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Pricing Models and Analysis of Corporate Coupon-Bonds
and Credit Default Swaptions

Michiru Shibata

ABSTRACT

In this work, pricing models of corporate coupon-bonds and credit default swaptions are derived

and analyzed. Corporate coupon-bonds are priced incorporating both intensity models and structural

models, and also jumps introduced by seasonal effects. In deriving the models, we form portfolios to

hedge the risk incurred by the instruments, then derive PDE equations using the arbitrage principle

and the Ito Lemma for jump processes. The mathematical models are the parabolic-type PDE

equations with terminal conditions and boundary conditions. These PDE problems are analyzed

and solved by various transformations and incorporation with probabilistic properties. Either a

unique solution in the exponential form is obtained, or a particular solution in the separation form

is acquired. Further, the pricing model of credit default swaptions is derived using the pricing of

corporate coupon-bonds in the similar manner. The main idea of deriving the price of credit default

swaptions is to use the price of existing products, i.e., corporate bonds, as opposed to the existing

models, which use non-existing forward credit default swap price of the reference entity. The prices

of corporate coupon-bonds and credit default swaptions with unexpected default, obtained from

these models, are compared to the actual market prices and analyzed.

v



Chapter 1

Introduction

1.1 Background and Motivation

When a company needs financing, there are only two ways to raise money. Either to borrow, or to

find someone to co-own the company. The latter is done by issuing new stocks; the former basically

takes two forms: borrowings from banks or other institutions, and issuing bonds.

Financial institutions, such as banks, securities houses, insurance companies and so on, have been

traditionally largest participants in the bond market. They invest in bonds not only because they

constitute a part of their investment portfolios, but also because they want to maintain the relation-

ship with bond issuers. If that is the case, often the time, they are expected to hold the bonds until

their maturities, and it could be a nuisance to the investing institution for the following reasons.

First, most financial institutions have internal and external guidelines about the maximum amount

of financial products they can invest. So holding bonds until their maturities prevent them from

diversifying their portfolios. Second, it incurs a risk of unreasonable loss in case of default. There-

fore, it is important for institutional investors to assess the price of the bonds in the portfolio and

also to avoid the risk inherent in the bonds without selling them.

Finding a pricing model of defaultable bonds is one of the main purposes of this paper. There

are two fundamental approaches to bond pricing: (i) intensity models, and (ii) structural models

(also, known as Merton’s model). Each type of models has pros and cons; but the emphasis of

both models is on finding or estimating the default probability. Intensity models consider default

as an exogenous event and can be found in Jarrow & Turnbul (1995), Duffie & Singleton (1999),

Hughston & Turnbull (2001), etc. In structural models, default is considered to be an endogenous
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event, that is, default originates from within the firm structure. In Merton’s model (1974), a firm’s

total assets comprise of one zero-coupon bond and one stock, which follows a geometric Brownian

motion. The firm defaults if its assets fall below the value of its outstanding bond. Black & Cox

(1976) extended this framework by bringing a certain threshold as a barrier.

Most existing models adopt either one approach or the other. O, et al. (2005) combined both ap-

proaches and came up with a new model on corporate zero-coupon bonds. However, most corporate

bonds bear coupons, and coupon-bond issuers, especially small-size companies, are exposed to the

risk of default as interest payment dates approach. In Chapters 2 and 4 of this paper, the idea of

O is extended to corporate coupon-bonds and we take into consideration the default risk arisen by

coupon payment.

However, finding a better pricing model does not result in avoiding the default risk incurred by

holding bonds. New financial derivatives, called ”credit derivatives”, were introduced to the finan-

cial market in the early 1990s, which made it possible for bondholders to get rid of default risk

without selling bonds. A credit derivative is a derivative security whose payoff is conditioned on

the occurrence of credit events such as bankruptcy of a certain bond-issuer. Two thirds of the credit

derivatives in the current market are credit default swaps. A pricing model on credit default swaps

is given by Schonbucher (1997, 2003b). Some pricing models of credit default swaption, which is

an option on forward credit default swap are given by Schonbucher (2000) and Schmidt (2004). In

their papers, they assume that they know the dynamics of the value of underlying forward credit

default swap, and they hedge the swaption against the forward credit default swap. However, the

dynamics of the value of forward credit default swap is not easy to obtain. In Chapters 3 and 5 of

this paper, we will try to find the pricing model to hedge the swaption by the bonds issued by the

forward default swap’s reference entity.

The rest of this paper is organized as follows. In the following section, basic mathematical and

financial concepts are introduced. Chapter 2 introduces the pricing models of corporate coupon-

bonds, which incorporate the jump terms caused by coupon payments. In Chapter 3, we will use the

dynamics of the value of the corporate coupon-bonds to find the price of the credit default swaption.

In Chapters 2 and 3, we assume that the short-term, risk-free interest rate is constant. In Chapter 4,

we re-examine the pricing of corporate coupon-bonds, however, this time with a stochastic short-

2



term risk-free interest rate. We remodel the price of a credit default swaption using the bond pricing

model established in Chapter 5. Chapter 6 devotes to the data analysis of the bond-price and the

credit default swaption price with constant risk-free rate. Finally, in Chapter 7, we summarize the

result of this paper and discuss the directions of the research in the future.

1.2 Definition and Basic Concepts

1.2.1 Mathematical Concepts

Definition 1.2.1 (Martingale) A stochastic process {X(t), t ≥ 0} adapted to a filtration F is called

a martingale if for any s < t, it is integrable, i.e., E|X(t)| < ∞, and

E(X(t)|Fs) = X(s)

where Ft is the information about the process up to time t, and the equality holds almost surely. �

Definition 1.2.2 (Brownian Motion) A standard Brownian motion (or a standard Wiener process)

is a stochastic process {W (t), t ≥ 0}, defined on a common probability space (Ω, F, P ) with the

following properties: (1) W(0) = 0. (2) With probability 1, the function W (t) is continuous in t.

(3) The increment random variables associated with non-overlapping interval are independent. (4)

The increment W (t + s)−W (s) is a normal random variable with mean 0 and variance t for any

s < t. �

Throughout this paper, W (t),Wt and Wi are exclusively used to denote a standard Brownian mo-

tion, unless stated otherwise.

Definition 1.2.3 (Geometric Brownian Motion) A geometric Brownian motion is a continuous-

time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian

motion. A stochastic process S(t) is said to follow a geometric Brownian motion if it satisfies the

following stochastic differential equation:

dSt = µStdt + σStdWt

where Wt is a Brownian motion, and µ (’drift’) and σ (’volatility’) are constants. �
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The equation has an analytic solution:

St = S0 exp
(
(µ− σ2/2)t + σdWt

)
for an arbitrary initial value S0.

Definition 1.2.4 (Ito Integral) Let (Ω, F, P) be a probability space on which a standard Brownian

motion W (t) is defined. Let X(t) be a simple process which is adapted to the same filtration as

W (t) and given by

X(t) = c0I0(t) +
n−1∑
i=0

ciI(ti,ti+1](t),

Then, Ito integral
∫ T
0 X(t)dW (t) for a simple process X(t), is defined as

∫ T

0
X(t)dW (t) =

n−1∑
i=0

ci

(
W (ti+1)−W (ti)

)
.

Let Xn(t) be a sequence of simple processes convergent in probability to the process X(t) satisfying

lim
n→∞

∫∞
0 E

(
X(t)−Xn(t)

)2
dt = 0. Then Ito integral with general process X(t) is defined as

∫ T

0
X(t)dW (t) = lim

n

∫ T

0
Xn(t)dW (t). �

Lemma 1.2.5 (Ito Lemma for Jump Processes) Let X(t) be a right-continuous stochastic process

with left limit, and it has at most finite number of jumps over finite time intervals a.s. For every path

of the process, we define:

X(t−) := lim
h→0

X(t− h), X(0−) := X(0),

∆X(t) := X(t)−X(t−),

Xd(t) :=
∑
s≤t

∆X(s),

Xc(t) := X(t)−Xd(t).

Alternately, let X = (X1, X2, · · · , Xn) be an n-dimensional semi-martingale with a finite number

of jumps, and f a twice continuously differentiable function on Rd. Then f(X) is also a semi-
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martingale, and it follows that:

f(X(t))− f(X(0)) =
n∑

i=1

∫ t

0

∂f(X(s−))
∂xi

dXc,i

+
1
2

n∑
i,j=1

∫ t

0

∂2f(X(s−))
∂xi∂xj

d < Xc,i, Xc,j > (s) +
∑
s≤t

∆f(X(s)),

where the integral means a stochastic integral (cf. Kigima (2003)) and < Xc,i, Xc,j > stands for

the quadratic covariance of two stochastic processes (cf. Kigima(2003)). Its proof can be found in

Jacod and Shiryaev (1988).

1.2.2 Financial Concepts

Definition 1.2.6 (Bonds) The bond is a debt instrument issued for a period of time in purpose of

raising money. It promises to repay the principal amount on a specified day (”maturity” date). Some

bonds bear coupons, which are promissory notes for interest; so they are called ”coupon (bearing)

bonds”. Others do not pay interest; instead they are sold at a deep discounted price, so they are

called ”zero-coupon bonds” or ”deep discounted bond”. �

Bond prices fluctuate in accordance to two factors: (1) changes in interest rates and (2) change in

credit quality. The interest rate considered is what is known as a ”risk-free, short-term interest rate”,

r(t). In Chapters 2 and 3, we consider r(t) to be constant; in chapters 4 and 5, we consider r(t) to

follow the Vasicek model (1977). Here we introduce several interest rate models:

One of the earliest short-rate models introduced by Black (1976) and Rendleman and Bartter (1980)

is lognormally distributed and given by

dr = µrdt + σrdW, µ, σ : constant,

where W = {W (t)}t≥0 is a standard Brownian motion. (Hereinafter, all W ’s used in Stochastic

differential equations are standard Brownian motions.) However, this model does not capture mean-

reverting property of interest rate; Vasicek (1977) introduced the following normal mean-reverting

process with constant parameters, i.e.,

dr = θ(a− r)dt + σdW, θ, a, σ : constant.
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The drawback of this model is that the short term rate can assume a negative number. In 1985, Cox,

Ingross, and Ross (CIR) added square-root diffusion term to the Vasicek model, which makes r(t)

chi-square distributed and given by

dr = θ(a− r)dt + σ
√

rdW, θ, a, σ : constant.

Hull and White (1990) extended the Vasicek model to fit both the current structure and volatilities

of interest rates. In their model, the short-term rate follows a normal mean-reverting process with

time dependent parameters and is given by

dr = (θ(t)− αr)dt + σ(t)dW, α : constant.

If we take α to be time-dependent, the model is know as extended Vasicek model. We can write the

model as

dr = (θ(t)− α(t)r)dt + σ(t)dW,

which can also be written as

dr = θ(ν(t)− r(t))dt + sr(t)dW, θ : constant

to better see the attributes of the short term rate. Here the variable sr is the same as σ, and is used

so that it aligns with the rest of the paper. In this extended Vasicek model, ν gives the mean, θ gives

how fast the rate fluctuates, and sr gives the volatility of the interest rate. The last three models are

widely accepted and popular in practice because of their closed form solutions. In Chapter 4 and 5,

we shall use this extended Vasicek model for risk-free, short-term rate.

The coupon bearing bond consists of the principal and predetermined number of coupons attached

to the principal. The principal is paid at the face value on the maturity date unless there are some

other conditions stated otherwise. Each coupon pays predetermined amount of money, normally

expressed as a certain percentage (coupon rate) of the face value of the principal, or as a dollar

amount, on a predetermined date. Coupons are detachable from the principal and transferable by

themselves.

Therefore, the coupon bearing bond can be considered as a portfolio of zero-coupon bearing bonds:

one zero-coupon bearing bond with a principal being the same as the original bond and n zero-

coupon bonds with a principal being the same amount as the original bond’s coupon, each maturing

6



on original bond’s i-th coupon date, where n is the number of coupon payments and i = 1, 2, · · · , n

(La Grandvill, 2001). So if we let the value of corporate coupon-bond at time t to be G = G(r, t;T ),

the value of zero-coupon bond to be C(r, t;T ), where T is the maturity of the bond, and ci to be

i-th coupon rate, then we have

G(r, t;T ) = C(r, t;T ) +
∑
ti≥t

ciC(r, t; ti)

Often the time, the coupons are separated from the body of the bond (which pays only the principal

amount) and they are traded separately. Thus separated bond is called a stripped bond.

Each coupon entitles the coupon holder to be paid a certain percentage of the face value of the

bond. In most papers and documents (e.g. Hanke, 2003), coupons are treated as paying a certain

percentage of the bond price, which is incorrect. To correct this kind of treating, throughout this

paper, the coupon bearing bond is considered as a portfolio of zero-coupon bearing bonds.

Definition 1.2.7 (Option) The option is a financial derivative which gives the holder the right (but

not the obligation) to buy (”call” option) or to sell (”put” option) a particular asset such as stocks

or bonds at a specified time or time period in the future for previously determined price (”strike

price” or ”exercise price”). If exercise is permitted only at expiry, the options are called ”Euro-

pean” options, and if exercise is allowed at any time before expiry, they are called ”American”

options. �

In the chapters followed, the options are assumed to be European. The payoff functions of call

option and put option are given by

max(S(T )− E, 0) and max(E − S(T ), 0)

respectively, where E is the exercise price and S(T ) is the price of the underlying asset at the

expiration date.

Definition 1.2.8 (Put-Call Parity) If C, P and S are the prices of a call option, a put option and

their underlying asset at time t, respectively, and T is the expiration of the options, then they satisfy

the following equation:

C − P = S − Ee−r(T−t),

7



where r is the risk free interest rate. This relationship is called ”put-call parity”.�

This relationship is useful since once we find the price of the call option, it enables us to find the

price of put option easily and vice versa.

Definition 1.2.9 (Forward) A forward is a contract obligating one party to buy and the other party

to sell a financial instrument, such as stock, bond, commodity or currency at a specific future date.

�

Definition 1.2.10 (Credit Default Swap) The Credit Default Swap (”CDS”) is a bilateral financial

contract in which one counterparty (the ”Protection Buyer”) pays a periodic fee, paid on the no-

tional amount and the other counterparty (the ”Protection Seller”) pays a predetermined amount

in case a credit event with respect to a reference entity occurs. �

The scheme is shown in Figure 1.

Figure 1.: Credit Default Swap

The reference entity is the issuer of the bonds, whose credit event triggers the protection seller’s

obligations. Credit events are precisely defined in each contract; they normally include:

• Bankruptcy,

• Failure to pay interest or principal,

• Obligation default
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(This is where the reference entity’s obligation becomes due as a result of any covenant breach

under the relative obligation contract),

• Obligation acceleration

(This is where the bond-holders demand immediate repayment in full as a result of any covenant

breach of other obligations of the reference entity),

• Reconstruction

(Reconstruction includes events such as a reduction in the principal amount or interest payable

under the obligation, a postponement of payment, a change in ranking in priority of payment or

any other composition of payment.)

The protection buyer does not necessarily need to hold the bonds issued by a reference entity (as

in the case where the buyer deals CDSs for speculation). Credit default swaps are the most traded

derivative on the market of all credit derivatives.

Definition 1.2.11 (Credit default swaption) Credit default swaption is an option on credit default

swap. The underlying credit default swap does not exist during the life of credit default swaption; it

is initiated only upon the exercise of the swaption. �

Example. Let t ≥ 0 be the trading date of the call option, T0 ≥ t be the date at which the forward

credit default swap becomes effective, and TN ≥ T0 be the maturity date of the forward credit

default swap. The expiration date of the option falls on T0. The swaption holder is entitled to enter

the credit default swap (therefore, becomes a protection buyer) at time T0 at the predetermined

periodic fee, say s∗. Let the price of the swaption be X(t) (or X̂(t), 0 ≤ t ≤ T0) as modeled

later. Let s(t) be the periodic fee of a forward credit default swap at time t, with the same reference

entity and the same contract duration as the underlying credit default swap for the swaption; so

that s(T0) is the price of the credit default swap at t = T0. An investor buys the swaption only

if he/she anticipates that the credit of the reference company deteriorates and the market fee at the

time T0, i.e., s(T0) exceeds s∗. This way, if the swaption holder actually holds the bonds issued by

the reference company, it can acquire the credit default swap for less cost. If the swaption holder

does not own the bonds, then it can lock the profit s(T0) − s∗ (ignoring the initial cost) by selling

the protection on the bonds issued by the reference company. Table 1 shows the summary of the
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cashflow in three scenarios. (Note that 1% = 1p = 100bp (basis points).)

Table 1: Cashflow of the Protection Buyer with or without Credit Default Swaption

With Swaption Without Swaption

Case 1 Case 2

Case - The reference entity’s The reference entity’s

financial condition deteriorates financial condition improves

Initial cost X (or X̂) 0 0

Periodic fee s∗=50bp 100bp 25bp

Definition 1.2.12 ((No) Arbitrage Principle) Loosely stated, the principle asserts that ”there is no

such thing as a free lunch.” Formally,

Principle 1: If the value of two portfolios are Π1(t) and Π2(t) at time t, then

Π1(t) ≤ Π2(t) if Π1(T ) ≤ Π2(T ) a.s., t < T

and

Π1(t) = Π2(t) if Π1(T ) = Π2(T ) a.s., t < T

Principle 2: Suppose Π is the value of a risk-free portfolio, and dΠ is its price increment during a

small period of time dt. Then,
dΠ
Π

= rdt,

where r is the risk-free interest rate. �

Definition 1.2.13 (Risk neutral measure) Given a probability space (Ω, F, P ) with filtration {Fn;n =

0, ..., N}, a probability measure Q is said to be risk-neutral if

(1) Q is equivalent to P , i.e. P (A) > 0 if and only if Q(A) > 0 for all A ∈ F , and

(2) the discounted price process S̄ = (S̄n)0≤n≤N is a martingale with respect to (Ω, F, Q) with

filtration {Fn;n = 0, ..., N}. �

Under a risk neutral measure the current price of each security in the economy is equal to the present

value of the discounted expected value of its future payoffs given a risk-free interest rate. Under

a viable market, i.e., under the market where there is no arbitrage opportunities, the Fundamental
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Theorem of Asset Pricing guarantees the existence and the uniqueness of such risk neutral measure.

Its proof can be found in Harrison & Pliska (1981).

If the payoff price of a financial product at time T is H(T ), where H(T ) is a random variable on

the probability space describing the market, and the discount factor from time t = 0 to t = T is

P (0, T ), then the fair price of the product at time t = 0 is given by

H(0) = P (0, T )EQ[H(T )],

where the risk-neutral measure is denoted by Q. If the real world probability measure of H(T ) is

given by P , then H(0) can be also given as

H(0) = EP

[
dQ

dP
H(T )

]
,

where
dQ

dP
is the Radon-Nikodym derivative of Q with respect to P .

The valuation of credit default swaps requires estimating both expected default time and the ex-

pected loss of the reference entity. The risk neutral default probability can be estimated either from

the reference entity’s total asset or from debt market. When we use the total asset, we actually

consider the company’s financial structure; hence default is considered to be an endogenous event,

and the models are called ”structural models”. On the other hand, when we use the data from debt

market to estimate the default probability, we completely ignore the company’s financial structure

and consider default is an exogenous event. These models are called ”intensity” or ”reduced” mod-

els. Both structural models and intensity models have pros and cons; we will examine both models

briefly below.

Definition 1.2.14 (Structural models) Let the market values of the firm asset, the equity, and the

debt of a company at time t be V (t), S(t) and C(t), respectively. Then, we have the relationship

V (t) = S(t)+C(t), which is known as the accounting equation. The left-hand side of this equation

explains how the firm’s money was invested, in a nutshell. The right-hand side of this equation

represents the source of the firm’s assets, that is, how the firm’s money was raised. It should be

noted that while V (t) and C(t) are non-negative, S(t) can assume negative value. In these models,

we assume that V (t) follows a geometric Brownian motion. Then, the payoff R(t) of the debt at it
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maturity T is given by

R(T ) = min
(
C(T ), V (T )

)
.

Therefore, under these models, we conclude that the company has default when the firm asset V (T )

falls below C(T ), or other predetermined barrier (as we will see in Subsection 2.2.1). �

The merits of using structural models are:

• They intuitively make an economic sense, and default is considered as an endogenous event.

• The time of default is not random (as opposed to the intensity model).

• We can assess the value of defaultable debt.

However, these models have the following demerits:

• They are unwieldy to implement.

• They are incoherent with the historical data.

Definition 1.2.15 (Intensity models) In intensity models the time of default is the first jump of an

exogenously given jump process. The parameter governing the default intensity are inferred from

the relative market. The default time is modeled as the first jump of a Poisson process. Let us assume

that the default intensity follows a stochastic process of the form

dp(t) = a(t)dt + s(t)dW (t)

where W (t) is a Brownian motion. If the default time is τ , then, the survival probability at time t is

given by

P[τ > t] = exp
[
−
∫ t

0
p(s)ds

]
.

The default intensity p(t) is the instantaneous rate of default. Let P (t, T ) be the conditional proba-
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bility of survival at time T as seen from time t < T . Then the intensity is obtained by

p(t) = lim
∆t→0

P (t, T )− P (t + ∆t, T )
∆t · P (t, T )

=
−1

P (t, T )
lim

∆t→0

P (t + ∆t, T )− P (t, T )
∆t

= −
∂
∂tP (t, T )
P (t, T )

�

The advantages of these models are:

• They are easy to implement;

• Bond prices derived using these models fit the spread between default-free and defaultable

bonds.

However, the major disadvantage of these models is the fact that there is no direct relationship

between the intensity and the asset value. In these models, the recovery rate will be also exogenously

specified.

Definition 1.2.16 (Frictionless Market) A frictionless market is a market where (i) there are no

transaction costs, no bid-ask spread, no restrictions on trade such as margin requirements or short

sale restrictions; (ii) there are no taxes; (iii) borrowing and lending are done at the same risk-free

interest rate, and (iv) asset shares (stocks or bonds) are divisible, i.e., an investor can buy any

fraction of one stock or one bond certificate. �

Throughout this paper, we assume that all the markets involved are frictionless.

Definition 1.2.17 (Credit Rating) A credit rating assesses the borrowing capacity of an individual

or company. �

Credit ratings are calculated from financial history and current assets and liabilities. Typically, a

credit rating tells a borrower or investor the probability of the borrower being able to pay back a

loan. Ratings can be assigned not only to short-term, long-term debt obligations but also to securities

or bank borrowing. A poor credit rating indicates a high risk of defaulting on a loan, and thus leads

to high interest rates.
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Moody’s, and Standard and Poor’s (S&P’s) are considered to be world-wide top credit-rating agen-

cies. Each of them intends to provide a rating system to help investors determine the risk associated

with investing in a specific company, in an investing instrument or in a market.

Table 2 summarizes the different ratings symbols that Moody’s and Standard and Poor’s issue for

long-term debt obligations (Source: Heakal, R, ”What Is A Corporate Credit Rating?”, Wikipedia).

Table 2: Long-Term Bond Rating System

Moody’s Standard Poor’s Risk

Investment Grade

Aaa AAA The best quality companies, reliable and stable

Aa AA Quality companies, a bit higher risk than AAA

A A Economic situation can affect finance

Baa BBB Medium class companies, which are satisfactory at the moment

Non-Investment/Speculative Grade (also known as junk bonds)

Ba BB More prone to changes in the economy

B B Financial situation varies noticeably

Caa CCC Currently vulnerable and dependent on favorable

economic conditions to meet its commitments

Ca CC Highly vulnerable, very speculative bonds

C C Highly vulnerable, perhaps in bankruptcy or in arrears

but still continuing to pay out on obligations

Ratings can be assigned to short-term and long-term debt obligations as well as securities, loans,

preferred stock and insurance companies. Long-term credit ratings tend to be more indicative of a

country’s investment surroundings and/or a company’s ability to honor its debt responsibilities.

1.3 Black-Scholes Formulas

The derivation of the corporate coupon-bond in this paper has many similarities to the derivation of

the Black-Sholes formulas. The Black-Scholes theory has its origin in the seminal paper ”The Pric-
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ing of Options and Corporate Liabilities,” by Black & Scholes (1973) and has been most widely

cited in option pricing. The Black-Scholes Formula gives the price of a European call option

C(St, T ) with exercise price K on a stock currently trading at price St, i.e., the right to buy a

share of the stock at price K after T years. The constant interest rate is r, and the constant stock

volatility is σ. The formula is given by

C(S, T ) = StΦ(d1)−Ke−rT Φ(d2) (1.1)

where

d1 =
ln(St/K) + (r + σ2/2)T

σ
√

T
and d2 = d1 − σ

√
T (1.2)

In the following subsections, we will show two approaches to derive this formula: (i) PDE approach,

and (ii) Martingale approach. In derivation, please note that we assume that the market is frictionless

and the price of the underlying instrument St follows the lognormal model, that is, it satisfies the

following stochastic differential equation :

dSt = µStdt + σStdWt, (1.3)

where S0 > 0, the drift µ and volatility σ are constants, (Wt) is a Brownian motion defined on a

filtered probability space (Ω, F, (Ft), P ), where Ft = σ(Ws, s ≤ t).

