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Novel Roles for B-Raf in Mitosis and Cancer  

Meghan E. K. Borysova 

ABSTRACT 

 

The MAP kinase pathway is well known for its key roles in regulating cell 

proliferation and cell cycle progression.   MAP kinases have also been implicated in 

mitotic functions, however these functions are less-well understood.  Recent studies from 

our laboratory used Xenopus egg extracts to identify B-Raf as an essential activator of the 

MAPK cascade during mitosis.  Therefore, the first objective of my dissertation research 

was to determine if B-Raf has functional significance during mitosis in human somatic 

cells.   

 Using RNA interference against B-Raf and various immunofluorescence 

techniques, I show that B-Raf:  (1) localizes to and is phosphorylated at a key mitotic 

structure, (2) is critical for proper mitotic spindle assembly and chromatin congression, 

(3) is important for the engagement of microtubules with kinetochores during mitosis, 

and (4) is necessary for activation of the spindle assembly checkpoint.  

It has been demonstrated that B-Raf is a prominent oncogene, constitutively 

activated in the vast majority of melanomas and other cancers.  I hypothesized that 

oncogenic B-Raf expression perturbs mitosis and causes aneuploidy.   

First, we show that oncogenic B-Raf expression correlates with mitotic 

abnormalities in human melanoma cells and that spindle defects are induced when 



xii 

oncogenic B-Raf is ectopically expressed.  Further, using FISH and karyotype analysis, I 

demonstrate that oncogenic B-Raf drives aneuploidy and chromosome instability in 

primary, immortalized, and tumor cells.   

In summary, my dissertation studies elucidate novel roles for B-Raf in 

mammalian mitosis.  In addition, my studies show for the first time that oncogenic B-Raf 

disrupts mitosis causing chromosomal instability.  I propose that oncogenic B-Raf-

induced chromosome instability contributes to tumorigenesis. 
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CHAPTER 1 

BACKGROUND AND INTRODUCTION 

 

Mitosis 

 The cell cycle is the order of processes by which a cell duplicates and divides its 

DNA equally into two identical daughter cells.  The cell cycle consists of temporally 

coordinated interphase (G1, S, G2 phases) and mitosis (prophase, metaphase, anaphase 

and telophase).  During interphase cells prepare for mitosis through cell growth, DNA 

duplication and nutrient accumulation.  Mitosis is the ultimate stage in the cell cycle 

during which the cell partitions its chromosomes and subsequently divides its 

cytoplasmic components into two identical and distinct daughter cells.   

 

Stages of Mitosis 

 Mitosis is an irreversible process whose stages have traditionally been described 

by gross structural and behavior changes documented by light microscopists.  Modern 

use of fluorescence microscopy has aided in the identification of mitotic stages (Fig. 1).  

Proteins and enzymatic activities which regulate these morphological changes and their 

transitions serve as biochemical markers for some of the mitotic phases.  

 Entry into mitosis directly follows the latter part of the second gap (G2) phase 

during which cells can be reversibly arrested in response to various stresses [1].  Passage 

through late G2 serves as a ‘point of no return’ and marks the termination of interphase 



 

 
 
 
 
 
 
 
 

        

Interphase Prophase Metaphase Anaphase Telophase 

Figure. 1  Stages of mitosis 
a.  Interphase cells have polymerized microtubules, and the decondensed chromatin resides within the nucleus surrounded 
by a nuclear membrane.  b.  Prophase is the first stage of mitosis; microtubules are depolymerized from their interphase 
stage, the DNA begins to condense, the nuclear envelope is broken down and the two centrosomes migrate to opposite 
poles.  c.  During metaphase,  condensed chromosomes align at the metaphase plate and the bipolar spindle is formed.  d.  
In anaphase, the spindle pulls the chromosomes in a poleward directions.  e.  During telophase/cytokinesis, the DNA is 
partitioned into two distinct regions, the nuclear envelopes reform and the cell pinches off into two daughter cells. 
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and the beginning of mitosis.  The phases of mitosis are most frequently referred to as 

prophase, prometaphase and metaphase – the stages of early mitosis; and anaphase and 

telophase - the phases of mitotic exit.   

 Prophase is the initiating stage of mitosis.  It is traditionally defined as the point at 

which condensing chromosomes are first visible in the membrane-bound nucleus when 

observed by light or fluorescence microscopy.  As well during prophase, the two 

centrosomes (the mother centrosome is duplicated during S-phase) move to opposite 

poles of the cell [2] where they initiate microtubule nucleation into focal arrays called 

asters[3].  Centrosomes and asters are visible via fluorescence microscopy.  Prophase is 

accompanied by the nuclear accumulation and activation of cyclin B-Cdk1 (also termed 

M-phase promoting factor, MPF), the master regulator of mitosis [4-9].  Cyclin B-Cdk1 

remains active throughout prophase, prometaphase and metaphase and, therefore, serves 

as a biochemical marker of early mitosis.  It has been shown that Cyclin B-Cdk1 

regulates chromosome condensation through direct phosphorylation of the condensin 

complexes [10-12].  Estimates reveal that DNA is compacted 1000-2000 fold over 

interphase chromosomes [13] and chromosome condensation is generally completed 

during prophase.  The significance of prophase events cannot be understated.  

Chromosomes condensation reveals the centromeres upon which the attachment sites for 

spindle microtubules are assembled.  Centrosome segregation is crucial for the 

organization of a bipolar spindle.  Aster formation serves to properly position the mitotic 

spindle.  Prophase ends and prometaphase is initiated when nuclear envelope breakdown 

become visible by light microscopy.  Nuclear envelope breakdown is largely a 

consequence of phosphorylation of nuclear lamins by the Cyclin B-Cdk1 complex [14].  
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The nuclear membrane fragments into small vesicles which are eventually fuse during 

telophase to form the new intact nuclei.  Breakdown of the nuclear envelope permits the 

chromosomes to physically associate with the polymerizing microtubules.  Each 

chromosome has two sister kinetochores, one on each of the fused sister chromatids.   

During prometaphase kinetochores attach to the microtubules emanating from both poles 

of the developing spindle [15].  A spindle checkpoint arrest prevents anaphase onset until 

all kinetochores are fully engaged [16].  Following full engagement, kinetochore 

associated motor proteins direct the movement of attached chromosomes toward the 

spindle poles.  Spindle microtubule growth acts as an opposing force that pulls the 

chromosomes toward the center of the mitotic spindle [17].  Eventually the forces balance 

thus aligning the chromosomes at the spindle equator, called the metaphase plate.  It is at 

this point of chromosome congression that the cell has entered metaphase. 

 During metaphase chromosomes are aligned at the equator of an organized, fully 

formed, bipolar spindle (Fig. 2).  Cyclin B-Cdk1 remains active during metaphase.  Sister 

chromatids remain fused by cohesin complexes at the region of the centromere [18-20].    

 Metaphase ends and anaphase is initiated when sister chromatids are disjoined.   

Sister chromatid segregation results from the abrupt and synchronous degradation of the 

cohesin molecules that hold them together [21-23].  The onset of anaphase occurs when 

the anaphase promoting complex/cyclosome (APC/C) becomes active.  APC/C is an E3 

ubiquitin ligase which targets a number of mitotic substrates including securin and Cyclin 

B, for proteasome mediated destruction [24].  The destruction of securin allows for the 

activation of separase which subsequently cleaves the cohesin molecules [25].  After the 

dissolution of cohesin, kinetochore microtubules begin to shorten and kinetochore forces 



 

 
 
 
 
 
 

 Figure. 2  The mitotic spindle 
The bipolar spindle apparatus formed during mitosis has several 
key features:  a.  microtubules polymerize from the centrosomes 
to the kinetochores; b.  the kinetochores are a proteinaceous 
structure to which the microtubules attach; c.  the centrosomes  
are the microtubule organizing center (MTOC) of mammalian 
cells.  
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result in poleward movement of the chromatids.  This movement is detectable by light 

microscopy and is termed early anaphase or ‘anaphase A’ which culminates when the 

chromatids reach the poles.  Late anaphase or ‘anaphase B’ then ensues during which 

time poleward microtubules elongate thus the entire spindle elongates, thereby 

partitioning the chromatids further apart [15].  Rapid degradation of cyclin B is the most 

commonly used biochemical marker for anaphase and leads to the hallmarks of telophase.   

 Telophase is the final stage of mitosis during which the chromosomes and 

cytoplasm are ultimately divided [15].  It is during this stage that the nuclear envelopes 

reform around both sets of chromosomes, the chromosomes decondense, the 

microtubules return to an interphase state and the cell is divided into two daughter cells.  

All of these features are detectable through light and fluorescence microscopy.  It is due 

to the destruction of cyclin B-Cdk1 that components of the nuclear envelope and 

chromosomes no longer undergo phosphorylation, thereby permitting the reformation of 

the envelope and decondensation of chromosomes.  Simultaneously, an actin-myosin 

contractile ring positioned beneath the plasma membrane causes the membrane to 

invaginate at the former site of the metaphase plate creating a cleavage furrow in the 

cytoplasm.  Following nuclear envelope reformation, the contractile ring pinches the cell 

in half at the furrow, thus allowing for the equal separation of the cytoplasm, a process 

termed cytokinesis.  The completion of cytokinesis gives rise to two daughter cells both 

of which are in the beginning stage of interphase.   
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Organization of the Mitotic Spindle 

 The mitotic spindle is the structural and functional unit of the cell that is 

responsible for the mitotic partitioning the duplicated chromosome pairs.  While the 

structure of the spindle apparatus changes continually throughout mitosis, the 

quintessential metaphase spindle is fusiform - elliptical in shape, having tapered spindle 

poles and a wide midzone.  The basic elements of the mitotic spindle are the centrosomes 

and the microtubules (Fig. 2).  While not primary components of the spindle, 

chromosomes and kinetochores are necessary for the structural formation of the spindle 

apparatus. 

 The spindle poles serve as the microtubule organizing centers (MTOC) that 

initiate the formation of the mitotic spindle.  In animal cells, the MTOCs are 

centrosomes, organelles containing a pair of orthogonally arranged centrioles surrounded 

by protein rich pericentriolar material, including pericentrin, ninein, γ-tubulin and others 

[26-29].  The single centrosome of the cell is duplicated during S-phase.  Early in mitosis, 

Nek2 kinase promotes the migration of the two centrosomes to opposite poles of the cell 

[30-33].  γ-tubulin and other members of the gamma complex protein family form 

hundreds of ring-shaped γ-tubulin ring complexes per centrosome (γ-TuRC).  γ-tubulin is 

required for microtubule nucleation [34, 35] and, while the exact mechanism is not 

completely understood, γ-TuRCs are most likely the sites of microtubule nucleation [36-

38]. 

 Microtubule polymers are composed of α- and β-tubulin dimers whose orientation 

in the polymerized microtubule gives microtubules their polarity.  The opposing ends of 

microtubules have different tubulin-polymerizing properties and orientations in the 
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mitotic spindle. The relatively static minus ends of the microtubules interact with the 

pericentriolar material of the centrosome and the highly dynamic plus ends extend away 

from the centrosome [39, 40].  These intrinsic features of polarity and dynamic instability 

are what give the microtubules the ability to form the mitotic spindle.   

At least three types of microtubules comprise the mitotic spindle, all of which 

emanate from the MTOC.  Astral microtubules are organized in radial arrays around both 

centrosomes.  They connect the spindle poles to the cortex of a mitotic cell, thus, are 

critical for proper positioning of the mitotic spindle and mark the site for subsequent cell 

division [41].  Interpolar microtubules polymerize toward the poles opposite of their 

nucleation.  They terminate in the body of the spindle where some of them interact with 

the plus ends of antiparallel interpolar microtubules thus giving the spindle stability [42].  

During late anaphase, the interpolar microtubules polymerize and slide thereby 

elongating the spindle.  Finally, the plus ends of kinetochore fibers (K-fiber), comprised 

of 20-30 microtubules [43, 44], associate with, and are captured by, the outer 

kinetochores of the chromosomes, thus connecting the chromosomes to the mitotic 

spindle [41, 45].  During early anaphase, the kinetochore microtubules shorten forcing 

the attached chromosomes to move in the direction of the spindle poles.    

 The centromeres of the chromosomes are specific regions of repetitive DNA 

sequences, which are critical for proper organization of the mitotic spindle.  First, they 

are the site of fusion between the chromatids thus creating a visible constriction site in 

metaphase chromosomes.  Secondly, they are also the sites where two identical 

proteinaceous structures called the kinetochores assemble and function.  Kinetochores 
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serve as the sites of microtubule engagement as well as the location of the spindle 

assembly checkpoint.  

 Accurate positioning and function of the centrosomes, microtubules and 

chromosomes are necessary for the proper formation of the metaphase spindle.  A 

properly formed spindle is fusiform in structure with sister chromatids bioriented and 

symmetrically arranged at the spindle equator.  Achieving this arrangement prior to 

anaphase is critical in order to ensure equal segregation of chromosomes, thereby 

maintaining the genomic integrity of both daughter cells.   

 

Spindle Assembly Checkpoint 

 In order to prevent chromosomal missegregation from occurring, anaphase must 

not proceed until all kinetochores are engaged in an amphitelic (bipolar) fashion.  A 

cellular surveillance mechanism called the spindle assembly checkpoint (SAC) ensures 

that anaphase onset is delayed until all chromosomes have achieved bipolar attachments.  

[16, 46, 47].   

 The process by which kinetochores capture K-fibers is largely a stochastic event 

based on their own chance interactions.  In brief, one sister kinetochore becomes engaged 

with K-fibers of the spindle, generating a monotelic chromosomal attachment.  

Subsequently the second sister kinetochore captures microtubules from the opposite pole 

and the chromosome becomes bioriented.  This somewhat random process can result in 

syntelic attachments where K-fibers from one pole engage with both sister kinetochores.  

As well, merotelic attachments can take place in which case K-fibers from opposite poles 
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engage with one sister kinetochore.  Therefore, monotelic attachments occur as a 

transitional state prior to achievement of bipolar engagement [48]. 

 Syntelic kinetochore-microtubule attachments cause chromosomes to be 

positioned near one pole and such attachments elicits the SAC [49].  Merotelic 

attachments are bipolar by definition, cause chromosomes to align at the metaphase plate 

and do not elicit a SAC.  The mechanism by which the syntelic chromosome orientation 

is reversed is not understood.  However, it has been proposed that Aurora B kinase is 

instrumental in reversing maloriented attachments [50-54] by phosphorylating targets that 

cause rapid microtubule turn-over at the kinetochores [55], after which amphitelic 

attachments are free to take place. 

 On the biochemical level the metaphase-anaphase transition is driven by the E3 

ubiquitin ligase activity of the APC/C which targets securin and cyclin B for proteasomal 

degradation.  The SAC functions as a sensory mechanism by detecting unattached 

kinetochores and as an effector by inhibiting the activation of the anaphase promoting 

complex/cyclosome (APC/C) (Fig. 3).   The nature of the ‘wait anaphase’ signal is not 

completely understood.  However, it is widely accepted that the SAC protein complexes 

assembled at unattached kinetochores early in mitosis and negatively regulate activation 

of the APC/C, thus preventing anaphase onset [56-60].     

 A large complex of proteins including Mad1, Mad2, BubR1, Bub1, Bub3, Mps1 

and Aurora B, comprise the core spindle checkpoint proteins in yeast [61-64] and 

mammalian cells [65-67].  It is evident that the proteins of SAC require kinetochore 

localization and function as large multi-componential protein complexes.   
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Aurora B [68-70] and Mps1 [71-73] are required for recruitment and localization 

of all other checkpoint proteins to the kinetochores.  The current model for SAC activity 

suggests that kinetochore bound Mad1 and Mad2 form a complex which can then bind 

Cdc20, the activator of APC/C [74-78] and the key target of the SAC [79].  However, 

Cdc20 binding by the Mad1-Mad2 complex is insufficient for inactivating APC/C.  

BubR1/Mad3 and Bub3 are all required for full inhibition of the APC/C [80, 81]. The 

BubR1 complex appears to synergize [59] with the Mad1-Mad2-Cdc20 complex by 

forming a supercomplex that can fully inhibit the APC/C.   

 Several other proteins have been shown to be involved in the SAC, including the 

ROD-SWILCH complex [82], p31 [83-85], cyclin B-Cdk1 [86, 87], NEK2 [88] and polo-

like kinase-1 (PLK1) [89].  The contribution of these proteins to the SAC is not well 

understood.   

   The activity of the spindle assembly checkpoint is essential for preventing 

chromosome missegregation and aneuploidy [90, 91].  The presence of a single 

unattached kinetochore is sufficient to activate the SAC and the SAC is not turned off 

until every kinetochore has formed fully saturated (25-30 microtubules) bipolar 

microtubule attachments.     

 



 

 
Fig. 3  The spindle assembly checkpoint 
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MAPK Pathway 

 The mitogen activated protein kinase (MAPK) pathway is highly conserved from 

yeast to humans [92, 93].  MAPK signaling integrates a variety of extracellular and 

intracellular signals to control a broad spectrum of cellular processes including 

proliferation, survival, stress response and apoptosis [93].  A number of cooperating 

molecular mechanisms regulate the cascade in order to ensure signaling specificity.    

 

    

MAPK Cascade 

 The basic structure of the MAPK cascade is a module consisting of three kinases 

which sequentially activate one another through phosphorylation events.  The most 

upstream kinases in the cascade are the serine/threonine kinases, MAP kinase kinase 

kinases or MAPKKK (MAP3K).  Upon their own activation, MAP3Ks phosphorylate 

and activate the second kinase in the module, MAP kinase kinase or MAPKK (MAP2K) 

[93, 94].  MAP2Ks are defined as dual-specificity kinases, for upon their activation, they 

in turn phosphorylate a Thr-X-Tyr motif in the third cascade member, MAP kinase or 

MAPK [93, 95].  Substrates of MAPK include transcription factors, phospholipases and 

cytoskeleton-associated proteins.    

 The family of MAP3Ks, MAP2Ks and MAPKs is large, with at least 20 different 

members of the mammalian MAPK family identified to date [96].  The four most well 

described MAPK cascades are named for their relative MAPKs.  Jun amino-terminal 

kinases (JNKs) primarily serve in the response to cellular stress.  p38 is also activated in 
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response to cell stresses and plays a role in cytokine production in hematopoietic cells, 

cytokine-stimulated proliferation and apoptosis.  ERK5 is the least well known MAPK 

cascade [93] and it has been suggested that ERK5 regulates cell survival and proliferation 

[97, 98].  The most well studied MAPK pathway is extracellular signal-regulated kinases 

1 and 2 (ERK 1/2).   

 

Regulation and Functions of the ERK 1/2 Pathway  

 The ERK 1/2 cascade is implicated primarily in cellular proliferation, 

differentiation, cell cycle regulation and cell survival [93].  ERK 1/2 phosphorylates 

many known targets including transcription factors Elk1 [99], c-Fos [100] and p53 [101], 

all of which play a role in cellular proliferation and transformation.  As well, ERK targets 

include the S6 kinase p90/RSK [102], phospholipase A2 [103], EGFR [93] and several 

microtubule-associated proteins [103].    

 Activation of the ERK 1/2 cascade in response to mitogen stimulation has been 

well studied.  During cell cycle entry activation of the ERK1/2 cascade is triggered by 

engagement and oligomerization of extracellular growth factor receptors [104] which in 

turn, stimulates the conversion of Ras, a small GTP-ase, from its GDP-bound inactive 

form to an active GTP-bound form [96, 105].  GTP-bound Ras mediates the translocation 

of the MAP3K, Raf-1, to the membrane where it is activated by a yet undefined, 

phosphorylation mechanism [106].  Raf-1 activates MEK which transmits the signal to 

ERK1/2.  Activated ERK1/2 phosphorylates cytoplasmic targets or translocates into the 

nucleus where it phosphorylates transcription factors which promote S-phase progression 

[96, 105].   
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Mitotic Roles of ERK 1/2 

 It is well established that ERK 1/2 regulates the G1/S transition in response to 

mitogen stimulation [96, 105].  A large but lesser known body of evidence suggests that 

the ERK 1/2 pathway regulates various mitotic functions including entry and exit from 

mitosis, spindle assembly, the spindle assembly checkpoint and Golgi apparatus 

fragmentation (Fig. 4).  Despite a growing body of evidence supporting mitotic roles for 

ERK 1/2, a firm role for ERK 1/2 in mammalian mitosis has not been established. 

