response was almost 3 times that 

of untreated controls.  In addition, the morphology of the cells incubated with BHSP was 

similar to the morphology of HUVEC when they are infected with B. henselae at MOIs 

of 50 or lower.  They are elongated and display morphology consistent with proliferating 

cells in the presence of VEGF (77). 

 

BHSP Induce an Intracellular Ca2+ Response in HUVEC.   

Ca2+ signals play a key role in angiogenesis and other cellular processes (2).  We 

tested the ability of BHSP to induce a Ca2+ rise in HUVEC.  Interestingly, when 250 µg 

BHSP were added to HUVEC, intracellular Ca2+ concentrations rose rapidly to 100 nM 

(Fig. 15A).  When a medium control was added to HUVEC, there was no Ca2+ rise (Fig. 

15A).  The peak Ca2+ concentrations were significantly different (P<0.05) from base 

levels (Fig. 15B).   
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Figure 14.  BHSP cause HUVEC proliferation.  HUVEC were incubated with a 

medium control (MC) or BHSP (250 µg/ml) and incubated 96 hours.  Cells were 

viewed by inverted microscope and pictures were taken to view qualitative cell 

numbers (A).  Five fields per well were counted and the average number for media 

controls was normalized to 1 (B). 
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 Figure 15.  BHSP cause a Ca2+ rise in HUVEC.  BHSP were added to HUVEC 

mounted on a coverslip and intracellular Ca2+ was quantified as described in Materials 

and Methods.  (A) One HUVEC Ca2+ response to BHSP (250 µg/ml) and a medium 

control (MC).  (B)  The average peak and baseline Ca2+ levels were compared for all 

cells. (*P<0.05; results are expressed as the mean plus one standard deviation). 
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BHSP Induce an Intracellular Ca2+ Response in HUVEC from Intracellular Stores. 

In order to determine if the intracellular Ca2+ response from HUVEC resulted 

from extracellular Ca2+ entering the cell or from Ca2+ mobilization from intracellular 

stores, we tested the Ca2+ response to BHSP under various conditions.  Under 

extracellular Ca2+-free conditions (0 Ca2+), the Ca2+ response did not change significantly 

(Fig. 16A, B) upon application of BHSP.  Thus the Ca2+ response derived from inside the 

cell.  Next we preincubated HUVEC with 1 µM thapsigargin (THAPS), a Ca2+ ATPase 

inhibitor which depletes intracellular Ca2+ stores (10, 83).  In the presence of the 

inhibitor, the Ca2+  levels did not increase in response to BHSP (Fig. 15A) and the peak 

values of Ca2+ concentration were significantly lowered (Fig. 16B, P<0.05).  Therefore 

the BHSP-derived Ca2+ response in HUVEC derives from intracellular Ca2+ pools, which 

have been implicated as the crucial Ca2+ pool for angiogenesis (10, 80, 83).    

 

BHSP-Induced HUVEC Proliferation Requires Ca2+. 

 Given that intracellular Ca2+ is important for angiogenesis and that BHSP induce 

such a high concentration of intracellular Ca2+ as well as HUVEC proliferation, we 

investigated whether HUVEC proliferation induced by BHSP would still occur in the 

presence of a Ca2+ chelator, BAPTA/AM.  After 10 minute pre-incubation with 

BAPTA/AM at concentrations of 1 µM BAPTA/AM or equivalent volumes of a DMSO 

vehicle control, the cells were washed and BHSP or medium controls were added.  In the 

presence of BAPTA/AM, the HUVEC proliferation was reduced almost 50% (Fig. 17).  

We also determined that whole B. henselae-induced proliferation is also lowered when  
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Figure 16.  BHSP cause a Ca2+ rise in HUVEC from intracellular stores.  

