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Figure 21. Bortezomib treatment induces PRDM1 and apoptosis in primary MCL 
samples. A) Immunoblot analysis of PARP cleavage detecting spontaneous apoptosis in 
MCL patient samples maintained in presence or absence of 50% conditioned medium after 
48 hours. B) Immunoblot analysis of PRDM1α expression and PARP cleavage in three 
representative MCL patient samples treated with Bortezomib. The Bortezomib dose and 
duration of treatment is indicated above each lane. The dash indicates cells treated with an 
equal concentration of mannitol only. Only a single molecular weight size was detected for 
PRDM1 and it migrated at the position of PRDM1α. Each lane contains lysate from 5X105 
cells and loading was confirmed by beta-actin immunoblot (data not shown).  C) RT-qPCR 
analysis of PRDM1α mRNA levels in MCL primary cells treated with 5nM and 10nM 
Bortezomib over a 40 hour time course. The data is normalized to the housekeeping gene, 
GUS-B. Data is representative of 5 MCL patient samples. 
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PRDM1 is Required for the Apoptotic Effect of Bortezomib 

Induction of PRDM1 by Bortezomib could be a required event for apoptosis to occur or 

alternatively could be a downstream result of apoptosis. In order to directly test these two 

alternatives, PRDM1 expression was blocked during Bortezomib exposure and the impact on 

apoptosis was examined. Mino MCL cells were incubated with two PRDM1 specific siRNA 

for 24 hours followed by a 20 hour treatment with 5nM of Bortezomib. Apoptosis was 

analyzed by Annexin V staining and PARP cleavage. As shown in Figure 22A, the PRDM1 

specific siRNA was able to reduce expression of PRDM1α to near basal levels while the non-

targeting control siRNA did not block expression. This reduction in PRDM1α was 

accompanied by reduction in PARP cleavage (Figure 22A). Knockdown of PRDM1 also 

significantly prevented the increase in Annexin V staining associated with Bortezomib 

induced apoptosis (Figure 22B). To further establish the role of PRDM1 in Bortezomib 

induced apoptosis we analyzed pro-apoptotic genes involved in the Bortezomib response. 

Bortezomib has been shown to up-regulate expression of NOXA in MCL and activate 

Caspase-8 and Caspase-9 in Multiple Myeloma (Gomez-Bougie, Wuilleme-Toumi et al. 

2007). Knockdown of PRDM1 in presence of Bortezomib led to approximately 60% 

reduction in NOXA expression (Figure 22C) and approximately 30% reduction in expression 

of Caspase-8 (Figure 22D) and Caspase-9 (Figure 22E).  Thus the absence of PRDM1 

significantly impairs the apoptotic outcome of Bortezomib treatment in MCL.  

Bortezomib treatment in Multiple Myeloma induces a stress response because of 

accumulation of unfolded or misfolded proteins (Obeng, Carlson et al. 2006). To determine if 

a similar stress response occurs in MCL cells and if it is dependent on PRDM1 we analyzed 

the stress response protein XBP1. XBP1 mRNA undergoes unique cytoplasmic splicing in 
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response to ER stress to switch from encoding a negative regulator of UPR to a potent 

transcriptional activator of UPR (Tirosh, Iwakoshi et al. 2006; Yoshida, Oku et al. 2006). 

Analysis of both splicing isoforms of XBP1 revealed that Bortezomib does induce XBP1 

splicing but that splicing does not diminish upon PRDM1 knockdown (Figure 23). This 

indicates that Bortezomib-mediated ER stress induction alone is not sufficient to induce 

apoptosis.  Together these data reveal that PRDM1 expression is required for MCL cells to 

respond to Bortezomib. 

We next wanted to determine if PRDM1 expression alone is sufficient to promote 

apoptosis in MCL cells or if additional events induced by Bortezomib are required. Since we 

observed that Bortezomib treatment induced only expression of PRDM1α and not the 

truncated PRDM1β, we over-expressed only the full length PRDM1α form. Mino MCL cells 

were transduced with a recombinant adenovirus expressing PRDM1α in the absence of 

Bortezomib treatment. Apoptosis was measured by Annexin V staining as well as PARP 

cleavage after 48 hours of infection. There was an approximate 50% increase in Annexin V 

staining in cells over-expressing PRDM1α when compared to control cells transduced with 

an adenovirus expressing only green fluorescent protein (Figure 24A). To confirm a specific 

apoptosis effect we examined PARP cleavage which is down stream of caspase activation. 