 Early evidence supporting a mitotic role for ERK 1/2 came from studies in 

Xenopus egg extracts where it was shown that p42 (the Xenopus ERK 2 homologue) is 

activated during M-phase [107-110].  As well, ERK activity during mitosis in NIH 3T3 

and HeLa cells is detectable via western blot analysis using antibodies that recognize 

activated ERK [111].   

 Importantly, reports using immunofluorescence microscopy support the early 

conclusions from Xenopus egg extracts that ERK is activated during mitosis.  Several 

groups have demonstrated that in mammalian cells small pools of active ERK 1/2 and 

MEK 1/2 are localized to the kinetochores and spindle poles throughout mitosis and to 

midbody during cytokinesis [112-114] (Fig. 4).  Activated p42 has also been shown to 

localize to mitotic spindles in Xenopus egg extracts [115] as well as in fertilized sea 

urchin eggs [116].   

 



 

                   

                    
Fig. 4  MAPK functions and localization during mitosis 
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 Functional studies have revealed roles for ERK 1/2 in mitotic entry in mammalian 

cells but not in Xenopus egg extracts.  In mammalian cells, expression of dominant-

negative MEK [117], treatment with MEK inhibitors [111, 117] and RNA interference 

(RNAi) of MEK 1/2 and ERK 1/2 [118] all induce a G2/M cell cycle arrest.  As well, 

such conditions decrease nuclear translocation of cyclin B-Cdk1 and delay and reduce its 

activation [111, 117, 118].  Such data supports a role for ERK 1/2 in Cdk1 activation and 

entry into mitosis in mammalian cells.  However, cyclin B-Cdk1 is not affected by the 

depletion of p42 from Xenopus egg extracts [110, 119].  To the contrary, constitutive 

activation of p42 in this system inhibits cyclin B-Cdk1 and delays entry into mitosis [120, 

121].  Further, evidence in Xenopus egg extracts revealed that p42 activates Wee1 kinase 

which directly phosphorylates and inactivates cyclin B-Cdk1 [122].  However, 

differences in the requirement of MAPK activity in mitotic entry between mammalian 

cells and Xenopus egg extracts, may be explained by their inherently different cell cycles.  

Indeed, while the cell cycle of somatic cells follows a classic G1-S-G2-M cycle, Xenopus 

egg extracts recapitulate the embryonic cell cycle, which is comprised only of S and M 

phases, with no gap phases in between.  Therefore, Xenopus egg extracts may not possess 

an active G2 phase molecular mechanism. Thus, a role for ERK 1/2 during mitotic entry 

remains disputable. 

 ERK 1/2 has been implicated in assembly of the mitotic spindle in several model 

systems.  Early work in mammalian cell culture showed that ERK 1/2 associates with 

[123] and phosphorylates components of the cytoskeleton [124-126], and it has been 

demonstrated that ERK 1/2 negatively regulates tubulin polymerization in Xenopus egg 

extracts [108, 115].  Immunodepletion of p42 or pharmacological inhibition of its 
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activation causes abnormal mitotic spindles to form in Xenopus egg extracts [115].  As 

well, inhibition of ERK 1/2 disrupts formation of the mitotic spindle in mammalian cells 

[115] and in sea urchin eggs [116].   

 It has been suggested that ERK 1/2 regulates spindle assembly through regulation 

of a mitotic motor protein CENP-E.  CENP-E is necessary for the establishment of 

chromosome-microtubule attachment and, therefore, is critical for proper spindle 

formation.  It has been demonstrated in mammalian cells that CENP-E is a mitotic 

substrate of ERK2, which phosphorylates CENP-E on sites that mediate its association 

with kinetochores [114].   

 In cycling Xenopus egg extracts, blockade of mitotic p42 activation shortens the 

duration of mitosis [119].  Along with kinetochore localization of ERK 1/2 in mammalian 

cells, this data suggests a potential role for ERK in regulation of the SAC.  Indeed, 

maintenance of an induced spindle assembly checkpoint arrest is compromised in p42 

depleted [109] or p42 inhibited [127] Xenopus egg extracts.   As well, loss-of-function 

mutations in Drosophila’s rolled/MAPK gene caused the abrogation of a colchicine 

induced mitotic arrest in Drosophila larvae [128].   

 Several reports have implicated MAPK in the regulation of SAC.  As mentioned 

above, the SAC arrest depends on several checkpoint proteins including BubR1, Bub3 

and Mad2 binding to Cdc20 to inhibit activation of the anaphase promoting complex 

(APC/C).  Using Xenopus egg extracts it was shown that during mitotic arrest MAPK 

phosphorylates Cdc20 on sites that increase its affinity for BubR1, Bub3 and Mad2 and 

negatively regulate the APC/C [129].  Another report demonstrated that MAPK 

phosphorylates Mps1, a critical SAC kinase, and this phosphorylation is necessary for 
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kinetochore localization of SAC proteins in Xenopus egg extracts [73].  Therefore, it has 

been proposed that ERK 1/2 is involved in regulating the SAC. 

 Supportive of an ERK 1/2  mitotic role in mammalian cells are studies 

demonstrating that constitutive activation of MAPK via expression of v-mos or v-ras 

expression in mouse fibroblasts causes cells to fail cytokinesis and become binucleated 

[130, 131].  This indicates that ERK inactivation is necessary prior to cytokinesis.  

However, further studies will be necessary in order to definitively establish that ERK 1/2 

regulate this critical mitotic stage.  

 Fragmentation of the Golgi apparatus during mitosis is an essential process and it 

is thought to be a method for partitioning Golgi membranes equally in both daughter cells 

[132].  It has been shown that mitotically activated MEK1 (the upstream activator of 

ERK1) localizes to Golgi membranes in late prophase [133, 134] and that Raf-1 

activation of MEK1 is required for mitotic Golgi fragmentation [133, 135, 136].  Further 

studies demonstrated that Golgi fragmentation is mediated through an unusual, truncated 

ERK isoform, ERK1c [137, 138].  ERK1c is regulated in an M-phase specific manner, 

becoming phosphorylated and localizing to the Golgi during early mitosis [138].  These 

findings indicate that activation of ERK 1/2 pathway during mitosis may differ from its 

S-phase activation. 

 In summary, ERK1/2 and their activators, MEK 1/2, localize to key mitotic 

structures in Xenopus egg extracts and in cells grown in culture. Functional studies reveal 

that ERK 1/2 plays roles in a variety of mitotic functions.  While a role for ERK 1/2 in 

Golgi fragmentation has been established in mammalian cells, roles in spindle assembly 
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formation and the spindle assembly checkpoint have primarily been studied in the system 

of Xenopus egg extracts.  

 

B-Raf Kinase 

 Raf kinases are serine/threonine kinases whose activities regulate a variety of 

cellular processes including growth, proliferation, survival, differentiation and apoptosis 

[96, 139, 140].  The Raf family consists of A-Raf, B-Raf and C-Raf (Raf-1), which 

function as MAP3Ks.  Nearly all reported Raf functions result from activation of the 

MAPK cascade.  Rafs share significant sequence identity and are structurally similar.   In 

spite of some similarities, Rafs have some significant differences in their regulation, 

tissue distribution and developmental functions.  While C-Raf is the prototypic Raf 

kinase, B-Raf has emerged as the most potent activator of MAPK signaling.   

 

 

B-Raf Protein Structure 

 B-Raf, A-Raf and C-Raf share a basic three-domain architecture including 

conserved domains, CR1, CR2 and CR3 (Fig. 5).  CR1 and CR2 are embedded within the 

N-terminal regulatory portion of Rafs, and CR3 resides in the C-terminal kinase domain.  

CR1 contains a Ras binding domain (RBD) and a cysteine rich domain (CRD) [141, 142], 

both of which provide interacting sites for upstream regulators such as Ras and Rap1 

[143].  The CR2 domain contains a negatively regulatory phosphorylation site [144-146] 

and a 14-3-3 binding phospho-epitope [147].  The CR3 domain is the kinase domain, 

comprised of the N-region and the activation loop, both of which contain phospho-sites 
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that regulate Raf activity.  Unlike A-Raf and C-Raf, B-Raf contains a unique N-terminal 

domain, the significance of which is unknown.  While A-Raf and C-Raf genes are 

transcribed into one transcript, B-Raf is alternatively spliced, generating several different 

B-Raf isoforms [148, 149].  The 95 KD isoform is the largest and most commonly 

studied and the significance of the smaller isoforms is not understood. 

 

B-Raf Activation 

 Raf kinases are activated by similar and distant mechanisms.  It is believed that 

the N-terminal regulatory domain of Rafs bind to the C-terminal kinase domain, creating 

a closed conformation which renders the kinase domain inaccessible for activation [150].  

Phosphorylation events and protein-protein interactions disrupts the N-terminal-C-

terminal interactions, opening the Raf protein which prepares it for activation [142, 143, 

151-155].  However, there are unique aspects to B-Raf’s regulation which explains its 

potent MEK kinase activity.



 

        
Fig. 5 Raf family members 
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 B-Raf requires a lower “dose” of regulatory phosphorylation than does C-Raf for 

its activation.  Following Ras-mediated stimulation, C-Raf requires two stages of 

phosphorylation events including Ras and SRC mediated phosphorylation of Ser-338 and 

Tyr-341 in the N-region [156-159] and Ras mediated phosphorylation of Thre-491 and 

Ser-494 in the activation loop [140].  B-Raf, however, does not require phosphorylation 

within the N-region due to the presence of a constitutive phosphorylation on Ser-335 and 

a phospho-mimicking aspartic acid at residue 448 [158].  Therefore, Ras mediated 

activation of B-Raf requires phosphorylation of Thr-599 and Ser-602 within the 

activation loop [160].  It has been proposed that the constitutive presence of negative 

charges in the N-region of B-Raf inhibits the interaction between the regulatory and 

catalytic domains, rendering an open conformation [161].  These differences account for 

a higher basal level activity in B-Raf than C-Raf.   

Rafs are further regulated on the level of protein-protein interactions including 

direct interactions with Ras, Rap1 [162-167], MEK [149, 162-167] and C-Raf [168].  

While C-Raf and B-Raf both interact with Rap1, Rap1 mediates activation of B-Raf 

while it inhibits C-Raf and downstream MAPK signaling [163, 167, 169].  As well, B-

Raf and C-Raf both directly associate with MEK, however, B-Raf has a higher binding 

affinity to MEK than does C-Raf or A-Raf [170], which may account for the fact that B-

Raf is a stronger activator of MEK than C-Raf or A-Raf [158, 160].  It has also been 

shown that B-Raf heterodimerizes with C-Raf, and is required for activation of C-Raf 

[171, 172].  While B-Raf/C-Raf heterodimers possess higher kinase activity than both 

respective monomers [168], B-Raf can be sufficiently activated by Ras alone [161]. 
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B-Raf Functions 

 Analysis of Raf family members in knock-out mice has revealed that A-Raf, B-

Raf and C-Raf all play essential roles in embryogenesis.  Disruption of B-Raf causes 

embryonic lethality resulting from apoptotic death of differentiated endothelial cells 

[173].  Disruption of C-Raf leads to aberrations in lung development and A-Raf knock-

out mice generate neurological and intestinal abnormalities [173, 174].  Knock-out 

studies also reveal that B-Raf and C-Raf alleles can partially compensate for one another 

and exhibit some functional redundancy [174].   

Early studies revealed via northern blotting that B-Raf expression was restricted 

to tissues of the brain, testes and fetal membranes [175, 176].  However, the use of 

improved protein detection techniques demonstrated that B-Raf is ubiquitously expressed 

at low levels in most tissues with perhaps highest expression in the brain.  Subcellular 

localization of B-Raf has exclusively been reported as cytoplasmic, however, a thorough 

analysis of B-Raf subcellular localization has yet to be published.   

 Analyses of B-Raf’s specific cellular functions have been studied either in 

comparison with C-Raf and A-Raf, or relative to its oncogenic functions.  It was shown 

that B-Raf and A-Raf, but not C-Raf exhibit sustained activation by neuronal growth 

factor (NGF) in PC12 cells [177], and epidermal growth factor (EGF) activated all three 

Raf isoforms.  cAMP leads to activation of B-Raf in a Rap1/B-Raf dependent manner in 

neurons, whereas C-Raf is inhibited by cAMP [165, 178, 179].  It is widely presumed 

that B-Raf functions during S-phase in non-neuronal cells, however B-Raf’s non-
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neuronal functions have not been well studied nor distinguished from the functions of C-

Raf.   

 

B-Raf as a Mitotic MEK Kinase 

 It has been shown that ERK is activated during mitosis and contributes to normal 

mitotic functions.  A recent report from our laboratory demonstrated that B-Raf is the 

MAP3K (MEK kinase) responsible for mitotic activation of the MAPK pathway in 

Xenopus egg extracts [180].  It was shown that B-Raf is activated in an M-phase specific 

manner and is required for the mitotic activation of the MEK/MAPK pathway.  As well, 

the authors demonstrated that cyclinB-Cdk1 directly phosphorylates B-Raf and 

contributes to its activation during mitosis [181], suggesting that B-Raf activation at 

mitosis is mediated through mechanisms distinct from those that regulate MAPK 

signaling in response to mitogens.  Further, it was shown that MAPK regulates B-Raf 

through negative feedback phosphorylation, which is presumed to ensure transient 

activity of B-Raf during mitosis in Xenopus egg extracts [180].   

  

 In summary, B-Raf is a member of the Raf family of kinases, but it stands out due 

to its unique structural and functional features.  Cumulative evidence from the recent 

decade demonstrates that B-Raf is a major activator of the ERK 1/2 cascade.  As well, 

novel functions have been ascribed to B-Raf.  In particular, studies in Xenopus egg 

extracts have shown that B-Raf regulates the mitotic activation of MAPK. 
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MAPK Pathway in Tumorigenesis 

 It has long been recognized that the MAPK cascade is a key regulator of cellular 

proliferation and survival.  Thus, its continuous signaling could lead to cellular 

transformation.  Indeed, the MAPK pathway is hyperactivated in approximately 30% of 

human tumors.  Four well studied mechanisms of ERK activation in human tumors 

include mutations in the epidermal growth factor receptor (EGFR), Ras, the mitogen-

activated protein kinase phosphatases (MKPs) and B-Raf.   

 

EGFR, Ras and MKPs in Human Cancers 

 The epidermal growth factor (EGF) and its receptor, EGFR [182, 183] signals 

through Ras activating the MAPK pathway [184].  It has become well recognized that 

EGFR is an oncogene [185-188] and is highly expressed in human cancers and correlated 

with poor prognosis [189].  EGFR is frequently overexpressed or mutationally activated 

[190] in breast, lung and head and neck cancers, glioblastomas, bladder, colorectal, 

ovarian and prostate cancers [191-195].  As well, transforming growth factor alpha 

(TGFα), an EGFR’s ligand, is upregulated in a wide variety of transformed cells [196-

198] thus causing persistent stimulation of EGFR. 

 Ras proteins are a family of small GTPases that are upstream activators of Rafs 

and therefore activators of the MAPK cascade [199].  In normal quiescent cells, Ras is in 

its GDP-bound inactive form.  Following stimulation by EGF or other factors, Ras is 

transformed into its GPT-bound active form which then binds to and stimulates the 

activation of Rafs.  Ras is converted to its oncogenic form by missense mutations that 

render the proteins to be constitutively GTP-bound and active [200].  Since oncogenic 
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Ras cannot be inactivated, it drives activation of the Raf-MEK-ERK cascade in a 

stimulus-independent manner.  Oncogenic Ras occurs in 30% of human tumors including 

90% of pancreatic cancers, 50% of colon and thyroid cancers, 30% of lung cancers and 

myeloid leukemias, and 15% of melanomas [200-202]. 

  Recently it has come to light that several mitogen-activated protein kinase 

phosphatases (MKPs), negative regulators of the MAPK signaling, are involved in 

tumorigenesis [203].  MKPs are mutated in tumors of the breast, lung, prostate, ovaries, 

pancreas, liver and gastrointestinal tract.  Overexpression of several MPKs is observed in 

tumors and correlates with poor outcome and progression [204-206], thus serving as a 

prognostic marker [207].  However, in several tumors, MKPs are down regulated or 

grossly underexpressed [208, 209].  Growth of tumors in nude mice from Ha-ras 

transformed cells was greatly delayed when MKP expression was induced, supporting a 

tumor suppressor role for MKPs [210].  While the mechanisms of MKP deregulation are 

not yet fully understood, it has been shown that hypermethylation leads to loss of MKP-3 

expression in pancreatic cancers [211]. 

 

B-Raf in Human Cancers 

 Members of the Raf family were first identified as viral oncogenes causing tumors 

in mice and chickens [212-215].  C-Raf activity is increased in response to hyperactivated 

EGFR or Ras, however, to date B-Raf is the only Raf kinase that is known to be mutated 

in human cancers. 

 Two decades of testing human tumors for Raf mutations was largely unsuccessful 

until a fruitful, high-throughput screen of nearly 1000 human tumor samples identified B-
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Raf missense mutations in many human cancers [216].  Activating B-Raf point mutations 

were discovered in nearly 70% of melanomas, 40% of papillary thyroid carcinomas [217-

219]; 14% of ovarian cancers, 14% of liver cancers, 12% of colorectal tumors, 11% of 

gliomas, 9% of sarcomas a to a lesser extent in other lymphomas, leukemias, breast, lung 

and liver carcinomas, totaling 8% of all tumors sampled [216].   

While more than 30 missense mutations were identified, all in the kinase domain 

of B-Raf, 80% of the mutations were accounted for by a single Valine to Glutamic acid 

substitution at residue 600, B-RafV600E [216].  Melanomas by far accounted for the 

highest percentage of B-Raf mutations, in which over 90% of the mutations were 

represented with the V600E substitution.  Ras mutations account for 15% of melanomas, 

however, Ras and B-Raf mutations are mutually exclusive in the vast majority of tumors, 

suggesting that Ras and B-Raf transform melanocytes through similar mechanisms.  As 

well, it has been shown that 80% of benign nevi harbor a B-RafV600E mutation [220], 

thereby implicating B-Raf in the early stages of transformation.  Additional studies have 

shown that a paracentric inversion within chromosome 7 creates a fusion protein between 

a portion of the AKAP9 gene and the kinase domain of B-Raf rendering B-Raf 

constitutively active [221].  This rearrangement is found at a low frequency (1%) of 

sporadic thyroid papillary carcinomas, however its prevalence is 11% among thyroid 

papillary carcinomas that developed in children as a result of exposure to radiation from 

the Chernobyl explosion.  Finally, less commonly noted are B-Raf copy number 

amplifications which occur most often in thyroid follicular adenomas (25%) and thyroid 

follicular carcinomas (35%) [222].       
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B-Raf as an Oncogene    

The most common mutation in B-Raf, V600E, is flanked by a threonine at residue 

599 and Serine at residue 602, both of which require phosphorylation for Ras mediated 

activation [160].  It is therefore conjectured that the negative charge acquired by 

substituting glutamic acid for valine suffices as a phospho-mimic capable of activating B-

Raf [216].  Indeed, the vast majority of mutations in B-Raf were demonstrated to be 

activating mutations, with B-RafV600E exhibiting a 10.7 fold increase in its kinase activity 

in vitro over wild-type B-Raf.  The activating mutations increased endogenous ERK 

activation in cell culture, as tested by levels of ERK1/2 phosphorylation, whereas 

overexpression of wild-type B-Raf did not increase ERK1/2 phosphorylation [223].  

Interestingly, four rare B-Raf mutations found in tumors [216] have reduced in vitro 

kinase activity [224] despite activating ERK in cells.  It was shown that three of these 

exogenously expressed mutants, interact with and activate endogenous wild-type C-Raf, 

which then activates ERK [224].      

Consistent with its elevated kinase activity, it was shown that B-RafV600E is 

capable of inducing transformation in NIH3T3 cells [216] and immortalized mouse 

melanocytes [223] in an ERK dependent manner.  Further, transformation of melanoma 

cells expressing B-RafV600E was reversed upon downregulation of B-Raf [225, 226].  

Additionally, it was shown that immortalized melanocytes expressing B-RafV600E form 

tumors in nude mice.  Consistent with the presence of B-RafV600E mutations in 80% of 

benign nevi, transgenic zebrafish expressing B-RafV600E formed benign nevi [227].  