HUVEC were either incubated with 1 µM thapsigargin(THAP) for 30 minutes 

followed by incubation with FURA-2-AM (20 µM), or incubated with FURA-2-

AM and assayed in Ca2+-free conditions.  BHSP were added to HUVEC and 

intracellular Ca2+ was quantified as described in Materials and Methods.  (A) 

Responses to BHSP from cells assayed with Ca2+ present (control), cells assayed 

in the absence of Ca2+ (0 Ca), and cells incubated with 1 µM thapsigargin 

(THAPS).  (B) The average peak and baseline Ca2+ levels were compared for all 

cells.  Results are expressed as the mean plus one standard deviation.  (*P<0.05). 
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Figure 17.  Ca2+ signaling is important for BHSP-mediated HUVEC 

proliferation.  HUVEC were preincubated with 1 µM BAPTA/AM or a DMSO 

vehicle control.  A medium control (MC) or BHSP were added to HUVEC at 

indicated concentrations 250 µg/ml, or cells were infected at an MOI of 50 with B. 

henselae (BH).  After 72 hours, cells were photographed and five high-powered 

fields (HPF) were counted and averaged (*P<0.02; **P<0.04).  
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HUVEC are pre-incubated with BAPTA/AM.  Consequently, intracellular Ca2+ is 

important for BHSP- and live B. henselae-induced HUVEC proliferation. 

 

BHSP Induce CXCL8 Production from HUVEC. 

We have determined that CXCL8 plays an autocrine role in B. henselae –induced 

endothelial cell survival, proliferation, and capillary tube formation.  In order to 

determine if the BHSP were inducing proliferation through CXCL8 production, we tested 

the ability of BHSP to induce CXCL8 production from HUVEC.  When BHSP were 

added to HUVEC, the CXCL8 levels increased (Fig. 18A).  CXCL8 production did not 

increase in the presence of a medium control.  Additionally, when BAPTA/AM was 

added to HUVEC before addition of BHSP, the CXCL8 levels dropped significantly (Fig. 

18B).  These data indicate a role for intracellular Ca2+ activity in CXCL8 production 

mediated by BHSP.  
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Figure 18.  BHSP induce CXCL8 production from HUVEC.  (A) HUVEC were 

incubated with a medium control (MC) or BHSP at indicated concentrations (µg/ml) 

for 24 hours.  Supernatants were collected and ELISA was performed.  (B) HUVEC 

were preincubated with BAPTA/AM or DMSO control.  BHSP or media controls 

were added at shown concentrations (µg/ml) and supernatants were collected after 

24 hours and ELISA was performed. *P<0.03. 
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Discussion 

 

B. henselae, the etiologic agent of CSD, is a fastidious, gram-negative, oxidase-

negative, aerobic bacillus (11, 13).  B. henselae infections cause a range of symptoms 

from lymphadenopathy (CSD) to systemic disease.  The severity of the disease tends to 

relate to immune status.  Immunocompromised patients such as AIDS patients, chronic 

alcoholics, or immunosuppressed people can develop systemic disease.  However, 

immunocompetent patients may still present with systemic bacteremia, endocarditis, and 

bacillary angiomatosis. 

B. henselae can cause vascular proliferative lesions (5) into which macrophages 

infiltrate during infection (49, 50, 64).  In the paracrine and autocrine model of B. 

henselae-induced angiogenesis (Fig. 2), macrophages are implicated as effector cells; 

upon stimulation by B. henselae, they secrete VEGF and other endothelial cell mitogens 

(71).  Concurrently, endothelial cells upregulate pro-angiogenic factors such as 

chemokines, inhibit apoptosis through inhibition of caspases (44), and upregulate 

adhesion molecules (32) which may promote proliferation.  In this study we investigated 

the endothelial cell mediators of angiogenesis which are induced upon infection with B. 

henselae.  Specifically, we determined that B. henselae (i) upregulates MCP-1 

production, which brings the effector cell macrophage into the site of infection, where it 

secretes VEGF and CXCL8 which would promote angiogenesis; (ii) induces CXCL8 
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production and CXCL8 receptor CXCR2 expression, which promotes angiogenesis in an 

autocrine manner by enhancing endothelial cell survival, endothelial cell proliferation, 

and capillary tube formation; and (iii) causes an intracellular Ca2+ rise from intracellular 

pools which leads to NFκB-directed pro-inflammatory activation and endothelial cell 

proliferation.  These mediators of angiogenesis which are induced by the bacterium 

probably play a pivotal role in B. henselae-induced angiogenesis.  When the additional 

factors from peripheral cells are considered, a model of B. henselae-induced angiogenesis 

emerges (Fig. 19).  

Macrophages and monocytes infiltrate lesions caused by BA (49, 50, 64).  