PARP cleavage is observed only in cells over-expressing PRDM1α (Figure 24B). This 

indicates that ectopic expression of PRDM1α in absence of Bortezomib leads to MCL 

apoptosis. Together these findings establish a central role for PRDM1 in the effect of 

Bortezomib and demonstrate that PRDM1 is both sufficient and required for the response.  
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Figure 22. Knockdown of PRDM1 inhibits apoptotic effect of Bortezomib. A) 
Immunoblot analysis of knockdown of PRDM1α expression in presence of Bortezomib and 
detection of apoptosis by PARP cleavage in MCL Mino cells. Non-targeting siRNA indicates 
siRNA specifically designed not to inhibit any known genes. siPRDM1 indicates the PRDM1 
specific siRNA. B) Flow cytometric analysis of Annexin V staining. Bar graph represents 
percent Annexin V positive Mino MCL cells treated with Bortezomib in absence or presence 
of PRDM1 specific siRNA. Data shown are mean of 3 independent experiments with SEM.  
The dashed line marks the background level of Annexin V staining detected in untreated 
Mino cells. Knockdown of PRDM1 also leads to significant reduction in mRNA expression 
of pro-apoptotic genes C) NOXA , D) CASP8 (caspase 8) and E) CASP9 (caspase 9). 
mRNA levels were assessed by RT-qPCR. The data is normalized to Beta-actin and 
represents the mean of 3 independent experiments with the SEM (*** indicates p<0.002, ** 
indicates p<0.03, * indicates p<0.05). 
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Figure 23: PRDM1 knockdown does not affect stress response. PCR analysis of XBP1 in 
Mino MCL cells treated with Bortezomib in presence or absence of siRNA mediated 
knockdown of PRDM1. The XBP-1 PCR primers used span the region of stress-induced 
cytoplasmic mRNA splicing and detects both the unspliced and spliced forms.  Raji B cells 
treated with tunicamycin for 8 hours is used as a positive control to detect cellular stress 
response. Presence of smaller spliced isoform (Xbp-1s) confirms cellular stress.  
 
 

 

 

Figure 24.  Ectopic expression of PRDM1α leads to apoptosis of MCL cells in the 
absence of Bortezomib. A) Flow cytometric analysis of Annexin V positive Mino MCL 
cells transduced with adenovirus expressing PRDM1α or GFP (control) for 48 hours. The 
data is mean of 3 independent experiments with SEM shown. B) Immunoblot analysis of 
PRDM1α expression and PARP cleavage indicating apoptosis in the adenoviral transduced 
Mino cells. Beta-actin is shown as the loading control. 
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Identification of Direct PRDM1 Targets in MCL 

A limited number of direct PRDM1 targets have been identified during B cell differentiation 

into plasma cells including PAX5, CIITA, Myc, ID3 and Spi-B. In particular, down-

regulation of Myc by PRDM1 upon anti-IgM treatment has been shown to induce apoptosis 

in Burkitt’s lymphoma cells (Kaptein, Lin et al. 1996; Desai, Bolick et al. 2009). To 

determine if Bortezomib induced apoptosis in MCL also involves Myc down-regulation, we 

assessed Myc mRNA changes. Treatment with Bortezomib did not affect the mRNA levels 

of Myc (Figure 25) indicating that other PRDM1 targets must be involved in the Bortezomib 

response.   

In order to identify novel PRDM1 direct targets in B cells we have used chromatin 

immunoprecipitation combined with hybridization to human promoter tiling arrays (ChIP-on-

chip). This approach identified multiple targets involved in cell cycle regulation and 

proliferation, including MKI67 and PCNA.  MKI67 codes for the antigen Ki67 which is a 

proliferative marker and is used as a predictor of survival in MCL. Increased levels of Ki67 

in MCL have been associated with de-regulation of various cell cycle regulatory components 

such as over-expression of cyclin D1, HEC and BUB1B which are important for mitotic 

machinery and down-regulation of Protein Phosphate 2C, which can regulate growth by 

promoting expression of p53 (Ek, Bjorck et al. 2004). Furthermore, studies have shown that 

knockdown of Ki67 leads to cell death in human renal carcinoma cells (Zheng, Ma et al. 

2006). PCNA codes for proliferating cell nuclear antigen which is found in the nucleus. 

PCNA is a multifunctional protein that plays a role in both DNA replication and DNA repair 

(Paunesku, Mittal et al. 2001). It is a subunit of DNA polymerase delta and can interact with 

p21 to pause replication while allowing DNA repair to occur. In addition loss of PCNA can 
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lead to a p21 mediated growth arrest in lung epithelial cells exposed to hyperoxia (Garcia 

2006). Moreover, cells that lack PCNA expression undergo apoptosis. Studies have shown 

that in the WST knockout mouse model PCNA is absent from the thymus and spleen leading 

to reduced size of the tissues and expression of apoptotic markers in these tissues (Libertin, 

Weaver et al. 1994; Woloschak, Chang-Liu et al. 1996). Together these observations 

suggested that PCNA and Ki-67 may be functionally important targets of PRDM1. 

ChIP-on-chip data analysis and sequence analysis of the MKI67 and PCNA promoter 

regions suggested potential binding sites for PRDM1 at a distal enhancer region of MKI67 (-

4290 to -3594 bp) and the proximal promoter of PCNA (-818 to -235 bp, relative to the 

transcription start site). Binding of PRDM1 at these sites was determined by chromatin 

immunoprecipitation (ChIP) and quantitative PCR (Figure 26A). Mino MCL cells treated 

with 5nM Bortezomib show a significant binding of PRDM1 at both MKI67 and PCNA. The 

known PRDM1 targets, PAX5 and CIITA also demonstrated similar levels PRDM1 binding 

as expected. This binding is specific as no signal was detected at the HLA-DRA promoter. 