1.3.1 PDE Approach

The Black-Scholes PDE was first introduced in ”The Pricing of Options and Corporate Liabilities,”

by Black & Scholes (1973). In this approach, the idea of hedging and arbitrage was used. First we

construct a portfolio consisting of one derivative C and ϕ units of the underlying instrument S. The

value of the portfolio is Π = V + ϕS. Then the change in price of the portfolio over a small time

increment is given by

dΠ = dC + ϕdS

=
∂C

∂S
dS +

∂C

∂t
dt +

1
2

∂2C

∂s2
σ2S2dt + ϕdS

By lognormal model (1.3)

=
(∂C

∂S
+ ϕ

)
σSdW +

(∂C

∂S
+ ϕ

)
µSdt +

∂C

∂t
dt +

1
2
σ2S2 ∂2C

∂s2
dt (1.4)
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By choosing ϕ so that uncertainty caused by dW -term is eliminated completely, i.e., by setting

ϕ = −∂C

∂S
, and, applying the arbitrage principle, we obtain the following Black-Scholes PDE:

∂C

∂t
+

1
2
σ2S2 ∂2C

∂S2
+ rS

∂C

∂S
− rC = 0 (1.5)

where r is the risk-free interest rate and 0 ≤ t ≤ T .

If the derivative in discussion is a call option on some financial instrument with exercise price K

and expiration T , then after applying changes of variables and Fourier Transformation, we will find

the Black-Scholes Formulas (1.1) and (1.2) as a solution for the Black-Scholes PDE.

1.3.2 Martingale Approach

Harrison & Kreps (1979) and Harrison & Pliska (1981) showed that a natural mathematical frame-

work for analysis of financial markets is martingale theory and stochastic analysis.

Let the process (Bt) be the value of the risk-free account satisfying dBt = rBtdt with B0 = 1.

Let {a, b} be a pair of Ft−adapted process (which is called a ”trading strategy”), where a(t) and

b(t) are numbers of the units of the asset and the risk-free account at time t, respectively. Then, the

value of the trading strategy at time t of a portfolio {a(t), b(t)} is given by

Vt = a(t)St + b(t)Bt

Lemma 1.3.1 A trading strategy is self-financing (meaning the change of the value of the trading

strategy is due to the changes in the assets prices), i.e., dVt = a(t)dSt + b(t)dBt if and only if its

discounted wealth process Ṽt satisfies

dṼt = a(t)dS̃t. (1.6)

Its proof is found in Yan & Ju (1999). Note that we can rewrite (1.3) as

dS̃t = S̃t

[
(µ− r)dt + σdWt

]
(1.7)

and by putting dQ
dP |Ft = exp{−µ−r

σ WT − 1
2(µ−r

σ )2T}, we have Q-Brownian motion W ∗
t = Wt +

µ−r
σ t by the Girsanov’s theorem, and

dS̃t = S̃tσdW ∗
t , (1.8)
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so that (S̃t) is a Q-martingale.

Theorem 1.3.2 Let ξ = f(ST ) be a European contingent claim under Q-martingale. Then there

exists an admissible self-financing strategy {a, b} replicating ξ such that its value process (Vt) is

given by

Vt = E∗[e−r(T−t)ξ|Ft] (1.9)

or equivalently, the discounted process (Vt) is a Q-martingale.

Its proof can be found in Yan & Ju (1999). Note that we can say that Vt is the fair price at time t of

the contingent claim ξ since there is no arbitrage opportunity at this price.

Corollary 1.3.3 Under the assumption of Theorem 1.3.2, we have Vt = F (t, St), where

F (t, x) = e−r(T−t)

∫ ∞

∞
f
(
xe(r−σ2)(T−t)+σy

√
T−t
)e−y2/2

√
2π

dy. (1.10)

If we consider a European call option ξ = (ST − K)+, whose price is Vt = C(t, St), its price is

given by (1.1) and (1.2).
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Chapter 2

Defaultable Corporate Coupon-Bond Pricing with Constant Interest Rate

In this chapter, we will find the price of corporate coupon-bond. In the first section, we consider

default as an exogenous event, therefore, default is an unexpected. In the second section, in addition

to exogenous cause, we take an endogenous event into consideration as a possible cause for default.

2.1 Corporate Coupon-Bond with Constant Interest Rate - Unexpected Default

2.1.1 Formulation

In this section, we will assume the following. As suggested in the introduction, we consider coupon

bearing bonds as a portfolio of zero-coupon bonds consisting of one principal portion due on the

maturity date and coupons due on coupon payment days. And throughout Chapters 2 and 3, we will

assume that the risk-free short-term rate r is constant.

Assumption 1: Default is an exogenous event. Unexpected default probability in [t, t + dt] is ptdt.

If coupon is not due on the interval, then the default intensity p(t) = pt follows

dp = ap(p, t)dt + sp(p, t)dW1.

where ap(p, t) and sp(p, t) are the drift and the volatility of p respectively. On predetermined coupon

payment date t = τj , where j refers to j-th interest payment and j = 1, 2, . . . , n (this means that

τn = T , where T is the maturity of the bond), and the jump of pt is given by

∆p = pτj − pτj− = pτj−Uj
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where Uj is a jump size at t = τj . A sequence (Uj)1≤j≤n is independent, identically distributed

random variable taking values in [x, 0] with −1 < x < 0. Thus pτj = pτj−(1 + Uj). So we have

pt = p0 +
∫ t

0
ap(p, t) dt +

∫ t

0
sp(p, t) dW +

Nt∑
j=1

pτj−Uj ,

where Nt is the number of interest payments up to time t. This is right- continuous, adapted process

with finite and predetermined discontinuities.

Hence, for any interval [t, t + dt],

dp = ap(p, t)dt + sp(p, t)dW1 + pτj−UjI{τj∈(t,t+dt]},

where I{τj∈(t,t+dt]} is an indicator function taking 1 when τj ∈ (t, t + dt] and 0 otherwise.

Assumption 2: Default recovery, i.e., the recoverable amount of a defaulted bond, is given either in

the form of face value exogenous recovery (R · e−r(T−t) where R is constant with 0 ≤ R ≤ 1 , and

T is the maturity of the bond) or in the form of market price exogenous recovery (R× bond price at

default time).

Assumption 3: The defaultable corporate coupon-bond price is given by the function Ĝ = Ĝ(p, t),

which constitutes of Ĉ = Ĉ(p, t), the value at time t of the principal portion only, ciĈ(p, t; τi)

which is the value at time t of i-th coupon due on τi. Therefore, we have

Ĝ(p, t) = Ĉ(p, t) +
∑
τi≥t

ciĈ(p, t; τi). (2.1)

Problem: Under these assumptions, find the price of defaultable corporate coupon-bond.

2.1.2 Derivation of the model

By the variation of Ito Formula for jump diffusion, if there is no default (with probability 1− ptdt),

we have
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dĈ =
∂Ĉ

∂t
dt +

∂Ĉ

∂p
dp +

1
2

∂2Ĉ

∂p2
(dp)2 + {Ĉ(pτj , t)− Ĉ(pτj−, t)}I{τj∈(t,t+dt]}

=
∂Ĉ

∂t
dt +

∂Ĉ

∂p
dp +

1
2

∂2Ĉ

∂p2
(apdt + spdW )2 + {Ĉ(pτj , t)− Ĉ(pτj−, t)}I{τj∈(t,t+dt]}

=
∂Ĉ

∂t
dt +

∂Ĉ

∂p
dp +

1
2
s2
p

∂2Ĉ

∂p2
dt + {Ĉ(pτj , t)− Ĉ(pτj−, t)}I{τj∈(t,t+dt]}.

In case there is a default (with probability ptdt), the change in price will be given by

dĈ = R− Ĉ

where R is the default recovery, which, later in the computation, we shall use its face value exoge-

nous recovery. Note that in the event of a default, the bonds shall not be traded and the buyer shall

be entitled to receive its recovery amount.

We construct a hedged portfolio by hedging one bond with another bond with different maturity.

Let us denote the prices of these bonds by Ĉi = Ĉi(p, t;Ti), i = 1, 2. Here, Ti is the maturity of

each bond. Let Ri be the recovery rate for each. Assume that coupon payment dates for both bonds

are the same. Now construct a portfolio:

Π = Ĉ1 − ΛĈ2.

The change of value in this portfolio over a small time increment [t, t + dt] is given by

dΠ = dĈ1 − ΛdĈ2.

At the same time, by the Arbitrage Principle, we must have dΠ = rΠdt.

If there is no default, we have

dΠ =

(
∂Ĉ1

∂t
+

1
2
s2 ∂2Ĉ1

∂p2

)
dt +

∂Ĉ1

∂p
dp + {Ĉ1(pτj , t)− Ĉ1(pτj−, t)}I{τj∈(t,t+dt]}

−Λ

[(
∂Ĉ2

∂t
+

1
2
s2 ∂2Ĉ2

∂p2

)
dt +

∂Ĉ2

∂p
dp + {Ĉ2(pτj , t)− Ĉ2(pτj−, t)}I{τj∈(t,t+dt]}

]
.

To get rid of uncertainty caused by dp term, we choose

Λ =
∂Ĉ1

∂p

(
∂Ĉ2

∂p

)−1

.

20



Then,

dΠ =

∂Ĉ1

∂t
+

1
2
s2 ∂2Ĉ1

∂p2
− ∂Ĉ1

∂p

(
∂Ĉ2

∂p

)−1(
∂Ĉ2

∂t
+

1
2
s2 ∂2Ĉ2

∂p2

) dt

+({Ĉ1(pτj , t)− Ĉ1(pτj−, t)}I{τj∈(t,t+dt]}

−∂Ĉ1

∂p

(
∂Ĉ2

∂p

)−1

{Ĉ2(pτj , t)− Ĉ2(pτj−, t)}I{τj∈(t,t+dt]}).

If there is a default, the price change in the portfolio is

dΠ = (R1 − Ĉ1)−
∂Ĉ1

∂p

(
∂Ĉ2

∂p

)−1

(R2 − Ĉ2).

Taking the expectation of dΠ = dĈ1−ΛD̂2 = rΠdt and neglecting the higher order of infinitesimal

of dt-term, we have∂Ĉ1

∂t
+

1
2
s2 ∂2Ĉ1

∂p2
− ∂Ĉ1

∂p

(
∂Ĉ2

∂p

)−1(
∂Ĉ2

∂t
+

1
2
s2 ∂2Ĉ2

∂p2

) dt

+

((
Ĉ1(pτj , t)− Ĉ1(pτj−, t)

)
I{τj∈(t,t+dt]}

− ∂Ĉ1

∂p

(
∂Ĉ2

∂p

)−1 (
Ĉ2(pτj , t)− Ĉ2(pτj−, t)

)
I{τj∈(t,t+dt]}

)
(1− ptdt)

+

(R1 − Ĉ1)−
∂Ĉ1

∂p

(
∂Ĉ2

∂p

)−1

(R2 − Ĉ2)

 ptdt

= r

Ĉ1 −
∂Ĉ1

∂p

(
∂Ĉ2

∂p

)−1

C2

 dt,

which yields[(
∂Ĉ1

∂t
+

1
2
s2 ∂2Ĉ1

∂p2
−
(
{Ĉ1(pτj , t)− Ĉ1(pτj−, t)}I{τj∈(t,t+dt]} − (R1 − Ĉ1)

)
pt − rĈ1

)
dt

+ {Ĉ1(pτj , t)− Ĉ1(pτj−, t)}I{τj∈(t,t+dt]}

](
∂Ĉ1

∂p

)−1

=

[(
∂Ĉ2

∂t
+

1
2
s2 ∂2Ĉ2

∂p2
−
(
{Ĉ2(pτj , t)− Ĉ2(pτj−, t)}I{τj∈(t,t+dt]} − (R2 − Ĉ2)

)
pt − rĈ2

)
dt

+ {Ĉ2(pτj , t)− Ĉ2(pτj−, t)}I{τj∈(t,t+dt]}

](
∂Ĉ2

∂p

)−1

.

21



The left hand side of this equation is a function of T1 but not T2, and the right hand side of this

equation is a function of T2 but not T1, so both sides must be functions independent of their maturity

date, say −ap(p, t)dt. Therefore, we have the equation for corporate coupon bond with default

intensity pt, taking the recovery assumption into consideration:

[∂Ĉ

∂t
+

1
2
s2 ∂2Ĉ

∂p2
+ ap

∂Ĉ

∂p

−
(
{Ĉ(pτj , t)− Ĉ(pτj−, t)}Iτj∈(t,t+dt] − (R · e−r(T−t) − Ĉ)

)
pt − rĈ

]
dt

+
(
Ĉ(pτj , t)− Ĉ(pτj−, t)

)
Iτj∈(t,t+dt] = 0. (2.2)

Here ap is a risk neutral drift of pt. We can write ap in the form ap(p, t) = a(p, t)− s(p, t)λ(p, t),

where λ(p, t) = a(p,t)−ap(p,t)
s(p,t) is called a market price risk of pt and measures an extra compensation

per unit of risk for taking on the risk incurred by pt. In the computation below, we assume that

λ(p, t) = 0, so that ap(p, t) = a(p, t).

Note that the probability of the survival of the bond at time T , given it was not defaulted at time

t(< T ), denoted by P (t, T ) is given by

P (t, T ) = e−
R T

t p(s) ds (2.3)

and since pt = p0 +
∫ t
0 ap(p, t) dt +

∫ t
0 sp(p, t) dW +

∑Nt
j=1 pτj−Uj , we have

P (τj−, τj) = e−pτj−Uj . (2.4)

Now, in addition to the previous assumptions, let us also assume the following.

Assumption 4: The defaultable coupon bond price at time t = τj− is the expectation of the price at

time t = τj with respect to the survival probability measure P , i.e.,

Ĉ(p, τj−) = E(Ĉ(p, τj))

= Ĉ(p, τj) · P (τj−, τj)) + R · e−r(T−τj)(1− P (τj−, τj))

= Ĉ(p, τj)e
−pτj−Uj + R · e−r(T−τj)(1− e−pτj−Uj ). (2.5)
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Especially, if t = T− = τn−, we have

Ĉ(p, T−) = 1 · P (T−, T ) + R · (1− P (T−, T ))

= e−pT−Un + R · (1− e−pT−Un)

and C(p, T ) = 1 if there is not default until t = T . �

In addition, since as the default intensity increases, the company is more likely to get defaulted we

have the following boundary condition:

lim
p→∞

Ĉ(p, t) = R.

If p = 0, then it implies that the bond is default-free. Therefore we also have the following boundary

condition.

Ĉ(p = 0, t) = e−r(T−t).

Since these boundary conditions are not used in solving the equation, they will not be repeated

below.

Then the equation (2.2) on each time interval [τj−1, τj) becomes the following

∂Ĉ

∂t
+

1
2
s2 ∂2Ĉ

∂p2
+ a

∂Ĉ

∂p
+ (R · e−r(T−t) − Ĉ)pt − rĈ = 0

or
∂Ĉ

∂t
+

1
2
s2 ∂2Ĉ

∂p2
+ a

∂Ĉ

∂p
− (r + pt)Ĉ + R · e−r(T−t)pt = 0

with the terminal condition:

Ĉ(p, τj−) = Ĉ(p, τj)e
−pτj−Uj + R · e−r(T−τj)(1− e−pτj−Uj ). (2.6)

This is a nonhomogeneous parabolic equation with variable coefficients and a terminal condition.

First we will solve this on the time interval [τn−1, T ), i.e.,
∂Ĉ

∂t
+

1
2
s2 ∂2Ĉ

∂p2
+ a

∂Ĉ

∂p
− (r + pt)Ĉ + R · e−r(T−t)pt = 0 (τn−1 ≤ t < T, p > 0),

Ĉ(p, T−) = Ĉ(p, T ) · e−pT−Un + R · (1− e−pT−Un) (p > 0).
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By letting

Ĉ = ue−r(T−t), (2.7)

we have
∂u

∂t
+

1
2
s2 ∂2u

∂p2
+ a

∂u

∂p
− pt(u−R) = 0 (τn−1 ≤ t < T, p > 0),

u(p, T−) = e−pT−Un + R · (1− e−pT−Un) = e−pT−Un(1−R) + R (p > 0),
(2.8)

since Ĉ(p, T ) = 1.

Using the change of unknown function

û = u−R, (2.9)
∂û

∂t
+

1
2
s2 ∂2û

∂p2
+ a

∂û

∂p
− ptû = 0 (τn−1 ≤ t < T, p > 0),

û(p, T−) = u−R = [e−pT−Un(1−R) + R]−R = e−pT−Un(1−R) (p > 0).

By a further change of the unknown function to W = W (p, t) so that

û = We−pT−Un(1−R), (2.10)

We obtain the terminal value problem on the unknown W :
∂W

∂t
+

1
2
s2 ∂2W

∂p2
+ a

∂W

∂p
− ptW = 0 (τn−1 ≤ t < T, p > 0),

W (p, T−) = 1 (p > 0).
(2.11)

From (2.7), (2.9), and (2.10), we can express the price of defaultable coupon bonds for τn−1 ≤ t <

T in terms of W as follows:

Ĉ(p, t) = ue−r(T−t) = (û + R)e−r(T−t)

=
(
We−pT−Un(1−R) + R

)
e−r(T−t)

= (We−pT−Un)e−r(T−t) + (1−We−pT−Un)R · e−r(T−t).

Ĉ(p, t) is considered to be the expectation of the bond price at time t . So We−pT− can be regarded

as the probability of survival at time t and 1−We−pT− as probability of default at time t.
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In solving (2.11), we will follow Wilmott (1998) and O et al (2005) and restrict a(p, t) and s(p, t)

to the following cases.

Assumption 5: a(p, t) and s2(p, t) are linear in p,

a(p, t) = b(t)− c(t)p, (2.12a)

s2(p, t) = d(t) + e(t)p. (2.12b)

Assume that the solution of (2.11) is given in the form:

W (p, t) = eA(t,T−)−B(t,T−)p.

Then, since
∂W

∂t
= (A′ −B′p)W

∂W

∂p
= −WB

∂2W

∂p2
= WB2

where A′ and B′ are derivatives of A and B with respect to t, respectively; substituting these in

(2.11) gives

A′ +
1
2
d(t)B2 − b(t)B + p

(
−B′ +

1
2
e(t)B2 + c(t)B − 1

)
= 0.

This holds for any value of p, so we must have
A′ + 1

2d(t)B2 − b(t)B = 0,

−B′ + 1
2e(t)B2 + c(t)B − 1 = 0.

(2.13)

Note that since W (p, T−) = 1 from (2.11), we have A(T−, T−) = B(T−, T−) = 0. Once we

solve for B in the second equation in (2.13), we can find A from the first equation as follows:

A(t, T−) = −
∫ T−

t

(
b(s)B(s, T−)− 1

2
d(s)B2(s, T−)

)
ds.

In solving (2.13), we will restrict (2.12) to the following cases: (i) c(t) ≡ c(constant); e(t) ≡ 0, (ii)

c(t) ≡ 0; e(t) ≡ K > 0(constant).

Case (i): c(t) ≡ c(constant); e(t) ≡ 0. Then, we have

dp = (b(t)− c · p)dt +
√

d(t) · dW1.
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This case covers Vasicek model (b, c, d are constant; e = 0), Ho-Lee model (c = 0, e = 0, d is

constant) and Hull-White model (c, d are constant e = 0). Then, the second equation in (2.13)

becomes

B′ = cB − 1,

and the solution is

B(t, T−) =


1− e−c(T−t)

c
, c 6= 0,

T − t, c = 0.

Case (ii): c(t) ≡ 0; e(t) ≡ K > 0 (constant). Then we have

dp = b(t)dt +
√

d(t) + K · p · dW1.

This case covers Merton model (b, d are constant; c = 0, e = K = 0). Then the second equation in

(2.13) becomes

B′ − K

2
B2 + 1 = 0.

Letting x =
√

K
2 B,

dx

1− x2
= −

√
K

2
dt.

Integrating both sides, we obtain

1
2
· ln
∣∣∣∣1 + x

1− x

∣∣∣∣+ k = −
√

K

2
t.

Using the terminal condition x(T−, T−) =
√

K
2 B(T−, T−) = 0, k = −

√
K
2 T . By substituting

B back in x and solving for B, we obtain the following:

B(t, T−) = −
√

2
c
·
exp(

√
c
2(T − t))− exp(−

√
c
2(T − t))

exp(
√

c
2(T − t)) + exp(−

√
c
2(T − t))

.

Therefore, assuming that the price of defaultable coupon bond at time t = T− = τn− is Ĉ(p, T−) =

Ĉ(p, τn−) = e−pT−Un +R ·(1−e−pT−Un) , the price on defaultable coupon bond for τn−1 ≤ t < T

is given by

Ĉ(p, t) = eA(t,T−)−B(t,T−)pt−pT−Un−r(T−t) + (1− eA(t,T−)−B(t,T−)pt−pT−Un)R · e−r(T−t)
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where

A(t, T−) = −
∫ T−

t

(
b(s)B(s, T−)− 1

2
d(s)B2(s, T−)

)
ds (2.14)

and

B(t, T−) =



1−e−c(T−t)

c , dp = (b(t)− c · p)dt +
√

d(t) · dW1, c 6= 0

τn − t, dp = (b(t)− c · p)dt +
√

d(t) · dW1, c = 0

−
√

2
c ·

exp(
√

c
2
(T−t))−exp(−

√
c
2
(T−t))

exp(
√

c
2
(T−t))+exp(−

√
c
2
(T−t))

, dp = b(t)dt +
√

d(t) + K · p · dW1.

(2.15)

Letting t = τn−1, we have the value for Ĉ(p, τn−1),

Ĉ(p, τn−1) = eA(τn−1,T−)−B(τn−1,T−)pτn−1−pT−Un−r(T−τn−1)

+ (1− eA(τn−1,T−)−B(τn−1,T−)pτn−1−pT−Un)R · e−r(T−τn−1),

and then we can get the terminal condition on the interval [τn−2, τn−1) from (2.6), which is:

Ĉ(p, τ(n−1)−) = Ĉ(p, τn−1)e
−pτ(n−1)−Un−1 + R · e−r(T−τn−1)(1− e

−pτ(n−1)−Un−1)

= e−r(T−τn−1)

e
D(τn−1,T−)−

nP
j=n−1

pτj−Uj

+ R(1− e
D(τn−1,T−)−

nP
j=n−1

pτj−Uj

)


where D(τn−1, T−) = A(τn−1, T−)−B(τn−1, T−)p(τ(n−1)).

From (2.6) with j = n− 1, we have:



∂Ĉ

∂t
+

1
2
s2 ∂2Ĉ

∂p2
+ a

∂Ĉ

∂p
− (r + pt)Ĉ −R · e−r(T−t)pt = 0

(τn−2 ≤ t < τn−1, p > 0),

Ĉ(p, τ(n−1)−) = e−r(T−τn−1)

e
D(τn−1,T−)−

nP
j=n−1

pτj−Uj

+ R(1− e
D(τn−1,T−)−

nP
j=n−1

pτj−Uj

)


(p > 0).
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As before, letting Ĉ = ue−r(T−t), we have

∂u

∂t
+ 1

2s2 ∂2u

∂p2
+ a

∂u

∂p
− pt(u−R) = 0 (τn−2 ≤ t < τn−1, p > 0),

u(p, τ(n−1)−) = e
D(τn−1,T−)−

nP
j=n−1

pτj−Uj

(1−R) + R (p > 0).

(2.16)

Again, using the change of unknown function

û = u−R,
∂û

∂t
+ 1

2s2 ∂2û

∂p2
+ a

∂û

∂p
− ptû = 0 (τn−2 ≤ t < τn−1, p > 0),

û(p, τ(n−1)−) = u−R = e
D(τn−1,T−)−

nP
j=n−1

pτj−Uj

(1−R) (p > 0).

Using the change of unknown function W = W (p, t) so that

û = We
D(τn−1,T−)−

nP
j=n−1

pτj−Uj

(1−R),
∂W

∂t
+

1
2
s2 ∂2W

∂p2
+ a

∂W

∂p
− ptW = 0 (τn−2 ≤ t < τn−1, p > 0),

W (p, τ(n−1)−) = 1 (p > 0).

Again we set W (p, t) = eA(t,τ(n−1)−)−B(t,τ(n−1)−)p.

So we can write Ĉ(p, t) in terms of W as

Ĉ(p, t) = (We
D(τn−1,T−)−

nP
j=n−1

pτj−Uj

)e−r(T−t) +(1−We
D(τn−1,T−)−

nP
j=n−1

pτj−Uj

)R ·e−r(T−t).

