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  Similarly, EGCG inhibited the percentage of cells double positive for CD11c and 

MHCI and II surface molecule expression by DCs induced by LPS (Figure 12).  
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Figure 12. EGCG inhibits MHCI and CD86 surface molecule expression by DCs stimulated with LPS 

and treated with 50 µg of EGCG and analyzed by flow cytometry. Numbers in quadrants reflect 

percentages rounded up to next greater whole integer. Results shown are from 4 independent 

experiments with similar results.  

 

 

EGCG treatment of DCs alone does not affect CD11c, costimulatory molecule or 

MHC surface expression. 

 

To determine if the inhibitory effect of EGCG observed above on MHC and co-

stimulatory molecule expression was one of drug toxicity rather than an inhibition of the 

microbial stimulation response, we tested the effect of EGCG, without microbial 
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stimulation, on the DC response.  As is shown in (Figure 13) and in (Figure 14), EGCG 

had virtually no effect on surface marker expression of either MHC or co-stimulatory 

molecules. Thus, the effects of EGCG appeared to involve the EGCG prevention of 

microbial-induced upregulation of these maturation markers as opposed to a toxic effect 

of EGCG on the cell. 

 
Figure 13. Effects of EGCG on MHC class I/II molcule expression by DCs as analyzed by flow 

cytometry. Numbers reflect percentages rounded to next greater whole integer. Results shown are 1 

of 3 independent experiments with similar results.  

 
Figure 14. Effects of EGCG on co-stimulatory molecule expression by BMDCs as analyzed by flow 

cytometry. Numbers in quadrants reflect percentages rounded to next greater whole integer. Results 

shown are 1 of 3 independent experiments with similar results.  
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Inhibitory Effects not Due to Cytotoxity of EGCG 

 

As a direct test of drug toxicity, cells were treated with varying concentrations of 

EGCG and viability measured by an XTT assay (Figure 15).  The results show that 

EGCG did not reduce vaiblity at 50 µg/ml and only slightly reduced it at 100 µg/ml.  

Moreover, no measurable effect on DC viability occured over a period of 48 hr following 

infection with Lp (data not shown). 

 
Figure 15. BM derived DCs were exposed to various concentrations (0, 50, 100 µg/ml) of EGCG for 

24 h. Cell viability was analyzed with XTT assay. Percent (%) viability was determined by measuring 

the OD at 450 nm and a reference wavelength of 650 nm in a microplate reader. The results are 

expressed as an average of 3 independent experiments performed in triplicate. The asterisks indicate 

statistically significant differences of P<0.05 from values obtained with non-EGCG treated DCs.  
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EGCG treated DCs Exhibit the Morphology of Immature DCs 

 

In all cultures, cells infected with Lp or stimulated with LPS and which had the 

greatest co-stimulatory/ MHC/ CD11c molecule surface expression tended to be larger 

and more granular, indicative of a more mature DC phenotype. Conversely, EGCG 

treated infected/stimulated cells, which showed suppression of co-stimulatory/MHC/ 

CD11c molecule surface expression, tended to be smaller and less granular, indicative of 

a less mature DC phenotype comparable to the non-infected/ EGCG treated control group 

as shown by flow cytommetry (Data not shown). 

 

Aim 2: Determine effects of EGCG on DC cytokine and chemokine production in 

reponse to microbial stimulation. 

EGCG Up-regulates TNFα Production by DCs Stimulated with LPS, MDP or 

Infected with Lp. 

 

Murine derived DCs stimulated with LPS (10 ng/ml) produced detectable levels 

of TNFα in the culture supernatants 24 hr after stimulation. The DC cultures treated with 

increasing amounts of EGCG showed marked enhancement, after 24 hours, of TNFα 

when treated with a concentration of 50 µg/ml (13). In contrast, a higher concentration 

(100 µg/ml) markedly inhibited TNFα production in the LPS stimulated cultures after 24 

hours (Figure 16). 
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Figure 16. Effects of increasing concentrations of EGCG on TNFα production in cultures of BM 

derived dendritic cells stimulated with LPS.  Results expressed as mean value in ng/ml ± SEM from 5 

independent experiments. The asterisks indicate statistically significant differences of  P<0.05 from 

values of the non-EGCG treated LPS stimulated cells. 