PRDM1 is known to repress its targets in part by recruiting the histone deacetylase, HDAC2, 

and the histone methyltransferase, G9a (Yu, Angelin-Duclos et al. 2000; Gyory, Wu et al. 

2004). This results in a loss of acetylation of the histones and specific di-methylation of 

histone H3 at the lysine 9 position both of which are associated with gene silencing. As 

shown in Figure 26B Bortezomib treatment leads to a decrease in histone H3 acetylation on 

the MKI67 and PCNA promoters. A similar decrease in acetylation is observed for PAX5 

and CIITA while the control promoter HLA-DRA is not changed. The change in acetylation 

was accompanied by increases in di-methylation of histone H3 lysine 9 residues consistent 

with PRDM1-mediated silencing (Figure 26C). 
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Figure 25: MYC mRNA levels are unaffected by Bortezomib treatment. RT-qPCR 
analysis for expression of MYC in Mino MCL cells treated with 5nM Bortezomib for 20 
hours. Data represent mean of 3 independent experiments normalized to GAPDH. Error bars 
represent SEM.  
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Figure 26. Chromatin immunoprecipitation (ChIP) of PRDM1 and associated 
epigenetic marks at the MKI67 and PCNA promoter regions. A) ChIP using the PRDM1 
antibody in Mino MCL cells treated with 5nM Bortezomib for 20 hours. PRDM1 binding at 
MKI67 and PCNA promoters was significantly higher in Bortezomib treated cells compared 
to control cells (untreated). PAX5 and CIITA are positive controls for PRDM1 binding and 
HLA-DRA (DRα) is a negative control. Binding was quantified by qPCR and is presented as 
relative occupancy (antibody specific signal over signal obtained with non-specific IgG 
antibodies). The data is the mean of 3 independent experiements with the SEM shown (*** 
indicates p<0.002, ** indicates p<0.03, * indicates p<0.05). B) ChIP analysis of acetylation 
on histone H3 lysine 9. The conditions are as described for panel A except an antibody 
specific to H3 acetylated lysine was used and shows that acetylation is significantly 
decreased concordant with PRDM1 binding. C) ChIP analysis of histone H3 lysine 9 
dimethylation levels. The conditions are as described for panel A except an antibody specific 
to dimethylated H3 lysine 9 was used and shows that dimethylation is significantly increased 
concordant with PRDM1 binding. 
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PRDM1 Regulates Promoter Activity of PCNA and MKI67 
 

Since PRDM1 regulates its targets at the level of transcription, we cloned the human MKI67 

and PCNA promoters to assess if PRDM1 can repress the promoter activity. A PCNA 

promoter spanning 576 base pairs upstream of the transcription start site and 152 base pairs 

downstream was cloned into a luciferase reporter plasmid. A potential PRDM1 binding site 

was identified by sequence homology at position -296 and was selectively mutated to create a 

PCNA mutant promoter construct. Luciferase assays were performed in two different cell 

types U2OS osteosarcoma cell line and Mino MCL cell line. Luciferase activity of the wild 

type PCNA promoter in both U2OS and Mino was reduced by 60% and 70% respectively, in 

presence of PRDM1α (Figure 27A and Figure 27B). In contrast, PRDM1α failed to repress 

the mutant PCNA promoter construct in both the cell types. This indicates that PRDM1 

functions specifically though this DNA element to suppress PCNA. Moreover, the basal 

luciferase activity of the mutant PCNA promoter was significantly reduced only in the Mino 

cell lines. This indicates that certain activators may bind to this region in a cell type specific 

manner and regulate the PCNA promoter. IRF proteins and PRDM1 have been shown to bind 

overlapping DNA sequences. As seen in Figure 28 Mino cells express high levels of IRF4 

compared to the U2OS cells.  Thus the cell line specific inhibition in luciferase activity may 

be due to the ability of activator such as IRF4 to bind to and regulate the PCNA promoter in 

Mino cells.  

A similar study was carried out on the human MKI67 promoter. The PRDM1 binding 

site is located about 3.5kb upstream of the transcription start site. A basal promoter construct 

was created spanning 2709 base pairs upstream of the transcription start site and 74 base 
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pairs downstream. In addition a 720 base pair fragment containing the distal PRDM1 binding 

site was cloned upstream of the proximal promoter. Analysis reveals that the proximal 

promoter construct was active but not altered by the presence of PRDM1α (Figure 29A). In 

contrast when the distal region containing the PRDM1 binding site is present the MKI67 

promoter activity is repressed approximately 40%. A similar, effect is observed in Mino 