As before we find A(t, τ(n−1)−) and B(t, τ(n−1)−) as follows:

A(t, τ(n−1)−) = −
∫ τ(n−1)−

t

(
b(s)B(s, τ(n−1)−)− 1

2
d(s)B2(s, τ(n−1)−)

)
ds

and

B(t, τ(n−1)−) =



1− e−c(τn−1−t)

c
, dp = (b(t)− c · p)dt +

√
d(t) · dW1, c 6= 0

τn−1 − t, dp = (b(t)− c · p)dt +
√

d(t) · dW1, c = 0

−
√

2
c ·

e
√

c
2
(τn−1−t) − e−

√
c
2
(τn−1−t)

e
√

c
2
(τn−1−t) + e−

√
c
2
(τn−1−t)

,

dp = b(t)dt +
√

d(t) + K · p · dW1.
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So for τn−2 ≤ t < τn−1, we have

Ĉ(p, t) =

e
D(τ(n−1)−,T−)+A(t,τ(n−1)−)−B(t,τ(n−1)−)pt−

nP
j=n−1

pτj−Uj

 e−r(T−t)

+

1− e
D(τ(n−1)−,T−)+A(t,τ(n−1)−)−B(t,τ(n−1)−)pt−

nP
j=n−1

pτj−Uj

R · e−r(T−t).

By extending this backwards, we have the following result.

Theorem 1. Under Assumptions 1 through 5, the price of the defaultable corporate coupon-bond

for any 0 ≤ t < T , with τj−1 ≤ t < τj , is given by

Ĝ(p, t) = Ĉ(p, t) +
∑
τj≥t

Ĉ(p, t; τj) (2.17)

Ĉ(p, t) =

e
A(t,T−)−B(t,T−)pt−

nP
k=j

pτk−Uk

 e−r(T−t)

+

1− e
A(t,T−)−B(t,T−)pt−

nP
k=j

pτk−Uk

R · e−r(T−t) (2.18)

where

A(t, T−) = −
∫ τj−

t

(
b(s)B(s, τj−)− 1

2
d(s)B2(s, τj−)

)
ds

−
n∑

k=j+1

∫ τk−

τk−1

(
b(s)B(s, τk−)− 1

2
d(s)B2(s, τk−)

)
ds (2.19)
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and

B(t, T−) =



n− (j − 1)− e−c(τj−t) −
n∑

k=j+1

e−c(τk−τk−1)

c
,

if dp = (b(t)− c · p)dt +
√

d(t) · dW1 + pτj−UjI{τj∈(t,t+dt]}, c 6= 0

T − t,

if dp = (b(t)− c · p)dt +
√

d(t) · dW1 + pτj−UjI{τj∈(t,t+dt]}, c = 0

−
√

2
c ·

e
√

c
2
(τj−t) +

n∑
k=j+1

e
√

c
2
(τk−τk−1) − e−

√
c
2
(τj−t) −

n∑
k=j+1

e−
√

c
2
(τk−τk−1)

e
√

c
2
(τj−t) +

n∑
k=j+1

e
√

c
2
(τk−τk−1) + e−

√
c
2
(τj−t) +

n∑
k=j+1

e−
√

c
2
(τk−τk−1)

,

if dp = b(t)dt +
√

d(t) + K · p · dW1 + pτj−UjI{τj∈(t,t+dt]}

(2.20)

with, on each time interval, τj−1 ≤ t < τj

B(t, τj−) =



1− e−c(τj−t)

c
, dp = (b(t)− c · p)dt +

√
d(t) · dW1, c 6= 0

τj − t, dp = (b(t)− c · p)dt +
√

d(t) · dW1, c = 0

−
√

2
c ·

e
√

c
2
(τj−t) − e−

√
c
2
(τj−t)

e
√

c
2
(τj−t) + e−

√
c
2
(τj−t)

, dp = b(t)dt +
√

d(t) + K · p · dW1.

(2.21)

In this section, we assumed that the solution to (2.11) is given in the exponential form. This is

because the intensity model is considered to be an extension of the hazard rate model, which has

a solution in the exponential form. It should be also noted that the Black-Scholes equation admits

the exponential solution form via exponential transformation. While the Black-Scholes equation

has constant drift and constant volatility, we assumed that the drift and the volatility of our PDE are

dependent on the intensity and time.
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2.2 Corporate Coupon-Bond with Constant Interest Rate - Expected and Unexpected De-

fault

Under this section, we consider default event as both exogenous and endogenous event. While

exogenous cause occurs outside the company’s control (so we will use default intensity as in the

previous section), in case of endogenous cause, the company decides to file bankruptcy when its

total asset hits the predetermined barrier.

2.2.1 Formulation

Assumption 1: The firm assets V = V (t) = Vt consists of m shares of traded stock, whose price at

time t is S = S(t) = St, and n coupon-bond certificates, whose price at time t is C = C(t) = Ct:

Vt = mSt + nCt. (2.22)

The firm assets value also follows the geometric Brownian motion (drift aV , volatility sV : constants)

on [t, t + dt] if coupon is not due on the interval,

dV = aV Vtdt + sV VtdW2, (2.23)

and on predetermined coupon payment dates t = τj , where j refers to j-th interest payment, j =

1, . . . , n, the jump of Vt is given by

∆Vτj = Vτj − Vτj− = ncC(T ) = nc,

where c is the coupon rate of the bonds and T is the maturity of the bond. (Here we assume that the

bonds are redeemed at their face value; therefore, C(T ) = 1.)

Assumption 2: Unexpected default intensity is given by

pt = p0 +
∫ t

0
a(p, t) dt +

∫ t

0
s(p, t) dW1 +

Nt∑
j=1

pτj−Uj ,

where Nt is the number of interest payments up to time t. This is right- continuous, adapted pro-

cess with finite and predetermined discontinuities. We assume that E(dW1 · dW2) = 0, that is,

unexpected default is not correlated with the asset value of the company.
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Assumption 3: Expected default occurs when

V ≤ Vb(t); Vb(t) = VB or VBe−r(T−t),

where VB is constant and T is the maturity of the bonds.

Assumption 4: The defaultable corporate coupon-bond price is given by the function G = G(V, p, t),

which constitutes of C = C(V, p, t), the value at time t of the principal portion only, and ci, the i-th

coupon with ciC(V, p, t; τi) to be the value at time t of i-th coupon due on τi. Therefore, we have

G(V, p, t) = C(V, p, t) +
∑
τi≥t

ciC(V, p, t; τi).

Assumption 5: Expected and unexpected default recovery is Rd = R · e−r(T−t); 0 ≤ R ≤ 1;

constant.

Problem: Under these assumptions, we will find the corporate bond price of defaultable corporate

coupon-bond with both expected and unexpected default, which is given as a function of V, p and t,

that is G = G(V, p, t).

2.2.2 Derivation of the Model

We will form a portfolio by buying one bond certificate under consideration and selling Λ1 shares

of traded stock and Λ2 certificates of corporate coupon bond with unexpected default only, whose

pricing was considered in the previous section and here assumed to be traded. That is,

Π = C − Λ1S − Λ2Ĉ. (2.24)

So the price change of the portfolio over a small increment of time dt is given by

dΠ = dC − Λ1dS − Λ2dĈ. (2.25)

From (2.22), S = V−nC
m . Substituting this in (2.24) and (2.25),

Π = (1 +
Λ1n

m
)C − Λ1

m
V − Λ2Ĉ (2.26)
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and

dΠ = (1 +
Λ1n

m
)dC − Λ1

m
dV − Λ2dĈ.

If there is no unexpected default in time interval [t, t + dt] with probability 1− ptdt, noting that we

assumed that unexpected default is not correlated with the total asset value of the company, by Ito

formula, the value change in the portfolio is given by

dΠ =
(

1 +
Λ1n

m

)
dC − Λ1

m
dV − Λ2dĈ

=
(

1 +
Λ1n

m

)[((∂C

∂t
+

1
2
[s2

p

∂2C

∂p2
+ s2

V V 2 ∂2C

∂V 2
]
)

dt
)

+
∂C

∂V
dV +

∂C

∂p
dp

+{C(V, pτj , t)− C(V, pτj−, t)}I{τj∈(t,t+dt]}

+{C(V − nc, pt, t)− C(V, pt, t)}I{τj∈(t,t+dt]}

]
− Λ1

m
dV

−Λ2

(
(
∂Ĉ

dt
+

1
2
s2
p

∂2Ĉ

∂p2
)dt +

∂Ĉ

dp
dp + {Ĉ(pτj , t)− Ĉ(pτj−, t)}I{τj∈(t,t+dt]}

)
.

(2.27)

We will choose Λ1 and Λ2 so that we can get rid of uncertainty caused by dV and dp terms, i.e.,

(1 +
Λ1n

m
)
∂C

∂V
− Λ1

m
= 0, (1 +

Λ1n

m
)
∂C

∂p
− Λ2

∂Ĉ

∂p
= 0.

Solving for Λ1 and Λ2,

Λ1 = m
∂C

∂V

(
1− n

∂C

∂V

)−1

,

Λ2 =
∂C

∂p

(
∂Ĉ

∂p

)−1(
1− n

∂C

∂V

)−1

, and(
1 +

Λ1n

m

)
=
(

1− n
∂C

∂V

)−1

.

Substituting these in (2.27),

dΠ =
(

1− n
∂C

∂V

)−1 [(
∂C

∂t
+

1
2
[s2

p

∂2C

∂p2
+ s2

V V 2 ∂2C

∂V 2
]
)

dt

+{C(V, pτj , t)− C(V, pτj−, t)}I{τj∈(t,t+dt]} + {C(V − nc, pt, t)− C(V, pt, t)}I{τj∈(t,t+dt]}

]

−∂C

∂p

(
∂Ĉ

∂p

)−1(
1− n

∂C

∂V

)−1 (
[
∂Ĉ

dt
+

1
2
s2

p

∂2Ĉ

∂p2
]dt + {Ĉ(pτj , t)− Ĉ(pτj−, t)}I{τj∈(t,t+dt]}

)
. (2.28)

33



In case of default, with probability ptdt, the price change in C and Ĉ are given by

dC = Rd − C and dĈ = R̂− Ĉ,

where R̂ refers to the recovery rate of bond price with unexpected default only. Then, the price

change in the portfolio is

dΠ =
(

1 +
Λ1n

m

)
(Rd − C)− Λ1

m
(dV )− Λ2(R̂− Ĉ)

=
(

1− n
∂C

∂V

)−1 [
(Rd − C)− ∂C

∂V
dV − ∂C

∂p

(
∂Ĉ

∂p

)−1

(R̂− Ĉ)
]
. (2.29)

By the arbitrage principle, the expectation of dΠ must be equal to rΠdt. That is we have the

following:

(2.28)× (1− ptdt) + (2.29)× ptdt = rΠdt (= r × (2.26)× dt).

Therefore,(
∂C

∂t
+

1
2
[
s2
p

∂2C

∂p2
+ s2

V V 2 ∂2C

∂V 2

]
+ rV

∂C

∂V
− rC−

{
{C(V, pτj , t)−C(V, pτj−, t)}I{τj∈(t,t+dt]}

+ {C(V − nc, pt, t)− C(V, pt, t)}I{τj∈(t,t+dt]}

}
pt + (Rd − C)pt

)
dt

+
{
{C(V, pτj , t)− C(V, pτj−, t)}I{τj∈(t,t+dt]} + {C(V − nc, pt, t)− C(V, pt, t)}I{τj∈(t,t+dt]}

}
=

∂C

∂p

(
∂Ĉ

∂p

)−1 [{
∂Ĉ

∂t
+

1
2
s2
p

∂2Ĉ

∂p2
+ (R̂− Ĉ)pt + rĈ

− {{Ĉ(pτj , t)− Ĉ(pτj−, t)}I{τj∈(t,t+dt]}}pt

}
dt + {Ĉ(pτj , t)− Ĉ(pτj−, t)}I{τj∈(t,t+dt]}

]
.

(2.30)

From (2.2), the terms inside the bracket on the right hand side of the equation is equal to−ap(p, t)∂Ĉ
∂p dt,

then, (2.30) becomes{
∂C

∂t
+

1
2
[
s2
p

∂2C

∂p2
+ s2

V V 2 ∂2C

∂V 2

]
+ rV

∂C

∂V
+ ap

∂C

∂p
− rC + p(Rd − C)

}
dt

− (1− ptdt)
{
{C(V, pτj , t)− C(V, pτj−, t)}I{τj∈(t,t+dt]}

+ {C(V − nc, pt, t)− C(V, pt, t)}I{τj∈(t,t+dt]}

}
= 0. (2.31)
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From the financial point of view, it is reasonable to consider that as every coupon date approaches,

the bondholders start to take into consideration the possibility of default due to the jump (decrease)

in total asset. Therefore, the bond price converges to what the investors would expect of what it

would be in the future, i.e. its expectation. So, let us assume the following:

Assumption 6: The defaultable corporate coupon bond price at time t = τj− is the expectation of

the price at time t = τj . �

To find the expectation, we need the following lemma:

Lemma 2 The endogenous survival probability at t = τj , given the survival at time t = τj− seen

from time t = τj−1, denoted by Q(τj− , τj ; τj−1) (or Q(τj− , τj), for short) is given by

Q(τj− , τj) =

[
Φ
(

b̃
√

τj − τj−1
−
√

τj − τj−1

(aV

sV
− sV

2
))

− exp
{

2m̃
(aV

sV
− sV

2

)}
Φ
(

−b̃
√

τj − τj−1
− 2m̃
√

τj − τj−1
−
√

τj − τj−1

(aV

sV
− sV

2

))]/

exp
{

2m̃
(aV

sV
− sV

2

)}
Φ
(

−b̃
√

τj − τj−1
− 2m̃
√

τj − τj−1
−
√

τj − τj−1

(aV

sV
− sV

2

))
, (2.32)

where b̃ = 1
sV

ln Vb+nc
Vτj−1

and m̃ = 1
sV

ln Vb
Vτj−1

.

Proof.

The endogenous survival probability at t = τj , given the survival at time t = τj− seen from time

t = τj−1 is:

Q(τj− , τj)

=
P
(

Survival at τj seen fromτj−1 ∩ Survival at τj− seen fromτj−1

)
P
(

Survival at τj− seen from τj−1

)
=

P
(

minτj−1≤s≤τj− V (s) > Vb, V (τj−) > Vb + nc
)

P
(

minτj−1≤s≤τj− V (s) > Vb

) . (2.33)

Therefore we need to find the two probabilities in Equation (2.33). To find them, we will follow the

method shown by Shreve.
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Let B(t) be a Brownian motion without drift and define

M(t) = min
0≤s≤t

B(t).

Then by the reflection principle, we have:

P
(
M(t) < m,B(t) > b

)
= P

(
B(t) < 2m− b

)
=

1√
2πt

∫ 2m−b

−∞
exp

{
− x2

2t

}
dx, m < 0,m < b.

Then the joint density f(m, b) of this probability is given by:

f(m, b) =
∂2

∂m∂b

1√
2πt

∫ 2m−b

−∞
exp

{
− x2

2t

}
dx

= − ∂

∂m

[
1√
2πt

exp
{
− (2m− b)2

2t

}]
=

2(2m− b)
t
√

2πt
exp

{
− (2m− b)2

2t

}
so that

P
(
M(t) < m,B(t) > b

)
=
∫ ∞

x=b

∫ m

y=−∞

2(2y − x)
t
√

2πt
exp

{
− (2y − x)2

2t

}
dy dx, m < 0,m < b.

Now let

B̃(t) = θt + B(t) and M̃(t) = min
0≤s≤t

B̃(s),

where B(t), 0 ≤ s ≤ t is a Brownian motion without drift on (Ω,F , P). Define

Z(s) = exp
{
− θB(s)− 1

2
θ2s
}

= exp
{
− θ[B̃(s)− θs]− 1

2
θ2s
}

= exp
{
− θB̃(s) +

1
2
θ2s
}

,

P̃(A) =
∫

A
Z(s) dP

and set M̃(t) = min0≤s≤t B̃(t). Then, under P̃, B̃(t) is a Brownian motion without drift, so

P̃
(
M̃(t) < m̃, B̃(t) > b̃

)
=
∫ ∞

x=b̃

∫ m̃

y=−∞

2(2y − x)
t
√

2πt
exp

{
− (2y − x)2

2t

}
dy dx, m̃ < 0, m̃ < b̃.
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Then under P-measure, we have

P
(
M̃(t) < m̃, B̃(t) > b̃

)
=
∫ ∞

x=b̃

∫ m̃

y=−∞

2(2y − x)
t
√

2πt
exp

{
− (2y − x)2

2t

}
exp{θx− 1

2
θ2t} dy dx, m̃ < 0, m̃ < b̃.

(2.34)

Now let us define V (t) as in Assumption 1, that is,

dV (t) = aV V (t) + sV (t)dB(t) + ncI{τj∈[t,t+dt]}. (2.35)

For t ∈ (0, τ1), The solution for (2.35) is given by

V (t) = V0 exp
{

sV B(t) + (aV −
1
2
s2
V )t
}

= V0 exp
{

sV

[
B(t) +

( aV

sV
− sV

2︸ ︷︷ ︸
θ

)
t
]}

= V0 exp
{

sV B̃(t)
}

where

θ =
aV

sV
− sV

2
and B̃(t) = θt + B(t).

So, by setting M̃(t) = min0≤s≤t B̃(t) as before, we have

min
0≤s≤t

V (s) = V0 exp{sV M̃(t)},

and

V (t) > Vb + nc ⇒ B̃(t) >
1
sV

ln
Vb + nc

V0
(2.36)

min
0≤s≤t

V (s) < Vb ⇒ M̃(t) <
1
sV

ln
Vb

V0
(2.37)

and by letting 1
sV

ln Vb+nc
V0

= b̃ and 1
sV

ln Vb
V0

= m̃,

Vb < V0 < Vb + nc ⇒ m̃ < 0 < b̃. (2.38)
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So, by (2.36) through (2.38), we have

P
(

min
0≤s≤t

V (s) < Vb, V (t) > Vb + nc
)

= P{M̃(t) < m̃, B̃(t) > b̃}.

By integrating (2.34), we have

P{M̃(t) < m̃, B̃(t) > b̃}

=
∫ ∞

x=b̃

∫ m̃

y=−∞

2(2y − x)
t
√

2πt
exp

{
− (2y − x)2

2t

}
exp{θb̃− 1

2
θ2t} dy dx

= −
∫ ∞

x=b̃

[
1√
2πt

exp
{
− (2y − x)2

2t
+ θx− 1

2
θ2t

}]m̃

y=−∞

dx

= − 1√
2πt

∫ ∞

x=b̃

(
exp

{
− (2m̃− x)2

2t
+ θx− 1

2
θ2t

})
dx

=
1√
2πt

e2m̃θ

∫ x=−b̃

−∞
exp

{
−
(
x− (2m̃ + tθ)

)2
2t

}
dx(

by letting z =
x− (2m̃ + tθ)√

t

)

=
1√
2π

e2m̃θ

∫ −b̃−(2m̃+tθ)√
t

z=−∞
e−

z2

2 dz

= e2m̃θΦ
(
−b̃− 2m̃− tθ√

t

)
(

Substituting θ =
aV

sV
− sV

2
back

)
= exp

{
2m̃
(aV

sV
− sV

2

)}
Φ
(
−b̃√

t
− 2m̃√

t
−
√

t
(aV

sV
− sV

2

))

where b̃ = 1
sV

ln Vb+nc
V0

and m̃ = 1
sV

ln Vb
V0

.

Since V (t) is lognormal on the interval without any jump, the probability V (t) > Vb + nc, seen

from time t = 0 is:

P
(
V (t) > Vb + nc

)
= Φ

(
ln V0

Vb+nc +
(
aV −

s2
V
2

)
t

sV

√
t

)
= Φ

(
− b̃√

t
−
√

t
(aV

sV
− sV

2

))
. (2.39)
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Therefore,

P
(

min
0≤s≤τ1−

V (s) > Vb, V (τ1−) > Vb + nc
)

= P
(
V (τ1−) > Vb + nc

)
− P

(
min

0≤s≤τ1−
V (s) < Vb, V (τ1−) > Vb + nc

)
= Φ

(
− b̃
√

τ1
−
√

τ1

(aV

sV
− sV

2

))
− exp

{
2m̃
(aV

sV
− sV

2

)}
Φ

(
−b̃
√

τ1
− 2m̃
√

τ1
−
√

τ1

(aV

sV
− sV

2

))
where b̃ = 1

sV
ln Vb+nc

V0
and m̃ = 1

sV
ln Vb

V0
.

Now, taking m̃ = b̃ in (2.34) and replacing Vb + nc by Vb in (2.39), we have

P{ min
0≤s≤τ1−

V (s) > Vb, V (τ1−) > Vb}

= P{V (τ1−) > Vb} − P{ min
0≤s≤τ1−

V (s) < Vb, V (τ1−) > Vb}

= Φ

(
− m̃
√

τ1
−
√

t
(aV

sV
− sV

2

))
− exp

{
2m̃
(aV

sV
− sV

2

)}
Φ
(
− 3m̃√

t
−
√

t
(aV

sV
− sV

2

))
where m̃ = 1

sV
ln Vb

V0
.

Therefore,

Q(τ1−, τ1) =

[
Φ
(

b̃
√

τ1
−
√

τ11
(aV

sV
− sV

2
))

− exp
{

2m̃
(aV

sV
− sV

2

)}
Φ
(
−b̃
√

τ1
− 2m̃
√

τ1
−
√

τ1

(aV

sV
− sV

2

))]/

exp
{

2m̃
(aV

sV
− sV

2

)}
Φ
(
−b̃
√

τ1
− 2m̃
√

τ1
−
√

τ1

(aV

sV
− sV

2

))
,

where b̃ = 1
sV

ln Vb+nc
V0

and m̃ = 1
sV

ln Vb
V0

.

And for j = 2 . . . n, we have (2.32). �

If we let the endogenous survival probability at time t = τj , given the survival at time t = τj−, is

Q(τj−, τj), and the exogenous survival probability at time t = τj , given the survival at time t = τj−

is given by P (τj−, τj) , then Assumption 6 is expressed as

C(τj−) = E[C(τj)]

= C(τj) ·Q(τj−, τj))P (τj−, τj) + R
[
1−Q(τj−, τj)P (τj−, τj)

]
(2.40)
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and especially

C(T−) = E[C(T )]

= 1 ·Q(T−, T )P (T−, T ) + R
[
1−Q(T−, T )P (T−, T )

]
.

For convenience, hereinafter we refer the survival probability (both endogenous and exogenous

combined) at time t = τj given the survival at t = τj− as S(τj−, τj), that is,

S(τj−, τj) = Q(τj−, τj)P (τj−, τj) (2.41)

As in the previous section, if we consider time intervals [τj−1, τj), (2.31) reduces to

∂C

∂t
+

1
2
[
s2
p

∂2C

∂p2
+ s2

V V 2 ∂2C

∂V 2

]
+ ap

∂C

∂p
+ rV

∂C

∂V
+ (r + p)C

+e−r(T−t)Rp = 0 (τj−1 ≤ t < τj , V > Vb, p > 0)

C(Vb(t), p, t) = e−r(T−t) (τj−1 ≤ t < τj , p > 0)

C(V, p, τj−) = C(V, p, τj) · S(τj−, τj) + R
[
1− S(τj−, τj)

]
(V > Vb, p > 0)

lim
V→∞

C(V, p, t) = e−r(T−t) (τj−1 ≤ t < τj , p > 0)

lim
p→∞

C(V, p, t) = R (τj−1 ≤ t < τj , V > Vb).

And especially for t in [τn−1, T ), we have

∂C

∂t
+

1
2
[
s2
p

∂2C

∂p2
+ s2

V V 2 ∂2C

∂V 2

]
+ ap

∂C

∂p
+ rV

∂C

∂V
+ (r + p)C

+e−r(T−t)Rp = 0 (τn−1 ≤ t < T, p > 0, V > Vb, p > 0)

C(Vb(t), p, t) = e−r(T−t) (τn−1 ≤ t < T, p > 0)

C(V, p, T ) = 1 (V > Vb, p > 0)

C(V, p, T−) = 1 · S(T−, T ) + R
[
1− S(T−, T )

]
(V > Vb, p > 0)

lim
V→∞

C(V, p, t) = e−r(T−t) (τn−1 ≤ t < T, p > 0)

lim
p→∞

C(V, p, t) = R (τn−1 ≤ t < T, V > Vb).

(2.42)

As before, we will try to solve (2.42) for t ∈ [τn−1, T ), then solve for other t backwards. Using the
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change of unknown function

C = ue−r(T−t),

(2.42) becomes

∂u

∂t
+

1
2
[
s2
p

∂2u

∂p2
+ s2

V V 2 ∂2u

∂V 2

]
+ ap

∂u

∂p
+ rV

∂u

∂V

−p(u−R) = 0 (τn−1 ≤ t < T, p > 0, V > Vb, p > 0)

u(Vb(t), p, t) = R (τn−1 ≤ t < T, p > 0)

u(V, p, T ) = 1 (V > Vb, p > 0)

u(V, p, T−) = 1 · S(T−, T ) + R
[
1− S(T−, T )

]
= R + S(T−, T )

[
1−R

]
(V > Vb, p > 0)

lim
V→∞

u(V, p, t) = Cer(T−t) (τn−1 ≤ t < T, p > 0)

lim
p→∞

u(V, p, t) = Rer(T−t) (τn−1 ≤ t < T, V > Vb).