However, B-RafV600E induced formation of invasive melanomas in zebrafish, only when 

expressed on a p53 deficient background.  A conditional B-RafV600E knock-in mouse 
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model produces hematopoietic displasia and skin polyps [228].  Transgenic mouse 

models targeting B-RafV600E to melanocytes [229] or the lung [230] rapidly develop 

benign nevi or adenomas, respectively, but rarely develop melanomas or 

adenocarcinomas unless combined with the loss of tumor suppressors Pten, TP53 or 

Ink4a/Arf.  However, targeted expression of B-RafV600E to the thyroid serves as a tumor 

initiator and promoter, resulting in rapid accumulation of parathyroid carcinomas (PTC) 

that closely reflect human PTCs [231].  Therefore, B-RafV600E is capable of transforming 

immortalized cells and causing benign tumor formation in several animal models.  

However, its role in tumor progression varies amongst tumor types, requiring additional 

mutations for full transformation to occur. 

 

In summary, MAPK signaling has been implicated in a high percentage of human 

tumors.  Hyperactivity of the Ras-Raf-MEK-ERK pathway is achieved by mutations on 

various levels including the upstream activator EGFR, its ligand, TGFα, activating 

mutations in Ras and deregulation of MPKs.  Most notably, B-Raf is constitutively 

activated in a wide variety of cancers which depend on oncogenic B-Raf expression for 

proliferation and survival.  80% of benign nevi harbor oncogenic B-Raf, suggesting that 

it is an early transformation event.   

 

Mitosis and Cancer 

 It has long been recognized that human tumors are genetically unstable.  

Nucleotide-level genomic instability and gene mutations are well established causes of 

tumorigenesis.  However, the form of genetic instability most frequently observed in 
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cancers is mitotically driven chromosomal aneuploidy.  Mounting evidence supports a 

causal role for chromosomal aneuploidy in tumorigenesis, therefore, understanding how 

mitosis drives aneuploidy in human tumors has become a critical question of modern 

cancer biology.   

 

Types of Genomic Instability 

Human disease is largely attributed to genetic alterations [232].  Mutations in 

genes which repair or divide the genome cause cells to continuously acquire genomic 

changes over time rendering them genomically unstable.  The two categories of genomic 

instability include nucleotide-level instabilities and mitotically driven aneuploidy [232].   

 The human genome contains thousands of microsatellites, short sequences of 

DNA that are tandemly repeated 10 to 100 times [233].  Microsatellites are highly 

susceptible to DNA replication errors, which are repaired by the highly conserved DNA 

mismatch repair (MMR).  Mutations in MMR genes and occasionally mutations in the 

nucleotide excision repair (NER) genes [234] increase the rate of genomic mutations 

leading to microsatellite instability (MIN), the most common type of nucleotide-level 

genomic instability [232].  MIN occurs in approximately 13% of sporadic colorectal, 

endometrial and gastric cancers [235, 236].  It is widely accepted that MIN drives 

tumorigenesis [237].   

 Normal human cells contain 46 chromosomes.  Deviation in chromosome number 

is referred to as aneuploidy.  Gains and losses of whole chromosomes, gene 

amplifications and deletions and chromosomal rearrangements and are all forms of 

aneuploidy [232, 235, 237].  Embryogenic aneuploidy is typically lethal and when viable, 
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causes disease such as Down, Edward and Patau’s syndromes [238].  However, nearly 

every tumor cell exhibits aneuploidy and the vast majority of tumor cells are genetically 

unstable [239].     

 Continual chromosomal gains and losses, a form of genomic instability termed 

chromosomal instability (CIN), is the most common form of aneuploidy in tumors [232, 

237, 239].  Nearly all tumors that do not exhibit MIN are chromosomally unstable, often 

containing gross structural changes such as translocations, deletions and amplifications 

[237], as determined by classic and modern karyotype analyses.  Structural 

rearrangements in the absence of whole-chromosomal instability are a well accepted 

cause of tumorigenesis, such as the BCR-ABL translocation that drives some cases of 

chronic myelogenous leukemias [240].  The role of CIN in tumorigenesis is less well 

defined.  Some have argued that chromosomal aneuploidy is a side-effect of 

tumorigenesis.  However, correlative evidence and direct experimental results have 

demonstrated that chromosomal aneuploidy contributes to cellular transformation and 

cancer development. 

 

Mitosis and Aneuploidy 

For well over a century it has been demonstrated that aneuploidy results from 

errors in cell division [241].  Some of the mitotic defects which cause aneuploidy include 

multipolar spindle formation, defects in chromosome cohesion, spindle-microtubule 

misattachments, and a weakened spindle assembly checkpoint [242]. 

Cells that form multi-polar spindles undergo chromosomal missegregation.  It is 

believed that multi-polar spindles result from defects in the duplication, segregation and 
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maturation of centrosomes.   Indeed, Aurora A amplification [243] or inactivation of p53 

[244], BRCA1 and BRCA2 [245-248] or mitotic motor protein Eg5 cause errors in 

centrosomal duplication or segregation leading to spindle malformation and aneuploid 

daughter cells.   

 Defects in the cohesion of chromosomes have been shown to cause aneuploidy.  

Inactivation of securin or separase homologues in budding and fission yeast generates 

hypoploidy [249-251].  As well, deletion of securin from human cancer cells induces 

high levels of CIN [252].    

  Another potential mechanism for aneuploidy lies within faulty kinetochore-

microtubule engagement.  Merotelic attachments occur upon inhibition of the 

chromosomal passenger complex that corrects kinetochore-microtubule attachment errors 

[253].  As well, truncated forms of the adenomatous polyposis coli protein generate CIN 

by disrupting kinetochore-microtubule attachments [254-256].  

 An insufficiently performing spindle assembly checkpoint is also implicated in 

the production of aneuploidy [257].  Mice with reduced levels of Mad2 [258], BubR1 

[259] or Bub3 [260] have a defective SAC and are prone to the acquisition of aneuploidy.  

While Mad2, BubR1 and Bub3 have roles throughout the cell cycle, CENP-E functions 

exclusively during mitosis [261].  Therefore, it is significant that reduction in CENP-E 

levels compromises the SAC and causes aneuploidy in vitro [262] and in mice [263].  

 

Causal Role for Aneuploidy in Tumorigenesis 

 Aneuploidy is the most common feature found amongst tumors and is considered 

a hallmark of cancer [237].  Some of the earliest cancer biologists proposed that 
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aneuploidy causes tumorigenesis [264-266].  It is now widely accepted that changes in 

gene expression lead to tumorigenesis [267].  Despite arguments that aneuploidy is a 

benign consequence of transformation [268], modern biology suggests that mutations in 

genes that regulate cell division drive aneuploidy, which is ultimately the means for 

generating changes in gene expression that lead to tumorigenesis [232, 235, 269, 270].    

Tumor development results from accumulated changes in gene expression.  Some 

have argued that the accumulation of a few somatic mutations is sufficient to cause 

transformation [271].  However, mathematical modeling predicts that the acquisition of 

sufficient numbers of changes cannot be achieved solely by the acquisition of 

spontaneous mutations [272].  Mathematical models also predict that the onset of 

genomic instability is an early and necessary event in tumor development [235].  In fact, 

allelic loss occurs in extremely small polyps in early stage colorectal cancers [273], and 

aneuploidy is present in precancerous lesions of the cervix, head and neck, esophagus and 

bone marrow [274].  Human tumors gain and lose chromosomes at a rate of 10-100 times 

higher than normal cells [239].  Average tumors of the colon, prostate and breast have 

lost 25% of their alleles [232] and exhibit heterogeneity due to continual genomic 

changes [275]. 

 It has been demonstrated that a large number of CIN colorectal tumors cannot 

adequately activate their spindle assembly checkpoint [276].  In fact, a large proportion 

of human tumors display misexpression of genes that regulate the SAC.  BubR1 and 

Mad1 are frequently misregulated in a number of human cancers [261].   Mad2 was 

found to be transcriptionally overexpressed in several tumor types including 

hepatocellular, lung and intestinal carcinomas, B cell lymphomas and several others 
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[277].  Mutational inactivation of Bub1 or BubR1 have been observed in colon cancers 

[276]. Several tumor types, including pituitary adenomas and mammary and pulmonary 

adenocarcinomas, exhibit overexpression of securin [278-280].  Other genes that regulate 

mitosis such as Apc, BRCA1 and BRCA2 are misregulated in a number colorectal, 

duodenal, breast, ovarian, colon and pancreatic cancers [261].   

Direct evidence has demonstrated that aneuploidy can drive tumorigenesis.  In 

2007, it was reported that cells from Mad2 transgenic mice become highly aneuploid and 

develop a wide variety of tumors including liver and lung carcinomas, sarcomas and 

lymphomas [277].  The mice developed whole chromosomal aneuploidy and structural 

chromosomal abnormalities, as shown by g-banding analysis.  Immunofluorescence 

studies demonstrated that Mad2 cells exhibit lagging chromosomes and chromosome 

bridges during mitosis – a strong indication that mitotic errors were the driving factor 

behind the acquisition of aneuploidy.   As well, it was shown that transient Mad2 

expression is sufficient for long-term tumor development, suggesting that aneuploidy 

induced by Mad2, rather than Mad2 itself, was necessary for tumor maintenance.  

Further direct evidence that aneuploidy is tumorigenic comes from studies in mice 

with reduced CENP-E levels [263].  These studies are particularly significant since the 

role of CENP-E is exclusively relegated to mitosis.  Mice heterozygous for CENP-E 

exhibit whole chromosomal aneuploidy, in the absence of structural abnormalities, as 

shown by spectral karyotyping.  Lagging and pole-associated chromosomes were 

detectable in 40% of cells isolated from CENP-E heterozygous mice, implicating mitotic 

errors as the cause of aneuploidy.   After a long latency period, these mice develop 

splenic lymphomas and lung adenomas at a rate of 10%, comparable to the number of 
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smokers who develop lung cancer.  The long latency period indicates that a small subset 

of the aneuploid cells have the potential to drive transformation.  In the presence of other 

aneuploidy-inducing carcinogens, CENP-E heterozygous mice had a reduced incidence 

of tumorigenesis, indicating that a significantly high level of aneuploidy is incompatible 

with life [261]. 

  

In summary, mitosis must be accurately executed in order to preserve the genomic 

integrity of a cell.  Mitotic proteins, whose misregulation drives aneuploidy in vitro, are 

frequently misexpressed in human tumors.  Nearly all tumors are aneuploid and 

genomically unstable from an early stage in tumor development and the degree of 

aneuploidy is directly correlated with the stage of tumorigenesis.  As well, direct studies 

of Mad2 and CENP-E confirm that mitotically induced aneuploidy is tumorigenic in 

mice.  Together, these observations support the assertion that misexpression of spindle 

assembly proteins promote aneuploidy, which can contribute to tumorigenesis.   
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Hypothesis and Dissertation Statement 

 

Recently, it has come to light that B-Raf is a prominent oncogene, mutated in a 

wide spectrum of tumors including nearly 70% of melanomas.  Oncogenic B-Raf is also 

expressed in 80% of benign nevi, indicating that it plays an early role in tumorigenesis.  It 

is crucial to understand the molecular mechanism by which oncogenic B-Raf contributes 

to tumorigenesis.  The cellular mechanisms through which oncogenic B-Raf may drive 

transformation are beginning to be appreciated.  However, more work is needed in order 

to understand the full effects of oncogenic B-Raf.    

It is well accepted that B-Raf is the most potent activator of MAPK signaling 

[158, 160].  The MAPK pathway is a critical signal transduction pathway necessary for 

cellular proliferation, cell survival, stress response and apoptosis [93].  MAPK signaling 

is also involved in the regulation of mitosis [108-110, 113, 114, 119, 134].  Interestingly, 

B-Raf has been reported to activate MAPK signaling during mitosis in Xenopus egg 

extracts [180], however, little is known about B-Raf functions in human cells.  I 

hypothesize that B-Raf regulates mitotic functions in human somatic cells and that 

oncogenic B-Raf disrupts mitosis, leading to aneuploidy.  

To address these hypotheses, I conducted loss-of-function experiments in cell 

cultures in order to evaluate the contribution of B-Raf to mitosis.  Further, I introduced 

oncogenic B-Raf into cancer, immortalized, and primary cells, evaluating the cells 

mitoses and analyzing their karyotypes.   
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The results of my thesis work demonstrate that B-Raf regulates several critical 

mitotic functions and that oncogenic B-Raf perturbs mitosis, driving aneuploidy and 

chromosomal instability. 
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CHAPTER 2 

SUBCELLULAR B-RAF LOCALIZATION 

 

Introduction 

 Regulatory functions of MAPK signaling are mediated in large part by the 

subcellular localization of MAPK pathway members.  Active forms of MEK and ERK 

localize to the cytoplasmic compartment in order to phosphorylate substrates localized at 

the cytoskeleton structures and they translocate into the nucleus to regulate gene 

expression by phosphorylating transcriptional factors [281, 282].  During mitosis, active 

MEK and ERK colocalize to the mitotic spindle poles, the kinetochores, the midzone of 

the anaphase spindle and the telophase bridge during cytokinesis [112].  Little has been 

published on the subcellular localization of B-Raf with the exception of its localization 

throughout the cell body of post-mitotic neural cells [283].   

 B-Raf is itself regulated by phosphorylation events.  Ras mediated activation of 

B-Raf requires phosphorylation on two key residues (Ser 599 and Thr 602) in B-Raf’s 

kinase domain.  Evaluating the localization of dually phosphorylated B-Raf can give 

clues to the cellular positioning of active B-Raf. 
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Results 

B-Raf Localizes to Mitotic Structures 

 MEK and ERK, members of the MAPK signaling cascade, localize to mitotic 

structures when activated by phosphorylation.  Work from our laboratory has revealed 

that B-Raf is critical for mitotic activation of the MAPK cascade and its activity is 

regulated in an M phase-dependent manner [180].  Therefore it stands to reason that B-

Raf might also exhibit mitosis-specific localization. 

 

B-Raf is Detected at the Mitotic Spindle 

In order to test whether B-Raf localizes to the mitotic spindle apparatus, 

immunofluorescence studies were carried out in cycling NIH 3T3 cells (Fig. 6), MCF-7 

cancer cells (data not shown) and human foreskin fibroblast (HFF) cells (Fig. 7) using a 

monoclonal alpha-tubulin antibody to stain the mitotic spindle, DAPI to visualize the 

chromosomes and a commercially available, polyclonal antibody against B-Raf.  This 

antibody recognizes a single, 95 kD protein band in corresponding cellular lysates (data 

not shown).  B-Raf was exclusively detected in the cytoplasmic compartment of 

interphase cells.  Interestingly, as shown in HFF cells, at the onset of mitosis or prophase 

(as determined by chromosome condensation and aster formation), B-Raf localizes to the 

nuclear region.  As cells enter metaphase, B-Raf becomes highly enriched in the region of 

the mitotic spindle and the spindle poles and to the spindle and midzone during anaphase.  

This was most evident upon utilizing a threshold analysis, which distinguishes the areas 

containing the highest relative levels of B-Raf staining.  In late telophase and cytokinesis, 

the B-Raf staining pattern was mostly confined to the cytoplasmic compartment, as it was  



 

 
 
 
 
 
 
 
 

    

Figure 6.  B-Raf localizes to the mitotic spindle in NIH 3T3 cells 
a.  Immunofluorescence staining of endogenous B-Raf protein.  a. B-Raf; b  
threshold analysis depicting regions of strong B-Raf enrichment; c. overlay 
α-tubulin to visualize the spindle (red) and DNA (blue); Images were 
acquired at 100X magnification, scale bar represents 3µm, arrows depict 
mitotic cells.   
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Fig. 7  B-Raf localizes to the mitotic spindle in HFF cells  
Top Panel:  Immunofluorescence in asynchronous HFF cells of endogenous B-
Raf protein (green) Bottom Panel:  Overlay of B-Raf threshold (green), α-
tubulin (red) and DNA stained with DAPI (blue).  Images were acquired at 
100X magnification. 
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during interphase.  The enrichment of B-Raf staining at the metaphase spindle region was 

also observed using a mouse monoclonal B-Raf antibody, indicating that the staining 

pattern from the two antibodies reflects the detection of B-Raf protein.  Neither the 

isotype control for the polyclonal (Rabbit IgG) nor monoclonal (Mouse IgG2b) generated 

any appreciable staining pattern.   

To further ascertain whether B-Raf’s mitotic staining co-localizes to microtubule 

spindle structures, I used confocal microscopy to acquire 0.45 μm z-sections throughout 

HFF cells.  The results demonstrate that B-Raf staining was restricted to the confocal 

sections containing spindle microtubules and condensed chromosomes (Fig.8).  Strong B-

Raf staining appears at the spindle poles and the spindle midzone in cells undergoing 

metaphase and anaphase, respectively.  Viewing metaphase cells down the spindle pole 

axis permits us to visualize B-Raf along the radial microtubules and at the spindle poles.  

Thus, B-Raf localization is enriched at the spindle apparatus during mitosis in somatic 

tissue culture cells. 

 

B-Raf Interacts with Spindle Microtubules 

Immunofluorescence staining demonstrates that B-Raf is enriched at the region of 

the mitotic spindle, and therefore B-Raf may be directly associated with the microtubules 

of the spindle apparatus.  In order to address this question, entire z-series of 

immunofluorescence images of B-Raf and the mitotic spindle were analyzed with Imaris 

Bitplane 3D blind deconvolution followed by processing with the ImarisColoc module to 

isolate, visualize and quantify region overlap.  These analyses demonstrated that a portion



 

 

                                
 

                                            

B-Raf Spindle  DNA Overlay 

Metaphase 

Metaphase 
y-axis 

Anaphase 

Figure 8.  B-Raf is detected at the spindle apparatus during mitosis in HFF 
cells   
Confocal microscopy of HFF cells stained with antibodies against endogenous 
B-Raf (red), α-tubulin to visualize the spindle (green) and DNA stained with 
DAPI (blue).  Images represent 0.48µm along the z-axis from within a z-series.   
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of B-Raf directly colocalizes with the polymerized microtubules of the spindle (Fig. 9), 

suggesting that B-Raf directly interacts with the spindle microtubules.   

In order to validate the Imaris data, HFF and HeLa cells were exposed to 

nocodazole in order to depolymerize the microtubules.  Cells were stained with tubulin 

and B-Raf antibodies and the B-Raf staining pattern was assessed by fluorescence 

microscopy.  As shown in Figure 10, the staining pattern of B-Raf corresponding to the 

metaphase spindle was radically altered upon nocodazole treatment indicating that B-Raf 

localization at metaphase reflects its association with the spindle microtubules.   

 Based on the same principals of nocodazole function, we performed a 

biochemical experiment in Xenopus egg extracts to determine if B-Raf interacts with 

polymerized microtubules during mitosis and if the interaction is disrupted when 

microtubules are depolymerized by nocodazole.  As shown in Figure 11, B-Raf and 

polymerized microtubules are associated in a pelleted fraction of egg extracts and the 

association is decreased when microtubules are depolymerized with nocodazole.   

 

B-Raf Localizes to the Centrosomes 

 Based on the immunofluorescence threshold analyses and confocal data 

demonstrating an abundance of B-Raf at the spindle poles during mitosis, I decided to 

analyze mitotic cells for B-Raf colocalization to the centrosome.  The centrosome is 

comprised of an abundance of proteins concentrated into two centrioles.  The centrosome 

and its associated proteins can be detected following a brief detergent extraction of 

soluble proteins.  NIH 3T3 or HFF cells were briefly extracted with CHAPS



 

 
                     
 
 
 
 
 
 
 

                            

Fig. 9  B-Raf interacts with the spindle microtubules 
in HFF cells  
Confocal images of B-Raf and the spindle were 
analyzed using Imaris Bitplane 3D blind deconvolution.  
Following deconvolution, resulting stack was processed 
with ImarisColoc module to isolate, visualize and 
quantify region overlap.  Green represents α-tubulin, red 
is background B-Raf staining and yellow represents 
areas where B-Raf and microtubules interact. 
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Fig. 10  B-Raf spindle localization is disrupted when microtubules are 
depolymerized with nocodazole  
HFF and HeLa cells were treated for two hours with nocodazole to induce 
destabilization of microtubules.  Cells were fixed with 4% paraformaldehyde 
and processed for immunostaining of B-Raf (green) and α-tubulin (red), and 
DAPI was used to detect DNA (blue).  D=DMSO; N=Nocodazole.   