MCL cells (Figure 29B). This indicates that PRDM1 functions though specific DNA 

elements present in both the PCNA and MKI67 promoters. 
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Figure 27. PRDM1 represses PCNA luciferase promoter activity. A) Cells were 
transfected with luciferase constructs containing either the PCNA wild type promoter (576-
PCNA-Luc) or the promoter with a point mutation in the PRDM1 binding site (576-PCNA-
mutPRD-Luc). Cells were co-transfected with a PRDM1α expression plasmid or an empty 
plasmid (-) as indicated in a 1:1 ratio (reporter to expression plasmid). Results are normalized 
to a co-transfected Renilla control vector and shown as the mean of three independent 
experiments with the SEM.  B) Mino Cells were transfected with either the PCNA wild type 
promoter (576-PCNA-Luc) or the promoter with a point mutation in the PRDM1 binding site 
(576-PCNA-mutPRD-Luc). The experiment was done and analyzed as described in panel A.  
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Figure 28: Differential expression of IRF4 in U2OS and Mino: IRF4 is exclusively 
expressed in Mino, MCL cells but is absent in the osteosarcoma cell line U2OS. The bar 
graph represents average relative IRF4 mRNA levels in 2 independent RNA harvests.   
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Figure 31. PRDM1 is required for the Bortezomib mediated suppression of PCNA and 
Ki-67. A) Immunofluorescence staining of Mino and Jeko-1 MCL cells treated with 
Bortezomib in the presence or absence of siRNA mediated knockdown of PRDM1. PCNA 
protein detected by FITC (green), Ki-67 protein detected by Alexa594 (red), and DAPI 
nuclear staining (blue) is shown from a representative panel. Images shown at 63X 
magnification of original. B) Quantitative analysis of the immunofluorescence. Data was 
collected from 2 independent experiments in Mino with duplicate slides and at least 5 
individual images per slide were analyzed for each condition by automated Difiniens 
software. (* indicate p<0.05) 
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Discussion 
 
Mantle cell lymphoma continues to have a poor prognosis and a low disease free survival 

rate. The proteasome inhibitor Bortezomib was approved for treatment of relapsed and 

refractory MCL in 2006 (Kane, Dagher et al. 2007) and shows promise with an overall 

response rate of 32% (Goy, Bernstein et al. 2009). However, the specific mechanisms by 

which Bortezomib is cytotoxic to MCL remains unclear and presents a significant barrier to 

understanding how to improve or tailor Bortezomib therapy (Pham, Tamayo et al. 2003; 

Fribley, Zeng et al. 2004; Obeng, Carlson et al. 2006; Perez-Galan, Roue et al. 2006; 

Rizzatti, Mora-Jensen et al. 2008). The findings presented in this report now demonstrate that 

Bortezomib induction of apoptosis in MCL is accompanied by and requires induction of the 

transcriptional repressor protein, PRDM1. Induction of PRDM1 occurs at the level of 

transcriptional activation. Proteasome-mediated regulation of transcription has been reported 

in several systems and shown to impact activation, elongation as well as chromatin structure 

(Muratani and Tansey 2003; Lee, Ezhkova et al. 2005; Sulahian, Sikder et al. 2006; Kinyamu 

and Archer 2007). In addition, PRDM1 has a PEST domain homology region which could 

target it for proteasomal degradation. While our studies have not excluded an additive effect 

of protein stabilization, clearly activation of PRDM1 transcription is required for MCL cells 

to respond to Bortezomib. 

NOXA is a key pro-apoptotic sensor protein that leads to an increased activity of 

mitochondrial apoptotic pathway by activating BAK. Several recent studies have clearly 

linked NOXA to the Bortezomib response in both sensitive and intrinsically resistant MCL 

cells (Perez-Galan, Roue et al. 2006; Rizzatti, Mora-Jensen et al. 2008). Bortezomib 

selectively induced expression of NOXA but not other BH3-only proteins. Importantly, 
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siRNA knockdown of NOXA resulted in an approximately 70% reduction of apoptosis 

indicating that NOXA is a key step in the Bortezomib response. Our findings indicate that 

induction of NOXA is dependent on induction of PRDM1. siRNA knockdown of PRDM1 

not only inhibited apoptosis approximately 70% but also significantly blocked NOXA 

expression. This is consistent with a central role for NOXA but now also places PRDM1 

activation upstream of NOXA induction in the response to Bortezomib. The mechanism of 

NOXA induction is not understood however it is unlikely that PRDM1, a repressor protein, 

directly activates the NOXA promoter. There is no evidence for PRDM1 binding to the 

NOXA promoter, rather PRDM1 is more likely to suppress additional gene(s) whose absence 

permits NOXA activations although this remains to be resolved.  

Recent studies in DLBCL have identified inactivating mutations in the PRDM1 gene, 

indicating a tumor suppressor role for PRDM1 (Pasqualucci, Compagno et al. 2006; Tam, 

Gomez et al. 2006). The PRDM1 protein has two isoforms, PRDM1α and the truncated 

PRDM1β which are transcribed from alternative promoters. PRDM1β has been shown to be 

highly expressed in myeloma cells and is associated with impairment of PRDM1 repressive 

activity (Gyory, Fejer et al. 2003; Ocana, Gonzalez-Garcia et al. 2006). Additionally, 

expression of PRDM1β in DLBCL has been associated in one study with chemoresistance 

and poor disease outcome (Liu, Leboeuf et al. 2007) indicating an impaired tumor suppressor 

activity of the β isoform. Related observations have been made in human myeloid leukemia 

cell lines in which cellular stress led to expression of PRDM1α but not PRDM1β (Doody, 

Stephenson et al. 2006). Similarly, our findings demonstrate that Bortezomib exposure leads 

to selective expression of the PRDM1α isoform in MCL and support the idea that the 
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PRDM1α isoform is the functionally active form and that the PRDM1β isoform arises to 

potentially squelch the activity.  