Using the change of unknown function again,

û = u−R,



∂û

∂t
+

1
2
[
s2
p

∂2û

∂p2
+ s2

V V 2 ∂2û

∂V 2

]
+ap

∂u

∂p
+ rV

∂̂̂u

∂V
− pû = 0 (τn−1 ≤ t < T, p > 0, V > Vb, p > 0)

û(Vb(t), p, t) = 0 (τn−1 ≤ t < T, p > 0)

û(V, p, T ) = 1−R (V > Vb, p > 0)

û(V, p, T−) = (1−R)S(T−, T ) (V > Vb, p > 0)

lim
V→∞

û(V, p, t) = 0 (τn−1 ≤ t < T, p > 0)

lim
p→∞

û(V, p, t) = R
(
er(T−t)−1

)
(τn−1 ≤ t < T, V > Vb).

(2.43)

Using the change of unknown function again and letting

û = W (V, p, t)S(1−R), (2.44)
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C(V, p, t) can be expressed in terms W (V, p, t) as

C(V, p, t) = ue−r(T−t) = (û + R) · e−r(T−t)

= [WS(1−R) + R] · e−r(T−t)

= [WS −WSR + R] · e−r(T−t)

= WS · e−r(T−t) + (1−WS)R · e−r(T−t).

We can interpret that the price at time t is an expectation of the value of the bond at time t. So we

can regard WS as survival probability , and (1−WS) as default probability at time t. Using (2.44),

(2.43) we have the following pricing model:

Theorem 3. Under Assumptions 1 though 6, the price of the defaultable zero-coupon bond with

expected and unexpected default at time t ∈ [τn−1, T ) is given by the following:

C(V, p, t) = WS · e−r(T−t) + (1−WS)R · e−r(T−t)

where S is given by (2.41) and W (V, p, t) satisfies the following PDE and determining conditions:

∂W

∂t
+

1
2
[
s2
p

∂2W

∂p2
+ s2

V V 2 ∂2W

∂V 2

]
+ap

W

∂p
+ rV

∂Ŵ

∂V
− pW = 0 (τn−1 ≤ t < T, p > 0, V > Vb, p > 0)

W (Vb(t), p, t) = 0 (τn−1 ≤ t < T, p > 0)

W (V, p, T−) = 1 (V > Vb, p > 0)

lim
V→∞

W (V, p, t) = 0 (τn−1 ≤ t < T, p > 0)

lim
p→∞

W (V, p, t) =
R
(
er(T−t)−1

)
S(1−R)

(τn−1 ≤ t < T, V > Vb).

(2.45)

2.2.3 Particular Solution

In addition to Assumptions 1 though 6, we try to find a particular solution W (V, p, t) in the separa-

tive form

W (V, p, t) = f(V, t) · g(p, t).
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Substituting this in (2.45), the PDE in (2.45) becomes[
∂f

∂t
+

1
2
s2
vV

2 ∂2f

∂V 2
+ rV

∂f

∂V

]
g +

[
∂g

∂t
+

1
2
s2
v

∂2g

∂p2
+ ap

∂g

∂p
− pg

]
f = 0

To get the solution for (2.45), we further assume the following:

∂f

∂t
+

1
2
s2
vV

2 ∂2f

∂V 2
+ rV

∂f

∂V
= 0,

∂g

∂t
+

1
2
s2
v

∂2g

∂p2
+ ap

∂g

∂p
− pg = 0.

Then, we need to solve the following two problems.

∂f

∂t
+ 1

2s2
vV

2 ∂2f

∂V 2
+ rV

∂f

∂V
= 0 (τn−1 ≤ t < T, V > Vb)

f(Vb(t), t) = 0 (τn−1 ≤ t < T )

f(V, T−) = 1 (V > Vb)

(2.46)

and


∂g

∂t
+ 1

2s2
p

∂2g

∂p2
+ ap

∂g

∂p
− pg = 0 (τn−1 ≤ t < T, p > 0)

g(p, T−) = 1 (p > 0).
(2.47)

First, we will solve (2.46). To do so, let

V

Vb
= ey ⇒ y = ln

V

Vb
, and

ζ =
((T−)− t)s2

V

2

and

f(V, t) = Vbv(y, t).

Then, (2.46) becomes

∂v

∂t
− ∂2v

∂y2
+
(

1− 2
s2
v

r︸ ︷︷ ︸
k

)
∂v

∂y
= 0 (0 ≤ ζ <

(T−)s2
V

2
, 0 < y < ∞)

v(0, ζ) = 0 (0 ≤ ζ <
(T−)s2

V

2
)

v(y, 0) =
1
Vb

(0 < y < ∞).

(2.48)
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Assuming that the solution v(y, ζ) is in the following type

v = ω · eαy+βζ ,

where α and β are to be chosen later, and letting k = 1− 2
s2
v

r, the first equation in (2.48) becomes

ωζ = ωyy + (α2 − kα− β)ω + (2α− k)ωy

where the subscripts refer to the partial derivatives with respect to the subscript. We chose α and β

so that the coefficients of ω and ωy are equal to 0, that is

α =
k

2
=

1
2
− r

s2
V

β = α2 − kα = −k2

4
.

Substituting these in (2.48), it becomes a heat equation with the initial condition:
ωζ = ωyy (0 ≤ ζ <

(T−)s2
V

2
, 0 < y < ∞)

ω(y, 0) =
1
Vb

e−
k
2
y (0 < y < ∞).

Define

h̄(y) =


h(y) = ω(y, 0) =

1
Vb

e−
k
2
y, (y > 0)

0, otherwise.

Let ω1(y, ζ) be a solution of the initial value problem
ωζ = ωyy (0 ≤ ζ,−∞ < y < ∞)

ω(y, 0) = ĥ(y) (−∞ < y < ∞).

and ω2(y, ζ) = ω1(−y, ζ) (and so ω2(0, ζ) = ω1(0, ζ)). Then, by the solution formula and the

image solution method

ω1(y, ζ) =
1

2
√

πζ

∫ ∞

−∞
ĥ(ξ) exp

(
− (y − ξ)2

4ζ

)
dξ =

1
2
√

πζ

∫ ∞

0
h(ξ) exp

(
− (y − ξ)2

4ζ

)
dξ,

ω2(y, ζ) =
1

2
√

πζ

∫ ∞

0
h(ξ) exp

(
− (y + ξ)2

4ζ

)
dξ,

and
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ω(y, ζ) = ω1(y, ζ)− ω2(y, ζ).

Computing ω1(y, ζ), we have

ω1(y, ζ) =
1

2
√

πζ

∫ ∞

0
h(ξ) exp

(
− (y − ξ)2

4ζ

)
dξ(

letting z =
ξ − y√

2ζ

)
=

1
Vb

√
2π

∫ ∞

− y√
2ζ

e−
k
2
(z
√

2ζ+y) · e−
1
2
z2

dz =
1

Vb

√
2π

e−
k
2
y+ ζ

4
k2

∫ ∞

− y√
2ζ

e−
1
2
(z+

√
2ζk
2

)2 dz

(
letting η = z +

√
2ζk

2

)
=

1
Vb

√
2π

e−
k
2
y+ ζ

4
k2

∫ ∞

− y√
2ζ

+
√

2ζk
2

e−
η2

2 dη

=
1

Vb

√
2π

e−
k
2
y+ ζ

4
k2

Φ(d1)

where

d1 =
y√
2ζ
−
√

2ζk

2
=

ln V
Vb√

(T−)− t)sV

+
√

(T−)− t
(sV

2
− r

sV

)
. (2.49)

Similarly,

ω2(y, ζ) =
1

2
√

πζ

∫ ∞

0
h(ξ) exp

(
− (y + ξ)2

4ζ

)
dξ

=
1

Vb

√
2π

e
k
2
y+ ζ

4
k2

Φ(d2)

where

d2 = − y√
2ζ

+
√

2ζk

2
=

ln Vb
V√

(T−)− t)sV

+
√

(T−)− t
(sV

2
− r

sV

)
. (2.50)

Therefore,

f(V, t) = Vb · v(y, t)

= Vb · eαy+βζ
(
ω1(y, ζ)− ω2(y, ζ)

)
= Φ(d1)−

(
V

Vb

)1− 2r

s2
V Φ(d2)

where d1 and d2 are as defined above.
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Notice that the IVP of g(p, t) is the same as (2.11).

Hence,

W (V, p, t) = eA(t,T−)−B(t,T−)p

[
Φ(d1)−

(
V

Vb

)1− 2r

s2
V Φ(d2)

]

where d1 and d2 are defined by (2.49) and (2.50), and A(t, T−) and B(t, T−) are defined by (2.15),

and (2.16). So C(V, p, t) is given by

C(V, p, t) = W (V, p, t)S(T−, T )e−r(T−t) +
(
1−W (V, p, t)S(T−, T ))

)
R · e−r(T−t)

= eA(t,T−)−B(t,T−)p

[
Φ(d1)−

(
V

Vb

)1− 2r

s2
V Φ(d2)

]
S(T−, T ) · e−r(T−t)

+
{

1− eA(t,T−)−B(t,T−)p

[
Φ(d1)−

(
V

Vb

)1− 2r

s2
V Φ(d2)

]
S(T−, T )

}
R · e−r(T−t)

and when t = τn−1, we have

C(V, p, τn−1) = eA(τn−1,T−)−B(τn−1,T−)p

[
Φ(d̃1,n)−

(
V

Vb

)1− 2r

s2
V Φ(d̃2,n)

]
S(T−, T ) · e−r(T−τn−1)

+
{

1− eA(τn−1,T−)−B(τn−1,T−)p

[
Φ(d̃1,n)−

(
V

Vb

)1− 2r

s2
V Φ(d̃2,n)

]
S(T−, T )

}
R · e−r(T−τn−1)

where, for j = 1 · · ·n,

d1,j =
ln

Vτj−
Vb√

T/nsV

+
√

T/n
(sV

2
− r

sV

)
(2.51)

and

d2,j =
ln Vb

Vτj−√
T/nsV

+
√

T/n
(sV

2
− r

sV

)
. (2.52)

We will solve for t < τn−1, by solving the PDEs backwards on each interval [τj−1, τj), j = 1 · · ·n−

1. On [τn−2, τn−1), using (2.40) for the terminal condition, the IVP becomes
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

∂C

∂t
+

1
2
[
s2

p

∂2C

∂p2
+ s2

V V 2 ∂2C

∂V 2

]
+ ap

∂C

∂p
+ rV

∂C

∂V
+ (r + p)C + e−r(T−t)Rp = 0

(τn−2 ≤ t < τn−1, p > 0, V > Vb, p > 0)

C(V, p, τ(n−1)−)

= er(T−τn−1)

[
eA(τn−1,T−)−B(τn−1,T−)p

(
Φ(d̃1,n)−

(
V

Vb

)1− 2r

s2
V Φ(d̃2,n)

)
S(T−, T )S(τ(n−1)−, τn−1)

+R

{
1− eA(τn−1,T−)−B(τn−1,T−)p

(
Φ(d̃1,n)−

(
V

Vb

)1− 2r

s2
V Φ(d̃2,n)

)
S(T−, T )S(τ(n−1)−, τn−1)

}]
(V > Vb, p > 0).

(2.53)

As before, letting C = ue−r(T−t), (2.53) becomes

∂u

∂t
+

1
2
[
s2

p

∂2u

∂p2
+ s2

V V 2 ∂2u

∂V 2

]
+ ap

∂u

∂p
+ rV

∂u

∂V
− p(u−R) = 0

(τn−2 ≤ t < τn−1, p > 0, V > Vb, p > 0)

u(V, p, τ(n−1)−)

= eA(τn−1,T−)−B(τn−1,T−)p

(
Φ(d̃1,n)−

(
V

Vb

)1− 2r

s2
V Φ(d̃2,n)

)
S(T−, T )S(τ(n−1)− , τn−1)(1−R) + R

(V > Vb, p > 0).

Using the change of unknown function again,

û = u−R,

∂û

∂t
+

1
2
[
s2
p

∂2û

∂p2
+ s2

V V 2 ∂2û

∂V 2

]
+ ap

∂u

∂p
+ rV

∂̂̂u

∂V
− pû = 0

(τn−2 ≤ t < τn−1, p > 0, V > Vb, p > 0)

û(V, p, τ(n−1)−)

= eA(τn−1,T−)−B(τn−1,T−)p

(
Φ(d̃1,n)−

(
V
Vb

)1− 2r

s2
V Φ(d̃2,n)

)
S(T−, T )S(τ(n−1)− , τn−1)(1−R)

(V > Vb, p > 0).
(2.54)

Using the change of unknown function again and letting

û = W (V, p, t)eA(τn−1,T−)−B(τn−1,T−)p

(
Φ(d̃1,n)−

(
V

Vb

)1− 2r

s2
V Φ(d̃2,n)

)
·

S(T−, T )S(τ(n−1)−, τn−1)(1−R)
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Then (2.53) reduces to the same IVP as (2.44), so the solution is given by

W (V, p, t) = eA(t,τ(n−1)−)−B(t,τ(n−1)−)p

[
Φ(d1)−

(
V

Vb

)1− 2r

s2
V Φ(d2)

]
(2.55)

where

d1 =
ln V

Vb√
(τ(n−1)−)− t)sV

+
√

(τ(n−1)−)− t
(sV

2
− r

sV

)

and

d2 =
ln Vb

V√
(τ(n−1)−)− t)sV

+
√

(τ(n−1)−)− t
(sV

2
− r

sV

)
.

For t ∈ (τn−2, τn−1),

C(V, p, t)

= W (V, p, t)eA(τn−1,T−)−B(τn−1,T−)p

(
Φ(d̃1,n)−

( V

Vb

)1− 2r

s2
V Φ(d̃2,n)

)
·S(T−, T )S(τ(n−1)− , τn−1)e−r(T−t)

+

[
W (V, p, t)eA(τn−1,T−)−B(τn−1,T−)p

(
Φ(d̃1,n)−

( V

Vb

)1− 2r

s2
V Φ(d̃2,n)

)

·S(T−, T )S(τ(n−1)− , τn−1)e−r(T−t)

]
Re−r(T−t),

where W (V, p, t), d̃1,n, d̃2,n are given by (2.55),(2.51) and (2.52) respectively.

Repeating this backwards, for any t ∈ (τj−1, τj), j = 1, · · · , n we obtain the following:

Theorem 4. Under the assumptions 1 through 6, and additional assumptions made in this subsec-

tion, the price of corporate coupon-bond with unexpected and expected default is given by

G(V, p, t) = C(V, p, t) +
∑
τi≥t

ciC(V, p, t; τi)

where
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C(V, p, t)

= eA(t,τj−)−B(t,τj−)p+
Pn−1

i=j A(τi,τ(i+1)−)−B(τi,τ(i+1)−)p ·
[
Φ(d1)−

(
V

Vb

)1− 2r

s2
V Φ(d2)

]
S(τj−, τj)

n∏
i=j+1

[(
Φ(d̃1,n)−

( V

Vb

)1− 2r

s2
V Φ(d̃2,n)

)
S(τ(i−1)−, τi)

]
e−r(T−t)

(
1− eA(t,τj−)−B(t,τj−)p+

Pn−1
i=j A(τi,τ(i+1)−)−B(τi,τ(i+1)−)p

·
[
Φ(d1)−

(
V

Vb

)1− 2r

s2
V Φ(d2)

]
S(τj−, τj)

n∏
i=j+1

[(
Φ(d̃1,n)−

( V

Vb

)1− 2r

s2
V Φ(d̃2,n)

)
S(τ(i−1)−, τi)

])
e−r(T−t). (2.56)
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Chapter 3

Credit Derivatives Pricing with Constant Interest Rate

3.1 Credit Default Swaption with Constant Interest Rate - Unexpected Default

In the existing literature (see Schonbucher (2003a), and Hull et al. (2003)), the value of the credit

default swaption was given assuming that the price of underlying asset, i.e., the credit default swap

follows the geometric Brownian motion. However, when the information regarding the forward

credit default swap is sparse, it is not convenient to form a pricing model based on the price of

forward credit default swap. In Hull’s paper, the pricing formula for forward credit default swap

is given; however, the formula does not suggest that the forward credit default swap follows the

geometric Brownian motion. This discrepancy was observed since the arbitrage principle was used

to price the forward credit default swap, and then a PDE approach was taken to evaluate the price

of credit default swaption. This approach will also be problematic when the reference entity has

no existing credit default swap, which, if there exists, can be used to infer the drift and volatility of

forward credit default swap.

In this paper, we will take a different approach. First, we apply the PDE approach to evaluate the

forward credit default swap, and then use the arbitrage principle to find the price of credit default

swaption. This approach makes sense since the underlying asset of the credit default swaption does

not exist until the date the option expires. Also, by taking this approach, the expected fee for the

forward credit default swap takes the jumps in default intensity into consideration.
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3.1.1 Formulation

The following assumptions are valid for Chapter 3 only.

Assumption 1: Let t = 0 and t = T0 be the time when the credit default swaption (hereinafter,

the ”swaption”) starts and expires respectively. t = T0 is also when the forward credit default swap

takes effect upon the exercise of the swaption. Let t = TN be the expiration of the credit default

swap and, for simplicity, let us assume that Tj , j = 1, · · · , N falls on the interest payment date

of the coupon bonds issued by the reference entity of the credit default swap and the credit default

swap terminates on the day the coupon bonds are to be redeemed, that is τn = TN where τn is as

defined in subsection 2.1.1. Let z∗ be the exercise price of the swaption. This is actually the fee

the swaption holder pays on the notional amount of the credit default swap once the swaption is

exercised. Let z(t), t ≥ T0 be the annual fee of forward credit default swap. Define

Z(t) := z(t) · E[
N∑

i:Ti>t

b(Ti)ΓiI{Ti≤τ} + b(τ)Γ∗I{T0≤τ≤TN}]

where b(Ti) = exp{−
∫ Ti

t r ds}, τ is the time of default, and Γi and Γ∗ are the lengths of time

interval since the last fee payment till Ti and the default date, respectively. Therefore, Z(t) is the

present value at time t of the forward credit default swap. Observe that by the arbitrage principle,

the present value of the total fee leg is the same as the present value of the protection leg. That is:

Z(t) = E[b(τ)(1−R) · I{τ≤TN}]. (3.1)

Assumption 2: Default is an exogenous event. Unexpected default probability on any interval

[t, t + dt] is given by,

dp = ap(p, t)dt + sp(p, t)dW1 + pτj−UjI{τj∈(t,t+dt]}, (3.2)

where I{τj∈(t,t+dt]} is an indicator function taking 1 when τj ∈ (t, t + dt] and 0 otherwise, W1 is a

standard Brownian motion, and Uj is defined the same as in Assumption 1 in Chapter 1 .

Assumption 3: Default recovery is given in the form of face value exogenous recovery (R ·e−r(T−t)

where R is constant with 0 ≤ R ≤ 1 and T is the maturity of the bond) or in the form of market

price exogenous recovery (R× bond price at default time).
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Assumption 4: The price of defaultable corporate zero-coupon bond price is given by the function

Ĉ = Ĉ(p, t), whose solution is given by (2.18), and the price of the swaption is given by X̂ =

X̂(p, t).

Problem: Under this setting and above assumptions, we shall find the price of the credit default

swaption X̂(p, t).

3.1.2 Derivation of the model

We construct a portfolio by hedging X̂(p, t) with the reference entity’s zero-coupon bonds with

exogenous default. So the value of the portfolio is:

Π = X̂ − ΛĈ.

The change of value of this portfolio over a small time increment [t, t + dt] is given by

dΠ = dX̂ − ΛdĈ.

If there is no default over [t, t + dt] (with probability 1− ptdt), then we have

dΠ =
∂X̂

∂t
dt +

∂X̂

∂p
dp +

1
2
s2
p

∂2X̂

∂p2
dt

−Λ
[
∂Ĉ

∂t
dt +

∂Ĉ

∂p
dp +

1
2
s2
p

∂2Ĉ

∂p2
dt + {Ĉ(pTj , t)− Ĉ(pTj−, t)}I{Tj∈(t,t+dt]}

]
.

To get rid of the uncertainty caused by dp term, we choose Λ =
∂X̂

∂p

(
∂C

∂p

)−1

. Then, we have

dΠ =
(

∂X̂

∂t
+

1
2
s2
p

∂2X̂

∂p2

)
dt

−∂X̂

∂p

(
∂Ĉ

∂p

)−1[(∂Ĉ

∂t
+

1
2
s2
p

∂2Ĉ

∂p2

)
dt

+{Ĉ(pTj , t)− Ĉ(pTj−, t)}I{Tj∈(t,t+dt]}

]
. (3.3)

If there is default with probability ptdt before the inception of the forward credit default swap, the

swaption contract becomes void; therefore, we have:

dΠ = −X̂ − ∂X̂

∂p

(
∂Ĉ

∂p

)−1

(R− Ĉ). (3.4)
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Now by the arbitrage principle, we must have dΠ = rΠdt.

Taking the expectation of dΠ, by the Ito Lemma, and setting this equal to rΠdt, i.e., setting (3.3)×

(1− ptdt) + (3.4)× ptdt = rΠdt, we have[
∂X̂

∂t
+

1
2
s2
p

∂2X̂

∂p2
− rX̂ − X̂pt

]
dt

− ∂X̂

∂p

(
∂Ĉ

∂p

)−1[(∂Ĉ

∂t
+

1
2
s2
p

∂2Ĉ

∂p2
− (R− Ĉ)pt

+ {Ĉ(pTj , t)− Ĉ(pTj−, t)}I{Tj∈(t,t+dt]}ptdt− rĈ

)
dt

+ {Ĉ(pTj , t)− Ĉ(pTj−, t)}I{Tj∈(t,t+dt]}

]
= 0.

By (2.2),

(
∂Ĉ

∂p

)−1[(∂Ĉ

∂t
+

1
2
s2
p

∂2Ĉ

∂p2
− (R− Ĉ)pt

+ {Ĉ(pTj , t)− Ĉ(pTj−, t)}I{Tj∈(t,t+dt]}ptdt− rĈ

)
dt

+ {Ĉ(pTj , t)− Ĉ(pTj−, t)}I{Tj∈(t,t+dt]}

]
= −apdt.

Because the duration of the swaption is relatively short (typically three months to six months), and

we assume that the expiration date of the swaption falls on one of the coupon payment date of the

bonds issued by the reference entity, we can assume that there is no jump in default intensity during

the life time of option. Therefore,

∂X̂

∂t
+

1
2
s2
p

∂2X̂

∂p2
+ ap

∂X̂

∂p
− (pt + r)X̂ = 0.

Note that the present value of forward credit default swap is given by (3.1),

X̂(T0) = [Z(T0)− Z∗]+

=
[
E[b(τ)(1−R) · I{τ≤TN}]− z∗ · E[b(τ) · I{τ≤TN}]

]+
. (3.5)

From the financial point of view, we can expect the value of the swaption right before the jump (i.e.,

at t = T0) to be the expectation of the value at t = T0. So we can assume that the terminal condition

as follows:

X̂(T0−) = P (T0−, T0)
[
E[b(τ)(1−R) · I{τ≤TN}]− z∗ · E[b(τ) · I{τ≤TN}]

]+
(3.6)
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where P (T0−, T0) is given by (2.4).

Letting X̂(p, t) = WX̂(p, T0−), we have
∂W

∂t
+

1
2
s2
p

∂2W

∂p2
+ ap

∂W

∂p
− (pt + r)W = 0, (0 ≤ t < T0, p > 0)

W (p, T0−) = 1, (p > 0).

As in subsection 2.1.2, we will restrict ap(p, t) and s2(p, t) to the following cases:

Assumption 5: ap(p, t) and s2(p, t) are linear in p, i.e.,

ap(p, t) = b(t)− c(t)p,

s2(p, t) = d(t) + e(t)p. �

We again will try to find the solution in the form of

W (p, t) = eA(t,T0)−B(t,T0)p.

Then, we have

A′ +
1
2
dtB2 − b(t)B − r − p

(
B′ − 1

2
e(t)B2 − c(t)B + 1

)
= 0.

Since this should hold for any value of p, we have the system of equations.
A′ +

1
2
dtB2 − b(t)B − r = 0

B′ − 1
2
e(t)B2 − c(t)B + 1.

(3.7)

Noting that A(T0−, T0−) = B(T0−, T0−) = 0 since W (p, T0−) = 1 and the solution for (3.7) is

given by (2.16) and (2.18) (by replacing T− by T0−), we have the following conclusion.

Theorem 5. Under the assumptions in Subsection 3.1.1, the price of the credit default swaption

with unexpected default is possibly given by

X̂(t, p) = X̂(T0, p) · eA(t,T0)−B(t,T0)p, (3.8)

where

A(t, T0) = −
∫ T0

t

(
b(s)B(s, T0)−

1
2
d(s)B2(s, T0) + r

)
ds, (3.9)
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B(t, T0) =



1− e−c(T0−t)

c
, dp =

(
b(t)− c · p)dt +

√
dt · dW1, c 6= 0

)
T0 − t, dp =

(
b(t)− c · p)dt +

√
dt · dW1, c = 0

)
−
√

2
c ·

exp(
√

c
2(T0 − t)− exp(−

√
c
2(T0 − t)

exp(
√

c
2(T0 − t) + exp(−

√
c
2(T0 − t)

,

dp = b(t)dt +
√

d(t) + K · p · dW1

(3.10)

and X̂(T0, p) is given by (3.5).