The effects of EGCG were examined further to determine effects on responses to 

other microbial stimulators.  For this purpose, DC cultures were treated with MDP (10 

µg/ml) and the results showed DCs stimulated with MDP and treated with the 50 µg/ml 

concentration of EGCG had approximately a 3 fold increase in TNFα production. 

Furthermore, a 100 µg/ml concentration also resulted in a significant increase, but less 

than that induced by the lower concentration (Figure 17). 
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Figure 17. Effects of increasing concentrations of EGCG on TNFα production in cultures of  BM 

derived dendritic cells stimulated with MDP.  Results expressed as mean value in pg/ml ± SEM from 

5 independent experiments. The asterisks indicate statistically significant differences of P<0.05 from 

values from non-ECGG treated MDP-stimulated cells. 

Next, we examined the effect of EGCG on cytokine production by DCs after 

infection with Lp.  The effects of EGCG on the pattern of production of TNFα in DCs 

infected with Lp was similar to that observed following stimulation with LPS or MDP. In 

particular, the 50 µg/ml EGCG concentration enhanced production of TNFα to 

approximately 2.5 ng/ml, a level several fold higher than observed in Lp infected DCs 

treated with 100 µg/ml of EGCG (Figure 18).  
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Figure 18. Effects of EGCG on TNFα production by dendritic cells infected 24 hr with Lp.  TNFα 

levels in culture supernatants determined by ELISA and results expressed as mean value in ng/ml ± 

SEM from 3 independent experiments.  The asterisk indicates statistically significant differences 

(p<0.05) from values obtained with non-EGCG treated Lp infected DCs. 

 

EGCG inhibits IL-12 production by DCs stimulated with MDP or LPS or infected 

with Lp. 

 

 EGCG also had marked effects on production of IL-12 p40/p70 in the stimulated 

DC cultures. LPS treated cells without EGCG evinced marked production of this 

cytokine after 24 hours. However, addition of EGCG to the cultures inhibited IL-12 

p40/p70. The 10 µg/ml concentration of EGCG had a slight inhibitory effect. Moreover, 
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the 50 µg/ml and 100 µg/ml concentrations markedly depressed IL-12 p40/p70 

production (Figure 19).   

 
Figure 19. Effects of ECGG on IL-12 p40/p70 production by BM derived dendritic cells stimulated 

by LPS.  Results expressed as mean value in ng/ml ± SEM from 5 independent experiments 24 hrs 

after stimulation of cells.  The asterisk indicates statistically significant differences (p<0.05) from 

values obtained with non- treated EGCG LPS-stimulated cells. 

Similar suppressive effects were observed by EGCG treatment of MDP stimulated DCs. 

The 10 µg/ml concentration reduced by 50% IL-12 production, while the 50 and 100 

µg/ml concentrations essentially abolished the response (Figure 20).  
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Figure 20. Effects of increasing concentrations of EGCG on IL-12 p40/p70 production in cultures of 

BM-derived dendritic cells stimulated with MDP.  Results expressed as mean value in ng/ml ± SEM 

from 5 independent experiments.  The asterisks indicate statistically significant differences (p<0.05) 

from the values of the non-EGCG treated MDP-stimulated cells. 

 

  Similarly, DCs infected with Lp and treated with EGCG showed a marked 

reduction (50 µg/ml) or essentially abolished (100 µg/ml) the response (Figure 21). 
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Figure 21. Effects of EGCG on IL-12 p40/p70 production by dendritic cells infected 24 hr with Lp. 

Results expressed as mean value in ng/ml ± SEM from 3 independent experiments.  The asterisks 

indicate statistically significant differences of P<0.05 from values obtained with non-EGCG treated 

Lp infected DCs. 