Macrophages secrete VEGF upon B. henselae infection, which probably contributes to 

angiogenesis during infection (41, 71).  We investigated the mechanism by which the 

macrophage is brought into the site of infection by examining the expression and 

production of the chemokine MCP-1 from B. henselae-infected HMEC-1.  MCP-1 is a 

member of the C-C chemokine family and is produced and secreted by monocytes, 

fibroblasts, and vascular endothelial cells.  MCP-1 then interacts with its CCR2B receptor 

on monocytes and macrophages to cause chemotaxis (16).  MCP-1 can also directly 

promote angiogenesis.  When tumor cells are transfected with mcp-1 gene and injected 

into a murine model, angiogenesis is stimulated (68).  In addition, MCP-1 implants 

induce angiogenesis in a rabbit cornea (88).  During B. henselae infection, MCP-1 

released from endothelial cells, most likely in addition to other factors, causes chemotaxis 

of monocytes and macrophages to the site of infection, thereby promoting an angiogenic 

state by recruiting the effector cell.
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Figure 19.  Endothelial cell mediators of angiogenesis during B. henselae  

infection.  This model depicts the mediators of angiogenesis that are induced 

by B. henselae  from endothelial cells (EC). When ECs are infected with B. 

henselae  (BH), MCP-1 is produced and recruits macrophages (Mφ), which 

secrete VEGF when they are infected.   CXCL8 is also produced from ECs, 

leading to enhanced EC survival and capillary tube formation.  BH secretes 

proteins (BHSP), which induce a Ca2+ spike from intracellular stores and 

contribute to NFκB-dependent CXCL8 production and EC proliferation.  

These mechanisms culminate in B. henselae-induced angiogenesis. 
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             Bacterial pathogens such as E. coli, Orientia tsutsugamushi, and Porphorymonas 

gingivalis increase chemokine production and secretion (18, 45, 99).  MCP-1 is induced 

in HMEC-1 in response to B. henselae infection (Fig. 4).  Both mRNA and protein levels 

are upregulated; mRNA levels are higher than uninfected controls in B. henselae-infected 

HMEC-1 at 6 and 24 hours after infection, while protein levels in infected cells are higher 

at 6, 24, and 48 hours after infection.  Furthermore, supernatants from B. henselae-

infected HMEC-1 caused chemotaxis of THP-1 monocytes (Fig. 7).  Thus the levels of 

MCP-1 produced by HMEC-1 in response to B. henselae infection in vitro are sufficient 

to function as a chemoattractant for monocytes.  Results also reveal that the bacterial 

factor which causes MCP-1 production is probably a heat stable molecule. 

The LPS of B. henselae has recently been characterized as containing a lipid A 

possessing features known to reduce endotoxicity, including a pentaacyl lipid A and a 

long-chain fatty acid (97).  B. henselae LPS induces TLR4 1000-fold lower than 

Salmonella enterica sv. Friedenau LPS (97).  In addition, LPS from B. quintana, which is 

likely quite similar to B. henselae LPS, induces GRO-CINC-1 in rats but not TNF in rats 

or human whole blood (62).  B. henselae LPS also does not induce TNF in cats. In this 

study, the addition of polymyxin B sulfate to B. henselae before infection of HMEC-1 did 

not reduce MCP-1 production; however, polymyxin B sulfate had a significant lowering 

effect on E. coli-induced MCP-1 production (Fig. 4).  These data corroborate with the 

low endotoxicity of LPS from Bartonella spp. to imply a limited or nonexistent role for 

LPS in B. henselae-induced MCP-1 production. 

 Toll-like receptors activated by various microbial products can cause expression 

and production of chemokines (23, 24, 57), including MCP-1 (76).  LPS, a TLR4 agonist, 
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causes MCP-1 production in a TLR4-dependent manner (89).  Most studies confirm that 

MCP-1 production is TLR4-mediated, and usually caused by LPS in a bacterial infection.  

However, recently it was discovered that TLR4-deficient and TLR4-competent mice have 

the same MCP-1 response to infection by Leishmania major (6), which is known to cause 

chemokine production early in infection (40).  Our findings indicate that MCP-1 

production in response to B. henselae infection is not TLR4-dependent (Fig. 5A).  In 

contrast, E. coli LPS-induced MCP-1 production was lowered in the presence of a TLR4 

monoclonal antibody.  These data suggest the possibility of an alternate pathway to TLR4 

activation for the MCP-1 production from B. henselae-infected HMEC-1.  Furthermore, 

these results again exclude B. henselae LPS from a role in MCP-1 production.  HMEC-1 

express TLR1, TLR3, TLR4, and TLR5 but express TLR2 very weakly, which is why 

they are unresponsive to TLR2 ligands (25).  Thus the MCP-1 production investigated in 

this study is probably not TLR4- or TLR2-mediated.  Other TLR or similar receptor 

pathways must be investigated to pinpoint the exact mechanism of MCP-1 induction in 

HMEC-1 in response to B. henselae.   