3.2 Credit Derivatives Pricing with Constant Interest Rate - Expected and Unexpected De-

fault

3.2.1 Formulation

Assumption 1: We assume the same setting for the credit default swaption as in Section 3.1: its

inception and expiration, the onset and fee structure of the underlying forward credit default swap.

Assumption 2: Default event is both exogenous and endogenous. Unexpected default probability

on any interval [t, t + dt] is given by

dp = ap(p, t)dt + sp(p, t)dW1 + pτj−UjI{τj∈(t,t+dt]}, (3.11)

where I{τj∈(t,t+dt]} is an indicator function taking 1 when τj ∈ (t, t+dt] and 0 otherwise. Expected

default occurs when the firm assets V = V (t) = Vt falls below the barrier, say Vb(t) = VB . As in

Section 2.2, the firm asset is the sum of its coupon bonds and stocks as in (2.22), and follows the

geometric Brownian motion given by (2.21).

Assumption 3: Expected and unexpected default recovery is given as the form of face value exoge-

nous recovery (R · e−r(T−t), 0 ≤ R ≤ 1: constant, T : maturity of the bond).

Assumption 4: The price of defaultable corporate zero-coupon bond with both expected and un-

expected default is given by the function C = C(V, p, t) and the price of the swaption is given by

X = X(V, p, t).

55



Problem: Under these setting and assumptions, we will find the credit default swaption X =

X(V, p, t).

3.2.2 Derivation of the model

We construct a portfolio by hedging X = X(V, p, t) with Λ1 zero-coupon bonds of the reference

entity with exogenous and endogenous default, and Λ2 stocks of the reference entity. So the value

of the portfolio is:

Π = X − Λ1S − Λ2C,

and the change of value of this portfolio over a small time increment [t, t + dt] is given by

dΠ = dX − dΛ1S − dΛ2C.

Since S =
V − nC

m
, we have

Π = X − Λ1

(
V − nC

m

)
− Λ2C

= X − Λ1

m
V −

(
Λ1

n

m
− Λ2

)
C.

By the same argument as before, since the duration of the swaption is relatively short, we assume

that there is no jump in default intensity and the value of total assets during the term of the swaption,

except the swaption expiration falls on a coupon payment date. Therefore, if there is no default (with

probability 1− ptdt),

dΠ = dX − Λ1

m
dV −

(
Λ1

n

m
− Λ2

)
dC

=
∂X

∂V
dV +

{
∂X

∂t
+

1
2
(
s2
V V 2 ∂2X

∂V 2
+ s2

p

∂2X

∂p2

)}
dt +

∂X

∂p
dp− Λ1

m
dV

−
(
Λ1

n

m
− Λ2

)[∂C

∂V
dV +

{
∂C

∂t
+

1
2
(
s2
V V 2 ∂2C

∂V 2
+ s2

p

∂2C

∂p2

)}
dt +

∂C

∂p
dp

]
.(3.12)

Let us choose Λ1 and Λ2 so that we can get rid of uncertainty caused by dp and dV terms. That is,

∂X

∂V
− Λ1

m
−
(
Λ1

n

m
− Λ2

)∂C

∂V
= 0, and

∂X

∂p
−
(
Λ1

n

m
− Λ2

)∂C

∂p
= 0.
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Solving for Λ1 and Λ2,

Λ1 = m

[
∂X

∂V
− ∂X

∂p
· ∂C

∂V

(
∂C

∂p

)−1
]
, and

Λ2 = n

[
∂X

∂V
− ∂X

∂p
· ∂C

∂V

(
∂C

∂p

)−1
]
− ∂X

∂p

(
∂C

∂p

)−1

,

and

Λ1

m
=

∂X

∂V
− ∂X

∂p
· ∂C

∂V

(
∂C

∂p

)−1

, and

Λ1
n

m
− Λ2 =

∂X

∂p

(
∂C

∂p

)−1

.

Putting these back in (3.11), we have

dΠ =
[
∂X

∂t
+

1
2
(
s2
V V 2 ∂2X

∂V 2
+ s2

p

∂2X

∂p2

)]
dt− ∂X

∂p

(
∂C

∂p

)−1[∂C

∂t
+

1
2
(
s2
V V 2 ∂2C

∂V 2
+ s2

p

∂2C

∂p2

)]
dt.

When there is a default (with probability ptdt), the change of this portfolio’s value is given by

dΠ = −X − Λ1

m
dV −

(
Λ1

n

m
− Λ2

)
(R− C)

= −X −
[
∂X

∂V
− ∂X

∂p
· ∂C

∂V

(
∂C

∂p

)−1]
dV − ∂X

∂p

(
∂C

∂p

)−1

(R− C).

By the arbitrage principle, the expectation of dΠ is equal to rΠdt. Ignoring the higher order of

infinitesimal terms of dt, we have

∂X

∂t
+

1
2

(
s2
V V 2 ∂2X

∂V 2
+ s2

p

∂2X

∂p2

)
−Xpt − rX + rV

∂X

∂V

− ∂X

∂p

(
∂C

∂p

)−1[∂C

∂t
+

1
2

(
s2
V V 2 ∂2C

∂V 2
+ s2

p

∂2C

∂p2

)
+ rV

∂C

∂V
+ (R− C)pt − rC

]
= 0. (3.13)

But by (2.2), the expression in the bracket in the second line in the equation is equal to−ap

(
∂C

∂p

)−1

.

So (3.14) reduces to

∂X

∂t
+

1
2

(
s2
V V 2 ∂2X

∂V 2
+ s2

p

∂2X

∂p2

)
+ ap

∂X

∂p
+ rV

∂X

∂V
− (pt + r)X = 0.

Again, the terminal condition is given by (3.6); here the survival probability is given by Q ·P , where

Q is the survival measure based on the intensity given by (2.3) , P is the survival measure given
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by (2.4), and the jump in the survival probability S(T0−, T0) at time t = T0 is given by (2.41).

Therefore we have the following model.

Theorem 6. Under Assumptions 1 though 4, the price of the credit default swaption with expected

and unexpected default probability is given by the following:

∂X

∂t
+ 1

2

(
s2
V V 2 ∂2X

∂V 2
+ s2

p

∂2X

∂p2

)
+ ap

∂X

∂p
+ rV

∂X

∂V
− (pt + r)X = 0,

(0 ≤ t < T0, p > 0, V > Vb)

X(V, p, T0−) = S(T0−, T0)
[
E[b(τ)(1−R) · I{τ≤TN}]− z∗ · E[b(τ) · I{τ≤TN}]

]+
,

(p > 0, V > Vb)

lim
V→∞

X(V, p, t) = 0, (0 ≤ t < T0, p > 0)

lim
p→∞

X(V, p, t) = (1−R) · e−r(TN−t), (0 ≤ t < T0, V > Vb)

where S(T0−, T0) at time t = T0 is given by (2.41).

3.2.3 Particular Solution

In this subsection, we will find a particular solution to a limited case.

Letting X(V, p, t) = WX(V, p, T0), we have

∂W

∂t
+ 1

2

(
s2
V V 2 ∂2W

∂V 2
+ s2

p

∂2W

∂p2

)
+ ap

∂W

∂p
+ rV

∂W

∂V
− (pt + r)W = 0,

(0 ≤ t < T0, p > 0, V > Vb)

W (V, p, T0−) = 1, (p > 0, V > Vb)

lim
V→∞

W (V, p, t) = 0, (0 ≤ t < T0, p > 0)

lim
p→∞

W (V, p, t) = X(V, p, T0), (0 ≤ t < T0, V > Vb).

(3.14)

We assume that

W (V, p, t) = f(V, t) · g(p, t).

Substituting this into (3.14), we obtain[
∂f

∂t
+

1
2
s2
V V 2 ∂2f

∂V 2
+ rV

∂f

∂V

]
g +

[
∂g

∂t
+

1
2
s2
p

∂2g

∂p2
+ ap

∂g

∂p
− (pt + r)g

]
f = 0.
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To find a solution, we further assume that

∂f

∂t
+

1
2
s2
vV

2 ∂2f

∂V 2
+ rV

∂f

∂V
= 0,

∂g

∂t
+

1
2
s2
v

∂2g

∂p2
+ ap

∂g

∂p
− pg = 0.

Then we have the following two systems:

∂f

∂t
+ 1

2s2
V V 2 ∂2f

∂V 2
+ rV

∂f

∂V
= 0, (0 ≤ t < T0, V > Vb)

f(Vb, t) = 0, (0 ≤ t < T0)

f(V, T0) = 1, (V > Vb)

(3.15)

and 
∂g

∂t
+ 1

2s2
p

∂2g

∂p2
+ ap

∂g

∂p
− (pt + r)g = 0, (0 ≤ t < T0, p > 0)

g(p, T0−) = 1, (p > 0).
(3.16)

Noting that (3.15) is the same as (2.46) and (3.16) is the same as (2.47), we will have the following

result.

Theorem 7. Under the setting and assumptions in Subsection 3.2.1 and further assumptions made

in this subsection, the price of the credit default swaption with expected and unexpected default is

given by

X(V, t, p) = X(V, T0, p) · eA(t,T0−)−B(t,T0−)p

[
Φ(d1)−

(
V

Vb

)1− 2r

s2
V Φ(d2)

]
(3.17)

where X(V, T0, p) is defined in (3.5), A(t, T0−) and B(t, T0−) are given by (3.9) and (3.10) respec-

tively, and d1 and d2 are defines as follows:

d1 =
ln V

Vb√
(T0 − t)sV

+
√

(T0 − t)
(sV

2
− r

sV

)
d2 =

ln Vb
V√

(T0 − t)sV

+
√

(T0 − t)
(sV

2
− r

sV

)
. (3.18)
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Chapter 4

Defaultable Corporate Coupon-Bond Pricing with Stochastic Interest Rate

4.1 Corporate Coupon Bond with Stochastic Interest Rate - Unexpected Default

4.1.1 Formulation

Under this section, we will assume the following.

Assumption 1: The risk free short term interest rate r(t) = rt follows Vasicek model (1977):

drt = θ(ν(t)− r(t))dt + sr(t)dW1(t).

where θ is a constant, ν(t) and sr(t) are deterministic functions of t, and W1(t) is a standard

Brownian motion.

Under this assumption, the price Z(t) of default-free zero-coupon bond satisfies the following PDE:
∂Z

∂t
+ 1

2s2
r

∂2Z

∂r2
+ θ(ν(t)− r(t))

∂Z

∂r
− rZ = 0,

Z(r, T ) = 1.

(4.1)

and

Z(r, t;T ) = eĀ(t,T )−B̄(t,T )r

B̄(t, T ) =
1− e−θ(T−t)

θ

Ā(t, T ) = −
∫ T

t

{
θν(s)B̄(s, T )− 1

2
s2
rB̄

2(s, T )
}

ds. (4.2)

Assumption 2: Unexpected default probability in [t, t + dt] is ptdt, the default intensity pt satisfies

dp = ap(r, p, t)dt + sp(r, p, t)dW2 + pτj−
UjI{τj∈(t,t+dt]}
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with

ap(r, p, t) = α(t) + β(t)r + γ(t)p,

s2
p = δ(t) + ε(t)r + η(t)p,

where W2(t) is a standard Brownian motion, and Unexpected default recover is given by Rd = R·Z,

where R, 0 ≤ R ≤ 1, is a constant, and Z is the price at the default time of default-free zero-coupon

bond.

Assumption 3: Covariance Cov(dW1, dW2) = ρ.

Assumption 4: The defaultable corporate coupon-bond price is given by the function Ĝ = Ĝ(r, p, t),

which constitutes of Ĉ = Ĉ(r, p, t), the value at time t of the principal portion only, and ci, the i-th

coupon with ciĈ(r, p, t; τi) to be the value at time t of i-th coupon due on τi. Therefore, we have

Ĝ(r, p, t) = Ĉ(r, p, t) +
∑
τi≥t

ciĈ(r, p, t; τi).

Problem: Under these assumptions, we shall find the price of defaultable corporate coupon-bond

Ĝ = Ĝ(r, p, t).

4.1.2 Derivation of the model

As in Chapter 2, to hedge the risk of pt we construct a portfolio by hedging one bond with another

bond with different maturity. We will include default-free zero-coupon bond here to hedge the risk

caused by r(t). Let us denote the priced of a bond with maturity Ti and default recovery Ri by

Ci(r, p, t : Ti), i = 1, 2. Then, the portfolio is:

Π = Ĉ1 − Λ1Z − Λ2Ĉ2.
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The change of values in the portfolio over a small time increment [t, t + dt], if there is no default

with probability 1− ptdt, is

dΠ =

(
∂Ĉ1

∂t
+

1
2
[
s2
r

∂2Ĉ1

∂r2
+ 2ρsrsp

∂2Ĉ1

∂r∂p
+ s2

p

∂2Ĉ1

∂p2

])
dt +

∂Ĉ1

∂r
dr +

∂Ĉ1

∂p
dp

+{Ĉ1(r, pτj , t)− Ĉ1(r, pτj−, t)}I{τj∈(t,t+dt]} − Λ1

[(
∂Z

∂t
+

1
2
s2
r

∂2Z

∂r2

)
dt +

∂Z

∂r
dr

]

−Λ2

[(
∂Ĉ2

∂t
+

1
2
[
s2
r

∂2Ĉ2

∂r2
+ 2ρsrsp

∂2Ĉ2

∂r∂p
+ s2

p

∂2Ĉ2

∂p2

])
dt +

∂Ĉ2

∂r
dr +

∂Ĉ2

∂p
dp

+{Ĉ2(r, pτj , t)− Ĉ2(r, pτj−, t)}I{τj∈(t,t+dt]}

]

=

(
∂Ĉ1

∂t
+

1
2
[
s2
r

∂2Ĉ1

∂r2
+ 2ρsrsp

∂2Ĉ1

∂r∂p
+ s2

p

∂2Ĉ1

∂p2

])
dt− Λ1

(
∂Z

∂t
+

1
2
s2
r

∂2Z

∂r2

)
dt

−Λ2

(
∂Ĉ2

∂t
+

1
2
[
s2
r

∂2Ĉ2

∂r2
+ 2ρsrsp

∂2Ĉ2

∂r∂p
+ s2

p

∂2Ĉ2

∂p2

])
dt

+
(

∂Ĉ1

∂r
− Λ1

∂Z

∂r
− Λ2

∂Ĉ2

∂r

)
dr +

(
∂Ĉ1

∂p
− Λ2

∂Ĉ2

∂p

)
dp

+{Ĉ1(r, pτj , t)− Ĉ1(r, pτj−, t)}I{τj∈(t,t+dt]}

+{Ĉ2(r, pτj , t)− Ĉ2(r, pτj−, t)}I{τj∈(t,t+dt]}. (4.3)

We will choose Λ1 and Λ2 so that we can get rid of uncertainty caused by dr and dp terms. That is,

Λ1 =
[
∂Ĉ1

∂r
− ∂Ĉ1

∂p

(
∂Ĉ1

∂p

)−1 ∂Ĉ2

∂r

](
∂Ẑ

∂r

)−1

and

Λ2 =
∂Ĉ1

∂p

(
∂Ĉ1

∂p

)−1

.

Then (4.3) becomes

dΠ =

(
∂Ĉ1

∂t
+

1
2
[
s2
r

∂2Ĉ1

∂r2
+ 2ρsrsp

∂2Ĉ1

∂r∂p
+ s2

p

∂2Ĉ1

∂p2

])
dt− Λ1

(
∂Z

∂t
+

1
2
s2
r

∂2Z

∂r2

)
dt

−Λ2

(
∂Ĉ2

∂t
+

1
2
[
s2
r

∂2Ĉ2

∂r2
+ 2ρsrsp

∂2Ĉ2

∂r∂p
+ s2

p

∂2Ĉ2

∂p2

])
dt

+{Ĉ1(r, pτj , t)− Ĉ1(r, pτj−, t)}I{τj∈(t,t+dt]}

+{Ĉ2(r, pτj , t)− Ĉ2(r, pτj−, t)}I{τj∈(t,t+dt]}. (4.4)

If there is a default, with probability ptdt, then the price change in the portfolio is

dΠ = (R1 − Ĉ1)− Λ1dZ − Λ2(R2 − Ĉ2). (4.5)
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By the Arbitrage Principle, we should have E[dΠ] = rtΠdt, i.e., (4.4)×(1−ptdt)+(4.5)×ptdt =

rtΠdt. By the Ito Lemma, and considering the time period with no jump (i.e., τj 6∈ [t, t + dt]), we

have

∂Ĉ1

∂t
+

1
2
[
s2
r

∂2Ĉ1

∂r2
+ 2ρsrsp

∂2Ĉ1

∂r∂p
+ s2

p

∂2Ĉ1

∂p2

]
− rC1 + pt(R1 − C1)

−Λ2

{
∂Ĉ2

∂t
+

1
2
[
s2
r

∂2Ĉ2

∂r2
+ 2ρsrsp

∂2Ĉ2

∂r∂p
+ s2

p

∂2Ĉ2

∂p2

]
− rC1 + pt(R2 − C2)

−Λ1

(
∂Z

∂t
+

1
2
s2
r

∂2Z

∂r2
− rZ

)
= 0.

Note that by (4.1)
∂Z

∂t
+

1
2
s2
r

∂2Z

∂r2
− rZ = −θ(ν(t)− r(t))

∂Z

∂r
. (4.6)

Substituting (4.6) and simplifying, we obtain{
∂Ĉ1

∂t
+

1
2
[
s2

r

∂2Ĉ1

∂r2
+ 2ρsrsp

∂2Ĉ1

∂r∂p
+ s2

p

∂2Ĉ1

∂p2

]
+θ(ν(t)− r(t))

∂Ĉ1

∂r
− rC1 + pt(R1 − C1)

}(
∂Ĉ1

∂p

)−1

=

{
∂Ĉ2

∂t
+

1
2
[
s2

r

∂2Ĉ2

∂r2
+ 2ρsrsp

∂2Ĉ2

∂r∂p
+ s2

p

∂2Ĉ2

∂p2

]
+θ(ν(t)− r(t))

∂Ĉ2

∂r
− rC2 + pt(R2 − C2)

}(
∂Ĉ2

∂p

)−1

.

The left hand side of the equation is a function of T1 but not T2 and the right hand side is a function

of T2 but not T1 so that both sides must be a function independent of T1 and T2, say −κ(r, p, t). So

we have

∂Ĉ

∂t
+

1
2
[
s2
r

∂2Ĉ

∂r2
+2ρsrsp

∂2Ĉ

∂r∂p
+s2

p

∂2Ĉ

∂p2

]
+θ(ν(t)−r(t))

∂Ĉ

∂r
−rĈ+pt(Rd−Ĉ) = −κ(r, p, t)

∂Ĉ

∂p
.

Here κ(r, p, t) is a risk neutral drift of pt. We can write κ(r, p, t) in the form of κ(r, p, t) =

ap(r, p, t) − sp(r, p, t) · λ(r, p, t) or λ(r, p, t) = ap(r,p,t)−κ(r,p,t)
sp(r,p,t) . The function λ(r, p, t) is called

a market price of risk pt and measures an extra compensation per unit of risk for taking on the

risk incurred by pt. In a model where we can dynamically hedge the portfolio, we can elimi-

nate such risk totally, therefore in the computation below, we assume λ(r, p, t) = 0. That is,

κ(r, p, t) = ap(r, p, t).

As before, in addition to the previous assumptions, let us also assume the following.
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Assumption 5: The defaultable coupon bond price at time t = τj− is the expectation of the price at

time t = τj . �

That is,

Ĉ(r, p, τj−) = E(Ĉ(t, p, τj)), (4.7)

where expectation is taken with respect to the survival probability P (·, ·). Especially, if t = T− =

τn−, we have

Ĉ(r, p, T−) = 1 · P (T−, T ) + R · (1− P (T−, T ))

and Ĉ(r, p, T ) = 1 if there is not default until t = T .

Then, using Rd = R ·Z, on the time interval [τn−1, T ) we have a PDE with the terminal condition.

∂Ĉ

∂t
+ 1

2

[
s2
r

∂2Ĉ

∂r2
+ 2ρsrsp

∂2Ĉ

∂r∂p
+ s2

p

∂2Ĉ

∂p2

]
+ θ(ν(t)− r(t))

∂Ĉ

∂r
+ ap(r, p, t)

∂Ĉ

∂p

−(r + pt)Ĉ + pRZ = 0, (τn−1 ≤ t < T, r > 0, p > 0)

Ĉ(r, p, T−) = 1 · P (T−, T ) + R · (1− P (T−, T ))

= e−pT−Un + R · (1− e−pT−Un) (r > 0, p > 0).
(4.8)

In order to find an explicit solution, assume that the drift and volatility of p(t) is not correlated to

the short term rate r(t). That is,

ap = α(t) + γ(t)p,

s2
p = δ(t) + η(t)p.

(4.9)

Using the change of unknown function and variable as

Ĉ(r, p, t) = Z(r, t) · u(p, t),

and using (4.1), (4.8) reduces to
∂u

∂t
+ 1

2s2
p

∂2u

∂p2
+ ap

∂u

∂p
− p(u−R) = 0, (τn−1 ≤ t < T, p > 0)

u(p, T−) = e−pT−Un + R · (1− e−pT−Un), (r > 0, p > 0).
(4.10)
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Noting that this system is the same as (2.8), we have the solution for t ∈ [τn−1, T ),

Ĉ(r, p, t) = Z(r, t)
[
eA(t,T−)−B(t,T−)pt + (1− eA(t,T−)−B(t,T−)pt ·R

]
where

A(t, T−) = −
∫ T−

t

(
α(s)B(s, T−)− 1

2
Λ(s)B2(s, T−)

)
ds

and

B(t, T−) =



1−e−γ(T−t)

γ ,

dp = (α(t)− γ · p)dt +
√

δ(t) · dW2, γ 6= 0

τn − t, dp = (α(t)− γ · p)dt +
√

δ(t) · dW2, γ = 0

−
√

2
γ ·

exp(
√

γ
2
(T−t))−exp(−

√
γ
2
(T−t))

exp(
√

γ
2
(T−t))+exp(−

√
γ
2
(T−t))

,

dp = α(t)dt +
√

δ(t) + k · p · dW2.

Now, using (4.7), we can obtain the terminal condition for the period [τn−2, τn−1), and we have the

following PDE with the terminal condition:

∂Ĉ

∂t
+ 1

2

[
s2
r

∂2Ĉ

∂r2
+ 2ρsrsp

∂2Ĉ

∂r∂p
+ s2

p

∂2Ĉ

∂p2

]
+ θ(ν(t)− r(t))

∂Ĉ

∂r

+ap(r, p, t)
∂Ĉ

∂p
− (r + pt)Ĉ + pRZ = 0, (τn−2 ≤ t < τn−1, r > 0, p > 0)

Ĉ(r, p, τ(n−1)−) = Z(r, τn−1) · E[C(r, p, τn−1)]

= Z(r, τn−1) ·
(
e
D(τn−1,T−)−

nP
j=n−1

pτj−Uj

+ R · (1− e
D(τn−1,T−)−

nP
j=n−1

pτj−Uj

)
)

= Z(r, τn−1) ·
(
e
D(τn−1,T−)−

nP
j=n−1

pτj−Uj

(1−R) + R
)

(r > 0, p > 0)

where D(τn−1, T−) = A(τn−1, T−)−B(τn−1, T−)p(τn−1). Again, letting Ĉ = Z(r, t) · u(p, t),

and using (4.1), we have the following PDE with the terminal condition:
∂u

∂t
+ 1

2s2
p

∂2u

∂p2
+ ap

∂u

∂p
− p(u−R) = 0, (τn−2 ≤ t < τn−1, p > 0)

u(p, τ(n−1)−) = e
D(τn−1,T−)−

nP
j=n−1

pτj−Uj

(1−R) + R, (r > 0, p > 0).

Noting that this is the same system as (2.16), for t ∈ [τn−2, τn−1), we have the following solution.

Ĉ(r, p, t) = Z(r, t)
[
eA(t,τ(n−1)−)−B(t,τ(n−1)−)pt + (1− eA(t,τ(n−1)−)−B(t,τ(n−1)−)pt ·R

]
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where

A(t, τ(n−1)−) = −
∫ τ(n−1)−

t

(
α(s)B(s, τ(n−1)−)− 1

2
Λ(s)B2(s, τ(n−1)−)

)
ds

and

B(t, τ(n−1)−) =



1−e
−γ(τ(n−1)−−t)

γ , dp = (α(t)− γ · p)dt +
√

δ(t) · dW2, γ 6= 0

τn−1 − t, dp = (α(t)− γ · p)dt +
√

δ(t) · dW2, γ = 0

−
√

2
γ ·

exp(
√

γ
2
(τn−1−t))−exp(−

√
γ
2
(τn−1−t))

exp(
√

γ
2
(τn−1−t))+exp(−

√
γ
2
(τn−1−t))

,

dp = α(t)dt +
√

δ(t) + K · p · dW2.