As shown previously in cell viability studies (see Figure 15), treatment of DCs with 

EGCG at 10 and 50 µg/ml did not decrease cell viability, which indicates that increased 

TNFα and decreased IL-12 production levels were not due to EGCG toxicity at these 

concentration levels. However, a significant (p<.05) decrease in cell viability (75% of 

control) was observed when DCs were treated with the higher concentration of 100 µg/ml 

which may explain why TNFα production levels did not continue to increase at 100 
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µg/ml. This suggests that some of the decrease of IL-12 production at 100 µg/ml may be 

due to cytotoxic effects of EGCG on the DCs.   

Inhibition of IL-12 by EGCG does not depend on TNFα 

 

 To determine whether inhibition of EGCG inhibited IL-12 production depended 

on induced TNFα production, DCs were stimulated with LPS either alone or in the 

presence of neutralizing antibody to TNFα and production of IL-12 was determined. As 

shown in Figure 22, TNFα production by LPS stimulated DCs was decreased about 3 fold 

with neutralization antibody.  

 
Figure 22. Effects of EGCG (50 µg/ml) on TNFα production in cultures of  DCs stimulated with LPS 

(10 ng/ml) with or without anti- TNFα neutralization antibody (20 µg/ml).  
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However, as shown in Figure 23, anti-TNFα had no effect on IL-12 production by DCs at 

2 and 4 hours and minimallt decreased the effect at 24 hours in contrast to EGCG 

treatment which markedly diminished LPS induced IL-12 production.  

 
Figure 23. Effects of EGCG (50 µg/ml) on IL12 production in cultures of DCs stimulated with LPS 

(10 ng/ml) with or without anti- TNFα neutralization antibody (20 µg/ml).  
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EGCG inhibits RANTES, MCP-1 and MIP1-α production by DC stimulated with 

LPS.  

 

 DC maturation is often accompanied by production of chemokines that assist DCs 

in attracting T cells for efficient antigen presentation (108). EGCG inhibited LPS-induced 

RANTES (Figure 24), MCP-1 (Figure 25), and MIP1-α (Figure 26).  For the most part, 

significant differences were observed only at the 50 µg/ml concentration. 

 
Figure 24. Effects of EGCG on RANTES production by DCs stimulated by LPS (100 ng/ml). Results 

are expressed as mean value in ng/ml ± SEM from 3 independent experiments 24 hours after 

stimulation of cells. The asterisk indicates statistically significant differences of P<0.05 from values 

obtained non-treated EGCG LPS-stimulated cells.  



54 

 
Figure 25. Effects of EGCG on MCP-1 production by DCs stimulated by LPS (100 ng/ml). Results 

are expressed as mean value in pg/ml ± SEM from 3 independent experiments 24 hours after 

stimulation of cells. The asterisk indicates statistically significant differences (p<0.05) from values 

obtained in non-treated EGCG, LPS-stimulated cells.  
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Figure 26. Effects of EGCG on MIP1-α production by DCs stimulated by LPS (100 ng/ml). Results 

are expressed as mean value in pg/ml ± SEM from 3 independent experiments 24 hours after 

stimulation of cells. The asterisk indicates statistically significant differences (p<0.05) from values 

obtained in non-treated EGCG, LPS-stimulated cells.  

 EGCG inhibits RANTES, MCP1 and MIP1α production by DCs infected with Lp. 

 

 EGCG also attenuated Lp-induced RANTES (Figure 27), MCP1 (Figure 28) and 

MIP1α (Figure 29) chemokine production, which was significant at higher doses of 

EGCG.  
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Figure 27. Effects of EGCG on RANTES production by DCs after infection by Lp (20:1). Results are 

expressed as mean value in pg/ml ± SEM from 3 independent experiments 24 hours after stimulation 

of cells. The asterisk indicates statistically significant differences (p<0.05) from values obtained in 

non-treated EGCG, Lp infected cells.  
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Figure 28. Effects of EGCG on MCP1 production by DCs infected with Lp (20:1). Results are 

expressed as mean value in pg/ml ± SEM from 3 independent experiments 24 hours after stimulation 

of cells. The asterisk indicates statistically significant differences (p<0.05) from values obtained in 

non-treated EGCG, Lp infected cells.  