The mcp-1 gene contains binding sites for both NFκB and AP-1 (73, 91), and both 

transcription factors have been implicated in mcp-1 expression (18, 94).   It has been 

established that B. henselae induces NFκB-dependent upregulation of adhesion molecules 

in HUVEC independent of LPS (32).  The findings from our study suggest the 

independence of MCP-1 expression and protein production from B. henselae LPS.  In 

addition, we used two NFκB inhibitors to determine whether MCP-1 protein production 

requires NFκB activation.  Diverse NFκB inhibitors have been used with HMEC-1 

previously in similar experiments (18).  PDTC is an antioxidant that inhibits the 
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phosphorylation of IκB (66, 78) and TPCK inhibits proteosome-dependent degradation of 

inhibitory peptides (58).  Consequently, through the use of these inhibitors, we 

demonstrated that MCP-1 production caused by B. henselae in HMEC-1 is NFκB-

dependent (Fig. 5B). 

OMPs of B. henselae are important for pathogenesis (14, 32).  Data presented 

here reveal the ability of B. henselae Houston-1 OMPs, specifically OMPs of low 

molecular weight, to enhance production of the C-C chemokine MCP-1 from HMEC-1 

(Fig. 6A).  This upregulation is again independent of LPS, as shown by incubation of 

OMP-1 with polymyxin B sulfate before addition to HMEC-1 (Fig. 6B).   These data 

point to a heat-stable low molecular weight OMP of B. henselae Houston-1 that 

contributes at least in part to B. henselae-induced MCP-1 production from endothelial 

cells.  Further studies are needed in order to specify the putative OMP that causes MCP-1 

upregulation in endothelial cells. 

We have described upregulation of gene expression and protein production of the 

chemokine MCP-1 in response to B. henselae infection.  This stimulation of HMEC-1 is 

independent of B. henselae LPS and toll-like receptor 4 but dependent on NFκB activity.  

MCP-1 produced by infected HMEC-1 most likely contributes to the ability of 

conditioned media from these cells to induce monocyte chemotaxis.  The recruitment of 

macrophages by MCP-1 produced from infected endothelial cells could have broad 

implications on mechanisms of angiogenesis during this infection.  Specifically, the 

macrophage effector cell which secretes VEGF and other angiogenic factors is brought to 

the site of infection.  Pathogenic angiogenesis provides actively growing target cells for 

B. henselae in an enriched vascularized microenvironment, and while the specific role of 
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MCP-1 induction in this phenomenon is not completely understood, we suggest that 

recruitment of the monocyte/macrophage effector cell is an important component of the 

pathway. 

Angiogenesis is a complex process involving several key steps.  These steps 

include (i) inhibition of endothelial cell apoptosis, (ii) endothelial cell proliferation, (iii) 

breakdown of the extracellular matrix by MMPs, and (iv) capillary tube formation.  

CXCL8 can promote each of these steps.  Since B. henselae upregulates CXCL8 

production from endothelial cells (21, 71), we investigated a putative autocrine role for 

CXCL8 in B. henselae-induced angiogenesis.   

There are conflicting reports on whether endothelial cells actively proliferate or 

whether they simply exhibit enhanced survival in the presence of B. henselae (43, 77).  

Endothelial cell proliferation in BA most likely comes from a combination of inhibition 

of apoptosis and mitogenic stimulation.  In addition, endothelial cell proliferation and 

angiogenesis probably result from the effects of the bacterium on both the endothelial 

cells and peripheral cells such as epithelial cells and macrophages (41, 71).  While this 

particular study focuses on the autocrine role of CXCL8, a paracrine role should not be 

overlooked as many cell types produce CXCL8 after infection with B. henselae (Fig. 8).  

Furthermore, the bacterium causes an upregulation of expression of one of the CXCL8 

receptors, CXCR2 (Fig. 9).  This may represent a mechanism by which the effects of 

CXCL8 on the endothelial cell are enhanced because the receptor is present at elevated 

levels.  When the fact that CXCL8 production is upregulated from endothelial and other 

cells is combined with the information that CXCR2 expression is also enhanced during 
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endothelial cell infection, a model emerges whereby CXCL8 signaling is extremely 

elevated in the endothelial cell during B. henselae infection. 