To date mutations of PRDM1 have not been reported in MCL. MCL arises from pre-

germinal center B cells, a stage preceding normal PRDM1 expression which first occurs in 

late germinal center B cells. Thus the abundant PRDM1 expression in MCL induced by 

Bortezomib is out of its normal physiological context which may facilitate the apoptotic 

outcome. This is consistent with our observation that ectopic expression of PRDM1α alone in 

MCL promotes apoptosis. Interestingly, a recent report has suggested that long term exposure 

of MCL cell lines to low doses of Bortezomib to induce drug resistance is accompanied by a 

plasmacytic like gene expression pattern, including PRDM1 expression (Perez Galan 2009). 

This supports our findings that Bortezomib induces PRDM1 but suggests that suboptimal 

exposure to Bortezomib can induce a partial differentiation program. It will be interesting to 

determine if these resistant lines acquire expression of the PRDM1β isoform, similar to 

myeloma cells or if they acquire PRDM1 mutations similar to DLBCL in order to abrogate 

normal PRDM1 activity.  

A very limited number of genes have been identified to be directly regulated by 

PRDM1. The majority of these genes are transcription factors related to B cell development 

and differentiation. Our discovery that PRDM1 directly represses two genes required for 

proliferation establishes a novel role for PRDM1 in regulating cell growth and viability. 

Furthermore, down-regulation or knockdown of either PCNA or MKI67 in tumor cells can 

induce apoptosis (Zheng, Ma et al. 2006; Gehen, Vitiello et al. 2007). Thus, PCNA and 

MKI67 may be highly potent targets of Bortezomib-induced PRDM1 by inhibiting 

proliferation as well as inducing apoptosis in MCL. Little information is available concerning 
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the transcriptional regulation of MKI67 and this is the first report that PRDM1 directly 

suppresses MKI67. However, a recent finding in sebaceous glands has shown that cells 

expressing PRDM1 are devoid of Ki67expression (Horsley, O'Carroll et al. 2006). Similarly, 

microarray studies in B cells have shown an inverse correlation between PRDM1 expression 

and PCNA (Shaffer, Lin et al. 2002). Moreover, the significance of our data may not be 

limited to the response of MCL to chemotherapeutic agents but may also have significance in 

T cell homeostasis. PRDM1 has been shown to play a role in maintaining T cell homeostasis 

by increasing apoptosis of effector and memory T cells (Kallies, Hawkins et al. 2006). In 

these studies there were no substantial changes observed in the key survival regulatory 

proteins such as myc, Bcl-2, Bcl-xL and CTLA4. It will be important to determine if PRDM1 

can directly suppress MKI67 and PCNA in these T cells and induce apoptosis. It may also be 

possible that MCL tumor cells may have a unique response to PRDM1 when exposed to 

Bortezomib compared to normal cells. Further defining the global network of PRDM1 

regulated genes in multiple cell types will be important to shed light on this question. 

In conclusion, this is the first study identifying an important role for PRDM1 in 

Bortezomib induced apoptosis of MCL. We propose a mechanism of action in which 

PRDM1 induced by Bortezomib leads to direct repression of the proliferation markers 

MKI67 and PCNA inducing apoptosis in these cells. Finally, our data supports that 

approaches to directly target induction of PRDM1 may be an attractive means to enhance 

current therapies of MCL patients. 
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CHAPTER FIVE 

IDENTIFICATION OF PRDM1 PROTEIN COMPLEX 

 

Introduction 

PRDM1 is a member of the PR domain family, which is characterized by the presence of 

zinc finger domain and positive regulatory (PR) domain. PRDM1 represses its target genes, 

in part by introducing histone modifications, affecting the chromatin structure and leading to 

silencing of the gene. PRDM1 can induce histone modifications such as methylation of 

histone 3 lysine 9 (H3-K9) residues, de-methylation of arginine residues of H3 and H4 and 

histone deacetylation which are all associated with gene silencing. The PR domain, which is 

a derivative of the SET domain, does not have an intrinsic methyltransferase activity. It 

mediates gene suppression by recruiting SET domain- containing protein G9a through its 

zinc finger region (Gyory, Wu et al. 2004). G9a can regulate methylation of euchromatic H3-

lysine 9 (H3-K9) residue and repress transcription of the genes (Tachibana, Sugimoto et al. 