58 

 
Figure 29. Effects of EGCG on MIP1α production by DCs infected with Lp (20:1). Results are 

expressed as mean value in pg/ml ± SEM from 3 independent experiments 24 hours after stimulation 

of cells. The asterisk indicates statistically significant differences (p<0.05) from values obtained in 

non-treated EGCG, Lp infected cells.  

Aim 3: Determine molecular signaling mechanisms involved in effects of EGCG on 

DC maturation. 

 

Lp and LPS are potent inducers of TLR2 and/or TLR4 surface molecule expression. 

Lp was a potent stimulator of TLR2 surface molecule expression in DCs. In 

particular, Lp increased the percentage of cells double positive for CD11c and TLR2 to 

64% from 19% (Figure 30). Lp also upregulated surface molecule expression of the 

TLR4 from16% to 34%  (Figure 30). 
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Figure 30. Lp infection up-regulates TLR2/TLR4 surface expression on DCs infected with Lp. DCs 

were infected at 10 bacteria per cell and cultured at 1x10
6 
cells/ml. (A) Flow cytometric dot plots of 

CD11c and TLR 2/4 surface molecule expression. Numbers in quadrants reflect percentages rounded 

to next greater whole integer. Results shown are 1 of 3 independent experiments with similar results. 

(B) Bar graphs of percentage of CD11c+ and TLR2/4 surface molecule expression. Data represent 

mean ± SD from three independent experiments. Asterisks indicate statistically significant 

differences (p<0.05) from non-Lp infected cells.  

 

 LPS was also a very potent inducer of TLR2 surface molecule expression by DCs. 

In particular, LPS increased the percentage of cells double positive for CD11c and TLR2 

from 28% to 76% (Figure 31). In contrast, LPS actually downregulated TLR4 surface 

expression (data not shown) which is in accord with previous reports that LPS 

stimulation of DCs leads to TLR4 internalization and degradation (60).  
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Figure 31. EGCG inhibits induced TLR2 on DCs infected with Lp or stimulated with LPS and 

treated with various concentrations of EGCG analyzed by flow cytometry. Numbers in quadrants 

reflect percentages rounded to next greater whole integer. Results shown are 1 of 3 independent 

experiments with similar results.  

 

EGCG Inhibits Upregulation of TLR2/TLR4 Surface Expression Induced by Lp 

and LPS. 

 This upregulation of TLR2 by both Lp and LPS was dramatically inhibited by 

increasing doses of EGCG (Figure 31).  EGCG treatment in a dose dependent manner 

also inhibited TLR4 up-regulation caused by Lp infection (Figure 32).  
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Figure 32. EGCG inhibits induced TLR4 on DCs infected with Lp and treated with various 

concentrations of EGCG analyzed by flow cytometry. Numbers in quadrants reflect percentages 

rounded to next greater whole integer. Results shown are 1 of 3 independent experiments with 

similar results.  

 

EGCG Inhibits NFκB Activation by LPS 

 Most genes of inflammatory mediators such as TNFα and IL-12 are regulated by 

NFκB because they have a κB site in their 5’ flanking region (46). Inhibition of NFκB 

has also been reported to suppress induction of TLR4 and TLR2 mRNA expression in 

mouse DCs stimulated with LPS (8).  To determine whether EGCG inhibition of 

inflammatory mediators and TLR up-regulation involved inhibition of NFκB 

translocation, DCs exposed to LPS were simultaneously treated with EGCG. As shown in 

(Figure 33), LPS stimulation resulted in enhanced activation of NFκB whereas this 

stimulation was significantly inhibited by EGCG (50 µg/ml). 
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Figure 33. EGCG inhibits DNA binding activity of p65/Rel A subunit from DCs stimulated with LPS. 