The balance between Bax and Bcl-2 is important for endothelial cell survival or 

apoptosis.  CXCL8 induces an increase in Bcl-2 expression and a decrease in Bax 

expression, most likely favoring survival over apoptosis in endothelial cells (52).  It has 

been shown that B. quintana can modulate the cell-programmed death of HUVEC-C by 

increasing Bcl-2 expression (54).  In this study, we examined expression of two Bcl-2 

family members, Bcl-2 (anti-apoptotic) and Bax (apoptotic) in HUVEC by real time RT-

PCR.  In the presence of B. henselae, Bax is decreased and Bcl-2 is increased (Fig. 11A).  

These increases and decreases are quite dramatic alone; however, when the ratio of Bcl-2 

to Bax is considered, the comparison is even more drastic.  This is the first report of B. 

henselae mediating Bax and Bcl-2 expression in endothelial cells.  In addition, the data 

reveal a possible role for CXCL8 in this prevention of apoptosis since the presence of 

anti-CXCL8 abrogates the higher Bcl2 levels and the lower Bax levels induced by B. 

henselae (Fig. 11B, C).   

 These data also implicate CXCL8 as a mediator of endothelial cell proliferation 

and capillary tube formation during infection.  Both aspects of angiogenesis were 

decreased in the presence of a CXCL8 neutralizing antibody (Figs. 10, 12).  However, 

other mechanisms are probably also involved in proliferation, including the activity of 

growth factors such as VEGF from other cells.  It has been shown that while B. henselae 

cause endothelial cells to proliferate, this proliferation is inhibited at higher MOIs as a 

result of a cytotoxic effect from the B. henselae  TFSS (77).  Our proliferation results 

agreed with this phenomenon; at MOIs above 50, endothelial cell proliferation was 
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decreased.  However, the other aspects of angiogenesis (capillary tube formation, 

enhanced endothelial cell survival, and CXCL8 production) increased at an MOI of 100 

when compared to an MOI of 50 (data not shown).  These results suggest that the 

cytotoxic effect of the products of the virB does not have an effect on expression of Bcl-2 

family members or capillary tube formation.  Thus the pro-angiogenic effect of B. 

henselae may consist of a complicated fusion of many host cell and bacterial factors.  

Nevertheless, CXCL8 seems to play an autocrine and possible paracrine role in B. 

henselae-induced angiogenesis, representing a mechanism by which the bacterium causes 

upregulation of CXCL8 thereby increasing its survival by expanding its host cell 

reservoir.  An assessment of the contribution of each of these in vitro components toward 

the overall angiogenesis mediated by B. henselae is still unfinished, and it will require 

extensive in vivo and in vitro studies.  

 B. henselae secreted proteins (BHSP), or conditioned media, have been shown to 

induce endothelial cell proliferation (59).  These proteins are isolated from B. henselae 

grown on chocolate agar and resuspended in liquid medium for 24 hours.  There is a 

cytotoxic effect from the TFSS of B. henselae, which mediates secretion of BepD into 

endothelial cells (80), at MOIs above 50.  When a virB mutant is used to infect HUVEC, 

the proliferation is 4-fold higher than with wildtype B. henselae (77).  Thus it was 

determined that the TFSS triggers a cytotoxic effect in HUVEC.  The virB promoter is 

only active inside the cell; B. henselae containing a GFP reporter construct driven by the 

virB promoter are not green outside of the cell (79).  BHSP therefore contain only low 

levels, if any, of TFSS-transported proteins.   
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NFκB activation links the upregulation of MCP-1 and CXCL8 during B. henselae 

infection.  Thus we investigated upstream of NFκB activation by examining the 

intracellular Ca2+ response to bacterial secreted proteins.  In this study we determined that 

BHSP in fact cause endothelial cell proliferation (Fig. 14) and that this proliferation is 

dependent on Ca2+ signaling, since in the presence of the Ca2+ chelator BAPTA/AM 

HUVEC proliferation was lowered (Fig. 17).  Additionally, we demonstrated that BHSP 

induce a Ca2+ elevation in HUVEC, while a medium control did not have the same effect 

(Fig. 15).  Furthermore, we showed that the origin of the Ca2+ response to BHSP is an 

intracellular store, since the intracellular Ca2+ store inhibitor thapsigargin abolished the 

BHSP-induced Ca2+ rise in HUVEC (Fig. 16).   