By extending this backwards, we have the following result.

Theorem 8. Under Assumptions 1 through 5, the price of the corporate coupon-bond with unex-

pected default and stochastic short term rate, for any 0 ≤ t < T with τj−1 ≤ t < τj is given

by

Ĝ(r, p, t) = Ĉ(r, p, t) +
∑
τi≥t

ciĈ(r, p, t; τi)

where

Ĉ(r, p, t) = Z(r, t) ·

[
e
A(t,T−)−B(t,T−)pt−

nP
k=j

pτk−Uk

+

(
1− e

A(t,T−)−B(t,T−)pt−
nP

k=j
pτk−Uk

)
·R

]
(4.11)

where, Z(r, t) is given by (4.2), ciĈ(r, p, t; τi) corresponds to i−th coupon, whose price is given

by the product of coupon rate ci and zero-coupon of the same company maturing at time τi, and

A(t, T−) = −
∫ τj−

t

(
α(s)B(s, τj−)− 1

2
Λ(s)B2(s, τj−)

)
ds

−
n∑

k=j+1

∫ τk−

τk−1

(
α(s)B(s, τk−)− 1

2
Λ(s)B2(s, τk−)

)
ds (4.12)

66



and

B(t, T−) =



n− (j − 1)− e−γ(τj−t) −
n∑

k=j+1

e−γ(τk−τk−1)

γ
,

if dp = (α(t)− γ · p)dt +
√

δ(t) · dW2 + pτj−UjI{τj∈(t,t+dt]}, γ 6= 0

T − t,

if dp = (α(t)− γ · p)dt +
√

δ(t) · dW2 + pτj−UjI{τj∈(t,t+dt]}, γ = 0

−
√

2
γ ·

e
√

γ
2
(τj−t) +

n∑
k=j+1

e
√

γ
2
(τk−τk−1) − e−

√
γ
2
(τj−t) −

n∑
k=j+1

e−
√

γ
2
(τk−τk−1)

e
√

γ
2
(τj−t) +

n∑
k=j+1

e
√

γ
2
(τk−τk−1) + e−

√
γ
2
(τj−t) +

n∑
k=j+1

e−
√

γ
2
(τk−τk−1)

,

if dp = α(t)dt +
√

δ(t) + K · p · dW2 + pτj−UjI{τj∈(t,t+dt]}
(4.13)

with, on each time interval, τj−1 ≤ t < τj

B(t, τj−) =



1− e−γ(τj−t)

γ
, dp = (α(t)− γ · p)dt +

√
δ(t) · dW2, γ 6= 0

τj − t, dp = (α(t)− γ · p)dt +
√

δ(t) · dW2, γ = 0

−
√

2
γ ·

e
√

γ
2
(τj−t) − e−

√
γ
2
(τj−t)

e
√

γ
2
(τj−t) + e−

√
γ
2
(τj−t)

, dp = α(t)dt +
√

δ(t) + K · p · dW2.

(4.14)
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4.2 Corporate Coupon Bond with Stochastic Interest Rate - Expected and Unexpected De-

fault

4.2.1 Formulation

Under this section, we will assume the following.

Assumption 1: As in the previous section, risk free short term interest rate r(t) = rt follows

Vasicek model (1977):

drt = θ(ν(t)− r(t))dt + srdW1(t).

where θ is a constant, ν(t) and sr are deterministic functions of t.

Again, as in the previous section, the price Z(t) satisfies the PDE given by (4.1) and its solution is

given by (4.2).

Assumption 2: Unexpected default probability in [t, t + dt] is ptdt, the default intensity pt satisfies

dp = ap(r, p, t)dt + sp(r, p, t)dW2 + pτjUjI{τj∈(t,t+dt]}

with

ap(r, p, t) = α(t) + β(t)r + γ(t)p,

s2
p = δ(t) + ε(t)r + η(t)p,

and unexpected default recovery is given by Rd = R · Z, where R : 0 ≤ r ≤ 1, constant, and Z is

the price at the default time of default free zero coupon bond.

Assumption 3: The firm assets V (t) = Vt consists of m shares of traded stock, whose price at time

t is S(t) = St, and n coupon-bond certificates, whose price at time t is C(t) = Ct:

V (t) = mS(t) + nC(t).

The firm assets value follows a geometric Brownian motion:

dV = aV Vtdt + sV VtdW3,
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aV and SV are constant, and on predetermined coupon payment dates t = τj , where j refers to j-th

interest payment, j = 1, · · · , n, the jump of Vt is given by

∆Vτj = Vτj − Vτj−
= ncC(T ) = nc,

where c is the coupon rate of the bonds and T is the maturity of the bond. (Here, we assume that

the bonds are redeemed at their face value; therefore, C(T ) = 1.) Expected default occurs when

V ≤ Vb(t); Vb(t) = VB or VB · Z

and the default recovery is also given by Rd = R · Z,R : 0 ≤ r ≤ 1, where Z is as defined above.

Assumption 4:

dWi · dWj = ρijdt, i = 1, 2, 3.

However we assume that unexpected default and expected default are not correlated, i.e., ρ23 = 0.

Assumption 5: The defaultable corporate coupon-bond price is given by the function G = G(r, V, p, t),

which constitutes of C = C(r, V, p, t), the value at time t of the principal portion only, and ci, the

i-th coupon with ciC(r, V, p, t; τi) to be the value at time t of i-th coupon due on τi. Therefore, we

have

G(r, V, p, t) = C(r, V, p, t) +
∑
τi≥t

ciC(r, V, p, t; τi).

Problem: Under these assumptions, we shall find the price of defaultable coupon-bond with both

expected and unexpected default, which is given as a function of r, V, p and t, that is G = G(r, V, p, t).

4.2.2 Derivation of the Model

We will form the portfolio by buying one bond certificate under concern and hedge the risk incurred

by V, p and r by selling Λ1 shares of the traded stock, Λ2 coupon-bond certificates with unexpected

default only, whose price is given by Ĉ(r, p, t) and Λ3 default free zero coupon bond. We denote

the default recovery for Ĉ(r, p, t) by R̂:

Π = C − Λ1S − Λ2Ĉ − Λ3Z.

69



By the Arbitrage Principle, the price change of the portfolio over a small increment of time dt is

equal to rΠdt, so that, after taking Assumption 3 into consideration, we have the following:

dΠ = dC − Λ1dS − Λ2dĈ − Λ3dZ

=
(
1 +

Λ1n

m

)
dC − Λ1

m
dV − Λ2dĈ − Λ3dZ

= rΠdt.

If there is no default over [t, t + dt] with probability 1 − ptdt, then the change in the value of the

portfolios is given by

dΠ =
(
1 +

Λ1n

m

)[{∂C

∂t
+

1
2

(
s2
r

∂2C

∂r2
+ 2ρ13srsV V

∂2C

∂r∂V
+ s2

V V 2 ∂2C

∂V 2

+2ρ12srsp
∂2C

∂r∂p
+ s2

p

∂2C

∂p2

)}
dt +

∂C

∂r
dr +

∂C

∂V
dV +

∂C

∂p
dp

+
{
C(r, Vτj , pτj , t)− C(r, Vτj− , pτj− , t)

}
I{τj∈(t,t+dt]}

]
−Λ1

m
dV − Λ2

[{∂Ĉ

∂t
+

1
2

(
s2
r

∂2Ĉ

∂r2
+ 2ρ12srsp

∂2Ĉ

∂r∂p
+ s2

p

∂2Ĉ

∂p2

)}
dt

+
∂Ĉ

∂r
dr +

∂Ĉ

∂p
dp +

{
Ĉ(r, pτj , t)− Ĉ(r, pτj− , t)

}
I{τj∈(t,t+dt]}

]
−Λ3

[{∂Z

∂t
+

1
2
s2
r

∂2Z

∂r2

}
dt +

∂Z

∂r
dr

]
.

We will choose Λ1,Λ2 and Λ3 so that we can get rid of uncertainty caused by dr, dp and dV terms,

that is,

Λ1 = m
∂C

∂V

(
1− n

∂C

∂V

)−1

, and 1 +
Λ1n

m
=
(

1− n
∂C

∂V

)−1

Λ2 =
∂C

∂p

(
∂Ĉ

∂p

)−1(
1− n

∂C

∂V

)−1

, and

Λ3 =
(

1− n
∂C

∂V

)−1[∂C

∂r
− ∂C

∂p

(
∂Ĉ

∂p

)−1 ∂Ĉ

∂r

](
∂Z

∂r

)−1

.
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On the time interval [t, t + dt), we have

dΠ =
(
1− ∂C

∂V

)−1
[{∂C

∂t
+

1
2

(
s2
r

∂2C

∂r2
+ 2ρ13srsV V

∂2C

∂r∂V
+ s2

V V 2 ∂2C

∂V 2

+2ρ12srsp
∂2C

∂r∂p
+ s2

p

∂2C

∂p2

)}
dt

+
{
C(r, Vτj , pτj , t)− C(r, Vτj− , pτj− , t)

}
I{τj∈(t,t+dt]}

]
−
(
1− ∂C

∂V

)−1 ∂C

∂p

(∂Ĉ

∂p

)−1
[{∂Ĉ

∂t
+

1
2

(
s2
r

∂2Ĉ

∂r2
+ 2ρ12srsp

∂2Ĉ

∂r∂p
+ s2

p

∂2Ĉ

∂p2

)}
dt

+
{
Ĉ(r, pτj , t)− Ĉ(r, pτj− , t)

}
I{τj∈(t,t+dt]}

]
−
(
1− ∂C

∂V

)−1(∂Z

∂r

)[∂C

∂r
− ∂C

∂p

(∂C

∂p

)−1 ∂Ĉ

∂r

]{∂Z

∂t
+

1
2
s2
r

∂2Z

∂r2

}
dt. (4.15)

In case of default with probability ptdt, since

dC = Rd − C and dĈ = R̂− Ĉ,

the change in the value is given by

dΠ =
(
1 +

∂Λ1n

m

)
(Rd − C)− Λ1

m
dV − Λ2(R̂− Ĉ)− Λ3dZ

=
(
1− ∂C

∂V

)−1
[
(Rd − C)− ∂C

∂V
dV − ∂C

∂p

(∂Ĉ

∂p

)−1
(R̂− Ĉ)

−
(∂Z

∂r

)−1
{

∂C

∂r

(∂Ĉ

∂p

)−1 ∂Ĉ

∂r

}
dZ

]
. (4.16)

We take the expectation of dΠ and equate it with rΠdt, that is (4.15)× (1− ptdt) + (4.16)× ptdt.
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Then, multiplying by
(
1− ∂C

∂V

)−1
, we obtain

{∂C

∂t
+

1
2

(
s2
r

∂2C

∂r2
+ 2ρ13srsV V

∂2C

∂r∂V
+ s2

V V 2 ∂2C

∂V 2

+2ρ12srsp
∂2C

∂r∂p
+ s2

p

∂2C

∂p2

)}
dt

+(1− ptdt)
{
C(r, Vτj , pτj , t)− C(r, Vτj− , pτj− , t)

}
I{τj∈(t,t+dt]}

−∂C

∂p

(∂Ĉ

∂p

)−1{∂Ĉ

∂t
+

1
2

(
s2
r

∂2Ĉ

∂r2
+ 2ρ12srsp

∂2Ĉ

∂r∂p
+ s2

p

∂2Ĉ

∂p2

)}
dt

−(1− ptdt)
∂C

∂p

(∂Ĉ

∂p

)−1{
Ĉ(r, pτj , t)− Ĉ(r, pτj− , t)

}
I{τj∈(t,t+dt]}

−
(∂Z

∂r

)−1
[
∂C

∂r
− ∂C

∂p

(∂Ĉ

∂p

)−1 ∂Ĉ

∂r

]{∂Z

∂t
+

1
2
s2
r

∂2Z

∂r2

}
dt

+
{

(Rd − C)− ∂C

∂p

(∂Ĉ

∂p

)−1
(R̂− Ĉ)

}
ptdt

= r

[
C − ∂C

∂V
− ∂C

∂p

(∂Ĉ

∂p

)−1
Ĉ −

{
∂C

∂r
V − ∂C

∂p

(∂Ĉ

∂p

)−1 ∂Ĉ

∂r

}(∂Z

∂r

)−1
Z

]
ptdt.

(4.17)

Now, on [τj , τj+1), (4.17) becomes

∂C

∂t
+

1
2

(
s2
r

∂2C

∂r2
+ 2ρ13srsV V

∂2C

∂r∂V
+ s2

V V 2 ∂2C

∂V 2
+ 2ρ12srsp

∂2C

∂r∂p
+ s2

p

∂2C

∂p2

)
+rV

∂C

∂V
− rC + p(Rd − C)

−∂C

∂p

(∂Ĉ

∂p

)−1
[
∂Ĉ

∂t
+

1
2

(
s2
r

∂2Ĉ

∂r2
+ 2ρ12srsp

∂2Ĉ

∂r∂p
+ s2

p

∂2Ĉ

∂p2

)
− rĈ + p(R̂− Ĉ)

]
−
(∂Z

∂r

)−1
[
∂C

∂r
− ∂C

∂p

(∂Ĉ

∂p

)−1 ∂Ĉ

∂r

]{∂Z

∂t
+

1
2
s2
r

∂2Z

∂r2
− rZ

}
= 0. (4.18)

By (4.6) and (4.1), (4.18) becomes

∂C

∂t
+

1
2

(
s2
r

∂2C

∂r2
+ 2ρ13srsV V

∂2C

∂r∂V
+ s2

V V 2 ∂2C

∂V 2
+ 2ρ12srsp

∂2C

∂r∂p
+ s2

p

∂2C

∂p2

)
+rV

∂C

∂V
− rC + p(Rd − C) + ap

∂C

∂p
+ θ(ν(t)− r)

∂C

∂r
= 0. (4.19)

As in the previous sections, we assume the following:

Assumption 6: The defaultable corporate coupon bond price at time t = τj− is the expectation of

the price at time t = τj .
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So if we let S(τj−, τj) be the survival probability of the bond at time t = τj given the survival at

time t = τj−, then the price of the corporate bond at t = τn− = T−, which is the terminal condition

for the PDE (4.18), is given by

C(r, V, p, T−) = 1 · S(T−, T ) + R · [1− S(T−, T )]. (4.20)

Therefore we have the following model:

Theorem 9. Under Assumptions 1 through 6, the price of the defaultable corporate coupon bond

price C on [τn−1, T−) is modeled by

∂C

∂t
+

1
2

(
s2
r

∂2C

∂r2
+ 2ρ13srsV V

∂2C

∂r∂V
+ s2

V V 2 ∂2C

∂V 2
+ 2ρ12srsp

∂2C

∂r∂p
+ s2

p

∂2C

∂p2

)
+rV

∂C

∂V
− rC + p(Rd − C) + ap

∂C

∂p
+ θ(ν(t)− r)

∂C

∂r
= 0

C(r, V, p, T−) = 1 · S(T−, T ) + R · [1− S(T−, T )].

4.2.3 Particular Solution

To solve (4.19) with (4.20) as the terminal condition, we use the change of unknown function and

variable as follows:

x =
V

Z
and u(x, p, t) =

C(r, V, p, t)
Z

.

Then, (4.19) and (4.20) become

∂u

∂t
+

1
2

{
[s2

rB̄
2(t) + s2

V + 2ρ13srsV B̄(t)]x2 ∂2u

∂x2
+ s2

p(p, r, t)
∂2u

∂p2
+ 2ρ12srspB̄(t)x

∂2u

∂p∂x

}
+[ap(p, r, t)− 2ρ12srspB̄(t)]

∂u

∂p
− p(u−R) = 0, (x > VB, p > 0, τn−1 ≤ t < T )

u(x, p, T−) = 1 · S(T−, T ) + Rd · [1− S(T−, T )], (x > VB, p > 0)

u(VB, p, t) = Rd, (p > 0, τn−1 ≤ t < T )

where B̄(t) was defined in (4.2).

We will consider the case where β(t) = ε(t) ≡ 0 and ρ13 = 0. So letting

s̄2(t) = s2
rB̄

2(t) + s2
V + 2ρ13srsV B̄(t),

ρ̄(p, t) = ρ12srspB̄(t), and

āp(p, t) = ap(p, r, t)− 2ρ12srspB̄(t),
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and also letting

û = u−R,

we have

∂û

∂t
+

1
2

{
s̄2(t)x2 ∂2û

∂x2
+ s2

p(p, t)
∂2û

∂p2
+ 2ρ̄x

∂2û

∂p∂x

}
+āp(p, t)

∂û

∂p
− pû = 0, (x > VB, p > 0, τn−1 ≤ t < T )

û(x, p, T−) = (1−R) · S(T−, T ), (x > VB, p > 0)

û(VB, p, t) = 0, (p > 0, τn−1 ≤ t < T ).

Now using the change of unknown function

û = W (1−R)S(T, T−),

we have

∂W

∂t
+

1
2

{
s̄2(t)x2 ∂2W

∂x2
+ s2

p(p, t)
∂2W

∂p2
+ 2ρ̄x

∂2W

∂p∂x

}
+āp(p, t)

∂W

∂p
− pW = 0, (x > VB, p > 0, τn−1 ≤ t < T )

W (x, p, T−) = 1, (x > VB, p > 0)

W (VB, p, t) = 0, (p > 0, τn−1 ≤ t < T ).

Now using ρ13 = 0,

∂W

∂t
+

1
2

{
s̄2(t)x2 ∂2W

∂x2
+ s2

p(p, t)
∂2W

∂p2

}
+ ap(p, t)

∂W

∂p
− pW = 0,

(x > VB, p > 0, τn−1 ≤ t < T )

W (x, p, T−) = 1, (x > VB, p > 0)

W (VB, p, t) = 0, (p > 0, τn−1 ≤ t < T ).
(4.21)

If we further assume that

W (x, p, t) = f(x, t) · g(p, t).

Then, using this, the PDE in (4.21) becomes[
∂f

∂t
+

1
2
s̄2(t)x2 ∂2f

∂x2

]
g +

[
∂g

∂t
+

1
2
s2
p(p, t)

∂2g

∂p2
+ ap(p, t)

∂g

∂p
− pg

]
f = 0.
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As in before, assuming the coefficient terms of g and f are zero, we have the following two PDE

problems: 

∂f

∂t
+

1
2
s̄2(t)x2 ∂2f

∂x2
= 0, (x > VB, τn−1 ≤ t < T )

f(VB, t) = 0, (τn−1 ≤ t < T )

f(x, T−) = 1, (x > VB)

(4.22)


∂g

∂t
+

1
2
s2
p(p, t)

∂2g

∂p2
+ ap(p, t)

∂g

∂p
− pg = 0, (p > 0, τn−1 ≤ t < T )

g(p, T−) = 1, (p > 0).
(4.23)

Notice that (4.23) is the same as (2.47). Now, to solve (4.22), using the following time scale trans-

formation,

s =
∫ t

τn−1

s̄2(u) du and T̄ =
∫ T

τn−1

s̄2(u) du,

and letting

f̄(x, s) = f(x, t),

(4.22) becomes 

∂f̄

∂s
+

1
2
x2 ∂2f̄

∂x2
= 0, (x > VB, τn−1 ≤ s < T̄ )

f(VB, s) = 0, (0 ≤ s < T̄ )

f(x, T̄ ) = 1, (x > VB).

(4.24)

To solve this, let

x

VB
= ey, and so y = ln

x

VB

ζ =
T̄ − s

2
,

f̄(x, s) = VB · v(y, ζ).

Then, (4.24) becomes

∂v

∂ζ
− ∂2v

∂y2
+

∂v

∂y
= 0, (−∞ < y < ∞, 0 ≤ s < T̄

2 )

v(0, ζ) = 0, (0 ≤ s < T̄
2 )

v(y, 0) = 1
VB

, (−∞ < y < ∞).

(4.25)
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Using the change of unknown function v = weαy+βζ , the PDE in (4.25) becomes

wζ = wyy + (α2 − αβ)w + (2α− 1)wy.

We choose α and β so that the coefficients of w and wy are zero. That is, α = 1
2 and β = −1

4 .

Then, we have the following heat equation:
wζ = wyy, (−∞ < y < ∞, 0 ≤ ζ < T̄

2 )

w(y, 0) = 1
VB

e−
1
2
y, (−∞ < y < ∞).

Define

h̄(y) =


h(y) = w(y, 0) = 1

VB
e−

1
2
y (y > 0)

0, otherwise

let w1(y, ζ) be a solution of the IVP,
wζ = wyy, (−∞ < y < ∞, 0 ≤ ζ)

w(y, 0) = ĥ(y), (−∞ < y < ∞)
(4.26)

and w2(y, ζ) = w1(−y, ζ) (and so w2(0, ζ) = w1(0, ζ) ). Then, by the solution formula and the

image solution method

w1(y, ζ) =
1

2
√

πζ

∫ ∞

−∞
ĥ(ξ) exp

(
− (y − ξ)2

4ζ

)
dξ =

1
2
√

πζ

∫ ∞

0
exp

(
− (y − ξ)2

4ζ

)
dξ

=
1

VB
e−

1
2
y+ ζ

4 · Φ(d1)

w2(y, ζ) =
1

2
√

πζ

∫ ∞

0
h(ξ) exp

(
− (y + ξ)2

4ζ

)
dξ

=
1

VB
e

1
2
y+ ζ

4 · Φ(d2)

where d1 =
ln x

VB√
T̄ − s

−
√

T̄ − s

2
and d2 =

ln VB
x√

T̄ − s
−
√

T̄ − s

2
. Since w = w1 − w2, we have

f̄(x, s) = VBv(y, ζ) = VBw(y, ζ)e
1
2
y− 1

4
ζ = VB

(
w1(y, ζ)− w2(y, ζ)

)
e

1
2
y− 1

4
ζ

= Φ(d1)−
x

VB
Φ(d2)

where d1 and d2 are given above. And so,

f(x, t) = Φ(d∗1)−
x

VB
Φ(d∗2)

76



where d∗1 =
ln V

VBZ√∫ T
t s̄2(u) du

−

√∫ T
t s̄2(u) du

2
and d∗2 =

ln VBZ
V√∫ T

t s̄2(u) du
−

√∫ T
t s̄2(u) du

2
. So the

price of the corporate coupon bond with expected and unexpected default for t ∈ [τn−1, T ) is given

by

C(r, V, p, t) = Z · u(x, p, t) = Z(û + R) = Z
(
W (1−R)S(T, T−) + R

)
= Z

(
f · g(1−R)S(T, T−) + R

)
= RZ(t, T ) + eA(t,T )−B(t,T )p(1−R)

[
Z · Φ(d∗1)−

V

VB
Φ(d∗2)

]
Now, using this, C(r, V, p, τn−1) is given by

C(r, V, p, τn−1) = RZ(τn−1, T )

+ eA(τn−1,T )−B(τn−1,T )p · (1−R)
[
Z(τn−1, T )Φ(d∗1,τn−1

)− V

VB
Φ(d∗2,τn−1

)
]

where A(t, ·) and B(t, ·) are given by (2.19) through (2.21) and d1,τj and d2,τj are given by

d∗1,τj
=

ln V
VBZ(τj ,τj+1)√∫ τj+1

τj
s̄2(u) du

−

√∫ τj+1

τj
s̄2(u) du

2
, and

d∗2,τj
=

ln VBZ(τj ,τj+1)
V√∫ τj+1

τj
s̄2(u) du

−

√∫ τj+1

τj
s̄2(u) du

2

Then, on the time interval [τn−2, τn−1), by the arbitrage principle, the terminal condition becomes

C(r, V, p, τ(n−1)−) =
[
RZ(τn−1, T ) + eA(τn−1,T )−B(τn−1,T )p · (1−R)[Z(τn−1, T )Φ(d∗1,τn−1

)

− V

VB
Φ(d∗2,τn−1

)]
]
· S(τ(n−1)− , τn−1)

+RZ(τn−1, T )
(
1− S(τ(n−1)− , τn−1)

)
= S(τ(n−1)− , τn−1)

{
(1−R)eA(τn−1,T )−B(τn−1,T )p[Z(τn−1, T )Φ(d∗1,τn−1

)

− V

VB
Φ(d∗2,τn−1

)]
}

+ RZ(τn−1, T ).

Solving (4.19) with this terminal condition gives the solution for t ∈ [τn−2, τn−1) as follows:

C(r, V, p, t) = RZ(t, T ) + eA(t,τn−1)−B(t,τn−1)p · (1−R)[Z(t, τn−1)Φ(d∗1)−
V (t)
VB

Φ(d∗2)]

×S(τ(n−1)− , τn−1) ·
{

(1−R)eA(τn−1,T )−B(τn−1,T )p[Z(τn−1, T )Φ(d∗1,τn−1
)

−V (τn−1)
VB

Φ(d∗2,τn−1
)]
}
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where A(t, ·), B(t, ·), d1,τj and d2,τj are the same as above; and d1 and d2 are given, for any

t ∈ [τj , τj+1), as

d∗1 =
ln V

VBZ(t,τj+1)√∫ τj+1

t s̄2(u) du
−

√∫ τj+1

t s̄2(u) du

2
, and

d∗2 =
ln VBZ(t,τj+1)

V√∫ τj+1

t s̄2(u) du
−

√∫ τj+1

t s̄2(u) du

2
.