2002). PRDM1 can recruit groucho family co-repressor proteins through its proline rich 

domain (Ren, Chee et al. 1999). Groucho proteins function in part by interacting with histone 

deacetylases (HDACs) (Chen, Fernandez et al. 1999). Moreover, PRDM1 has been shown to 

interact with HDAC2 through the groucho interaction domain and the zinc finger region (Yu, 

Angelin-Duclos et al. 2000). Recently, interactions between PRDM1 and PRMT5 and 

Lysine- specific demethylase 1 (LSD1) have been identified (Ancelin, Lange et al. 2006; Su, 
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Ying et al. 2009). PRMT5 is an arginine methyltransferase that mediates di-methylation of 

arginine 3 on histone H2A and H4 tails (Ancelin, Lange et al. 2006). LSD1 is a histone 

demethylase that can function as a co-repressor by specifically demethylating mono- or 

dimethyl groups on H3K4 (Shi, Lan et al. 2004; Shi, Matson et al. 2005). However, none of 

these interacting proteins are recruited by the SET domain. These findings indicate that 

PRDM1 can act as a scaffold to recruit multiple co-repressor proteins directly to the 

promoters leading to silencing of the genes.  

 To further study and identify other novel PRDM1 interacting proteins, we performed 

a TAPTAG complex purification analysis. This led to identification of Reptin52 as a novel 

PRDM1 interacting protein. Reptin52 (also known as TIP49b, TIP48, RUVBL2, Rvb2, 

TAP54β and TIH2p) has 43% identity with Potin52 (also known as TIP49a, RUVBL1) 

(Parfait, Giovangrandi et al. 2000; Cho, Bhoumik et al. 2001). Both Reptin52 and Pontin52 

possess intrinsic single-stranded DNA stimulated ATPase activity and ATP dependent 

helicase activities of opposite polarities (Kanemaki, Kurokawa et al. 1999; Makino, 

Kanemaki et al. 1999). Reptin52 and Pontin52 are ubiquitously expressed in all tissues 

examined and abundantly expressed in testis and thymus (Kanemaki, Kurokawa et al. 1999; 

Parfait, Giovangrandi et al. 2000). Reptin52 and Pontin52 have been found in complex with 

c-Myc regulating its transcription activity (Wood, McMahon et al. 2000). Reptin52 has been 

identified as part of the TIP60 HAT complex (Ikura, Ogryzko et al. 2000), in INO80 

chromatin remodeling complex (Shen, Mizuguchi et al. 2000) and in the β-catenin-TCF 

complex, and has been shown to modulate the function of the complexes (Bauer, Huber et al. 

1998; Bauer, Chauvet et al. 2000). Recently, Reptin52 has been shown to inhibit 
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transcriptional activity of ATF2 (Cho, Bhoumik et al. 2001). These findings indicate that 

Reptin52 may function as a repressor by modifying chromatin structure.  

 This report identifies specific interactions between PRDM1 and Reptin52 indicating 

that PRDM1 recruits the helicase Reptin52 introducing chromatin modifications at the target 

promoter regions resulting in repression of expression.   
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Results 

Generation of TAPTAG PRDM1 Expression Vector  

To identify novel PRDM1 binding partners we used Tandem Affinity Purification (TAP) 

method. This is an efficient tool for protein complex purification under non-denaturing 

conditions (Rigaut, Shevchenko et al. 1999; Puig, Caspary et al. 2001). The original TAP tag 

developed for yeast system consists of two affinity tags, protein A and calmodulin-binding 

peptide (CBP) separated by TEV protease cleavage sites. To generate the PRDM1α TAP tag 

protein we used a modified TAPTAG vector called pRAV, which was provided by Dr. Liu 

(Knuesel, Wan et al. 2003). The pRAV is a bicistronic retroviral expression vector which has 

the modified TAP tag incorporated in it. The modified TAP tag consisted of two tandem 

TEV cleavage sites and the CBP tag was substituted with FLAG tag. PRDM1α was cloned 

into this vector as described in the materials and methods section. The tagged PRDM1α was 

then transferred from retroviral expression vector to an adenoviral shuttle vector (CMV-

IRES1-GFP) to generate PRDM1α- TAP tagged expressing adenovirus (Figure 32).   

Cells were transduced with adenovirus expressing PRDM1α or control adenovirus 

expressing GFP. Lysates prepared from these transduced cells were subjected to a standard 

tandem affinity purification procedure. As shown in Figure 33 multiple bands were visible, 

that were selected for tandem mass spectroscopy (MS) protein identification. A partial list of 

the proteins identified by tandem MS along with the number of peptides identified for each 

protein is given in table 4.  
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Figure 32: PRDM1α TAP tag adenoviral construct. Schematic representation of 
PRDM1α-TAP tag integrated with adenoviral DNA. L-ITR is the left inverted terminal 
repeat, CMV promoter is the cytomegalovirus promoter region, PRDM1α-TAP is the 
TAPTAG PRDM1α gene separated from the GFP region by the IRES region. PolyA site is 
derived from the SV40 virus which is followed by the adenovirus DNA and R-ITR right 
inverted terminal repeat. 
 