CXCL8 is an important mediator of angiogenesis and is important for HUVEC 

survival and capillary tube formation during B. henselae infection of HUVEC.  Since the 

BHSP induced HUVEC proliferation, we sought to ascertain whether BHSP induce 

CXCL8 production from HUVEC.  In the presence of BHSP, CXCL8 production was 

raised about four times higher than a medium control (Fig. 18A, P<0.001).  However, the 

CXCL8 levels in the presence of BHSP did not increase above 100 pg/ml (Fig. 18A, B).  

These CXCL8 levels are lower than those elicited by live B. henselae (Fig. 8).  Thus the 

question arises: Are these CXCL8 levels sufficient to cause HUVEC proliferation or is 

there another proliferative pathway activated by BHSP?  In fact, during proliferation 

assays, HUVEC are seeded at a low density (103 HUVEC/well of a 96-well plate) in 

order to allow for proliferation over 3-4 days.  Thus while MOIs of live bacteria take into 

account the cell numbers, the concentrations of BHSP are determined as µg/ml.  

Therefore during proliferation assays, higher CXCL8 levels may be elicited as a result of 
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lower numbers of cells.  Unfortunately, since the HUVEC proliferate over 3 or 4 days, 

measurement of CXCL8 levels would be skewed as there are more cells in BHSP-treated 

wells.  Additionally, the BHSP are present for 3 days and may cause more CXCL8 

production over that time course.  Consequently, we propose that while the CXCL8 

responses to BHSP were not as robust as the response to live B. henselae, these levels 

may be sufficient to cause HUVEC proliferation.  CXCL8 production enhanced by BHSP 

was lowered in the presence of a Ca2+ chelator BAPTA/AM (Fig. 18B).  NFκB activation 

can be mediated by intracellular Ca2+ signaling, and BHSP induction of CXCL8 appears 

to be Ca2+-dependent.   

The factor which induces the Ca2+ rise and subsequent effects is still unknown.  

We determined that BHSP contain BadA and GROEL (Fig.13), both which are important 

during B. henselae infection of endothelial cells (63, 72).  BadA binds to the extracellular 

matrix proteins collagen, laminin, and fibronectin (72).  This could be responsible for the 

Ca2+ rise in HUVEC.  GROEL is mitogenic for endothelial cells, which may contribute to 

HUVEC proliferation and CXCL8 production mediated by BHSP.  The TFSS mediates 

CXCL8 production in HUVEC as well (77); perhaps low levels of some of the effectors 

translocated by the TFSS are present in the BHSP or the components on the bacterial 

membrane are present in BHSP.  Further studies are necessary to determine the factor 

responsible for proliferation and CXCL8 production, including proteomic analysis of the 

BHSP and functional assays of these species present in BHSP.    

We propose that the BHSP experiments may evolve into an animal model of B. 

henselae-induced angiogenesis.  A rhesus macaque model of B. quintana infection was 

developed in which the levels of bacteria mimicked human infection (98).  No infection 
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model in mice has been successfully developed; Arvand et.al. showed bacterial presence 

up to one week after infection in C57/BL6 mice (8), after which the bacteria were 

cleared.  Perhaps the BHSP could be used in an angiogenic model such as an in vivo 

matrigel in mice or the chicken embryo assay, which may circumvent the problems 

associated with clearance of B. henselae during mice infection. 

 Endothelial cell mediators of angiogenesis induced by B. henselae contribute to 

the overall pathology in B. henselae infection.  In this study we identified three mediators 

of angiogenesis induced from the endothelial cell as a result of bacterial factors: MCP-1, 

which brings the macrophage effector cell into the site of infection; CXCL8, which 

directly promotes angiogenesis in an autocrine manner; and intracellular Ca2+ activity, 

which contributes to endothelial cell proliferation and NFκB activation.  These factors 

and others from peripheral cells culminate in the unique angiogenic lesions seen during 

B. henselae infection in the immunocompromised.  A better understanding of how B. 

henselae causes angio-proliferation could lead to the development of improved 

therapeutics and contribute to the understanding of interactions between intracellular 

bacteria and host cells. 
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