By iterating this process, we shall find the solution for any t ∈ [0, T ) as follows:

Theorem 10. Under Assumptions 1 through 5, for any t ∈ [0, T ) with t ∈ [τj−1, τj), j = 1, . . . , n−

1, the price of corporate coupon bond with expected and unexpected default is given by

G(r, V, p, t) = C(r, V, p, t) +
∑
τi≥t

ciC(r, V, p, t; τi)

where

C(r, V, p, t) = RZ(t, T ) + eA(t,τj)−B(t,τj)p · (1−R)[Z(t, τj)Φ(d∗1)−
V (t)
VB

Φ(d∗2)]

×
n−1∏
k=j

S(τk− , τk) ·
{

(1−R)eA(τk,τk+1)−B(τk,τk+1)p[Z(τk, τk+1)Φ(d∗1,τn−1
)

−V (τk)
VB

Φ(d∗2,τk
)]
}

(4.27)

and C(r, V, p, t; τi) is the price of zero-coupon bond at time t of the same company with maturity

τi.
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Chapter 5

Credit Derivatives Pricing with Stochastic Interest Rate

In this chapter, we shall find the price of credit default swaption using the bond pricing models

formulated in the previous chapter.

5.1 Credit Default Swaption with Stochastic Interest Rate - Unexpected Default

5.1.1 Formulation

We make the following assumptions in this section.

Assumption 1: We assume that the time structure of the credit default swaption and the bonds

underlying the swaption are the same as in subsection 3.1.1. That is:

Let t = 0 and t = T0 be the time when the credit default swaption (hereinafter, the ”swaption”) starts

and expires respectively. t = T0 is also when the forward credit default swap takes effect upon the

exercise of the swaption. Let t = TN be the expiration of the credit default swap and for simplicity,

let us assume that Tj , j = 1, · · · , N falls on the interest payment date of the coupon bonds issued

by the reference entity of the credit default swap and the credit default swap terminates on the day

the coupon bonds are to be redeemed, that is τn = TN where τn is as defined in subsection 2.1.1.

Let z∗ be the exercise price of the swaption. This is actually the fee the swaption holder pays on the

notional amount of the credit default swap once the swaption is exercised. Let z(t), t ≥ T0 be the

fee leg of forward credit default swap. Define

Z(t) := z(t) · E[
N∑

i,Ti>t

b(Ti)ΛiI{Ti≤τ} + b(τ)Λ∗I{T0≤τ≤TN}]
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where b(Ti) = exp{
∫ Ti

t r ds}, τ is the time of default, and Λi and Λ∗ are the lengths of time

interval since the last fee payment till Ti and the default date, respectively. Therefore, S(t) is the

present value at time t of the forward credit default swap. Observe that by the arbitrage principle,

the present value of the total fee leg is the same as the present value of the protection leg. That is:

Z(t) = E[b(τ)(1−R) · I{τ≤TN}]. (5.1)

Assumption 2: The risk free short term interest rate r(t) = rt follows the Vasicek model:

dr = θ(ν(t)− r(t))dt + sr(t)dW1(t)

where θ, ν(t), sr(t) and W (t) are defined as in section 4.1.

Assumption 3: Default is an exogenous event. Unexpected default probability on any interval

[t, t + dt] is given by,

dp = ap(p, t)dt + sp(p, t)dW2 + pτj−UjI{τj∈(t,t+dt]},

where I{τj∈(t,t+dt]} is an indicator function. dW1 · dW2 = ρ. Default recovery is given as the form

of face value exogenous recovery (R · e−r(T−t), 0 ≤ R ≤ 1: constant, T : maturity of the bond) or

as the form of market price exogenous recovery (R× bond price at default time).

The price of defaultable corporate zero-coupon bond with exogenous default is given by the function

Ĉ = Ĉ(r, p, t).

Problem: Under these setting and assumptions, we will find the price of the credit default swaption

X̂(r, p, t).

5.1.2 Derivation of the model

We construct a portfolio consisting of (i) one credit default swaption X̂(r, p, t), (ii) Λ1 units of

reference entity’s coupon-bonds with exogenous default Ĉ (to get rid of the risk arisen by p), and

(iii) Λ2 units of default-free zero-coupon bond Z (to get rid of the risk arisen by r). Then, value of

the portfolio is:

Π = X̂ − Λ1Ĉ − Λ2Z.
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So the change of value of this portfolio over a small time increment [t, t + dt] is given by

dΠ = dX̂ − dΛ1Ĉ − dΛ2Z.

If there is no default over a small time increment [t, t + dt] (with probability 1− ptdt), then by Ito

Lemma, the change of value in the portfolio over this period is given by

dΠ =
∂X̂

∂t
dt +

∂X̂

∂p
dp +

∂X̂

∂r
dr +

1
2

{
s2
p

∂2X̂

∂p2
+ s2

r

∂2X̂

∂r2
+ 2ρspsr

∂2X̂

∂r∂p

}
dt

−Λ1

[
∂Ĉ

∂t
dt +

∂Ĉ

∂p
dp +

∂Ĉ

∂r
dr +

1
2

{
s2
p

∂2Ĉ

∂p2
+ s2

r

∂2Ĉ

∂r2
+ 2ρspsr

∂2Ĉ

∂r∂p

}
dt

−{Ĉ(r, pτj , t)− Ĉ(r, pτj−
, t)}I{τj∈(t,t+dt]}

−Λ2

[
∂Z

∂t
dt +

1
2
s2
r

∂2Z

∂r2
dt +

∂Z

∂r
dr

]
.

To get rid of the uncertainty caused by dp and dr terms, we choose Λ1 and Λ2 as follows:

Λ1 =
∂X̂

∂p

(
∂Ĉ

∂p

)−1

,

Λ2 =
(

∂Z

∂r

)−1[∂X̂

∂r
− ∂X̂

∂p
· ∂Ĉ

∂r

(
∂Ĉ

∂p

)−1]
.

Then, we have

dΠ =
[
∂X̂

∂t
+

1
2

{
s2
p

∂2X̂

∂p2
+ s2

r

∂2X̂

∂r2
+ 2ρspsr

∂2X̂

∂r∂p

}]
dt

−∂X̂

∂p

(
∂Ĉ

∂p

)−1[{∂Ĉ

∂t
+

1
2

(
s2
p

∂2Ĉ

∂p2
+ s2

r

∂2Ĉ

∂r2
+ 2ρspsr

∂2Ĉ

∂r∂p

)}
dt

−{Ĉ(r, pτj , t)− Ĉ(r, pτj−
, t)}I{τj∈(t,t+dt]}

]
−
(

∂Z

∂r

)−1[∂X̂

∂r
− ∂X̂

∂p
· ∂Ĉ

∂r

(
∂Ĉ

∂p

)−1][∂Z

∂t
dt +

1
2
s2
r

∂2Z

∂r2
dt

]
. (5.2)

If there is default with probability ptdt before the inception of the forward credit default swap, the

swaption contract becomes void; therefore, we have:

dΠ = −X̂ − Λ1(R− Ĉ)− Λ2dZ

= −X̂ − ∂X̂

∂p

(
∂Ĉ

∂p

)−1

(R− Ĉ)−
(

∂Z

∂r

)−1[∂X̂

∂r
− ∂X̂

∂p
· ∂Ĉ

∂r

(
∂Ĉ

∂p

)−1]
dZ. (5.3)
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Then, by the arbitrage principle, we must have (5.2) × (1 − ptdt) + (5.3) × ptdt = rΠdt. So we

have [
∂X̂

∂t
+

1
2

{
s2

p

∂2X̂

∂p2
+ s2

r

∂2X̂

∂r2
+ 2ρspsr

∂2X̂

∂r∂p

}
− (pt + r)X

]
dt

−∂X̂

∂p

(
∂Ĉ

∂p

)−1[{
∂Ĉ

∂t
+

1
2

(
s2

p

∂2Ĉ

∂p2
+ s2

r

∂2Ĉ

∂r2
+ 2ρspsr

∂2Ĉ

∂r∂p

)
+ (R− C)pt − rĈ

}
dt

−{Ĉ(r, pτj
, t)− Ĉ(r, pτj−

, t)}I{τj∈(t,t+dt]}(1 + ptdt)
]

−
(

∂Z

∂r

)−1[
∂X̂

∂r
− ∂X̂

∂p
· ∂Ĉ

∂r

(
∂Ĉ

∂p

)−1][
∂Z

∂t
+

1
2
s2

r

∂2Z

∂r2
− rZ

]
dt = 0. (5.4)

Noting that, by (4.8) and (4.6), for the time interval such that τj 66∈ [t, t + dt],

∂Ĉ

∂t
+

1
2

(
s2

p

∂2Ĉ

∂p2
+ s2

r

∂2Ĉ

∂r2
+ 2ρspsr

∂2Ĉ

∂r∂p

)
+ (R− C)pt − rĈ = −θ(ν(t)− r)

∂Ĉ

∂r
− ap

∂Ĉ

∂p

and
∂Z

∂t
+

1
2
s2

r

∂2Z

∂r2
− rZ = −θ(ν(t)− r)

∂Ẑ

∂r
,

(5.4) becomes

∂X̂

∂t
+ θ(ν(t)− r)

∂X̂

∂r
+

1
2

{
s2
p

∂2X̂

∂p2
+ s2

r

∂2X̂

∂r2
+ 2ρspsr

∂2X̂

∂r∂p

}
− (pt + r)X = 0.

Since the present value of the forward credit default swap is given by (5.1), the value of the swaption

at t = T0 is given by

X̂(T0) = [Z(T0)−Z∗]+

=
[
E[b(τ)(1−R) · I{τ≤TN}]− z∗ · E[

N∑
i,Ti>t

b(Ti)ΛiI{Ti≤τ} + b(τ)Λ∗I{T0≤τ≤TN}]
]+

.

From the financial point of view, we can expect the value of the swaption right before the jump

(i.e., at t = T0−), to be the expectation of the value at t = T0. So we can assume that the terminal

condition as follows:

X̂(T0−) = P (T0−, T0) · E
[[

E[b(τ)(1−R) · I{τ≤TN}]

−z∗ · E[
N∑

i,Ti>t

b(Ti)ΛiI{Ti≤τ} + b(τ)Λ∗I{T0≤τ≤TN}]
]+] (5.5)

where P (·, ·) is defined by (2.4). Using the change of unknown function

X̂(r, p, t) = X̂(T0−)W (r, p, t),
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we have the following PDE problem:

∂W

∂t
+ θ(ν(t)− r)

∂W

∂r
+ ap

∂W

∂p
+

1
2

{
s2

p

∂2W

∂p2
+ s2

r

∂2W

∂r2
+ 2ρspsr

∂2W

∂r∂p

}
− (pt + r)W = 0,

(0 ≤ t < T0, r > 0, p > 0)

W (r, p, T0−) = 1, (r > 0, p > 0).
(5.6)

To solve this, first we assume that the drift and volatility of p(t) are not correlated to the short term

rate r(t), that is,

ap = α(t) + γ(t)p,

s2
p = δ(t) + η(t), and

ρ = 0. (5.7)

Using the change of unknown function again, we consider the following case.

W (r, p, t) = u(p, t) · Z(r, t),

where Z(r, t) is given by (4.2), we have

u
(∂Z

∂t
+

1
2
s2

ru
∂2Z

∂r2
+

∂Z

∂r

(
θ(ν(t) − r)

)
− rZ

)
+ Z

(∂u

∂t
+

1
2
s2

p

∂2u

∂p2
+ ap

∂u

∂p
− ptu

)
= 0.

By (4.1), (5.6) reduces to
∂u

∂t
+

1
2
s2
p

∂2u

∂p2
+ ap

∂u

∂p
− ptu = 0, (0 ≤ t < T0, r > 0, p > 0)

u(r, p, T0−) = 1, (r > 0, p > 0).

We will seek the solution in the form of u = eA(t,T0)−B(t,T0)p so that

X̂(r, p, t) = X̂(r, p, T0−)Z(t, T0)eA(t,T0)−B(t,T0)p. Noting the similarity of the equation with (4.9),

we have the following solution.

Theorem 11. Under Assumptions 1 though 4, the price of the credit default swaption is given by

X̂(r, p, t) = X̂(r, p, T0−)Z(t, T0)eA(t,T0)−B(t,T0)p (5.8)
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where X̂(r, p, T0−) and Z(t, T0) are given by (5.5) and (4.2) respectively, and A(t, T0) and B(t, T0)

are given by

A(t, T0) = −
∫ T0

t

(
b(s)B(s, T0))−

1
2
Λ(s)B2(s, T0)

)
ds

B(t, T0) =



1− e−γ(T0−t)

γ
, dp =

(
α(t)− γ · p

)
dt +

√
δ(t)dW2, γ 6= 0

T0 − t, dp =
(
α(t)− γ · p

)
dt +

√
δ(t)dW2, γ = 0√

2
γ
· exp

(√
γ
2
(T0−t)

)
−exp

(
−
√

γ
2
(T0−t)

)
exp
(√

γ
2
(T0−t)

)
+exp

(
−
√

γ
2
(T0−t)

) ,
dp = α(t)dt +

√
δ(t) + K · p · dW2,K : constant �

5.2 Credit Default Swaption with Stochastic Interest Rate - Expected and Unexpected De-

fault

5.2.1 Formulation

Assumption 1: We assume that the same setting for the credit default swaption as in Section 5.1: its

inception and expiration, the onset and fee structure of the underlying forward credit default swap.

Assumption 2: The risk free short term interest rate r(t) = rt follows the Vasicek model:

dr = θ(ν(t)− r(t))dt + sr(t)dW1(t)

where θ, ν(t), and sr(t) are defined as in section 4.1.

Assumption 3: Default event is both exogenous and endogenous. Unexpected default probability

on any interval [t, t + dt] is given by,

dp = ap(p, t)dt + sp(p, t)dW2 + pτj−UjI{τj∈(t,t+dt]},

where I{τj∈(t,t+dt]} is an indicator function. Expected default occurs when the firm assets V =

V (t) = Vt falls below the barrier, say Vb(t). As in Section 4.2, the firm assets V (t) is the sum

of its coupon bonds (whose price is C(r, p, V, t)) and stocks, and follows the geometric Brownian

motion, given by

dV = aV Vtdt + sV VtdW3.
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Default recovery is given as the form of face value exogenous recovery (Rd = R·Z,R : 0 ≤ R ≤ 1:

constant, where Z is the price of risk free zero coupon bond, given by (4.2).

Assumption 4:

dWi · dWj = ρijdt, i = 1, 2, 3.

However, we assume that the unexpected default and expected default are not correlated, i.e., ρ23 =

0.

Problem: Under these setting and assumptions, we will find the price of the credit default swaption

X = X(r, p, V, t).

5.2.2 Derivation of the Model

We construct a portfolio by hedging X(r, p, V, t) with the reference entity’s coupon-bonds with

expected and unexpected default, the reference entity’s stock, and zero-coupon default-free bond,

to get rid of the risk arisen by p, V , and r. So the value of the portfolio is:

Π = X − Λ1S − Λ2C − Λ3Z

= X − Λ1

(
V − nC

m

)
− Λ2C − Λ3Z

= X − Λ1

m
V −

( n

m
Λ1 − Λ2

)
C − Λ3Z.

So the change of value of this portfolio over a small time increment [t, t + dt] is given by

dΠ = dX − Λ1

m
dV −

( n

m
Λ1 − Λ2

)
dC − Λ3dZ.
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If there is no default over a small time increment [t, t + dt] (with probability 1− ptdt), then by Ito

Lemma, the change of value in the portfolio over this period is given by

dΠ =
∂X

∂t
dt +

∂X

∂p
dp +

∂X

∂r
dr +

∂X

∂V
dV

+
1
2

{
s2

p

∂2X

∂p2
+ s2

r

∂2X

∂r2
+ s2

V V 2 ∂2X

∂V 2
+ 2ρ12srsp

∂2X

∂r∂p
+ 2ρ13srsV V

∂2X

∂r∂V

}
dt

−Λ1

m
V −

( n

m
Λ1 − Λ2

)[∂C

∂t
dt +

∂C

∂p
dp +

∂C

∂r
dr +

∂C

∂V
dV

+
1
2

{
s2

p

∂2C

∂p2
+ s2

r

∂2C

∂r2
+ s2

r

∂2C

∂r2
+ s2

V V 2 ∂2C

∂V 2
+ 2ρ12srsp

∂2Ĉ

∂r∂p
+ 2ρ13srsV V

∂2Ĉ

∂r∂V

}
dt

+{Ĉ(r, pτj , Vτj , t)− Ĉ(r, pτj−
, Vτj−

, t)}I{τj∈(t,t+dt]}

]
−Λ3

[
∂Z

∂t
dt +

1
2
s2

r

∂2Z

∂r2
dt +

∂Z

∂r
dr

]
.

To get rid of the uncertainty caused by dp, dr and dV terms, we choose Λ1, Λ2 and Λ3 as follows:

Λ1 = m

[
∂X̂

∂V
− ∂X

∂p

(
∂C

∂p

)−1 ∂C

∂V

]
,

Λ2 = n
∂X

∂V
− ∂X

∂p

(
∂C

∂p

)−1[
1 + n

∂C

∂V

]
,

Λ3 =
(

∂Z

∂r

)−1[∂X

∂r
− ∂X

∂p

(
∂C

∂p

)−1 ∂C

∂r

]
.

Then, we have

dΠ =
[
∂X

∂t
+

1
2

{
s2

p

∂2X

∂p2
+ s2

r

∂2X

∂r2
+ s2

V V 2 ∂2X

∂V 2
+ 2ρ12srsp

∂2X

∂r∂p
+ 2ρ13srsV V

∂2X

∂r∂V

}]
dt

−∂X

∂p

(
∂C

∂p

)−1[{
∂C

∂t
+

1
2

(
s2

p

∂2C

∂p2
+ s2

r

∂2C

∂r2
+ s2

V V 2 ∂2C

∂V 2
+ 2ρ12srsp

∂2C

∂r∂p

+2ρ13srsV V
∂2C

∂r∂V

)}
dt + {C(r, pτj

, Vτj
, t)− C(r, pτj−

, Vτj−
, t)}I{τj∈(t,t+dt]}

]
−
(

∂Z

∂r

)−1[
∂X̂

∂r
− ∂X

∂p

(
∂Ĉ

∂p

)−1
∂C

∂r

][
∂Z

∂t
dt +

1
2
s2

r

∂2Z

∂r2
dt

]
. (5.9)

If there is default with probability ptdt before the inception of the forward credit default swap, the
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swaption contract becomes void; therefore, we have:

dΠ = −X − Λ1

m
dV −

(
n

m
Λ1 − Λ2

)
(Rd − C)− Λ3dZ

= −X −
[
∂X

∂V
− ∂X

∂p

(
∂Ĉ

∂p

)−1 ∂C

∂V

]
dV − ∂X

∂p

(
∂Ĉ

∂p

)−1

(Rd − C)

−
(

∂Z

∂r

)−1[∂X̂

∂r
− ∂X̂

∂p
·
(

∂Ĉ

∂p

)−1 ∂Ĉ

∂r

]
dZ. (5.10)

Then, by the arbitrage principle, we must have (5.9)× (1−ptdt)+(5.10)×ptdt = rΠdt. We have[
∂X

∂t
+

1
2

{
s2

p

∂2X

∂p2
+ s2

r

∂2X

∂r2
+ s2

V V 2 ∂2X

∂V 2
+ 2ρ12srsp

∂2X

∂r∂p
+ 2ρ13srsV

∂2X

∂r∂V

}
− (pt + r)X

]
dt

−∂X

∂p

(
∂C

∂p

)−1[{
∂C

∂t
− rV

∂C

∂V
+

1
2

(
s2

p

∂2C

∂p2
+ s2

r

∂2C

∂r2
+ s2

V V 2 ∂2C

∂V 2
+ 2ρ12srsp

∂2C

∂r∂p

+2ρ13srsV
∂2C

∂r∂V

)
+ (Rd − C)pt − rC

}
dt

+{C(r, pτj
, Vτj

, t)− C(r, pτj−
, Vτj−

, t)}I{τj∈(t,t+dt]}(1 + ptdt)
]

−
(

∂Z

∂r

)−1[
∂X

∂r
− ∂X

∂p

(
∂C

∂p

)−1
∂C

∂r

][
∂Z

∂t
+

1
2
s2

r

∂2Z

∂r2
− rZ

]
dt = 0.

Noting that, by (4.18) and (4.6), for the time interval such that τj 66∈ [t, t + dt],

∂C

∂t
− rV

∂C

∂V
+

1
2

(
s2
p

∂2C

∂p2
+ s2

r

∂2C

∂r2
+ s2

V V 2 ∂2C

∂V 2
+ 2ρ12srsp

∂2C

∂r∂p

+2ρ13srsV
∂2C

∂r∂V

)
+ (Rd − C)pt − rC = −θ(ν(t)− r)

∂C

∂r
− ap

∂C

∂p
, and

∂Z

∂t
+

1
2
s2
r

∂2Z

∂r2
− rZ = −θ(ν(t)− r)

∂Ẑ

∂r
. (5.11)

(5.11) becomes

∂X

∂t
+ ap

∂X

∂p
+ θ(ν(t)− r)

∂X

∂r
+ rV

∂X

∂V

+
1
2

{
s2
p

∂2X

∂p2
+ s2

r

∂2X

∂r2
+ s2

V V 2 ∂2X

∂V 2
+ 2ρ12srsp

∂2X

∂r∂p
+ 2ρ13srsV V

∂2X

∂r∂V

}
−(pt + r)X = 0. (5.12)

Since the present value of the forward credit default swap is given by (5.1), the value of the swaption

at t = T0 is given by

X(T0) = [Z(T0)−Z∗]+

=
[
E[b(τ)(1−R) · I{τ≤TN}]

−z∗ · E[
N∑

i,Ti>t

b(Ti)ΛiI{Ti≤τ} + b(τ)Λ∗I{T0≤τ≤TN}]
]+

.
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As before, from the financial point of view, we can expect the value of the swaption right before the

jump (i.e., at t = T0−), to be the expectation of the value at t = T0. So we can assume that the

terminal condition as follows:

X(T0−) = S(T0−, T0) · E
[[

E[b(τ)(1−R) · I{τ≤TN}]

−z∗ · E[
N∑

i,Ti>t

b(Ti)ΛiI{Ti≤τ} + b(τ)Λ∗I{T0≤τ≤TN}]
]+]

where P (·, ·) is defined by (2.4).

Therefore, we have the following pricing model:

Theorem 12. Under Assumptions 1 through 4, the price of credit default swaption with expected

and unexpected default probability is modeled as follows:



∂X

∂t
+ ap

∂X

∂p
+ θ(ν(t)− r)

∂X

∂r
+ rV

∂X

∂V

+
1
2

{
s2
p

∂2X

∂p2
+ s2

r

∂2X

∂r2
+ s2

V V 2 ∂2X

∂V 2
+ 2ρ12srsp

∂2X

∂r∂p
+ 2ρ13srsV V

∂2X

∂r∂V

}
−(pt + r)X = 0

X(T0−) = S(T0−, T0) · E
[[

E[b(τ)(1−R) · I{τ≤TN}]

−z∗ · E[
∑N

i,Ti>t b(Ti)ΛiI{Ti≤τ} + b(τ)Λ∗I{T0≤τ≤TN}]
]+]

.

5.2.3 Particular Solution

Under this subsection, we will find a particular solution with additional condition.

Using the change of unknown function

X̂(r, p, V, t) = X(T0−)W (r, p, V, t),
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(5.12) becomes the following PDE problem with the terminal condition.

∂W

∂t
+ ap

∂W

∂p
+ θ(ν(t)− r)

∂W

∂r
+ +rV

∂W

∂V

+
1
2

{
s2
p

∂2W

∂p2
+ s2

r

∂2X

∂r2
+ s2

V V 2 ∂2W

∂V 2
+ 2ρ12srsp

∂2W

∂r∂p

+2ρ13srsV V
∂2W

∂r∂V

}
− (pt + r)W = 0, (0 ≤ t < T0, p > 0, r > 0, V > VB)

W (r, p, V, T0−) = 1, (p > 0, r > 0, V > VB)

W (r, p, VB, t) = 0, (0 ≤ t < T0, p > 0, r > 0).
(5.13)

To solve (5.13) as the terminal condition, we use the change of unknown function and variable as

follows:

x =
V

Z
and u(x, p, t) =

W (r, V, p, t)
Z

.

Then, (5.14) reduces to

∂u

∂t
+

1
2

{
[s2

rB̄
2(t) + s2

V + 2ρ13srsV B̄(t)]x2 ∂2u

∂x2
+ s2

p(p, r, t)
∂2u

∂p2
+ 2ρ12srspB̄(t)x

∂2u

∂p∂x

}
+[ap − 2ρ12srspB̄(t)]

∂u

∂p
− pu = 0, (x > VB, p > 0, 0 ≤ t < T0)

u(x, p, T0−) = 1, (x > VB, p > 0)

u(VB, p, t) = 0, (p > 0, 0 ≤ t < T0).