47 



 

 
 
 
 
                        
 
 
 

                           
 
 
 

Fig. 11  B-Raf co-pellets with microtubules isolated 
from M phase Xenopus egg extracts  
Spindle microtubules structures formed in mitotic 
Xenopus egg extracts, in the absence or presence of 10 
ng/μl nocodazole, were pelleted through a 40% 
glycerol buffered cushion as previously described 
(Horne Guadagno, 2003). The microtubule pellet and 
its associated proteins were resuspended in SDS 
sample buffer, separated by 10% SDS-PAGE, and 
subjected to immunoblot analysis for α-tubulin and B-
Raf. 
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detergent, fixed with 4% paraformaldehyde, stained for B-Raf, tubulin and DAPI to 

visualize the chromosomes.  The results showed that throughout the cell cycle the 

majority of B-Raf was removed by CHAPS extraction with the exception of two discrete 

pairs of foci on opposite sides of the aligned chromosomes, a distinct centriolar staining 

pattern (Fig. 12).  To confirm that B-Raf colocalizes directly with the centrioles, cells 

were costained with B-Raf and centrin, a centriole marker, followed by confocal analysis 

of 0.45 μm Z-sections.  Both pairs of foci co-localized precisely with centrin in both 

NIH3T3 (Fig. 12) and HFF (Fig. 13) cells during mitosis.  As shown in Fig. 14, B-Raf is 

present at the centrosome throughout the cell cycle.  Hence, we conclude that a detergent-

resistant pool of B-Raf is tightly associated with the centrioles in mammalian cells. 

 

B-Raf is Phosphorylated on Serine 599 and Threonine 602 at Mitotic Structures 

 B-Raf is dually phosphorylated at conserved residues Thr599 and Ser602 during 

Ras-mediated activation (Zhang and Guan, 2000), therefore dual phosphorylation of B-

Raf suggests that B-Raf is active and capable of phosphorylating downstream targets.  To 

determine whether B-Raf is phosphorylated at these two residues during mitosis, HFF 

cells were subjected to immunostaining with a monoclonal alpha-tubulin antibody, a 

phospho-B-Raf (Thr599/Ser602) antibody and DAPI to visualize the DNA.   

 

Phosphorylated B-Raf Localizes to the Centrosomes  

 During interphase, phospho-B-Raf (Thr599/Ser602) staining was weakly visible 

at the centrosome and the remainder of the cells is devoid of phospho-B-Raf staining, 

however, a notable staining pattern of phospho-B-Raf (Thr599/Ser602) was detectable 



 

 
 
 
       
 
 

           
 
 Figure 12  B-Raf localizes to the centrosomes in NIH 3T3 cells 

Immunofluorescence of endogenous B-Raf protein.  Cells were incubated with 1% CHAPS containing buffer, prior to 
fixation, in order to wash away soluble proteins and retain insoluble proteins and proteins tightly associated with 
insoluble structures.  Cells were stained with antibodies against endogenous B-Raf (green), centrin to visualize the 
centrosome (red) and DNA (blue).  Images were acquired at 100X magnification, scale bar represents 3µm.  Centrioles 
are magnified 4X in the outset panel. 
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Figure 13  B-Raf localizes to the centrosomes in HFF cells 
Immunofluorescence of endogenous B-Raf protein.  Cells were incubated with 1% CHAPS containing 
buffer, prior to fixation, in order to wash away soluble proteins and retain insoluble proteins and proteins 
tightly associated with insoluble structures.  Cells were stained with antibodies against endogenous B-Raf 
(green), centrin to visualize the centrosome (red) and DNA (blue).  Images were acquired at 100X 
magnification.  Centrioles are magnified 5X in the outset panel. 
 



 

 
 
 
     
     
 

                   
 
 Figure 14  B-Raf localizes to the centrosomes throughout the cell cycle 

Immunofluorescence of endogenous B-Raf protein.  Cells were incubated with 1% CHAPS 
containing buffer, prior to fixation, in order to wash away soluble proteins and retain 
insoluble proteins and proteins tightly associated with insoluble structures.  Cells were stained 
with antibodies against endogenous B-Raf (green), α-tubulin to visualize the spindle (red) and 
DNA (blue).  Images were acquired at 100X magnification.   
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during all stages of mitosis (Fig. 15).  At prophase, the onset of mitosis, strong phospho-

B-Raf staining was detectable at the centrosomes and remained at the spindle poles 

throughout metaphase and anaphase.  This staining pattern was nearly identical to the 

non-phosphorylated B-Raf centrosomal staining.  Additionally, phospho-B-Raf 

(Thr599/Ser602) staining was detected at the spindle midzone in cells undergoing 

anaphase and, at the midbody in late telophase cells undergoing cytokinesis.  

Collectively, these results indicate that pools of active B-Raf localize to specific spindle 

structures including the centrosomes during cell division. 

 

Phosphorylated B-Raf Localizes to Condensed Chromatin 

While phospho-B-Raf (Thr599/Ser602) staining was exclusively detected at the 

centrosome during interphase, staining became prominent at the nuclear region 

containing condensed chromosomes during prophase, in agreement with the staining 

pattern for total B-Raf protein (Fig. 7).  During metaphase, phospho-B-Raf 

(Thr599/Ser602) staining was concentrated at regions surrounding the aligned 

chromosomes (Fig. 15).  The perichromosomal space is the region that directly encircles 

each condensed chromosome.  Many proteins localize to the perichromosomal space 

during mitosis and the functions of these proteins and the perichromosomal region have 

not been fully defined.  However, it has been shown that several components that localize 

to the perichromosomal space are involved in mitotic functions such as chromosome 

condensation, decondensation, mitotic progression, cytokinesis and nuclear envelope 

reformation following exit from mitosis.  In order to directly address whether B-Raf is 

phosphorylated in a perichromosomal fashion, chromosomes were isolated from 



 

         
 
 

                                         
 

Figure 15  B-Raf is phosphorylated at key mitotic structures 
HFF cells were immunostained for phospho-B-Raf using a phospho-B-Raf 
(Thr599/Ser602) antibody (b.).  Microtubules and DNA (a.) were detected with 
anti-α-tubulin antibody and DAPI.  Images were captured at 100X magnification.  
Overlay is shown in c and d - d is magnified 4X.  Scale bar represents 10 μm.  
Arrows point to the centrosomes and the midbody. 
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 Figure 16  Phosphorylated B-Raf localizes to the condensed chromosomes 

Phospho-B-Raf (Thr599/Ser602) localizes to the perichromosomal space during metaphase, but 
not interphase.  Chromosomes were isolated from HeLa cells treated with nocodazole for 2 hrs 
and subjected to immunostaining and visualized with confocal microscopy.  Kinetochores were 
visualized with CREST antiserum (red); green foci represent phospho-B-Raf staining.  Shown 
are single 0.45 μM sections from within a z-series of a metaphase cell.  A metaphase cell is 
shown in the center of each panel surrounded by three interphase cells, in which no 
colocalization is observed. 
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Figure 17  Phosphorylated B-Raf localizes to the perichromosomal sheath 
Phospho-B-Raf (Thr599/Ser602) localizes to the perichromosomal sheath 
during metaphase, but not interphase.  Images from figure 18 were analyzed 
using Imaris doconvolution software and a 3D isosurface model was rendered.  
Kinetochores were visualized with CREST antiserum (red); green foci 
represent phospho-B-Raf and chromosomes are shown in blue (DAPI).  A 
metaphase cell is shown in the center and an interphase cells, in which no 
colocalization is observed, to the bottom left of the panel.  Joseph Johnson 
created this image. 
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interphase and metaphase cells, spun onto coverslips and stained with DAPI and the 

phospho-B-Raf antibody.  Confocal microscopy revealed that phospho-B-Raf 

(Thr599/Ser602) encircles each individual chromosome during metaphase, whereas no 

chromatin associated staining was detected in interphase cells (Fig. 16).  The 

perichromosomal staining is further supported by rendering a three-dimensional 

isosurfacing model of the chromosomes (Fig. 17). 

 

Phosphorylated B-Raf localizes to the Kinetochores 

Confocal imaging of B-Raf staining in HFF cells revealed discrete foci detectable 

along the metaphase plate of aligned chromosomes (Fig. 8, metaphase) reminiscent of 

kinetochores.  A view along the spindle pole axis (Fig. 8, metaphase y-axis) showed these 

foci appeared as a ring-like structure that co-localized at the juncture where spindle 

microtubules meet the aligned chromosomes, typically the site of the kinetochores.  Close 

inspection phospho-B-Raf (Thr599/Ser602) staining revealed the appearance of foci 

overlapping with chromosomes during metaphase and anaphase (Fig. 15, row d).  To 

determine whether these foci were localized at kinetochores, metaphase chromosomes 

were isolated from nocodazole-treated HFF cells, fixed and adhered to coverslips.  

Chromosomes were subjected to immunofluorescence analysis.  Co-staining with the 

kinetochore marker CREST antiserum and phospho-B-Raf showed that phospho-B-Raf 

foci overlap directly with every pair of kinetochores of metaphase chromosomes (Fig. 18, 

metaphase).  In contrast, interphase nuclei demonstrated no kinetochore colocalization of 

phospho-B-Raf (Fig. 18, interphase).  These results demonstrate that phospho-B-Raf 

(Thr599/Ser602) co-localizes with the kinetochores during metaphase.  



 

         
 
 
                                         
 
 

                                  
 
 
      Figure 18  Phosphorylated B-Raf localizes to the kinetochores during mitosis 

Phospho-B-Raf (Thr599/Ser602) stained foci co-localize to kinetochores at metaphase, but not 
interphase, chromosomes.  Chromosomes were isolated from HeLa cells treated with 
nocodazole for 2 hrs and subjected to immunostaining and visualized with confocal 
microscopy.  Kinetochores were visualized with CREST antiserum (red); green foci represent 
phospho-B-Raf staining.  Shown are single 0.45 μM sections from within a z-series of a 
metaphase cell.  
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Conclusions 

 Prior to my studies, reports on the subcellular localization of B-Raf were limited 

strictly to the cytoplasm of interphase neurons.  My results demonstrate that B-Raf 

localization and phosphorylation is cell-cycle specific.  Specifically, B-Raf localizes to 

and is phosphorylated at mitotic structures, many of which are known to play a critical 

role in the accuracy and timing of mitosis.    



 

60 

 

 
 

 

CHAPTER 3 

B-RAF PERFORMS CRITICAL MITOTIC FUNCTIONS 

 

Introduction 

 Previous studies from our laboratory show a role for MAPK in promoting the 

formation and stability of the mitotic spindle [115].  Specifically, blocking MEK activity 

or depleting p42 MAPK from Xenopus egg extracts inhibits spindle assembly and leads 

to the generation of aberrant half spindles, a portion with unfocused poles, and 

microtubule (MT) asters.  Moreover, when mammalian cells are treated during late G2 

and M phases with the pharmacological MEK inhibitor U1026, a high frequency of 

spindle abnormalities and misaligned chromosomes is observed indicating that MEK 

signaling is also important for spindle functions in somatic cells.  A role for B-Raf in 

activating the MAPK cascade during mitosis has been suggested from studies in Xenopus 

egg extracts that mimic the early embryonic cell cycles of S and M phases [180].  As 

well, it has been reported that peaks of B-Raf activity are detected at M phase and early 

G1 phase during the cell cycle of HeLa cells [134], but hard evidence for B-Raf having a 

role in regulating mitosis in somatic cells had not been described.  The studies described 

in this chapter show evidence for mitotic functions of B-Raf at mitosis in human somatic 

cells.   
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Results 

B-Raf Contributes to Mitotic Spindle Assembly in Xenopus Egg Extracts 

 Work from our laboratory has shown that proper mitotic spindle assembly in 

Xenopus egg extracts requires ERK phosphorylation.  In the same system, we have 

shown that B-Raf is the MEK kinase which activates ERK signaling during mitosis.  B-

Raf and ERK activities do not regulate S-phase functions in Xenopus egg extracts, as they 

are strictly relegated to mitosis.  These data suggests that B-Raf may regulate spindle 

assembly in Xenopus egg extracts through direct effects on mitosis.   

 

Spindle Assembly is Compromised in the Absence of B-Raf in Xenopus Egg Extracts 

 Xenopus egg extracts are a powerful biochemical system for studying the 

regulation of spindle assembly.  Antibodies can be used to efficiently immunodeplete 

endogenous proteins and spindle assembly can be monitored.  As shown in figure 19, B-

Raf protein in Xenopus CSF-arrested egg extracts is immunodepleted using B-Raf 

antibodies but not rabbit IgG mock control.  Metaphase spindle formation was monitored 

by the addition of rhodamine labeled tubulin in both mock- and B-Raf-depleted extracts.  

Formation of spindles in mock-depleted egg extracts occurred properly, as shown, 

exhibiting bipolar spindles with focused poles and well-organized microtubules (Fig. 20).  

In contrast, the depletion of B-Raf from egg extracts disrupted spindle assembly, resulted 

in unfocused spindle poles and splayed spindle structures.  Several monopolar, half 

spindle structures were also formed as well as structures lacking organized microtubules 

and containing misaligned chromosomes.  These results indicate that B-Raf is required 

for mediating proper spindle assembly in Xenopus egg extracts.   



 

 
 
 
                         

                                                                    
 
 Figure 19  Immunodepletion of B-Raf from 

Xenopus egg extracts 
CSF-arrested Xenopus egg extracts were depleted of 
endogenous B-Raf protein with B-Raf specific 
antibodies.  Extracts were activated into S phase (S) 
with 0.4 µM Ca+2 addition and cycled into M phase 
(M) with nondegradable cyclin B.   

 
 
 
 
 
 
 
 

                                                                       

Figure 20  B-Raf contributes to spindle assembly 
in Xenopus egg extracts 
Extracts were prepared as in figure 20.  Rhodamine 
labeled α-tubulin was added to visualize spindle 
assembly and DNA was stained with Hoechst buffer.  
Images were taken on 100X magnification. 
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B-Raf is Necessary for Spindle Formation and Chromosome Congression in Human 

Somatic Cells 

 Our preliminary studies in Xenopus egg extracts suggest a role for B-Raf in the 

regulation of mitotic spindle assembly.  Immunofluorescence data suggests that active 

forms of B-Raf reside at mitotic structures in human somatic cells.  Therefore I 

investigated whether B-Raf regulates the assembly of the mitotic spindle in human 

somatic cells.  

 

Knockdown of B-Raf by siRNA Inhibits Proper Spindle Formation and Chromosome 

Congression  

To determine if B-Raf regulates spindle assembly in human somatic cells, two 

independent 21-base pair RNA duplexes corresponding to conserved B-Raf sequences in 

exon 11 (BE11), and exon 3 (BE3) were utilized to downregulate B-Raf .  Spindles of 

mitotic cells were subsequently analyzed via immunofluorescence microscopy.  siRNAs 

were transfected individually into human foreskin fibroblast (HFF) cells and HeLa cells 

(data not shown).  A 21-base pair scrambled sequence was used as a control.  

Transfection of the BE11 or BE3 siRNAs led to an 80-95% reduction of B-Raf protein 

levels in HFF cells within 72 hours as assessed by immunoblot (Fig. 21).  The scrambled 

control siRNA had no apparent effects on spindle morphology (Fig. 22).  However, 

knockdown of B-Raf with the BE11 or BE3 siRNA resulted in pleiotropic spindle 

abnormalities in 80-90% of the mitotic cells analyzed from at least eight independent 

experiments.  Three general groups of abnormal spindle phenotypes were observed:  49% 

with abnormal spindle morphology, including unfocused poles, 29% with shortened 
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spindle structures, and 22% with microtubule bundles.  In the scrambled control cells, 

chromosome congressed in an organized, linear fashion at the metaphase plate in nearly 

90% of cells. In contrast, chromosome alignment at the metaphase plate was perturbed in 

the vast majority of B-Raf depleted cells.  Cells exhibited chromosomes throughout the 

region of the metaphase plate, along the perimeter of the mitotic spindle structures, at the 

spindle poles, and encircling entire spindle structures.  Thus, our data suggest that B-Raf 

is critical for proper spindle formation and chromosome congression in human somatic 

cells.  

 

C-Raf is Dispensable for Normal Spindle Assembly 

 Previous studies suggested that C-Raf (Raf-1) might play a cell cycle role at the 

G2/M transition [118, 284, 285].  Therefore, we also examined the consequences of 

reducing C-Raf protein levels in HFF cells.  We transfected a 21-base pair RNA duplex 

(siRNA) specifically targeting C-Raf into human foreskin fibroblast (HFF) cells.  A 21-

base pair scrambled sequence was used as a control.  Transfection of HFF cells with the 

C-Raf specific siRNA led to an 85% or greater reduction of C-Raf, but not B-Raf, after 

48-72 hr (Fig. 23, A).  In contrast to the phenotypic abnormalities generated in B-Raf 

knockdown cells, spindle morphology and chromosome alignment appeared completely 

normal in C-Raf depleted HFF cells as evaluated by immunofluorescence microscopy 

(Fig. 23, B).  Thus, we conclude that C-Raf is not required for proper spindle formation 

or chromosome congression in somatic tissue culture cells. 



 

 
 
 
 
 
 
 
 
 
 

   
 
 
 
 Figure 21  Downregulation of B-Raf by siRNAs   

HFF cells were transfected with scrambled siRNA 
(SCR) or siRNAs targeting sequences within 
exons 11 or 3 of B-Raf (BE11 or BE3, 
respectively) and analyzed 48-72 hours post-
transfection.  Western analysis probing for B-Raf 
or α-tubulin (loading control).   
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Figure 22  B-Raf contributes to proper spindle assembly in human somatic cells 
HFF cells were transfected with scrambled siRNA (SCR) or siRNAs targeting B-Raf (BE11 or BE3) and 
analyzed 72 hours post-transfection.  Photos are representative of typical abnormalities observed in spindle 
(red) morphology and chromosome (blue) congression.  50-100 spindle structures were analyzed in each of 
8 experiments for each siRNA.  Images were acquired at 60X magnification; scale bar represents 5 μM.   
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A. 

B. 

Figure 23  C-Raf is not necessary for assembly of 
the mitotic spindle 
Knockdown of C-Raf by siRNA has no effect on 
spindle assembly or DNA alignment.  HFF cells were 
transfected with a scrambled control siRNA (SCR), B-
Raf specific siRNA, or C-Raf specific siRNA and 
analyzed 72 hours post-transfection.  (A) Western 
analysis probing for C-Raf or α-tubulin (loading 
control).  (B) Mitotic spindle and DNA alignment 
appear normal in C-Raf-depleted cells transfected with 
siRNA.  Results are representative of at least three 
independent experiments.  Images were acquired at 
60X magnification; scale bar represents 5 μM. 
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B-Raf Regulates Microtubule-Kinetochore Engagement 

 Metaphase is the stage of mitosis during which chromosomes align in the 

metaphase plate, equidistant from each centrosome, a process termed chromosome 

congression.  Chromosome congression is preceded by and dependent upon the bipolar 

attachment of spindle microtubules to the kinetochores of each chromosome, otherwise 

known as “microtubule-kinetochore engagement” or “microtubule capture”.  Microtubule 

capture depends on the coordination of proteins which localize to the kinetochores.  

Following the downregulation of B-Raf, cells exhibit aberrancies in both spindle 

assembly and chromosome congression.  One explanation for the lack of chromosome 

congression could be that microtubule-kinetochore engagement is impaired in the 

absence of B-Raf.  The localization data demonstrates that B-Raf localizes to and is 

phosphorylated at the kinetochores, suggesting that B-Raf may indeed play a role in 

kinetochore mediated functions. 

 

CENP-E Levels are Elevated at the Kinetochores in the Absence of B-Raf 

 In order to determine whether the microtubules and kinetochores are engaged 

following siRNA downregulation of B-Raf, cells were analyzed for the presence of an 

engagement marker.  The CENP-E motor protein is essential for microtubule capture by 

kinetochores and for regulating subsequent microtubule-kinetochore dynamics [286].  It 

has also been established that the levels of CENP-E bound to the kinetochores during 

early mitotic stages is increased three to five fold when microtubules are unattached to 

kinetochores [286].  While the significance of this increase is not fully understood, 
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kinetochore associated CENP-E levels serve as a marker of microtubule-kinetochore 

engagement.   

HeLa and HFF cells were transfected with B-Raf or scramble control siRNAs as 

previously described.  72 hours post-transfection, it was determined that the B-Raf 

knock-down cells exhibited the aforementioned phenotypic abnormalities.  A 

corresponding set of scrambled control and B-Raf knock-down cells were subjected to 

immunostaining for CENP-E and the kinetochore marker, CREST.  Cells were imaged 

via confocal microscopy and 3-dimentional z-series projections were used to quantify the 

CENP-E colocalized with the kinetochores.  While CENP-E was present at the 

kinetochores in the scrambled control cells, levels of kinetochore bound CENP-E 

increased by an average of 3.8 fold in cells transfected with the B-Raf siRNA (Fig. 24). 