Cellular extracts (16 µg) obtained from DCs treated with 10 ng/ml of LPS without EGCG treatment 

showed increased binding of p65/Rel A subunit to NFκB binding sequence when compared to EGCG 

(50 µg/ml; 45 minute incubation) treated DCs.  
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DISCUSSION 

 

The mechanisms underlying maturation and immunogenicity of DCs are starting 

to be elucidated. Immature DCs capture antigens and, during maturation, MHC peptide 

complexes begin to form within the MHC class II compartments, followed by transport in 

non-lysosomal vesicles to the cell surface (132).  MHC class I is also upregulated upon 

maturation (161).  Several co-stimulatory molecules, such as CD40 and CD86, are also 

expressed. The MHC-peptide complexes are found in clusters at the DC surface together 

with CD86 (161).  It is believed that these high levels of antigen-presenting and co-

stimulatory molecules, in a clustered distribution, initiate the formation of the 

immunologic synapse, bringing together essential elements like the TCR and CD28 

required for T cell activation (89). Maturing DCs change in many other ways, including 

changes in chemokine receptor expression which contributes to their migration to the T 

cell areas of lymphoid tissue (30).   

 In this study, we examined various parameters of DC maturation in response to 

several microbial products and the effects of EGCG on these parameters. For example, 

we observed that EGCG inhibits Lp induced surface expression of co-stimulatory 

molecules by BALB/c mouse DCs.  Up-regulation of these proteins is a central feature of 

DC maturation and is associated with their enhanced ability to activate resting T cells. 

We additionally showed that EGCG inhibited Lp induced up-regulation of both class 

MHC I and II molecules. DCs process exogenous antigens intracellularly and present 

them to CD4 T cells via MHC class II molecules (168).  Although most cells use their 

MHC class I molecules to present peptides derived from endogenously synthesized 
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proteins, DCs have the capacity to deliver exogenous antigens to the MHC class I 

pathway, a phenomenon known as cross-presentation (55). 

 Up-regulation of CD11c surface expression on BMDCs by bacterial products has 

been reported. For example, both mycoplasma lipoprotein FL-1 and LPS have previously 

been reported to up-regulate CD11c on the surfaces of C57BL/6-derived mouse BMDCs 

(82). Our results also show an increase in CD11c in response to microbial stimulation by 

Lp or LPS and in addition we observed an increase in double positive DCs which 

expressed both CD11c and the various MHC/costimulatory molecules.  Treatment with 

EGCG, however, suppressed the expression of all of these developmental markers 

following stimulation by microbial products. 

 The inhibitory effects of EGCG on maturation of DCs by infection is further 

substantiated by our results showing that EGCG inhibits IL-12 p40 production in DCs 

after Lp infection (140).  IL-12p40 is a subunit of IL-12p70 whose expression is 

inducible and correlated with production of bioactive p70 by DCs (8). IL-12 production is 

widely regarded as an essential indicator of a fully activated DC phenotype (98).  EGCG, 

as well as other catechins have also reportedly suppressed IL-12 p40 production by 

murine peritoneal macrophages and the macrophage cell line, J774.1(61). In other studies 

with EGCG, the compound  upregulated important innate immune stimulating cytokines 

such as IFNγ and TNFα. (106).  In our studies, we also show that EGCG upregulates 

TNFα production by DCs after stimulation by LPS, MDP and Lp (140).  

Other studies have reported dependence of IL-12 on TNFα, as well as possibly 

other cytokines. For example, IL-12 production by murine macrophages in response to 

Mycobacterium bovis Bacillus Calmette-Guérin reportedly depends on IFNγ and TNFα 
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production (42). Moreover, administration of anti- TNFα monoclonal antibody 

diminished the lung levels of IL-12 and IFNγ induced by Cryptococcus neoformans 

infection in CBA/J mice (57). In order to determine dependence of IL-12 production by 

DCs on TNFα in our system, we treated LPS stimulated DCs with TNFα neutralization 

antibody. We show that neutralization of TNFα did not significantly affect IL-12 

production levels. The differences between our results and those of other thus likely 

depends upon differences in DC biology compared to other cell types studied such as 

macrophages.  