We will consider the case where β(t) = ε(t) ≡ 0 and ρ13 = 0. Letting

s̄2(t) = s2
rB̄

2(t) + s2
V + 2ρ13srsV B̄(t),

ρ̄(p, t) = ρ12srspB̄(t), and

āp(p, t) = ap(r, t)− 2ρ12srspB̄(t),

we have

∂u

∂t
+

1
2

{
s̄2(t)x2 ∂2u

∂x2
+ s2

p(p, t)
∂2u

∂p2
+ 2ρ̄x

∂2û

∂p∂x

}
+āp(p, t)

∂u

∂p
− pu = 0, (x > VB, p > 0, 0 ≤ t < T0)

u(x, p, T0−) = 1 (x > VB, p > 0)

u(VB, p, t) = 0, (p > 0, τn−1 ≤ t < T ).
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Noting that the above PDE is the same as (4.20) we have the price of the swaption as follows:

Theorem 13. Under the Assumptions 1 through 4, the price of the credit default swaption for the

corporate coupon-bond with expected and unexpected default is given by

X(r, p, V, t) = Z(t, T0) · S(T0−, T0) · E
[[

E[b(τ)(1−R) · I{τ≤TN}]

−z∗ · E[
N∑

i,Ti>t

b(Ti)ΛiI{Ti≤τ} + b(τ)Λ∗I{T0≤τ≤TN}]
]+]

(
Φ(d∗1)−

x

VB
Φ(d2)

)
· eA(t,T0)−B(t,T0)p (5.14)

where

d∗1 =
ln V

VBZ(t,T0)√∫ T0

t s̄2(u) du
−

√∫ T0

t s̄2(u) du

2
, and

d∗2 =
ln VBZ(t,T0)

V√∫ T0

t s̄2(u) du
−

√∫ T0

t s̄2(u) du

2
. (5.15)
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Chapter 6

Data Analysis

In this chapter, we shall try to find the price of BB and BBB rated corporate coupon bond with

unexpected default probability, and with the risk free interest rate r to be stochastic.

6.1 Data

Table 3 and Figure 2 shows the historical monthly data of 3-month treasury bill, and the histor-

ical yields of AAA, AA, A and BBB rated corporate-bonds from October 1991 through Novem-

ber/December 2000 (Source: Moody’s Investors Service). We shall use the rate for 3-month treasury

bill as the risk-free interest rate in percent.

For example, in the first row, the daily average of the yield-to-maturity of 3-month treasury bill in

January 1991 was 6.41%, while the daily averages of the yield-to-maturity of AAA, AA, A, and

BBB rated corporate coupon bonds in the same period were 9.04%, 9.37%, 9.61%, and 10.45%

respectively.

Table 3: Historical Short-Term Rate and Yields of Corporate Bonds

Months 3M T-Bill AAA AA A BBB

Jan-91 6.41 9.04 9.37 9.61 10.45

Feb-91 6.12 8.83 9.16 9.38 10.07

Mar-91 6.09 8.93 9.21 9.5 10.09

Continued on next page.
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Figure 2.: Historical Risk-free Interest Rate and Corporate-Bond Yield

Continued from previous page

Months 3M T-Bill AAA AA A BBB

Apr-91 5.83 8.86 9.12 9.39 9.94

May-91 5.63 8.86 9.15 9.41 9.86

Jun-91 5.75 9.01 9.28 9.55 9.96

Jul-91 5.75 9 9.25 9.51 9.89

Aug-91 5.50 8.75 8.99 9.26 9.65

Sep-91 5.37 8.61 8.86 9.11 9.51

Oct-91 5.14 8.55 8.83 9.08 9.49

Nov-91 4.69 8.48 8.78 9.01 9.45

Dec-91 4.18 8.31 8.61 8.82 9.26

Continued on next page.
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Continued from previous page

Months 3M T-Bill AAA AA A BBB

Jan-92 3.91 8.2 8.51 8.72 9.13

Feb-92 3.95 8.29 8.67 8.83 9.23

Mar-92 4.14 8.35 8.73 8.89 9.25

Apr-92 3.84 8.33 8.69 8.87 9.21

May-92 3.72 8.28 8.63 8.81 9.13

Jun-92 3.75 8.22 8.56 8.7 9.05

Jul-92 3.28 8.07 8.37 8.49 8.84

Aug-92 3.20 7.95 8.21 8.34 8.65

Sep-92 2.97 7.92 8.17 8.31 8.62

Oct-92 2.93 7.99 8.32 8.49 8.84

Nov-92 3.21 8.1 8.4 8.58 8.96

Dec-92 3.29 7.98 8.24 8.37 8.81

Jan-93 3.07 7.91 8.11 8.26 8.67

Feb-93 2.99 7.71 7.9 8.03 8.39

Mar-93 3.01 7.58 7.72 7.86 8.15

Apr-93 2.93 7.46 7.62 7.8 8.14

May-93 3.03 7.43 7.61 7.85 8.21

Jun-93 3.14 7.33 7.51 7.74 8.07

Jul-93 3.11 7.17 7.35 7.53 7.93

Aug-93 3.09 6.85 7.06 7.25 7.6

Sep-93 3.01 6.66 6.85 7.05 7.34

Oct-93 3.09 6.67 6.87 7.04 7.31

Nov-93 3.18 6.93 7.12 7.29 7.66

Dec-93 3.13 6.93 7.12 7.31 7.69

Jan-94 3.04 6.93 7.12 7.3 7.65

Feb-94 3.33 7.08 7.29 7.44 7.76

Continued on next page.
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Continued from previous page

Months 3M T-Bill AAA AA A BBB

Mar-94 3.59 7.48 7.69 7.82 8.13

Apr-94 3.78 7.88 8.08 8.22 8.52

May-94 4.27 7.99 8.19 8.32 8.62

Jun-94 4.25 7.97 8.17 8.31 8.65

Jul-94 4.46 8.11 8.31 8.44 8.8

Aug-94 4.61 8.07 8.25 8.38 8.74

Sep-94 4.75 8.34 8.49 8.61 8.98

Oct-94 5.10 8.57 8.71 8.82 9.2

Nov-94 5.45 8.68 8.83 8.94 9.32

Dec-94 5.76 8.46 8.62 8.73 9.11

Jan-95 5.90 8.46 8.6 8.7 9.08

Feb-95 5.94 8.26 8.39 8.48 8.85

Mar-95 5.91 8.12 8.24 8.33 8.7

Apr-95 5.84 8.03 8.12 8.23 8.6

May-95 5.85 7.65 7.74 7.86 8.2

Jun-95 5.64 7.3 7.43 7.53 7.9

Jul-95 5.59 7.41 7.54 7.65 8.04

Aug-95 5.57 7.57 7.69 7.79 8.19

Sep-95 5.42 7.32 7.45 7.56 7.93

Oct-95 5.44 7.12 7.27 7.39 7.75

Nov-95 5.52 7.02 7.18 7.32 7.68

Dec-95 5.29 6.82 6.99 7.13 7.49

Jan-96 5.15 6.81 6.99 7.12 7.47

Feb-96 4.96 6.99 7.16 7.31 7.63

Mar-96 5.10 7.35 7.52 7.68 8.03

Apr-96 5.09 7.5 7.68 7.83 8.19

Continued on next page.
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Continued from previous page

Months 3M T-Bill AAA AA A BBB

May-96 5.15 7.62 7.77 7.94 8.3

Jun-96 5.23 7.71 7.87 8.02 8.4

Jul-96 5.30 7.65 7.82 7.97 8.35

Aug-96 5.19 7.46 7.63 7.77 8.18

Sep-96 5.25 7.66 7.82 7.95 8.35

Oct-96 5.12 7.39 7.58 7.7 8.07

Nov-96 5.17 7.1 7.31 7.41 7.79

Dec-96 5.04 7.2 7.41 7.51 7.89

Jan-97 5.17 7.42 7.63 7.71 8.09

Feb-97 5.14 7.31 7.54 7.59 7.94

Mar-97 5.28 7.55 7.77 7.82 8.18

Apr-97 5.30 7.73 7.93 7.98 8.34

May-97 5.20 7.58 7.8 7.86 8.2

Jun-97 5.07 7.41 7.62 7.68 8.02

Jul-97 5.19 7.14 7.36 7.42 7.75

Aug-97 5.28 7.22 7.4 7.46 7.82

Sep-97 5.08 7.15 7.34 7.39 7.7

Oct-97 5.11 7 7.2 7.27 7.57

Nov-97 5.28 6.87 7.07 7.15 7.42

Dec-97 5.30 6.76 6.99 7.05 7.32

Jan-98 5.18 6.61 6.82 6.93 7.19

Feb-98 5.23 6.67 6.88 7.01 7.25

Mar-98 5.16 6.72 6.93 7.05 7.32

Apr-98 5.08 6.69 6.9 7.03 7.33

May-98 5.14 6.69 6.91 7.03 7.3

Jun-98 5.12 6.53 6.78 7.03 7.13

Continued on next page.
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Continued from previous page

Months 3M T-Bill AAA AA A BBB

Jul-98 5.09 6.55 6.78 6.88 7.15

Aug-98 5.04 6.52 6.77 6.89 7.14

Sep-98 4.74 6.41 6.69 6.89 7.09

Oct-98 4.07 6.37 6.69 6.82 7.18

Nov-98 4.53 6.41 6.79 6.85 7.34

Dec-98 4.50 6.22 6.65 6.95 7.23

Jan-99 4.45 6.24 6.68 6.8 7.29

Feb-99 4.56 6.4 6.79 6.84 7.39

Mar-99 4.57 6.62 6.98 6.97 7.53

Apr-99 4.41 6.64 6.96 7.14 7.48

May-99 4.63 6.93 7.23 7.13 7.72

Jun-99 4.72 7.23 7.52 7.4 8.02

Jul-99 4.69 7.19 7.48 7.69 7.95

Aug-99 4.87 7.4 7.68 7.65 8.15

Sep-99 4.82 7.39 7.68 7.84 8.2

Oct-99 5.02 7.55 7.79 7.84 8.38

Nov-99 5.23 7.36 7.62 7.99 8.15

Dec-99 5.36 7.55 7.78 7.79 8.19

Jan-00 5.50 7.78 7.96 7.96 8.33

Feb-00 5.73 7.68 7.82 8.15 8.29

Mar-00 5.86 7.68 7.83 8.06 8.37

Apr-00 5.82 7.64 7.82 8.07 8.4

May-00 5.99 7.99 8.24 8.07 8.9

Jun-00 5.86 7.67 7.87 8.49 8.48

Jul-00 6.14 7.65 7.81 8.18 8.35

Aug-00 6.28 7.65 7.7 8.11 8.26

Continued on next page.
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β1 -0.084292805 Mean reversion rate θ 1.01151

β0 0.003526218 Reverting mean ν 4.1833%

Standard error 0.00570581 Volatility sr 0.571%

Table 4: Parameters implied from the regression estimates

Continued from previous page

Months 3M T-Bill AAA AA A BBB

Sep-00 6.18 7.62 7.83 8.02 8.35

Oct-00 6.29 7.55 7.81 8.13 8.34

Nov-00 6.36 7.45 7.75 8.09 8.28

Dec-00 5.94 7.21

As we introduced in Chapter 4, we shall adopt Vasicek model for risk-free short term interest rate,

i.e.,

drt = θ(ν(t)− rt)dt + srdW1(t). (6.1)

where θ and sr is a constant, and ν(t) is a deterministic function of t. We follow the method

introduced by Chang (2006) to obtain the implied parameters. Using the data from Table 3, we run

the following regression:

drt = β0 + β1rt + ε. (6.2)

Table 4 summarizes the implied parameters by this linear regression estimates. The mean reversion

rate is calculated as a negative slope from β1 = −θdt and the reverting mean is calculated from

β0 = θνdt. The inverse of the mean reversion rate (1/λ) can be interpreted as the number of

periods elapsed between reversion, or speed of reversion. The reverting mean ν represents the level

which the risk-free interest rate reverts to after wandering off. The volatility σ here is annualized

standard deviation of the risk-free interest rate. In this case, we can expect that on the average

0.9886(= 1/1.01151) year elapses between reversions, the level of the risk-free interest rate reverts

to is 4.1833%, and the annualized standard deviation is 0.571%.

Therefore, we estimate the short-term rate by the following equation and Figure 3 below shows a

simulation of this mean reverting model.
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dr = 1.01151(0.04133− rt)dt + 0.00570581dW (6.3)

where t is in years.

Figure 3.: Historical and Sample Paths of Risk-free Interest Rate

Now Table 5 shows empirical survival rate of the corporate bonds by the original credit quality

constructed from historical bond default data for 1991-2000.

Each number in Table 5 gives the probability that the bond survives till the time (in years) elapsed.

We use the data for BBB and BB. First, using the curve-fitting software DataFit (available at

http://www.curvefitting.com/index.html), the function p(t) without jump was modeled. Data was

regressed to several twice differentiable functions, i.e., polynomials of degree two through four, ex-

ponential functions, reciprocal functions of polynomials of degree one and two, and the following

result was obtained for BBB-rated companies with R2 = .9971:
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Table 5: Empirical Survival Rate by Original Credit Quality

Years AAA AA A BBB BB B CCC

1 1.0000 1.0000 1.0000 0.9988 0.9904 0.9840 0.9565

2 1.0000 1.0000 1.0000 0.9940 0.9741 0.9354 0.8297

3 1.0000 0.9965 0.9998 0.9886 0.9350 0.8797 0.6900

4 1.0000 0.9946 0.9991 0.9827 0.9288 0.8215 0.6338

5 0.9997 0.9946 0.9988 0.9772 0.9088 0.7727 0.6147

6 0.9997 0.9946 0.9980 0.9715 0.9002 0.7406 0.5585

7 0.9997 0.9946 0.9975 0.9645 0.8853 0.7175 0.5330

8 0.9997 0.9946 0.9966 0.9630 0.8813 0.7024 0.5156

9 0.9997 0.9943 0.9960 0.9625 0.8659 0.6908 0.5156

10 0.9997 0.9941 0.9960 0.9602 0.8334 0.6849 0.4942

p(t) = p0 +
∫ t

0
ap(p, t)dt +

∫ t

0
sp(p, t)dW2 (6.4)

with

p0 = 0,

ap(p, t) = 0.0000674957t2 − 0.001170141t + 0.003576423

sp(p, t) = 0.001506268. (6.5)

Figure 4 shows some samples paths with jumps of the intensity pt, each represented by the sequence

of squares, pluses, and diamonds, computed from (6.4) and (6.5). Here, for the seasonal jumps Uj on

coupon payment dates (at the end of multiples of 6 months), we assume that it is constant Uj = −.1

.

In the same manner, the parameters of the default intensity for BB-rated companies was found to be

p0 = 0,

ap(p, t) = −0.004114407675t2 − 0.03025322658t

sp(p, t) = 0.174409213 (6.6)
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Figure 4.: Sample Paths of the Intensity p

with R2 = .9207.

6.2 Bond Price

In this section, using the data obtained in the previous section and the models derived in subsec-

tions 2.1.2 and 4.1.2, the price of nonsecured coupon bonds of Ford Motor Credit Company with

unexpected default only was computed. The terms and conditions of the relative bonds are

Issue date: November 21, 1999

Issue price: 99.812%
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Coupon: 7.375% s.a. (due on February and October)

Maturity: October 28, 2009

The actual market price range of these bonds in Year 2002 was 88.45% and 104.28%, and the 3-

month T-bill was 1.76% during February 2002. Table 6 shows the bond price computed with r to

be constant.

Table 6: Ford Motor Credit Bond Price with Constant r

r(%) Price

1.76 133.89%

4.82 112.29%

As it can be easily seen, the price computed using the model with r = 1.76%, which is the short term

interest rate as of February 2002, is overpriced compared to the actual market price. Even when the

average short term rate over 1991 through 2001, which is r = 4.82%, it is still overpriced. At least

a couple of reasons for this can be considered. First, even though the short term rate from February

2002 was used, the prospect of the short-term rate was unseen at this point. Actually, the short

term rate drastically dropped at the beginning of Year 2002, after which it gradually came back.

(Therefore, the stochastic model is preferred.) Second, even the average yield of AAA corporate

bonds during the same period was 200 − 300pb higher than the short terms rate. It should be also

mentioned that the long term rate is more stable than short term rate, which implies that the long

term bond price is less sensitive to the change in short term rate.

Since the default intensity gives the default probability over the default free bonds, if we compute

the bond price using the yield of AAA bonds as risk-free interest rate, instead of short term rate.

For r = 7.55%, which is the average over 1991-2000, we obtained the price of 96.32%; and for

r = 6.51%, which is the value as of February 2002, the price was estimated to be 102.08%, both of

which are more realistic than using the rate of 3-month T-bill.

Next, the price of the same corporate bonds was computed using stochastic process for r. However,

as seen in the pricing with constant r, using short term rate overprices the bonds, giving 124.99%.

We ran the linear regression on the yields of AAA corporate bonds from January 1991 to December
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2000 and obtained the following result.

Table 7: Parameters implied from the regression estimates - AAA corporate bonds

β1 -0.048039321 Mean reversion rate θ 0.576471853

β0 0.003470349 Reverting mean ν 7.22%

Standard error 0.001648158 Volatility sr 0.165%

Therefore, we estimate the yield of AAA corporate bonds by the following equation, and Figure 5

shows the historical and sample path of the yield of AAA corporate bonds.

drAAA = 0.576471853(.07224− r)dt + 0.001648158dW. (6.7)

Figure 5.: Historical and Sample Paths of the Yield of AAA Corporate-Bonds

However, using this equation results in the bond price of 120.33%. Considering using the constant

r resulted in a more realistic value, it can be assessed that the problem lies in the analysis of the
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stochastic process of the yield of the AAA corporate bonds. It is obvious that the yield does not rise

forever or fall until it gets zero. So it is plausible to consider the mean reverting model and using

the linear model for the variable ν. However, the long term average of the yield in this stochastic

process was 7.22% compared to 7.54%, the arithmetic mean for the same period, reflecting the

historical path. However, we do not know the sentiment of the market just from this data, which

might predict the rise in the long-term yield.

6.3 Credit Default Swaption Price

In this subsection, we shall compute the price of the credit default swaption of Ford Motor Credit

Company on the following terms, based on the pricing of the bonds computed in the previous

subsection. Since using the 3-month T-bill for the risk free interest rates gives overpricing of the

bonds, we shall use AAA-bond yield as the risk free interest rate.

Reference entity: Ford Motor Credit Company

Onset of the swaption: March, 2004

Expiration of the swaption: September, 2004

Duration of the underlying CDS: 1 year, 3 years, 5 years

Table 8 gives the summary of the pricing:

Table 8: Ford Motor Credit - CDS Swaption Price

Risk free interest rate 1 Year 3 Years 5 Years

% z∗=0bp z∗=50bp z∗=0bp z∗=50bp z∗=0 bp z∗=50bp

7.22

(AAA yield average 30.22bp 15.11bp 110.63bp 55.32bp 163.88bp 81.94bp

on 1991-2000)

5.33

(AAA yield 31.26bp 15.63bp 116.78bp 58.38bp 175.43bp 87.72

as of March 2004)

Stochastic model 30.28bp 15.14bp 113.68bp 56.84bp 172.53bp 86.27bp

For example, the right column under 1 year gives the price of CDS swaption, which entitles its
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holder to enter a CDS agreement for paying z∗ = 50bp every 6 months. Based on the stochastic

model, such price is 15.14bp.

Note that if z∗ = 0bp, the price of the swaption is theoretically the same as that of the forward

swaption. Since there is no market for forward CDS option or CDS swaption, we shall compare the

price of the swaption with z∗ = 0bp, and the price of CDS forward option computed using the actual

CDS price (midprice; see Figure 6), discounted using the discount rate based on the computation in

the previous section. Table 9 below shows the comparison between the forward CDS option price

based on our model and that based on the actual CDS price.

Figure 6.: 5-Year-Maturity FORD Credit CDS Quotes

In using our model, the coupon payment date of the bonds of the reference entity should technically

match the onset and maturity of the swaption, and maturity of the underlying forward CDS. How-

ever, in computing the above, since the matching CDS rate was not available, we could not match

them (there is one month gap between them).
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Table 9: Ford Motor Credit - CDS Forward Price Comparison

Risk free 1 Year 3 Years 5 Years

interest rate Our Model Estimated Our Model Estimated Our Model Estimated

from from from

% CDS price CDS price CDS price

7.22

(AAA yield average 30.22bp 36.00bp 110.63bp 126.39bp 163.88bp 163.59bp

on 1991-2000)

5.33

(AAA yield 31.26bp 36.30bp 116.78bp 127.43bp 175.43bp 164.94

as of March 2004)

Stochastic model 30.28bp 36.73bp 113.68bp 128.94bp 172.53bp 166.89bp

We can see that that the forward CDS option price obtained from our model is relatively close to

that obtained from the market rate.
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Chapter 7

Conclusion

In this paper, we combined the intensity model and the structural model to find the price of the

corporate coupon- bearing bonds. We formed the portfolio so that we could hedge the risk caused

by default intensity and/or fluctuation of the asset value. We used the arbitrage principle and the Ito

Lemma to derive the PDE with terminal and boundary conditions for pricing. We assumed that the

solution would be in the exponential form. This is because the intensity model is basically derived

from the hazard rate model, which has the solution in the exponential form. The Black-Scholes

equation, which is a homogeneous parabolic equation with variable coefficients combined with the

terminal condition and asymptotic boundary condition, admits the solution in the exponential form

via exponential transformation. Further analysis will be needed to see whether a nonhomogeneous

parabolic equation with variable coefficients, terminal condition, and asymptotic boundary condi-

tion yields a unique solution.

In data analysis, for unpredictable default occurrence, we merely depended on the historical data of

default probability/intensity. The historical data we used was over the period 1991-2000 and across

all the industrial sectors. In actual pricing, the default probability/ intensity needs to be computed

by the industrial sector. To increase the accuracy of the estimate of the default probability, we need

to take into the consideration other elements such as economic fluctuation (growth, recession, or

depression), the size of the company, monetary policy and so on. Also, the size of the jump in the

default intensity was arbitrary assigned in Section 6.2. Even though this is theoretically plausible,

we need to collect empirical evidence and incorporate it in measuring the variable Uj .

In Chapters 4 and 5, we assumed that the risk-free interest rate follows the Vasicek model since

this model is most used in the market. Applying this model, we used linear regression to estimate
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the parameters. The shortcoming of using the linear regression is that the long-term average is

determined by the trend of the period from which the data come from. We need to take into the

consideration the future trend of the relative interest rate to estimate the parameters.

In Sections 2.2, 3.2, 4.2 and 5.2, to predict expected default, we assumed that the firm assets value

follows a geometric Brownian motion, with jumps at each coupon payment date, and that expected

default occurs when the assets value hits the predetermined barrier. In Section 2.2, we applied the

reflection principle to find the expected default probability, the probability that the total assets value

hits the predetermined barrier.

As mentioned in the introduction, even though this model seems to make sense theoretically, there

are still some shortcomings. The amount of total assets value does not necessarily determine the

financial health of the company. A huge company with large assets can be unhealthy financially.

Also, two companies with the same assets value can be considerably different in their financial

conditions, which will lead to the different level of the barrier for default. We shall need to further

investigate the quality of their assets.

In addition to these shortcomings, this model is difficult to implement since the required quantities

are not readily observable; we can have an access to the firms’ financial statements only quarterly

for the best in most cases. We also need to incorporate the unforeseen factors in the future, such

as market trend (Is the market growing or not?), overall economy trend (Is it in growth period, in

recession, or depression?) and so on.

Schonbucher (2003b) suggests stock price and KMV for alternate parameters for predicting ex-

pected default. Stock price, even though we incorporated stock price as part of firm assets value, is

too speculative, and therefore, does not reflect the company’s financial condition in any better way.

The KMV model, marketed by Moody’s, sets the default barrier somewhere between the face value

of total liabilities and the face value of short-term liabilities. The idea behind this is that the company

needs to refinance its short-term liabilities continuously to continue its daily operations while the

long-term liabilities do not require refinancing until their maturities. This idea makes a better sense

than using the firm assets value; however it will also require as much effort to collect the necessary

data.
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In Sections 2.2, 3.2, 4.2 and 5.2, in solving the problem, we assumed that endogenous default

events and exogenous default events are uncorrelated, that is, the intensity rate is uncorrelated with

the value of the firm assets, which is not realistic. In Sections 4.2 and 5.2, we also assumed that there

is no correlation between the risk-free interest rate and the intensity rate, or between the risk-free

rate and the firm assets value.

In most existing paper, the pricing model of credit default swaption is based on applying Black-

Scholes Formula to the price of forward Credit Default Swap. However, there is no observable

forward CDS market, which makes the existing approach less attractive. In this paper, the price of

credit default swaption was computed directly from the bond price.
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