The B-Raf knock-down cells that were analyzed exhibited chromosomal misalignment. 

 

Microtubules are not Cold Stable in the Absence of B-Raf 

 Cells transfected with B-Raf siRNA display misaligned chromosomes and have 

elevated CENP-E, a marker for impaired microtubule capture.  Microtubule 

polymerization from tubulin dimers is a dynamic and reversible process.  Polymerized 

spindle microtubules are cold-stable when the microtubule’s plus ends are attached to 

kinetochores and conversely they are cold-labile when unengaged.  The classic 

experiment to directly assess whether spindle microtubules are engaged with 

kinetochores is to perform a cold-microtubule depolymerization assay.   

 To do this, I downregulated B-Raf using siRNA as described above and cells 

subsequently were plated on coverslips in tissue dishes.  72 hours post- transfection, 

 



 

 
 
 

   

Figure 24  Kinetochore bound CENP-E levels following 
downregulation of B-Raf 
Quantitation of CENP-E bound to the kinetochores.  (A)  HeLa cells 
were transfected with a SCR control siRNA or siRNA targeting B-Raf 
(BE11) and 72 hours post-transfection cells were stained for DNA (blue), 
kinetochore (red), CENP-E (green).  (B)  CENP-E that localizes directly 
with kinetochores was quantified. 

70 



 

71 

the tissue culture dishes on which the cells were plated were subjected to cold by 

incubation on ice for several minutes.  Cells were then fixed, stained for alpha-tubulin 

and DNA, and their microtubules were analyzed by immunofluorescence microscopy.  

The scrambled control cells exhibited normal chromosome congression spindle assembly 

(Fig. 25).  Following cold treatment, the microtubules of the control cells remained 

polymerized.  (The cells exhibited the anticipated morphological changes associated with 

cold).  The cells in which B-Raf was transfected exhibited misaligned chromosomes and 

abnormal spindles.  When subjected to cold treatment nearly 100% of these microtubules 

underwent complete and rapid depolymerization, thus demonstrating an absence of 

kinetochore-microtubule engagement in these cells.



 

 

 
 

                                  

Figure 25  Microtubules are not cold-stable in the absence of B-Raf 
HFF cells were transfected with a scrambled siRNA (siSCR) or a B-Raf targeting siRNA (siB-
Raf).  72 hours post-transfection cells were exposed to ice for 10 minutes to depolymerize 
unengaged microtubules.  Cells were then fixed with 4% paraformaldehyd and stained for DNA 
(blue) and α-tubulin (green).  B-Raf depleted cells retained few to no polymerized microtubules, 
demonstrating that those cells had few to no microtubules engaged with kinetochores. 
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B-Raf Regulates the Spindle Assembly Checkpoint 

 The spindle assembly checkpoint (SAC) arrests cells in mitosis prior to anaphase 

until all sister chromatid pairs are attached at the mitotic spindle.  Activation of the SAC 

is dependent upon the activities of proteins which localize to the kinetochores.  B-Raf 

itself localizes to and is dually phosphorylated at the kinetochores exclusively during 

mitosis.  B-Raf depleted cells generate abnormal spindle structures and misaligned 

chromosomes and have deficiencies in microtubule-kinetochore engagement.  Regardless 

of such dramatic mitotic defects, B-Raf depleted cells continue to proliferate over a 3-4 

day period similar to control cells treated with scrambled siRNA.  Therefore, we asked 

whether the spindle assembly checkpoint is functional in cells that are lacking B-Raf. 

 

Cells Cycle through Mitosis in the Absence of B-Raf 

 It is anticipated that cells will arrest in mitosis if they have defects in spindle 

assembly.  To address whether B-Raf depleted cells arrest at the spindle assembly 

checkpoint, control and B-Raf depleted cells were counted and scored as being in 

interphase or mitosis based on their flattened or rounded morphology, respectively.  The 

percentage of rounded cells following B-Raf downregulation was not significantly 

increased over cells in the control group (Fig. 26, A).   

 Cyclin B levels peak during metaphase and drop off rapidly to initiate anaphase, 

therefore Cyclin B levels serve as a biochemical marker of mitosis, specifically of 

metaphase.  We analyzed Cyclin B levels, via western blot analysis, in cells transfected 

with the scrambled control siRNA or a B-Raf specific siRNA 72 hours post-transfection.  
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Levels of cyclin B were not increased in the B-Raf depleted cells relative to SCR control 

cells (Fig. 26, B). 

 Together, these data indicate that 72 hours of downregulation of B-Raf does not 

lead to a spindle assembly checkpoint arrest despite the notable induction of spindle 

abnormalities and the impairment of microtubule-kinetochore engagement.    

  

Induced Spindle Assembly Checkpoint is Compromised in the Absence of B-Raf 

 Downregulation of B-Raf drives significant mitotic abnormalities that persist 

without induction of a SAC, suggesting that B-Raf may be necessary for SAC function.  

In order to determine whether B-Raf is required for activation of the SAC, scrambled 

control or B-Raf downregulated cells were subjected to a classic SAC challenge with 

microtubule poisons.   

 HFF and HeLa cells were challenged with nocodazole or taxol in order to induce 

a SAC 48 hours after transfection with scrambled control or B-Raf siRNAs.  After 24 

hours of challenge cells were analyzed for their capacity to arrest in mitosis.  Cells were 

lysed and subjected to western blot analysis to evaluate Cyclin B levels as a biochemical 

marker of a spindle assembly arrest.  Cyclin B level are reduced to nearly undetectable 

levels in cells depleted of B-Raf upon challenge nocodazole or taxol (Fig. 27) confirming 

that an artificially induced SAC is not fully functional in the absence of B-Raf.  Live 

imaging microscopy of taxol treated cells confirmed that scrambled control cells entered 

and remained in a rounded morphological state consistent with the expected induction of 

metaphase arrest, whereas B-Raf depleted cells acquired a flattened morphology 

following a brief rounded state induced by taxol, indicative of a breached arrest (Fig. 28).  



 

 
 

                                    

Figure 26  Cells do not enter mitotic 
arrest in the absence of B-Raf 
HFF cells were transfected with a 
scrambled or B-Raf targeting siRNA. (A)  
Mitotic cells were scored based on round 
morphology.  (B)  Cells were lysed and 
probed for B-Raf, the mitotic marker, 
cyclin B and total ERK for a reference.  
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Figure 27  Cells do not maintain a spindle 
checkpoint arrest in the absence of B-Raf 
HFF cells were transfected with scrambled or B-
Raf targeting siRNAs for 48 hours followed by a 
nocodazole challenge for 24 hours.  Cells were 
lysed and probed for B-Raf, the mitotic marker, 
cyclin B and total ERK.   
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Time spent in mitosis 

Time spent in mitosis 

Figure 28  B-Raf depleted cells exit mitotic arrest in the presence of 
taxol 
HeLa cells were transfected with scrambled control or B-Raf targeting 
siRNAs for 48 hours and then treated with 50nM taxol in 0.1% DMSO 
for 24 hours during which time cells were imaged using live imaging 
phase contrast microscopy.  (A)  20 (SCR) or 17 (BE11) individual 
cells were analyzed for their time spent in mitosis.  (B)  On average, B-
Raf depleted (BE11) cells spent significantly less time in mitosis 
relative control cells.
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Figure 29  Cells prematurely exit metaphase 
in the absence of B-Raf 
HeLa cells were transfected with scrambled or 
B-Raf siRNAs for 48 hours and live imaging 
performed for the following 24 hours.  (A) 
Images were collected every 1 min over a 24 hr 
period at 20X magnification.  Mitosis starts at 
nuclear envelope breakdown (NEB) and ends 
at cytokinesis.  The data was compiled from at 
least 35 cells per condition from 2 independent 
experiments and is graphed (B) as the average 
+/- standard error.  
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B-Raf Depleted Cells Exit Metaphase Prematurely 

 To directly test whether the SAC is compromised in B-Raf depleted cells, 

scrambled control or B-Raf depleted HeLa cells were subject to live imaging phase-

contrast microscopy for 24 hours.  The total duration of mitosis was scored from nuclear 

envelope breakdown (NEB) through cytokinesis.  HeLa cells treated with B-Raf siRNA 

accelerated faster through mitosis than SCR control cells, averaging 66 vs. 83 min, 

respectively (Representative photo Fig. 29, A).  Closer inspection revealed that B-Raf-

depleted cells remained in metaphase on average 24 minutes less than non-depleted cells 

(Fig. 29, B).  In contrast, timing through anaphase-telophase was not significantly 

affected in B-Raf siRNA-treated HeLa cells, although a modest delay in cytokinesis was 

consistently observed.  These results, imply that the spindle checkpoint is suppressed in 

HeLa cells depleted of B-Raf.   

 

Kinetochore Localization of Mad2 and Bub1 is Inhibited in the Absence of B-Raf  

 Published data in Xenopus egg extracts has indicated ERK signaling regulates the 

requisite kinetochore localization of key spindle assembly checkpoint proteins.  Since B-

Raf’s only known functions are regulated via ERK, we postulated that B-Raf regulates 

localization of SAC proteins to the kinetochores.  To test this possibility, kinetochore 

localization of spindle checkpoint proteins Bub1 and Mad2 was analyzed in control and 

B-Raf depleted cells.  To do this, metaphase chromosomes were isolated from colcemid-

treated HeLa cells, immunostained for the kinetochore marker, CREST, and Bub1 or 

Mad2.  In chromosomes isolated from scrambled siRNA transfected cells, localization of 

Bub1 and Mad2 at CREST-stained kinetochores was readily detectable (Fig. 30).  In 



 

 
 
     
 

       
 

Figure 30  Mad2 and Bub1 kinetochore localization is inhibited in the 
absence of B-Raf 
HeLa cells were transfected with a scrambled (SCR) or B-Raf specific 
(BE11) siRNA for 72 hours prior to chromosomal isolation.  Kinetochore 
localization of Bub1 (B) and Mad2 (C) was analyzed using 
immunofluorescence on isolated chromosomes.  DNA is stained with DAPI 
(blue), kinetochores are stained with CREST (red), Bub1 and Mad2 are 
shown in green. 
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contrast, Bub1 and Mad2 immunostaining was greatly diminished or undetectable at the 

kinetochores of HeLa cells treated with the B-Raf siRNA, demonstrating that B-Raf is 

necessary for proper localization of critical spindle assembly checkpoint proteins, Bub1 

and Mad2.  Since kinetochore localization of spindle checkpoint proteins is an indication 

of SAC activation, we conclude that B-Raf is critical for SAC activation.   

 

Conclusions 

 Our lab previously demonstrated that B-Raf regulates MAPK signaling during 

mitosis in Xenopus egg extracts.  However, B-Raf had no known functional role in 

mitosis in Xenopus egg extracts or in mammalian cells.  The work described in this 

chapter demonstrates that B-Raf is necessary for proper spindle assembly in Xenopus egg 

extracts and in human somatic cells.  Chromatin congression is severely impaired upon 

B-Raf downregulation in human cells and we show evidence suggesting that 

microtubules are not fully engaged with the kinetochores in the absence of B-Raf.  While 

such grave mitotic errors ought to elicit a spindle assembly checkpoint arrest, I have 

demonstrated B-Raf depleted cells accelerate faster through mitosis and bypass the 

spindle assembly checkpoint.  We conclude that B-Raf contributes to several critical 

mitotic functions including spindle assembly, chromatin congression, microtubule 

capture and activation of spindle assembly checkpoint.   
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CHAPTER 4 

ONCOGENIC B-RAF DISRUPTS MITOSIS AND CAUSES CHROMOSOMAL 

INSTABILITY 

 

Introduction 

 Mutationally activated B-Raf is detected in ~8% of human cancers with a 

particularly high frequency in melanoma (60-70%), colorectal (15-20%), papillary 

thyroid (35-50%), and ovarian (30%) cancers [216, 217, 287-291].   The B-RafV600E 

mutant accounts for at least 90% of all B-Raf mutations detected to date which renders B-

Raf into a constitutively active state [216, 224].  As such, B-RafV600E sustains 10-fold 

higher levels of ERK activity in melanoma cells [292].  Ectopic B-RafV600E expression 

transforms immortalized NIH 3T3 fibroblasts and mouse melanocytes in culture [216, 

223, 226, 293, 294] and is required for melanoma cell proliferation, survival, and 

melanoma tumor growth and vascular development in vivo [226, 295, 296].  Together, 

these finding underscore crucial roles for B-Raf in tumorigenesis.  How oncogenic B-Raf 

is required for tumorigenesis remains poorly understood.  Part of the transforming 

activities of B-RafV600E may occur through subverting adhesion-dependent G1 phase 

controls for cyclin D1 expression and p27 down-regulation [297, 298] and suppressing 

anoikis in melanoma cells [299, 300].     
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Aneuploidy is a widely recognized trait of many human cancers and is associated 

with tumor progression and poor prognosis [301, 302].  Aneuploidy results from mitotic 

errors in chromosome segregation due to defects in the spindle assembly checkpoint 

(SAC) and centrosome amplification [242, 303].  It is widely believed that aneuploidy 

itself can be a transforming event through the generation and selection of chromosomal 

profiles that favor cell growth, resistance to cell death and metastatic potential.  Human 

melanomas are highly aneuploidy.  In fact, changes in DNA copy number are detected in 

greater than 95% of human primary melanomas [304, 305] suggesting that early 

oncogenic events contribute to the onset of aneuploidy.   

We have demonstrated that B-Raf regulates mitotic functions that are required to 

ensure proper chromosomal segregation and the genomic fidelity of the cell.  In this 

chapter, we explore the possibility that the most common oncogenic mutation in B-Raf, 

V600E, contributes to mitotic defects leading to the acquisition of aneuploidy.   

 

Results 

B-RafV600E Expression Promotes Mitotic Abnormalities in Melanoma Cells 

 B-Raf plays a critical role in the regulation of spindle formation, microtubule-

kinetochore engagement and activation of the spindle assembly checkpoint in human 

somatic cells.  This prompted us to ask whether the constitutively active oncogenic form 

of B-Raf, carrying a V600E mutation, might have adverse effects at mitosis.   
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B-RafV600E Status in Melanoma Cells is Associated Mitotic Abnormalities 

 To address the possibility that B-RafV600E may have adverse effects on mitosis, 

mitotic events in A375 and SK-MEL28 melanoma cells, that are known to harbor B-

RafV600E mutations, were analyzed by immunofluorescence microscopy.  In parallel, we 

examined mitoses in WM35, SbCl2, and SK-MEL5 melanoma cell lines expressing wild 

type B-Raf.  Normal mitotic spindles were detected in at least 90% of the mitotic figures 

examined in melanoma cells with wild type B-Raf (Fig. 31).  In contrast, abnormal 

spindles with misaligned chromosomes were observed at a high frequency (70-85%) in 

both A375 and SK-MEL28 cells (Fig. 31).  These results indicate that melanoma cells 

carrying B-RafV600E mutations are more prone to forming aberrant mitotic spindle 

structures during cell division.     

 

B-RafV600E Promotes Spindle Abnormalities and Centrosome Amplification in Human 

Melanoma Cells 

 Based on the correlative findings between oncogenic B-Raf expression and 

mitotic abnormalities, we hypothesized that the constitutively active B-RafV600E mutant 

was responsible for causing the abnormal mitoses observed in the mutant B-Raf 

melanoma cells.  In experiments carried out in the Guadagno lab, by Yongping Cui, B-

RafV600E was introduced into SK-MEL-5 human melanoma cells with a wild type B-Raf 

background.  Cells were infected via a retrovirus using a pBabe-puro-B-RafV600E vector 

or the corresponding empty vector control.  Expression of the recombinant B-RafV600E 

mutant was confirmed by western analysis (Fig. 32, A) and led to elevated phospho-ERK 

levels as previously reported [306].  Strikingly, SK-MEK-5 melanoma cells transduced 



 

 
 
      
 
 
 
 

       

Figure 31 Aberrant chromatin congression in B-RafV600E positive 
melanoma cells 
Panel of human melanoma cell lines during mitosis containing wild type (WT) 
or mutant (V600E) B-Raf.  Microtubule spindles and DNA were detected by 
staining with a α-tubulin antibody and DAPI, respectively.  Magnification is 
63X. (B) Graphs show the percent of normal versus abnormal spindles in 
human melanoma cells at mitosis (n=200).   
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Figure 32  Aberrant mitotic spindle formation and chromatin congression 
in melanoma cells ectopically expressing B-RafV600E  
SK-MEL5 melanoma cells were transfected with pGST, pGST-B-Raf, or pGST-
B-RafV600E plasmid DNAs.  (A) Western blot analysis and (B) 
immunofluorescence staining of mitotic spindles and centrosomes.  DNA was 
detected by DAPI staining.  (C)  Graph of data from Sbcl2 and SK-MEL5 cells. 
200 mitotic figures were analyzed for each condition per experiment.  Scale bar, 
5 μM. 

This figure was contributed by Yongping Cui, Ph.D. 
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with pBabe-B-RafV600E, but not with pBabe alone (empty vector), displayed pleiotropic 

spindle abnormalities in ~76% of mitotic figures examined by fluorescence microscopy 

(Fig. 32, B & C).  These abnormalities include abnormal spindle morphology, multi-polar 

spindles and misaligned chromosomes.  Similar results were obtained in SbCl2 

melanoma cells transfected with pGST-B-RafV600E constructs but not pGST empty vector 

(data not shown).  The abnormal spindle phenotypes were not due to over-expression of 

B-Raf protein per se as ectopic expression of wild type B-Raf in SK-MEL5 cells had 

little effect on spindle formation.  Hence, expression of constitutively active B-RafV600E 

promotes spindle abnormalities in melanoma cells. 

Abnormal numbers of centrosomes often arise in tumor cells resulting in multi-

polar aberrant spindle structures [303].  A portion of mitotic spindles displayed multiple 

poles in melanoma cells transfected with B-RafV600E (Fig. 32, B).  To confirm whether 

this reflects the presence of extra centrosomes, parental and B-RafV600E-modified 

melanoma cells were subjected to immunostaining with an anti-γ-tubulin antibody.  

Depending on the phase of the cell cycle, G1 (unduplicated) or G2 (duplicated) 

centrosomes were typically detected in either parental or vector control SK-MEL-5 cells 

with fewer than 5% containing greater than 2 centrosomes (Fig. 32, C).  In contrast, 

supernumerary centrosomes (as indicated by γ-tubulin stained foci) were detected in 

~30% of interphase cells for both SbCl2 and SK-MEL5 cell lines containing the B-

RafV600E mutant.  Co-staining of microtubules with a α-tubulin antibody revealed 

multipolar spindles at mitosis in cells containing supernumerary centrosomes.  This 

represented about half of the abnormal spindles.  The remaining abnormal spindles 
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contained two centrosomes suggesting that B-RafV600E also perturbs spindle formation 

independent of centrosome amplification.     

 

B-RafV600E Drives Aneuploidy and Chromosome Instability in SbCl2 Melanoma 

Cells 

 The results shown here demonstrate that exogenous B-RafV600E expression 

promotes spindle abnormalities and centrosomal amplification in human melanoma cells.  

While a large number of these cells die, some of these cells are retained in the population 

despite the severity of mitotic abnormalities. It stands to reason that errors in 

chromosome segregation errors may have occurred in these cells, leading to aneuploidy.  

Since these experiments demonstrate that B-RafV600E drives mitotic abnormalities in cells, 

which continue to divide, I decided to determine if the chromosomal composition of these 

cells is changing over time.  Such insights are significant since chromosomal instability 

gives rise to a karyotypically varied population of cells thereby providing a pool for 

selection of cells that have tumorigenic and metastatic potential.   

 

B-RafV600E Induces Aneuploidy in SbCl2 Melanoma Cells  

Most tumor cells and cell lines exhibit aneuploidy, therefore I screened several 

melanoma cell lines for their chromosomal number via metaphase spread analysis.  