Zakharova recently reported that addition of TNFα  reduced IL-12p40 production 

in DCs, suggesting a possible anti-inflammatory role for TNFα (184). Our studies do not 

indicate a role of TNFα in reduction of IL-12p40 because neutralization of TNFα either 

with or without EGCG treatment did not affect IL-12p40 production levels by DCs. The 

differences between our results and those of Zakharova may thus relate to differences in 

cell culture conditions such as levels of LPS stimulation (1 ng/ml used by Zakharova 

versus 10 ng/ml in our studies), cell number and/or culture medium used. Moreover, 

Zakharova preincubated DCs with TNFα followed by LPS stimulation whereas we did 

not add exogenous TNFα. In addition, the majority of Zakharova studies were done with 

macrophages. 

Maturing DCs are also an abundant and strategic source of chemokines which are 

produced in a precise time-ordered fashion. Following stimulation with LPS, DCs have 

an initial burst of MIP1α (CCL3), MIP1β (CCL4) and IL-8 (CXCL8) production, which 

cease within a few hours.  RANTES (CCL5) and MCP1 are also induced, but in a more 

steady manner. At later time points, DCs produce mainly lymphoid chemokines, such as 
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CCL17 (TARC), CCL18 (DC-CD1), CCL19 (MIP-3β) and CCL22 (MDC), that attract T 

and B lymphocytes (107, 144). As shown in this study, LPS induced up-regulation of the 

early inflammatory chemokines RANTES, MCP1 and MIP1α.  This up-regulation was 

significantly inhibited by EGCG, particularly at higher concentrations of EGCG. 

 Several other important pharmaceutical agents have been shown to suppress DC 

maturation and activation such as 1 Alpha, 25-dihydroxyvitamin D3 (15, 128), resveratrol 

(3), aspirin (50), and glucocorticoids (130). On a molecular level, these agents typically 

block DC maturation by inhibiting relB, a subunit of the NFκB pathway (98). 

 As shown in this study, EGCG inhibited both LPS and Lp up-regulation of TLR2 

and TLR4 by DCs. EGCG also inhibited activation of the p65/RelA NFκB subunit in 

DCs treated with LPS. TLRs are critical for induction of downstream effecter functions in 

monocytes (7), and control expression of co-stimulatory molecules, as well as induction 

of cytokine and chemokine production by DCs (65, 153). TLR4 is a signal transducer for 

LPS, whereas TLR2 is a common transducer for a diverse array of bacterial products (93) 

such as PGN from Gram-positive bacteria (93).  Lp is a Gram-negative pathogen and due 

to its LPS would be expected to activate TLR4 which is a receptor for Gram negative 

LPS, whereas TLR2 is a receptor for other bacterial products (93). However, related 

studies suggest that TLR2, rather than TLR4 plays a prominent role in Lp infection since 

purified Lp LPS as well as Lp, either viable or formalin-killed, are able to activate DCs 

from TLR4-deficient C3H/HeJ mice but fail to activate DCs from TLR2-knockout 

mice(19).  

 In our study, we found that infection with viable Lp resulted in marked up-

regulation of TLR2 on DCs, and this may be related to TLR4, since microbial stimulation 
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leads to NFκB activation, and the promoter of TLR2 contains NFκB sites known to up-

regulate TLR2 gene transcription(117).  Inhibition of ERK or NFκB has also been 

reported to suppress induction of TLR4 and TLR2 mRNA expression in mouse DCs 

stimulated with LPS (8).  