 

 

 

Figure 33: Coomassie Staining of TAPTAG PRDM1α complex. Samples loaded are as 
labeled. Control lane contains sample purified from cells overexpressing control GFP and 
PRDM1α lane contains sample purified from cells overexpressing PRDM1α TAPTAG 
protein. Arrows indicate the bands isolated to be further analyzed by tandem MS to identify 
the proteins.   
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Table 4: Partial list of proteins identified by TAPTAG 

Gene Name Alternative Name No. of Peptides 

detected 

Reptin52 TIP49b, RUVBL2 9 

MCM4 Minichromosome 

maintenance complex 

component 4 

16 

YBOX1  Y box binding protein 1 11 

SAF-A Scaffold attachment factor 

A 

4 

RBBP4 Retinoblastoma-binding 

protein 4 

4 

HDAC2 Histone deacetylase 2 2 

 

Conformation of Interactions Detected by Mass Spectroscopy  

Reptin52 an ATPase dependent helicase, which has been shown to promote 

suppression of transcription activity of ATF2 and suppress KAI-1 gene, was identified as a 

protein interacting with PRDM1α. To further confirm this interaction, Burkitt’s lymphoma 

cells CA-46 were transiently transfected with PRDM1α tagged with FLAG at the amino 

terminus and an HA-HIS tag at the carboxy terminus. Immunoprecipitation of PRDM1α with 

anti-FLAG specifically isolated endogenous Reptin52 (Figure 34). Immunoprecipitation 
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analysis also identified that PRDM1α can interact with known partners SAF-A (unpublished) 

and HDAC2 (Yu, Angelin-Duclos et al. 2000), thus confirming the MS data (Figure 34). 

 

 

 

 

Figure 34: PRDM1 associates with Reptin52: CA-46 cells transiently transfected with 
FLAG-HA-HIS (FHH) tagged PRDM1α. Control cells were transfected with empty vector. 
Lysates were immunoprecipitated using anti-Flag and immunoblotted with antibodies 
specific to PRDM1 (first panel), Reptin52 (second panel), HDAC2( third panel) SAF-A 
(fourth panel) and PU.1 (fifth panel). HDAC2 and SAF-A are positive controls. PU.1 is a 
negative control.    
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Identifying the Protein Interacting Domain  

Next, to identify the domain of PRDM1 required for Reptin52 interaction different 

PRDM1 constructs were used. The full-length PRDM1α, or the deletion mutants which 

contained deletion of one of the following domains Zinc finger (Δ Znf), C terminal acidic 

domain (Δ CAc), PEST domain (Δ PEST) and Proline rich domain (Δ PRO) were used. 

PRDM1α deletion construct containing deletion of 1-331 amino acids as well as the truncated 

PRDM1β, which has a deletion of the amino terminal domain and an impaired PR domain 

were also expressed in the CA-46 cells. Anti-PRDM1 was used to isolate protein complex by 

immunoprecipitation. Using a monoclonal antibody against Reptin52, the 

immunoprecipitated complexes were tested for presence of Reptin52 protein by immunoblot 

analysis. Reptin52 was detected in association with all the PRDM1α deletion constructs 

except for the construct containing the deletion of amino acids 1-331 and PRDM1β (Figure 

35). This indicates that the interaction domain may be the PR domain or the amino terminus 

region.  

The data demonstrates that endogenous Reptin52 complexes with over-expressed 

PRDM1α. To further understand the biological relevance of this interaction, we wanted to 

assess if endogenous Reptin52 can complex with endogenous PRDM1. To answer this 

question NCI-H929, multiple myeloma cells, were used. Multiple myeloma cells express 

high levels of PRDM1α as well as the truncated isoform, PRDM1β (Gyory, Fejer et al. 

2003). Immunoprecipitating for endogenous Reptin52 identified that Reptin52 specifically 

interacted with PRDM1α but not PRDM1β (Figure 36). This observation indicates that the 

two PRDM1 isoforms alpha and beta, have the ability to form complex with different 

proteins. PRDM1β has a truncated PR domain and has been shown to have impaired 
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function. Therefore, the inability of PRDM1β to complex with Reptin52 indicates that the 

protein interaction domain may be the PR domain or the amino terminus domain. This 

observation provides preliminary evidence for the impaired function of PRDM1β. 
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Figure 35: Reptin52 association with PRDM1 domains: A) CA-46 cells transiently 
transfected with full length PRDM1α, deletion constructs ΔZnf, ΔPEST, ΔCAc, ΔPRO, Δ331 
and truncated PRDM1β. B) Lysates were immunoprecipitated using anti-PRDM1 and 
immunoblotted with antibodies specific to PRDM1 and Reptin52. Control lane contains 
lysate from cells expressing empty pcDNA.   
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Figure 36: Reptin52 associates with endogenous PRDM1α but not PRDM1β. Protein 
extracts from NCI-H929 were subjected to immunoprecipitation with anti-Reptin52 antibody 
followed by immunoblot with anti-PRDM1 (top panel) and anti-Reptin52 (lower panel). 
NCI929 input represents 4% of protein lysate used for immunoprecipitation. 
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Discussion 
 
 PRDM1 is an important mediator of B cell differentiation into antibody secreting 

plasma cells. It also functions as a regulator of T cell differentiation into memory and 

effector cells as well as is required in germ cells (Kallies, Hawkins et al. 2006; Ohinata, 