SbCl2 cells isolated from an early primary tumor are genomically stable with a mode of 

46 chromosomes (Fig. 33).  In order to test whether B-RafV600E can induce aneuploidy in 

this genomically stable cancer cell line, cells were retrovirally infected with a pBabe-B-

RafV600E vector or the corresponding empty vector control and positively expressing cells  



 

 
 

                        

B. 
A. 

Figure 33  SbCl2 melanoma cells are near diploid 
(A)  Metaphase spreads were performed on SbCl2 cells and the chromosomes were stained with DAPI and 
pseudocolored green for contrast.  (B)  50 metaphase spreads were counted and the chromosomal 
distribution s are shown.  The upper panel indicated the number of chromosomes each cell contains and the 
lower panel shows the percentage of cells containing 46 chromosomes or <>46 chromosomes.   
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were selected for two weeks in puromycin containing media.  Immunofluorescence and 

western blot analysis was performed to confirm exogenous B-Raf expression and 

activation of ERK (Fig. 34, A & B).  Fluorescence in situ hybridization (FISH) was 

performed on the cells to evaluate their ploidy.  In the empty vector control cells, 5.5% 

and 9.5% of interphase nuclei displayed less than or greater than two signals for 

centromere probes to chromosomes 2 or 8, respectively (Fig. 35, A), which is consistent 

with SbCl2 having a mode of 46 chromosomes.  In contrast, B-RafV600E expressing SbCl2 

cells exhibited aneuploidy at a frequency of 16.5% in chromosome 2 and 20.5% in 

chromosome 8 in (Fig. 35, A).  This data demonstrates a role for constitutively active B-

RafV600E in promoting aneuploidy in tumor cells.   

 

B-RafV600E Drives Chromosome Instability in SbCl2 Melanoma Cells 

 B-RafV600E expression causes significant levels of aneuploidy in SbCl2 melanoma 

cells as demonstrated via FISH analysis.  It is anticipated that the persistence of spindle 

abnormalities in these cells would continue to generate segregation errors and perpetually 

change the chromosomal content of the cells.  Therefore, SbCl2 cells were used to test 

whether B-RafV600E expression can induce chromosomal instability.  SbCl2 cells were 

retrovirally infected and selected for expression of B-RafV600E or an empty vector control 

as described above.  The karyotypes of individual cells were evaluated to assess the 

precise number of chromosomes per cell.  To evaluate the karyotype, metaphase spreads 

were prepared, chromosomes were stained with DAPI and counts were performed on 100 

cells per sample.  A mode of 46 chromosomes was observed in the vector control SbCl2 

cells two weeks post-infection (Fig. 35, B).  As expected in cell culture 50% of the 



 

 
 
 
      
 
   

       
 
 

Figure 34  Exogenous expression of B-RafV600E in SbCl2 cells 
Retroviral expression of B-RafV600E or empty vector control in SbCl2 melanoma cells that endogenously express 
WT B-Raf.  (A)  Immunofluorescence staining of DNA (blue), tubulin (red) and B-Raf (green).  Threshold is 
lowered until endogenous B-Raf is undetectable in empty vector control.  (B)Western analysis of cell lysates 
prepared from control (empty vector) or B-RafV600E overexpressing Sbcl2 cells.   
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Figure 35  Aneuploidy induced by B-RafV600E in SbCl2 cells 
SbCl2 melanoma cells that endogenously express WT B-Raf were retrovirally infected 
to expression of B-RafV600E or empty vector control.  (A)  Percentage of 200 nuclei 
per condition, that scored positive for aneuploidy by FISH analysis with probes to 
either chromosome 2 or 8.  * p-values for chromosomes 2 and 8 are <0.001 and 
<0.005, respectively. Photos of FISH analysis using centromere probes specific to 
chromosomes 2 (red, 2R) and 8 (green, 8G).  Yellow arrows point to nuclei positive 
for aneuploidy.  (B and C)  Percent distribution and representative examples of 
chromosome numbers obtained from at least 50 metaphase spreads.  Chromosomes 
were detected by staining with DAPI and imaged at 100X magnification.  
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control cells had some degree of aneuploidy, ranging from 29 to 48 chromosomes per 

cell.  In contrast, expression of B-RafV600E resulted in the complete absence of a 

chromosomal mode, with aneuploidy in 94% of the cells (Fig. 35, C).  B-RafV600E 

expressing cells exhibited a large distribution of chromosomes ranging from 15-87 

chromosomes per cell.   These results demonstrate that SbCl2 cells became aneuploid due 

to expression of B-RafV600E.   

 In order to determine if the population of B-RafV600E cells are chromosomally 

unstable, cells were allowed to continue proliferating and their karyotypes were re-

evaluated at later time point.  52% and 48% of the control cells maintained 46 

chromosomes at week four (Fig. 36, A) and week six (Fig. 36, B), respectively, and the 

chromosomal variability ranged from 30 to 51 chromosomes per cell.  Thus the mode and 

the chromosomal variability in the control cells did not change significantly over time.  

B-RafV600E cells continued to be highly aneuploid with only ~5% having 46 

chromosomes.  However, the chromosomal distribution was sharply reduced from 15-87 

chromosomes per cell at two weeks post-infection to 18-52 at four weeks (Fig. 36, C) and 

15-49 at 6 weeks (Fig. 36, D).  This demonstrates that the population of B-RafV600E cells 

is chromosomally unstable with an increase in the percentage of hypoploidy cells over 

time.   

 

 



 

 
  
 
 
 
 

    

A. 
Figure 36  Change in 
chromosome number 
generated by 4 and 6 
weeks of B-RafV600E  

expression 
SbCl2 melanoma cells 
endogenously expressing 
WT B-Raf were 
retrovirally infected to 
expression of B-RafV600E 
or empty vector control.  
(A)  Karyotype of cells 
cultured for 4 weeks in the 
presence of the pBabe 
puro empty vector.  (B) 
Karyotype of cells 
cultured for 6 weeks in the 
presence of the pBabe 
puro empty vector.  (C)  
Karyotype of cells 
cultured for 4 weeks in the 
presence of the pBabe 
puro B-RafV600E vector.  
(D) Karyotype of cells 
cultured for 6 weeks in the 
presence of the pBabe 
puro B-RafV600E vector.  
50 cells per condition 
were analyzed. 
 

B.

C.
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B-RafV600E Induces Rapid Aneuploidy in Primary Human Cells 

We have demonstrated the emergence of aneuploidy in SbCl2 melanoma cells.  

While this is significant, it raises two important mechanistic questions.  First, B-RafV600E 

positive SbCl2 cells were selected for over a minimum of 2 weeks time.  This could be 

sufficient time for the cells to generate changes which could indirectly be driving 

aneuploidy.  Secondly, SbCl2 cells are already transformed prior to the introduction of 

oncogenic B-Raf, and could therefore possess alterations that allow for the generation 

and survival of aneuploid cells.  Therefore it is important to test whether B-RafV600E can 

induce aneuploidy rapidly in cells of a primary nature.   

 

B-RafV600E Rapidly Induces Aneuploidy in Primary Human Melanocytes 

 In order to determine if B-RafV600E is capable of inducing aneuploidy in non-

transformed cells, we evaluated the potential for oncogenic B-Raf to initiate aneuploidy 

in primary human melanocytes (HEM cells).  Melanocytes are the cell of origin in 

melanoma development.  This is a particularly relevant model considering that B-Raf is 

mutated into its oncogenic form in nearly 70% of melanomas and is mutated 80% of 

benign nevi of melanocytic origin.   

 To examine whether B-RafV600E expression can cause aneuploidy in HEM cells, I 

transiently transfected the cells with the p-Babe-B-RafV600E vector, or the corresponding 

empty vector control, using a high-efficiency, high-viability electroporation transfection 

method.  Transfection efficiency was monitored by visualizing GFP fluorescence of a co-

transfected GFP-containing plasmid and was found to be approximately 90%.  Cells were 

permitted to divide for 96 hours after transfection, the equivalent two cell division cycles, 
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and then subjected to FISH analysis using centromeric probes against chromosomes 3 

and 10.  A low background of 4.5 and 5.5% aneuploidy was observed in non-transfected 

or empty vector (control) transfected cell, respectively (Fig. 37).  Strikingly, 44% of 

nuclei from primary human melanocytes exhibited aneuploidy in either chromosome 3 or 

10 following exogenous expression of B-RafV600E (Fig. 37).  Therefore, we conclude that 

oncogenic B-RafV600E is sufficient to rapidly induce aneuploidy in primary human 

melanocytes. 

 

B-RafV600E Rapidly Induces Aneuploidy in hTERT Immortalized Mammary Epithelial 

Cells 

 While B-Raf is mutated in the vast majority of melanomas, it is as well mutated 

and expressed in its oncogenic form in several other tumor types including colorectal and 

liver cancers, sarcomas and gliomas.  In order to confirm that the induction of aneuploidy 

by B-RafV600E was not specific to HEM cells, I tested the effects of B-RafV600E expression 

in human mammary epithelial cells immortalized with human telomerase (hTERT 

HME1s).  hTERT HME1 cells were transfected and evaluated as described above for 

HEM cells.  As scored via FISH analysis, 7.0 and 6.5% of non-transfected or empty 

vector (control) transfected cells (Fig. 38) are aneuploidy in chromosomes 3 or 10.  

However, hTERT HME1 cells transfected with B-RafV600E exhibited aneuploidy in 39.5% 

of the nuclei, results nearly identical to the results in HEM cells (Fig. 39).  Therefore, we 

conclude that oncogenic B-RafV600E is sufficient to rapidly induce aneuploidy in multiple, 

non-transformed human cell lines. 



 

 
 
 
 

           
 

A. 
B.

Figure 37  Aneuploidy induced by B-RafV600E in primary human melanocytes 
B-RafV600E or empty vector plasmids were transfected into early passage hTERT-HME1s 96 hours post-transfection, 
interphase FISH analysis was performed using probes to chromosomes 3 (red) and 10 (green), (A) representative 
pictures are shown.  (B) Percent aneuploidy detected in non-transfected (no TF), vector alone (Empty), and B-RafV600E.  
Percent aneuploidy by FISH analysis was calculated from 200 nuclei.  
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Figure 38  Aneuploidy induced by B-RafV600E in immortalized primary human epithelial cells 
B-RafV600E or empty vector plasmids were transfected into early passage hTERT-HME1s 96 hours post-transfection, 
interphase FISH analysis was performed using probes to chromosomes 3 (red) and 10 (green), (A) representative 
pictures are shown.  (B) Percent aneuploidy detected in non-transfected (no TF), vector alone (Empty), and B-RafV600E. 
Percent aneuploidy by FISH analysis was calculated from 200 nuclei.   

A. 
B.
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Conclusions 

 B-Raf is mutated into a constitutively active oncogenic form in an extraordinarily 

high percentage of melanomas and other cancers.  Therefore, understanding the 

mechanisms by which B-Raf elicits its oncogenic effects is of great significance. Prior to 

my work the transforming activities of oncogenic B-Raf have been exclusively limited to 

interphase related roles including cell cycle entry, adhesion controls and resistance to 

anoikis.  The results from this chapter demonstrate for the first time that expression of 

oncogenic B-Raf, V600E, causes mitotic abnormalities when expressed in melanoma 

cells.  B-RafV600E subsequently causes melanoma cells to become aneuploid, and 

destabilizes their genome.  As well, expression of B-RafV600E generates rapid aneuploidy 

in primary human melanocytes and primary immortalized mammary epithelial cells.  

From this data, we conclude that oncogenic B-Raf, V600E, drives mitotic abnormalities, 

aneuploidy and chromosomal instability.    
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CHAPTER 5 

DISCUSSION 

 
 The key discoveries of this dissertation are the novel findings that B-Raf regulates 

critical functions in mammalian cell mitosis, and that oncogenic B-Raf perturbs mitosis 

and directly causes aneuploidy.  Together, the results of my thesis research expand our 

understanding of mitotic regulation and highlight the significance of B-Raf overactivation 

in tumorigenesis. 

 
B-Raf Performs Critical Functions during Mitosis 

In the studies described herein, a combination of immunocytochemistry and RNA 

interference was used to assess potential functions for B-Raf at mitosis in human somatic 

cells.  Immunofluorescence studies demonstrate that B-Raf localizes to key mitotic 

structures.  Consistently, functional studies demonstrate that B-Raf expression is critical 

for allowing proper spindle formation, chromosome congression, microtubule-

kinetochore engagement and spindle checkpoint function.  These are the first studies that 

link B-Raf to mitotic functions in human somatic cells. 

 

MAPK Mitotic Functions 

It has long been known that MAPK signaling regulates several functions in 

mammalian cell mitosis including mitotic entry [111, 117, 118] and exit [130, 131], 
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spindle assembly [115] and Golgi apparatus fragmentation [135, 136, 307].  Studies in 

Xenopus egg extracts have suggested that MAPK regulates the spindle assembly 

checkpoint [73, 129].  However, beyond mitotic entry, a role for the MAPK cascade in 

mammalian cell mitosis had not been firmly established.  Work from our lab 

demonstrated that B-Raf is the MEK kinase that activates the MAPK cascade during 

mitosis in Xenopus egg extracts [180], however, prior to my studies it was not known 

whether B-Raf had functional roles in mitosis. 

 

B-Raf Localizes to the Cytoplasm during Interphase in Human Somatic Cells   

It has long been thought that B-Raf is a cytoplasmic protein that gets transiently 

recruited to the plasma membrane for Ras mediated activation upon stimulation by 

mitogens.  Using epifluorescence, we confirm that during interphase B-Raf exhibits 

cytoplasmic localization, and nuclear exclusion, (Fig. 7).  While cytoplasmic B-Raf 

staining appears to be diffuse, upon close inspection, it appears that B-Raf is most highly 

concentrated in the perinuclear area.  Further, I have found that B-Raf distinctly 

colocalizes with the early endosome during interphase (data not shown).  While we did 

not investigate the significance of these localization patterns, they are consistent with a 

study demonstrating that endosome associated Rap1 activates prolonged MAPK 

signaling through B-Raf in response to neural growth factor (NGF) [308].  It is tempting 

to speculate that within endosomes B-Raf undergoes Rap1 mediated activation.  Further 

analyses would be required in order to make any substantial claims regarding B-Raf’s 

perinuclear and endosomal localization.   
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B-Raf Localizes to Mitotic Structures in Human Somatic Cells 

Prior to the study presented here, B-Raf was thought to reside exclusively in the 

cytoplasm.  Using epifluorescence and confocal microscopy, I show that a portion of B-

Raf becomes associated with distinct mitotic structures in human foreskin fibroblast 

(HFF) cells (Fig. 7, 8).  During prophase, B-Raf undergoes a dramatic relocation to the 

nuclear region, a portion of B-Raf is detected at the spindle apparatus and B-Raf is tightly 

associated with the centrosomes (Figs. 7, 8, 14).  B-Raf’s presence at the spindle is most 

prominent during metaphase at which time it can be detected at the spindle poles, spindle 

microtubules, and kinetochores.  This mitotic staining pattern of B-Raf is not cell line 

specific as we detected similar staining at the mitotic spindle in several other cell lines 

including mouse NIH 3T3 fibroblasts (Fig. 6, 13).  We propose that a portion of B-Raf is 

directly associated with the microtubules during interphase, as seen by the reticular 

perinuclear staining pattern (Fig. 7), and during mitosis as suggested by several 

experiments in human cells and Xenopus egg extracts (Fig. 9, 10, 11).  This would 

account for B-Raf’s re-localization to the prophase nuclear region, where the microtubule 

organizing centers reside, and its enrichment at the metaphase spindle.  B-Raf is enriched 

at the spindle and spindle midzone during metaphase and anaphase, respectively.  

Colocalization of B-Raf to these key mitotic structures suggests that it has a role in 

spindle formation and spindle dynamics during mitosis.  This data indicates that a portion 

of B-Raf is temporally and spatially regulated at the spindle apparatus throughout the 

phases of mitosis.   
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Phosphorylation of Thr599 and Ser602 is critical for Ras-mediated B-Raf 

activation [160].  During interphase phospho-B-Raf (Thr599 Ser602) is largely 

undetectable with the exception of weak centrosomal staining.  At the onset of mitosis, 

however, phospho-B-Raf (Thr599/Ser602) is prominently localized to the nuclear region 

of condensing chromosomes (Fig. 15), which overlaps with the temporary localization of 

active Cyclin B-Cdk1 [309].  Thus, this localization pattern is consistent with the idea 

that mitotic B-Raf is activated in a Cyclin B –Cdk1 dependent manner [181].  Phospho-

B-Raf (Thr599 Ser602) is readily detectable at the centrosomes throughout mitosis.  This 

corresponds to the localization of active forms of MEK and ERK [112, 114].  As well, 

phospho-B-Raf (Thr599 Ser602) is detectable in the region of condensing chromatin 

throughout mitosis and is distinctly localized to the perichromosomal space (Fig. 16, 17).  

B-Raf is also phosphorylated at the midbody during telophase/cytokinesis, likewise, 

active MEK and ERK localize to the midbody during telophase [112, 114].  Activated 

forms of MEK and ERK have also been shown to localize to mitotic kinetochores.  Upon 

inspection of the isolated chromosomes, it is shown that phospho-B-Raf colocalizes 

precisely at the kinetochores of metaphase cells, whereas kinetochore localization is 

absent during interphase (Fig. 18).  These results indicate that pools of B-Raf are active at 

the spindle apparatus during mitosis.  These pools colocalize with active forms of MEK 

and ERK, indicating that B-Raf activates MAPK signaling at discrete mitotic sites.  

Further research is necessary to determine whether different mitotic B-Raf is activated in 

one location and transported to various destinations or if the pools are independently 

activated.   
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The kinase that phosphorylates B-Raf at the Thr599 Ser602 residues is unknown.  

It would be interesting to determine whether phosphorylation of B-Raf is executed by the 

same kinase throughout interphase and mitosis.  Interestingly, work performed in the cell-

free system of Xenopus egg extracts showed that Cyclin B-Cdk1 directly associates with 

and phosphorylates Xenopus B-Raf at a Ser144 [181], a site conserved in human B-Raf.  

This phosphorylation event is necessary, but not sufficient for its activation at mitosis.  

Development of phospho-Ser144 specific antibodies will help to elucidate whether this 

phosphorylation occurs in somatic cells and whether B-Raf phosphorylated at Ser144 

associates with mitotic structures. 

 

Our results showing that pools of active B-Raf on mitotic structures  are in 

agreement with a previous study detecting a small peak of B-Raf activity at mitosis of 

synchronized HeLa cells [134].  Taken together, these data suggest that B-Raf may 

function during mitosis in human somatic cells.  Specifically, these data imply that during 

mitosis B-Raf may be involved in regulating spindle assembly and spindle, chromosome 

condensation, microtubule-kinetochore attachment, the spindle assembly checkpoint, 

anaphase and cytokinesis.  Although it was not addressed in my thesis studies, I observed 

a pronounced distribution of B-Raf in the region around the mitotic spindle, which may 

overlap with the localization of the fragmented Golgi and endoplasmic reticulum during 

mitosis.  Therefore, it is possible that B-Raf as well activates ERK signaling necessary 

for mitotic fragmentation of Golgi network.   
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B-Raf Regulates Mitotic Functions in Human Somatic Cells  

 B-Raf’s mitotic localization is strongly suggestive of a functional role during 

mitosis.  In my thesis studies, I tested whether B-Raf functions at mitosis in human cells 

by using siRNA to selectively deplete B-Raf from cells.  Knockdown of B-Raf, but not 

Raf-1, had pleiotropic effects on spindle formation and chromatin congression in human 

somatic cells (Fig. 22, 23).   

 A minimum of 80% of the mitotic figures examined from B-Raf-depleted cells 

display various spindle abnormalities including unfocused spindle poles and alterations in 

spindle morphology (Fig. 22).  Corroborating these results is immunofluorescence 

detection of B-Raf at various structures of the spindle apparatus during mitosis.  A 

portion of B-Raf appears to interact directly with the spindle microtubules and a pool of 

B-Raf is detectable specifically at the centrioles after pre-extraction with CHAPS 

detergent (Fig. 14).  However, reduction of B-Raf did not appear to have an effect on 

centrosome duplication or separation (unpublished observations).   Instead, a high 

frequency (40-50%) of aberrant spindles with unfocused poles was observed.  Similarly, 

Xenopus egg extracts treated with the MEK inhibitor, U0126 exhibited several 

phenotypically abnormal spindle structures including monastral structures lacking 

condensed chromatin [115].  Together, these findings support a possible role for the B-

Raf/MEK/ERK pathway in mediating spindle pole focusing.  This might occur through 

regulation via ERK-mediated phosphorylation of one of the various regulators implicated 

in spindle pole functions including dynein, NuMA, Aurora A, and Xklp2.  Alternatively, 

B-Raf signaling may target structural components of the centrosome that are necessary 

for the maturation or focusing of spindle poles.     
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 Chromosome alignment at the metaphase plate was dramatically altered in the 

majority of B-Raf-depleted cells (Fig. 22).  As well, NIH3T3 cells treated with the U0126 

inhibitor exhibited abnormal spindles including those with unattached chromosomes 

[115]. Chromosome alignment is dependent upon microtubule capture and the subsequent 

countering forces that pull chromosomes poleward.  Thus, the observation that 

chromosomes are misaligned in the absence of B-Raf could be due to direct defects in 

microtubule-kinetochore engagement.  Alternatively or additionally, chromosomal 

misalignment could manifest as a result from a precipitous exit from metaphase, in other 

words, a defective SAC that gives insufficient time for proper chromosome congression.  