Contrary to our results, the expression of maturation surface markers CD40, 

CD86 and MHC class II, was strikingly lower than was previously reported in DCs from 

A/J mice infected with live Lp compared to non-infected cells (81). The differences 

between these results and ours may be related to the different strains of mice used. A/J 

mice are relatively more susceptible to Lp infection whereas BALB/c mice used in this 

study are relatively resistant. The differing results also suggest that co-stimulatory and 

MHC class II up-regulation on BALB/c DCs may account for increased resistance to 

infection with Lp in this mouse strain. Although not examined in the A/J model, TLR up-

regulation in BALB/c mice may serve as an additional important factor in differences 

between the two strains in susceptibility to Lp infection.  

In addition to the importance of both TLR2 and TLR4 in sepsis (103, 167), 

emerging data support contribution of these TLRs in diseases like atherosclerosis (123). 

For example, mice deficient in MyD88, a TLR-signalling adaptor protein, are less prone 

to atherosclerosis (16, 114) and patients with a D299G polymorphisms of TLR4 have 

reduced risk of atheroscelorsis (79). The association between TLR4 function and 

atherosclerosis is consistent with findings showing that TLR4 mRNA and protein are 

more abundant in plaques in atherosclerotic lesions than in unaffected vessels (171). 

TLR2 also reportedly potentiates microglial interaction with Aβ42, a key pathogenic 

factor in Alzheimer Disease (AD), via the induction of the G-protein-coupled receptor 
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mFPR2 (26). TLR signaling may also contribute to dilated cardiomyopathy, a common 

heart failure in young patients, by elevating dendritic cell function (38). TLRs might also 

be responsible for the development of diabetes (83, 186) and experimental autoimmune 

encephalomyelitis (78). TLRs also play a crucial part in the induction and progress of 

chronic inflammatory disorders such as asthma, a T helper 2 mediated chronic airway 

disorder (31, 37), and rheumatoid arthritis, a TH1-related inflammatory joint disease (64, 

131).  

Thus, the inhibitory effects of EGCG on TLR up-regulation as shown in this study 

may have therapeutic applications. However, both TLR2 and TLR4 are likely regulated 

differently in human cells by EGCG. This may be particularly the case with TLR2 since 

the proximal promoter regions of mouse and human TLR2 genes does not reveal a 

significant level of homology (52).  Assessment of the physiological relevance of the 

findings presented here must also take into account maximum achievable EGCG 

concentrations attainable in vivo.  

In summary, our results show that microbial products from LPS, MDP and Lp 

infection of DCs can significantly impact key DC maturation markers. These maturation 

markers include important co-stimulatory and MHC molecules as well as pro-

inflammatory cytokines such as IL-12 and TNFα. In addition, EGCG has significant 

inhibitory effects on DC production of the pro-inflammatory chemokines, RANTES, 

MIP1α and MCP1. These studies show that DCs are susceptible to immune modulation 

following Lp infection which is likely important in transition from innate to adaptive 

immunity. In addition, these studies show that the polyphenol EGCG is a potent anti-

inflammatory small molecular weight molecule which may have potential therapeutic 
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uses against diseases implicated in inflammation and up-regulation of TLRs. The 

molecular mechanisms for the action of EGCG likely involve inhibition of ROS and TLR 

signaling transduction pathways which lead to downstream activation of NFκB (Figure 

34). 
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Figure 34. Schematic diagram of proposed effects of EGCG on DCs. Bacterial products such as LPS 

and Lp interact with TLRs thereby activating TLR signalling transduction and/or ROS which 

activates MAPKs/IKKs leading to activation of NFκB. NFκB activates many pro-inflammatory genes 

for pro-inflammatory cytokines/chemokines. TLRs are upregulated themselves in response to NFκB 

which serves to further heighten the immune response. There is also cross-talk between TLRs as in 

the case of where LPS activates NFκB which then activates the promoter for TLR2 thereby up-

regulating TLR2 in response to LPS stimulation. EGCG inhibits ROS and/or MAPKS and NFκB 

which downregulates many pro-inflammatory cytokines/chemokines as well as TLRs such as TLR2. 
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