In accordance with both of these options, phospho-B-Raf (Thr599/Ser602) is readily 

detectable at mitotic kinetochores (Fig. 18), the site of microtubule engagement and the 

SAC.   

 

 Through analysis of a marker for impaired microtubule-kinetochore engagement, 

my data indicates that microtubules are not engaged with kinetochores in the absence of 

B-Raf (Fig. 24) and this is confirmed through direct analysis of the microtubule-

kinetochore attachments (Fig. 25).  CENP-E is the only protein identified to date that 

directly facilitates microtubule-kinetochore engagement.  Thus, it can be proposed that B-

Raf signaling governs CENP-E’s mitotic functions.  Indeed, it is known that mitotic 

phosphorylated MAPK interacts with CENP-E and that MAPK can phosphorylate CENP-

E on sites that regulate CENP-E’s interaction with microtubules [114].   
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 Another possible mechanism by which B-Raf affects chromosome congression is 

that B-Raf regulates the duration of metaphase, necessary for permitting proper 

chromosomal alignment.  Indeed, results from imaging mitotic progression in live cells 

depleted of B-Raf support this possibility.  On average, B-Raf siRNA treated cells 

entered anaphase 24 min earlier than control SCR-treated cells, displaying a 33% 

reduction in the duration of the prometaphase/metaphase period (Fig. 29).   

 

 Despite the absence of microtubule-kinetochore attachments and chromosome 

misalignment, B-Raf depleted cells continue to divide for at least 120 hours with no 

indication of widespread mitotic arrest (Fig. 26).  These observations suggest that the 

SAC is defective in the absence of B-Raf.  Bub1 and Mad2 are critical spindle checkpoint 

proteins, whose kinetochore localization is a strong indicator of spindle checkpoint 

activation [286].  As shown in figure 31, kinetochore localization of Bub1 and Mad2 is 

blocked upon B-Raf depletion.  Furthermore, B-Raf depleted cells do not maintain an 

SAC when challenged with taxol (Fig. 28) and live-cell imaging showed that the 

depletion of B-Raf leads to a shortening of the period from prometaphase to anaphase, 

which is consistent with having a defective spindle checkpoint (Fig. 29).  These results 

strongly implicate B-Raf as a regulator of the SAC.     

Mps1 is an essential component of the SAC network [310, 311] and functions to 

localize spindle-checkpoint proteins Bub1, Mad1, and Mad2 to unattached kinetochores 

[70, 73, 310].  Interestingly, it was shown that the Xenopus homologue of Mps1 is 

phosphorylated by MAPK in Xenopus egg extracts at Serine-844, and this 

phosphorylation is necessary for kinetochore localization of Mps1 and other spindle 
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checkpoint proteins [73].  Importantly, recent data from our laboratory demonstrates that 

Mps1 is indeed a target of B-Raf signaling [312].  Specifically, it was shown that B-Raf 

associates with Mps1 in vivo and directs its MAPK-dependent phosphorylation and 

kinetochore localization during mitosis.  Therefore, we speculate that B-Raf mediated 

phosphorylation of Mps1 is important for spindle checkpoint functions.  While beyond 

the scope of this study, it will be important to dissect the contributions of phosphorylation 

events that regulate mitotic functions of Mps1.  Finally, MAP kinase has been reported to 

phosphorylate other critical regulators of the spindle checkpoint, Bub1 [313] and Cdc20 

[129], indicating that B-Raf signaling at mitosis may target multiple components of the 

spindle checkpoint network via MAPK. 

 

We propose that B-Raf elicits its mitotic effects through MAPK signaling.  This is 

supported by the colocalization of B-Raf, MEK and ERK to the spindle poles and 

kinetochores.  However, we cannot preclude the possibility that B-Raf may have MAPK 

independent mitotic functions.  This could be addressed by analyzing B-Raf’s mitotic 

functions in cells with compromised MEK1/2, the only identified down-stream target of 

B-Raf which directly activates ERK 1/2. 

B-Raf signals through MAPK to regulate gene transcription during interphase.  

Therefore, it can be proposed that B-Raf indirectly affects spindle assembly and 

chromosome congression rather than having a direct effect on mitosis.  To address this 

question, we utilized Xenopus egg extracts where B-Raf and MAPK activities are strictly 

limited to mitosis.  Indeed, B-Raf depletion from Xenopus egg extracts results in dramatic 

effects on spindle assembly and DNA alignment (Fig. 20), suggesting that B-Raf directly 
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regulates mitosis in this system.  Together with the localization of B-Raf to mitotic 

structures cell culture, we propose that B-Raf directly regulates mitosis in mammalian 

cells.  

Besides its kinase activity, B-Raf may also function as a scaffold protein.  Based 

on results shown here, we cannot exclude that some or all of B-Raf’s mitotic functions 

are executed via scaffolding capacity.  To address this concern directly, one would need 

to compare WT and kinase dead B-Raf-driven mitotic phenotypes in cells depleted of 

endogenous B-Raf. 

 

In summary, our results reveal several mitotic roles for B-Raf including proper 

spindle formation, chromatin congression, microtubule capture, and the spindle assembly 

checkpoint.  It is feasible to propose that these functions are all independent or 

interdependent.  In the most interdependent example, one could suggest that B-Raf is 

necessary for proper functioning of the SAC, in the absence of which, microtubule 

capture is mitigated, thereby inhibiting chromosome congression and perturbing the 

arrangement of spindle microtubules.  However, since B-Raf localizes to several key 

mitotic structures including the kinetochores, centrosomes and microtubules, I would 

propose that mitotic B-Raf signaling is important for regulating several mitotic functions 

through independent mechanisms.  For instance, B-Raf signaling may regulate the SAC 

through Mps1 and microtubule-kinetochore attachment through CENP-E.  A thorough 

analysis of MAPK substrates at mitosis would potentially reveal other effectors of B-Raf 

signaling that regulate its mitotic functions.   
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Spindle assembly, chromatin congression and the SAC are all critical mitotic 

elements necessary for proper chromosome segregation.  While I did not perform 

karyotype analysis on B-Raf depleted cells, it is likely that these cells become aneuploid 

and chromosomally unstable.  The demonstration that B-Raf regulates critical mitotic 

functions opens a new avenue in addressing how oncogenic B-Raf contributes to 

tumorigenesis.  

 

Oncogenic B-Raf Deregulates Mitosis Causing Aneuploidy and Chromosomal 

Instability 

Aneuploidy is a hallmark of cancer and it is associated with tumor progression 

and poor clinical prognosis [301, 302] and has a causal role in tumorigenesis [263, 277, 

314].  As described previously, B-Raf is overactivated in the majority of human 

melanomas [216].  My studies presented in this section, demonstrate that the main 

activating B-Raf mutation deregulates mitosis and provokes aneuploidy.   

 

Cellular Effects of Oncogenic B-Raf 

The vast majority of oncogenic B-Raf mutations cause constitutive activation of 

the MAPK cascade.  Prior to and during my thesis studies, a variety of experiments have 

revealed several cellular roles through which B-RafV600E may elicit its oncogenic effects 

including cell survival, anchorage independent cell cycle progression, and invasion.  

However, the question of how B-Raf contributes to tumorigenesis is not fully understood.   

Soon after the 2002 discovery that B-Raf is mutated in a wide variety of tumors, it 

was demonstrated that oncogenic B-Raf, specifically B-RafV600E, is necessary for cell 
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survival in B-RafV600E expressing cells.  siRNA and shRNA-mediated downregulation of 

B-RafV600E causes  inhibition of ERK signaling and induces cell cycle arrest and apoptosis 

in cultured cancer cells [225, 226, 315].   

Normal cells require adhesion for signaling and survival [316].  Loss of adhesion 

causes normal cells to undergo anoikis, whereas tumor cells develop the capacity to resist 

anoikis [317].  B-RafV600E expression is necessary for anoikis resistance in melanoma 

cells [299] and this is dependent on B-RafV600E’s negative regulation of pro-apoptotic 

proteins Bad and Bim [300].   

In addition to anoikis, normal cells die when they are subjected to a low-oxygen 

environment.  In contrast, the central tumor zone is hypoxic and tumor cells must evolve 

mechanisms for survival under such conditions [318].  It has been shown that B-RafV600E 

induces expression of hypoxia inducible factor-1α (HIF-1α) and its expression is essential 

for melanoma cell survival in a hypoxic tumor-like environment [319].  Together, these 

data demonstrate that B-RafV600E mediates survival in melanoma cells.  

In addition to cell survival, B-RafV600E appears to regulate cell cycle progression 

in an anchorage independent manner.  In normal human melanocytes, anchorage to an 

extracellular matrix is necessary for growth factor activation of ERK1/2, which leads to 

induction of cyclin D1 and downregulation of p27Kip1, both key events in G1 to S phase 

progression [298, 320].  B-RafV600E expression in melanoma cells causes constitutive 

expression of cyclin D1 and down regulation of p27Kip1, in the absence of cellular 

adhesion and growth factors [297].  Growth arrest concurrent with a decrease in 

expression of cyclins D1 and D3 was observed following downregulation of B-RafV600E 

in human melanoma cells [226, 298].  Brn-2, a transcription factor involved in the 
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proliferation of melanoma cells [321], was also downregulated following siRNA 

mediated reduction of B-RafV600E [322].   

Besides its role in progression from G1 to S phase, recent evidence suggests that 

B-RafV600E regulates the G2 to M phase progression.  Required for melanoma growth is 

Skp2 [297], an E3 ubiquitin ligase that targets multiple proteins for degradation, thus 

promoting the G2-M phase transition [323-328].  In melanoma cells B-RafV600E induces 

expression of Skp2, suggesting that B-RafV600E mediates entry into mitosis [329]. 

A hallmark feature of tumor cells is the acquired ability to invade nearby tissues 

[330].  It has been shown that B-RafV600E upregulates expression of several matrix 

metalloproteinases (MMPs) [331, 332], which are known to mediate invasion through 

cleavage of extracellular matrix components [333].  Using a matrigel assay, it was shown 

that downregulation of B-RafV600E decreases the invasive potential of PTCs.  

Additionally, it has been demonstrated that the actin cytoskeleton and focal adhesion in 

melanoma cells is disrupted by B-RafV600E expression through MAPK activation of Rnd3 

[334].  Such results implicate B-RafV600E in the promotion of tumor invasion.   

These studies demonstrate several mechanisms through which B-RafV600E drives 

cell cycle progression and survival under tumorigenic conditions.  However, B-RafV600E 

expression and its downstream effectors are not sufficient for transformation to occur.  It 

is widely speculated that loss of tumor suppressors, such as p16INK4a, must accompany B-

RafV600E for tumorigenesis to occur.  My thesis studies demonstrate that B-RafV600E 

causes widespread genomic changes through disregulation of mitosis.  Such a mechanism 

could provide the heterogeneity through which other necessary genomic changes could 

arise. 
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B-RafV600E Expression Drives Mitotic Abnormalities 

B-RafV600E can transform immortalized melanocytes and mouse fibroblasts in 

vitro [216, 223, 225] but how it exerts its oncogenic effects has been an important area of 

study.  Our studies investigated the mitotic effects of oncogenic B-RafV600E in cultured 

human melanoma cells.  Data from these studies show for the first time that B-RafV600E 

induces pleiotropic spindle abnormalities, chromosome misalignment and supernumerary 

centrosomes (Fig. 32).  A high incidence of spindle abnormalities, similar to those 

observed from ectopic expression of the B-RafV600E mutant, were also found in melanoma 

cells carrying endogenous B-RafV600E mutations but not in wild type B-Raf melanoma 

cells (Fig. 31) [335].  Thus, we conclude that oncogenic B-RafV600E abrogates mitosis in 

human melanoma cells.   

The spindle abnormalities induced by B-RafV600E include a high percent of 

multipolar spindles due to cells having 3 or more centrosomes.  As well, B-RafV600E 

causes abnormalities in spindle assembly and chromosome alignment independent of 

centrosomal amplification in approximately 50% of abnormal mitoses.  The mechanisms 

that generate these abnormalities have yet to be defined.  One possibility is that B-

RafV600E deregulates the proteins involved in microtubule capture, thereby leading to the 

observed abnormalities.  Analyzing the mitotic localization and substrates of B-RafV600E 

would shed light on these mechanisms. Like B-RafV600E, expression of oncogenic Ha-ras 

induces mitotic abnormalities in mouse NIH3T3 cells, including multipolar spindles and 

misaligned chromosomes, and it has been proposed that oncogenic Ras deregulates 
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spindle assembly [131].  It is exceedingly rare for Ras and B-Raf mutations to coincide in 

human tumors, therefore suggesting that they elicit overlapping effects. 

In the absence of B-Raf the SAC is not full activated, thus causing early mitotic 

exit and most likely errors in the chromosome segregation.  Consistent with this, recent 

studies from the Guadagno laboratory demonstrated that B-RafV600E signaling promotes 

hyper-activation of the spindle checkpoint causing a delay in mitotic progression [306].  

This is mediated, at least in part, through Mps1, a known target of MAPK signaling.  

Depleting cells of Mps1 by siRNA alleviates the checkpoint effects induced by B-

RafV600E [306].  It is also possible that, due to B-Raf’s uncontrollable high activity, it 

targets unusual substrates, yet to be identified.  Interestingly, published evidence 

indicates that both an under-activated and over-activated SAC compromises the timing 

and quality of chromosome segregation during anaphase leading to generation of 

aneuploid cells [263, 276, 277, 314].  We propose that by over-activating the SAC, 

oncogenic B-RafV600E induces aneuploidy.  In contrast to our studies, oncogenic Ras has 

been shown to shorten a nocodazole-induced SAC in rat thyroid cells, and it does this in a 

MAPK independent manner [231].  These data suggest that oncogenic Ras may regulate 

the SAC through different mechanisms than B-RafV600E. 

   

B-RafV600E Expression Causes Chromosomal Instability 

It is well understood that mitotic errors drive aneuploidy.  Therefore, it was not 

surprising that aneuploidy resulted from the mitotic abnormalities generated by 

introducing the B-RafV600E mutant into SbCl2 melanoma cells (data not shown) and SK-

MEL5 melanoma cells (Figure 32).  Many of the B-RafV600E-expressing cells died, 
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probably due to losses of vital chromosomes.  However, experiments in SbCl2 cells 

showed that many cells continued to survive and proliferate for 4-6 weeks of extended 

culturing.  These cells continued to exhibit abnormal chromosomes numbers that changed 

over time and failed to establish a stable karyotype, as evident by the absence of a 

chromosomal mode (Fig. 35, 36).  Indeed this data is supported by previously published 

findings that induced B-RafV600E expression in rat thyroid cells increases micronuclei 

formation 2-fold, indicating that chromosomes or chromosome fragments are lost during 

mitosis [336].  Interestingly, the vast majority of B-RafV600E-expressing SbCl2 cells were 

hypoploid, the significance of which remains to be addressed.  Hypoploidy is thought to 

arise from loss of chromosomes to micronuclei [337], a result of mitotic abnormalities 

that generate lagging chromosomes.  Oncogenic Ras expression causes lagging 

chromosomes and micronuclei formation in NIH3T3 cells harboring mutant p53 [338] 

and in rat thyroid cells [339], in a MAPK dependent manner.  This suggests that B-

RafV600E and oncogenic Ras generate mitotic abnormalities that lead to aneuploidy.  

However, a role for Ras in mitosis has not been confirmed in human cells. 

The mechanisms by which B-RafV600E drives chromosomal instability have yet to 

be elucidated.  One possibility involves Mps1, a spindle checkpoint kinase identified as a 

potential target downstream of the B-Raf/MEK/ERK signaling pathway [73, 306, 312].  

Mps1 levels are elevated by constitutive B-RafV600E signaling in melanoma cells, which 

allows for hyper-activation of the spindle checkpoint [306].  A hyper-activated spindle 

checkpoint could, in turn, contribute to chromosome segregation errors that lead to 

aneuploidy.  Consistent with this proposal, elevated levels of Mad2 expression are 
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observed in various tumors defective in the Rb pathway [340] and are sufficient to induce 

chromosome instability, aneuploidy, and tumorigenesis in mice [277]. 

It was shown that immortalization itself can indirectly cause aneuploidy [270].  It 

was therefore proposed that aneuploidy-causing agents must induce aneuploidy in pre-

immortalized cells in order to fully meet the criteria as an aneuploidogen [232].  My 

results have shown that B-RafV600E induced aneuploidy in hTERT-immortalized epithelial 

cells (Fig. 38), thereby confirming B-RafV600E as a direct mediator of CIN.  The results 

described here further show that oncogenic B-RafV600E is sufficient to rapidly induce 

aneuploidy in primary human melanocytes (Fig. 37).  Together, these results indicate that 

B-RafV600E-induced CIN could be a mechanism for induction of aneuploidy in both 

melanomas and other human cancers carry activating B-Raf mutations. 

A large proportion (~82%) of benign nevi harbor activating B-Raf mutations 

[220] lending to the idea that B-Raf activation is an early and critical step in the 

development of melanocytic neoplasia.  While genetic evidence supports an early role for 

B-RafV600E in nevi formation [227], sustained B-RafV600E activity is also associated with 

oncogene-induced senescence [341, 342], explaining why most nevi never develop into 

invasive melanomas and remain dormant over long periods of time.  We speculate that 

induction of aneuploidy in proliferating melanocytes creates additional genetic changes, 

which, if tolerated, contribute to melanoma initiation.  This would be in line with several 

reports showing that additional mutations in melanoma susceptibility genes (i.e. p16INK4a, 

ARF, PTEN) are needed to cooperate with oncogenic  B-Raf (or Ras) to allow for 

melanoma initiation [341].  
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Several studies would further help confirm a role for B-RafV600E induced 

aneuploidy in tumorigenesis.  First, karyotypic evaluation of benign nevi harboring the B-

RafV600E mutation would reveal whether the oncogene induces aneuploidy early in 

tumorigenesis.  Since my studies in primary melanocytes and immortalized primary 

epithelial cells demonstrated that B-RafV600E induces rampant aneuploidy after only 2 cell 

divisions, I would predict that some benign nevi are aneuploid.  However, this study 

would have to be conservatively analyzed, since only a minority of benign nevi ever 

proceed to melanomas.  It is perhaps feasible that B-RafV600E induces senescence in the 

majority of nevi, prior to the selection of a large number of aneuploid cells.   

It would also be of interest to determine whether the initial aneuploidy induced by 

B-RafV600E, in human primary melanocytes or immortalized epithelial cells, is sufficient 

for transformation.  These experiments could be conducted utilizing an inducible B-

RafV600E vector, such as an estrogen receptor B-RafV600E-fusion.  Once B-RafV600E 

induces aneuploidy in cells, expression of B-RafV600E could be turned off and surviving 

cells would be selected and grown in soft agar.  It would be predicted that the majority of 

cells would depend to B-RafV600E expression for survival.  However, a minority of cells 

could acquire the proper combination of aneuploidy to become capable of survival and 

colony formation.  Mathematical modeling, such as is available through Moffitt Cancer 

Center’s Integrated Mathematical Oncology group, would be a useful tool in determining 

how well these experiments reflect a clinical model for melanoma progression. 

 

Aneuploidy induced by mitotic errors leads to CIN in nearly all cases reported 

[232].  The effects of CIN cannot be understated as it gives rise to a continuously 
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changing gene expression pattern.  Frequent changes in the genomic profile of cells 

within a population allow for rapid Darwinian adaptation to the intra- and extracellular 

environment.  Thus, selection of the appropriate combinations of CIN can not only drive 

tumorigenesis, but may provide a mechanism for generating cells capable of invasion, 

metastasis and drug resistance.   

 

Relevance for Therapeutics 

 The most common treatment modality for melanomas is tumor resection alone or 

in combination with immunotherapy, chemotherapy or radiation for advanced stage 

disease.  Therapies targeted against B-Raf or B-RafV600E, its oncogenic form, have 

recently been tested in clinical trials, however, most have not shown strong efficacy as 

single agents [343].  Rational efforts have turned toward combination therapies, targeting 

multiple signal transduction pathways or combining B-Raf inhibitors with 

chemotherapeutic agents.  In fact, unpublished data from our lab (not reviewed in this 

thesis) demonstrates that sequential use of placitaxol and a B-RafV600E inhibitor synergize 

to induce caspase-dependent cell death.  Another rational therapeutic strategy employs 

the use of geldanamycin derivatives, since it has been shown that B-RafV600E stability is 

Hsp90 dependent, while WT B-Raf stability is independent of Hsp90 [344].  As with 

other efforts, this appears to be most beneficial in combination with other agents [345]. 

 It is interesting to speculate on how our findings might contribute to the 

development of cancer therapeutics for use against B-RafV600E positive tumors.  Classic 

chemotherapeutic agents and some modern rationally developed drugs target mitosis as 

an effective means of killing cancer cells.  In elegant and elaborate live-imaging studies, 
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it was recently shown that these agents induce mitotic cell death via caspase-dependent 

mechanisms, which are dependent upon a prolonged, cyclin B-induced mitotic arrest 

[346].  Therefore, I would propose that development of agents that stabilize cyclin B 

combined with a caspase activator would synergize with existing drugs in many tumor 

types, including B-RafV600E-positive tumors.  My work and the work of others from the 

Guadagno lab [306, 312] have demonstrated that B-Raf regulates the SAC and that B-

RafV600E generates an extended SAC.  While we have not directly demonstrated that B-

RafV600E stabilizes cyclin B, such stability could enhance the efficacy of 

chemotherapeutic agents, thus arguing against the use of B-RafV600E inhibitors.   

Aneuploidy is another interesting feature of tumor cells that may be useful to 

consider in the treatment of cancers.  Aneuploidy exists in nearly all solid tumors and is 

directly driven in primary cells through B-RafV600E, an early mutation in many tumors.  It 

is reasonable to speculate that aneuploidy-driven intratumoral heterogeneity would 

frequently lead to drug resistance even with the most appropriately targeted therapies.  It 

has recently been proposed that aneuploidy not only drives tumorigenesis, but can be 

protective [263] when aneuploidy drives specific combinations of gene expression.  

While 96 hours of B-RafV600E expression generates viable aneuploid cells, the majority of 

cells are not viable after prolonged expression of B-RafV600E, thus supporting the idea that 

some or most aneuploidy is not tolerated long-term.  Therefore, it may be feasible to 

utilize known aneuploidogens to induce a wide-spread intolerable aneuploidy load in an 

effort to kill tumor cells.     
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Summary 

Mitosis is a complex and critical stage of the cell cycle.  While mitosis has been 

studied for well over a century, the players and the consequences are still being 

elucidated and debated.  Likewise, the cancer biology field has generated volumes of 

data; however, we still have much to learn about tumorigenesis.  B-Raf has been 

identified as an oncogene in a strikingly high number of tumors and it has therefore 

become fundamental to understand how it contributes to cancer.  Through the work in 

this thesis, I have demonstrated that B-Raf is necessary for regulating mitosis, the cell 

cycle stage that maintains the cell’s genomic integrity.  Genomic changes provide cells 

with the capacity to acquire new features and new functions.  It is quite feasible that 

advantageous changes are selected to promote tumor initiation, progression, metastasis 

and drug resistance.  Therefore, our findings that oncogenic B-Raf disregulates mitosis 

and drives genomic instability open a new path for understanding how B-Raf contributes 

to tumorigenesis (Fig. 39).    



 

 

     
 Figure. 39  Model for B-Raf mediated mitosis 
B-Raf regulates critical mitotic functions which lead to proper chromosomal 
segregation thus maintaining the diploid nature of the daughter cells.  
Contitutively active B-RafV600E disregulates mitosis thereby causing 
missegregation of chromosomes and producing aneuploid daughter cells.  a. B-
Raf regulates the MAPK pathway; B-RafV600E overactives the MAPK pathway; 
b. B-Raf signaling regulates spindle assembly and kinetochore functions 
including microtubule-kinetochore engagement and the spindle assembly 
checkpoint; B-RafV600E disregulates these functions; c.  Proper mitosis leads to 
proper anaphase onset and accurate chromosome segregation; disregulated 
mitosis causes premature anaphase onset and lost and missegregated 
chromosomes; d.  Proper chromosomes segregation generates diploid daughter 
cells whereas missesgregation caused by B-RafV600E renders the daughter cells 
aneuploid.   
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CHAPTER 6 

MATERIALS AND METHODS 

 

Cell Culture and Cell Synchronization 

Human foreskin fibroblasts (HFF), HeLa and NIH3T3 cells were cultured in 

DMEM (Gibco) containing 10% newborn calf serum (Gibco) and 46µg/ml gentamycin.  

Cells were synchronized at G2/M with 50nM taxol in 0.1% DMSO for 30 hours and 

treated with 30µM U0126 or 0.1% DMSO for 6 hours prior to cell collection.  SK-MEL5, 

SK-MEL28, and A375 human melanoma cell lines were obtained from American Type 

Culture Collection (ATCC, Manassas, VA) and maintained in Dulbecco’s modified 

Eagle’s medium supplemented with 10% fetal bovine serum (FBS).  SK-MEL5 cells are 

wild type for B-Raf, while SK-MEL28 and A375 cells carry B-RafV600E mutations [216, 

292].  Sbcl2 and WM35 melanoma cells, originally derived from early radial growth 

phase primary melanomas, were obtained previously from M. Herlyn (Wistar Institute, 

Philadelphia, PA).  Sbcl2 and WM35 cells are wild type for B-Raf and were grown in 2% 

tumor media (4:1 mix of MCDB153/L15 media, 2% FBS, 5 μg/ml insulin, 1 mM CaCl2).  

To further confirm the absence of an activating mutation in B-Raf, phospho-ERK levels 

were assessed for SK-MEL5, Sbcl2, and WM35 melanoma cells switched to 0.5% FBS 

for 24 hr.  All three melanoma cell lines exhibited minimal ERK activity whereas SK-

MEL28 and A375 (both containing B-RafV600E mutations) cells showed robust levels of 
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phospho-ERK (data not shown).  Human Mammary Epithelial cells immortalized with 

human telomerase (hTertHME1 cells), were gifted to us by Huntington Potter at the 

Johnnie B. Byrd Alzheimer’s Center and Research Institute at the University of South 

Florida (Tampa, FL).  Cells were cultured in MEGM media from Lonza.  Primary Human 

Epidermal Melanocytes (HEM) were purchased from ScienCell Research Laboratories 

and cultured in Melanocyte Medium from ScienCell.  Primary cells were transfected 

using the Nucleofector system from Amaxa, now part of Lonza, using kits V and NHEM 

for hTertHME1 and HEM, respectively.  Cells were co-transfected with GFP for 

assessment of transfection efficiency.   

 

Transfections and Retroviral infections 

Cells were grown to approximately 70% density in 12-well plates and transfected 

with 21-mer double stranded oligo short interfering RNAs (siRNAs) to human B-Raf 

specific sequences at exon 11 (BE11) [AAAGAATTGGATCTGGATCAT] or exon 3 

(BE3) [AAGCTAGATGCACTCCAACAA] or, to C-Raf specific sequence 

[AATAGTTCAGCAGTTTGGCTA] obtained from Qiagen.  A scrambled siRNA for B-

Raf or C-Raf sequences was used in parallel as a control.  siRNAs were used at 110 nM.  

488λ-conjugated scrambled oligo was used to verify transfection efficiency.  By 48-72 

hours, protein levels for B-Raf or C-Raf decreased 85-95% as confirmed by Western 

blotting. 

pBabe-puro and pBabe-puro-B-RafV600E retroviral vectors were a generous gift 

from Dr. Daniel Peeper (The Netherlands Cancer Institute).  Retroviral vectors were 

transfected into HEK 293T replication-defective packaging cells for retrovirus 
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production.  Melanoma cells were infected with pBabe-puro or pBabe-B-RafV600E 

retroviruses as described and selected in puromycin (0.8 μg/ml) for up to 10 days.  

Puromycin-resistant colonies were pooled and checked for ectopic B-RafV600E expression 

by immunoblot analysis.   

Human melanocytes or hTERT-HME cells were transfected using the 

Nucleofector system from Amaxa. Transfection efficiencies were monitored by 

evaluating green fluorescent cells following co-transfection with pMaxGFP vector from 

Amaxa. 

 

Immunoblot Analysis  

Cells grown in 12-well or 6-well dishes were washed with PBS and scrape-lysed 

in ice-cold TNES buffer containing protease and phosphatase inhibitors (50mM Tris·Cl 

pH 7.4, 1% NP40, 2mM EDTA, 100mM NaCl, 20µg/ml aprotenin, 20µg/ml leupeptin, 

500µM PMSF, 40mM β-glycerophosphate, 500µM Na3VO4, 20mM NaF), incubated on 

ice for 30 minutes and centrifuged for 30 minutes at 14Xg at 4º.  Supernatants were 

analyzed for protein concentrations were determined by a BCA protein assay (Pierce) and 

analyzed by a spectrophotometer (BioRad).  Cell lysates were separated by SDS-PAGE, 

and electrotransferred onto PVDF, 0.45µm membranes.  Membranes were blocked in 5% 

milk/0.15% Tween 20 for 1h at room temperature, incubated with primary antibodies 

against B-Raf and α-tubulin (detailed above), total ERK, C-Raf (BD Transduction labs), 

CAS (BD Transduction Labs), Cyclin B (Santa Cruz) and Beta-actin (Abcam) diluted in 

5% milk/0.15% Tween 20 for 1h at room temperature and washed 3X in 0.15% Tween 

20/PBS.  Membranes were incubated for 1h at room temperature with goat anti-mouse 
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(Jackson ImmunoResearch Laboratories) or goat anti-rabbit (Sigma) alkaline 

phosphatase-conjugated secondary antibodies diluted in 5% milk/0.15% Tween 20, 

washed 4X in 0.15% Tween 20/PBS, incubated for 5 minutes in alkaline phosphatase 

buffer pH 9.5, 5 minutes in CDP-Star chemiluminescence substrate (Roche Diagnostic) 

and exposed to blue sensitive autoradiography X-Ray film (Molecular Technologies).  

Band densitometry data was performed using Image Quant analysis. 

 

Microtubule Depolymerization by Cold Treatment 

For cold-induced microtubule depolymerization, cells transfected with B-Raf or 

control (scrambled) siRNA were grown on coverslips in 35 mm dishes.  Media was 

removed, replaced with ice-cold media, and dishes were subsequently incubated on ice 

for 10 minutes to induce depolymerization of unattached kinetochore-microtubules.  

Cells were then fixed in 4% paraformaldehyde and processed for immunocytochemistry 

as described above.    

 

Nocodazole-Induced Microtubule Depolymerization 

HFF and HeLa cells were grown overnight on coverslips.  Nocodazole was added 

at 125ng/mL (HFF) or 25ng/mL (HeLa) for 2 hours at 37º to depolymerize microtubules.  

Immunofluorescence was performed as described above.   

CSF extracts were generated from unfertilized Xenopus oocytes as described 

below and activated into S-phase using 0.4mM CaCl2 and cycled into a stable mitotic 

state with addition of equal volume of CSF extract.  Reactions were incubated in the 
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presence of 200/µl sperm DNA for 75 minutes at 24ºC to allow for spindle formation 

alone, with DMSO or with 10ng/µl nocodazole. Microtubules were fixed and spun down 

as previously described [115].  The pellet was resuspended in SDS sample buffer, 

separated by 10% SDSPAGE, and immunoblotted for α-tubulin and B-Raf. 

 

Immunocytochemistry  

Cells grown on glass coverslips were fixed at 4º in 4% paraformaldehyde, 

permeabilized with 0.5% triton-X-100 and blocked in 2% BSA.  Alternatively, 

cytoplasmic proteins were solubilized using 1% CHAPS in PHEM buffer containing 

protease and phosphatase inhibitors (60mM Pipes, 25mM Hepes pH 6.9, 10mM EGTA, 

4mM MgSO4, 1µg/ml aprotenin, 1µg/ml leupeptin, 1µM pepstatin, 50mM β-

glycerophosphate, 200µM Na3VO4) for 60 seconds at room temperature, fixed at 4º in 

4% paraformaldehyde and blocked in 2% BSA.  Cells were incubated in 2% BSA for one 

hour with primary antibodies against B-Raf (Santa Cruz or Upstate), α-tubulin (Sigma) or 

Centrin (kindly provided by Jeffrey Salisbury at Mayo Clinic), washed 3X in PBS, 

incubated in 2% BSA for one hour with 488 or 594 Alexa Fluor secondary antibodies 

(Molecular Probes) and washed 3X in PBS.  Cells were mounted with Prolong Gold 

containing DAPI (Molecular Probes). 

To visualize B-Raf at the centrioles, cytoplasmic proteins were pre-extracted 

using 1% CHAPS in PHEM buffer containing protease and phosphatase inhibitors (60 

mM Pipes, 25 mM Hepes pH 6.9, 10 mM EGTA, 4 mM MgSO4, 1 µg/ml aprotenin, 1 

µg/ml leupeptin, 1 µM pepstatin, 50 mM β-glycerophosphate, 200 µM Na3VO4) for 60 

seconds at room temperature, fixed at 4º C in 4% paraformaldehyde and blocked in 2% 
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BSA.  Pre-extracted cells were then incubated with a C-terminal peptide B-Raf 

polyclonal antibody (sc-166) obtained from Santa Cruz Biotechnology (Santa Cruz) and 

co-stained with a mouse monoclonal centrin antibody kindly provided by Jeffrey 

Salisbury (Mayo Clinic, Rochester) to visualize centrioles.   

 

Chromosome Isolations 

 Cells were treated with 1µg/mL colcemid for 2 hours, harvested by trypsinization 

and washed with PBS.  Cells were swollen in 75mM KCL for 10 minutes at 37º and 

subsequently spun onto polylysine coated coverslips at 1800rpm for 8 minutes.  Cells 

were immersed in KCM buffer containing 120mM KCl, 20mM NaCl, 10mM Tris-HCl 

ph7.5, 0.5mM EDTA and 0.1% Triton-X for 10 minutes at room temperature.  

Immunostaining was carried out at room temperature.  Cells were exposed to primary 

antibodies against phospho-B-Raf (Santa Cruz) and CREST (Antibodies Incorporated) 

diluted in 2% BSA in KCM for one hour, washed twice with KCM followed by 488 or 

594 Alexa Fluor secondary antibodies (Molecular Probes) and washed 2X with at room 

temperature.  Immunostaining was performed as described above except BSA and 

antibodies were diluted KCM buffer and cells were washed in KCM buffer followed by 

one final wash with PBS prior to mounting coverslips as described above. 

 

Fluorescence in situ Hybridization (FISH) Analysis and Metaphase Spreads 

 Cells were treated with 1µg/mL colchicine for 2 hours, harvested by 

trypsinization and washed with PBS.  Cells were swollen in 65mM KCL for 5 minutes at 

37º, fixed in cold acetic acid/methanol for 5 minutes at 4º, dropped onto slides and dried 
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at room temperature.  For metaphase spreads, cells were then stained with DAPI and 

viewed with a Nikon E800 fluorescence microscope with a 60x/1.40NA plan apo oil 

immersion objective.  Images were captured with a Roper Coolsnap HQ CCD camera and 

processed with Metamorph 5.0 and Adobe Photoshop 6.0 software.  FISH analysis on 

hTertHME1 and HEM cells were carried out 96 hours post-transfection.  For FISH 

analysis, slides were stained with Cytocell enumeration probes against chromosomes 2 or 

3, and 8 or 10, conjugated with FITC or Cy3.5, respectively (Rainbow Scientific).  

Staining was carried out according to the manufacturer’s protocol.  FISH samples were 

viewed with a fully automated, upright Zeiss Axio- ImagerZ.1 microscope with a 20X 

objective, and DAPI, FITC and Rhodamine filter cubes.  Images were produced using the 

AxioCam MRm CCD camera and Axiovision version 4.5 software suite.  P-values were 

calculated using a 2-sample test for equality of proportions with continuity correction. 

 

Microscopy 

Fluorescent images of mitotic figures were viewed with a Nikon E800 

fluorescence microscope with a 60X/1.40NA plan Apo or 100X/1.3NA plan Fluor oil 

immersion objective.  Images were captured with a Roper Coolsnap HQ CCD camera 

controlled with Metamorph software 5.0, saved as Tif. files, and transferred into Adobe 

Photoshop 8.0 software for final processing.  Phospho-B-Raf images were viewed on a 

fully automated, upright Zeiss Axio-Imager Z.1 microscope with a 63X/1.40NA oil 

immersion objective and images were produced using the AxioCam MRm CCD camera 

and Axiovision version 4.5 software suite.  Confocal images were captured through a 

63X/1.40NA oil immersion objective using a DMI6000 inverted Leica TCS SP5 tandem 
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scanning microscope.  Images and Z-stacks were produced with three cooled 

photomultiplier detectors and the LAS AF version 1.5.1.889 software suite.  Phase 

contrast images of nocodazole-treated HeLa cells were acquired on a Nikon TE 2000-s 

microscope using a 20X objective lens.   

Time-lapse live imaging of HeLa cells was performed with an inverted Nikon 

TE2000-S using a 20X 0.4NA Ph1 phase lens (Nikon).  An FCS2 closed chamber system 

(Bioptechs, Inc., Butler, PA, USA) was used to infuse media and CO2 at a rate of 5 mL 

per hour.  Phase-contrast images were captured once per minute using a Retiga 1300 

(QImaging Corporation, Canada) camera and IPLab 3.61 (BD Biosciences) software.  

Images were saved individually as Tif. files and incorporated into Image Pro Plus 6.2 

(Media Cybernetics, Inc) to generate sequence file time lapse movies.  The mass 

projections were 16 images taken through the Z dimension every 0.4um.  Images were 

projected over one another in Maximum Projection to illustrate depth of field through the 

cell.  The signal was enhanced using opacity (transparency) to demonstrate colocalization 

between B-Raf and microtubules. 

The CENP-E, CREST mass projection was rendered 360 degrees around the y-

axis to display colocalization in all 3 dimensions (x, y, z).  For CENP-E, CREST 

colocalization, Samples were viewed with a Leica DMI6000 inverted microscope, TCS 

SP5 confocal scanner, and a 63X/1.40NA Plan Apochromat oil immersion objective 

(Leica Microsystems).   405 Diode, 488 Argon, and 594 HeNe laser lines were applied to 

excite the samples and tunable filters were used to minimize crosstalk between 

fluorochromes.  Image sections at 0.5 µm were captured with photomultiplier detectors 

and prepared with the LAS AF software version 1.6.0 build 1016 (Leica Microsystems).  
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Images of colocalized pixels were prepared with LAS AF software and analyzed for 

CENPE intensity using Image Pro Plus 4.5 (Media Cybernetics, Maryland).   

The Imaris deconvolution images were created by processing z stack images 

generated by the confocal microscope through AutoDeblur deconvolution software 

(Mediacybernetics Inc.) using default settings.  The resulting z-stack images were then 

imported into Imaris version 5.5 (Bitplane Inc.).  3D isosurface renderings were created 

by adjusting the intensity thresholds for each color channel. 

 

Spindle Assembly in Xenopus Egg Extracts 

Cytostatic factor (CSF) arrested extracts were prepared from unfertilized Xenopus 

eggs and spindle assembly reactions were preformed as described [347], except that 

extracts were cycled into mitosis using recombinant nondegradable cyclin B (75 nM 

final).  Rhodamine-labeled bovine brain tubulin (Cytoskeleton) was added to a final 

concentration of 0.15 µg/µl in extracts to visualize microtubules.  B-Raf (Santa Cruz) or 

IgG control (Sigma) antibodies were used for immunodepletions from CSF extracts prior 

to their activation and cycling.  To monitor spindles and associated chromosomes, 2 µl of 

extract and 1 µl of Hoechst/fixative (25% glycerol, 7.4% formaldehyde, 0.1 mM Hepes 

pH 7.5, 4 µg/ml bisbenzimide) were applied to a microscope slide and examined by 

immunofluorescence. 
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