Payer et al. 2005; Saitou, Payer et al. 2005). PRDM1 achieves this by recruiting co-

repressors such as G9a, Groucho, HDAC2, PRMT5 and LSD1 (Ren, Chee et al. 1999; 

Gyory, Wu et al. 2004). However, recruitment of these co-repressors may be tissue specific 

such as PRMT5 which is recruited specifically in the germ cells but is not associated with 

PRDM1 in the myeloma cell lines (Su, Ying et al. 2009). The recruitment of the co-

repressors may also be dependent on the target promoter, such as repression of Myc by 

PRDM1 requires HDACs but it is not essential for the repression of CIITA. The present 

study demonstrates the association of Reptin52 with PRDM1, which may give further insight 

in the mechanism of action of PRDM1. We have used tandem affinity purification technique 

followed by tandem MS analysis to isolate and identify PRDM1 binding partners. 

 Reptin52 is ubiquitously expressed and has been found in association with Pontin52 

in several chromatin remodeling complexes such as the INO80 chromatin- remodeling 

complex (Kanemaki, Kurokawa et al. 1999). Recent findings have identified that Reptin52 is 

also a part of the DNA damage repair multisubunit TIP60 HAT complex (Ikura, Ogryzko et 

al. 2000). It is an ATPase helicase that can function to reduce the open structure of DNA 

leading to repression of the gene expression. Moreover, Reptin52 has been found to 

antagonize the transcriptional effect of T-cell factor/ lymphoid enhancer factor -1-β catenin 

complex. It has also been identified to be associated with β-catenin complex and is required 

for promoting repression of metastasis suppressor gene KAI-1 (Bauer, Chauvet et al. 2000; 
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Kim, Kim et al. 2005). Besides its ability to complex with chromatin remodeling complexes 

and other transcription regulation complexes, Reptin52 has also been shown to directly 

inhibit transcriptional activity of ATF2 (Cho, Bhoumik et al. 2001). Reptin52 has been 

shown to function as a repressor by binding to or interact with co-repressors such as HDAC1 

and TLE proteins. Similarly, our observations indicate that, association of Reptin52 with 

PRDM1 may be essential for the transcription repressor activity of PRDM1.  

 PRDM1 protein has two isoforms, the full length alpha form and the truncated beta 

form. The beta isoform is functionally impaired and has a truncated PR domain, which is 

thought to be an essential protein interacting domain. Our initial findings show that PRDM1-

Reptin52 interaction may require the region between the amino acids 1- 100 which includes 

the amino acid terminus domain and part of the PR domain. The inability of Reptin52 to 

complex with PRDM1β may provide clues to the difference in the functionality of the two 

isoforms. This indicates that the PRDM1 isoforms may interact with different proteins, which 

may result in a difference in the functionality of the two isoforms.   

 Further experiments to understand the functional importance of PRDM1-Reptin52 

interaction are required. Preliminary chromatin immunoprecipitation experiments were 

unable to reveal coimmunoprecipitation of PRDM1 with Reptin52 at the PRDM1 target 

promoters. Alternatively, luciferase assays measuring the ability of PRDM1 to repress its 

target promoters in presence or absence of endogenous Reptin52, may reveal the functional 

importance of PRDM1-Reptin52 association. Moreover, recent findings have identified that 

sumoylation of Reptin52 governs its ability to bind to its protein partners (Kim, Choi et al. 

2006). Similarly, it would be important to identify if such post translational modification are 

required for interactions between Reptin52 and PRDM1.   
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 Initial observations from the report suggest that interaction of PRDM1 with Reptin52 

may influence the transcriptional ability of PRDM1. Thus further studies to confirm these 

findings are essential.      
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CHAPTER SIX 

DISCUSSION AND SCIENTIFIC SIGNIFICANCE 

 

PRDM1 is a transcription repressor that plays a key role in the terminal differentiation of B 

cells into antibody secreting plasma cells. Recently, PRDM1 has been shown to be involved 

in maintaining the T cell homeostasis and is required for differentiation of T cells into 

effector and memory cells (Kallies, Hawkins et al. 2006). Besides its role in immune cells, 

PRDM1 has been shown to be expressed in several other cell types. PRDM1 has been shown 

to be required for differentiation of primordial germ cells (Ohinata, Payer et al. 2005; Saitou, 

Payer et al. 2005). Moreover, PRDM1 has been shown to regulate the formation of sebaceous 

glands and its presence in breast cancer cells affects the migration of these cells (Horsley, 

O'Carroll et al. 2006; Wang, Belguise et al. 2009). These findings are indicative that PRDM1 

plays a critical role in several different cell types and thus understanding its regulation is 

necessary.  

The work presented in this dissertation provides an insight into the regulation of 

PRDM1 at the level of transcription in lymphomas and specifically identifies its role in 

mantle cell lymphoma. The work also provides initial evidence of regulation of PRDM1 

protein by its ability to recruit ATPase helicase as a co-repressor that may affect the 

chromatin structure leading to gene suppression. 
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  PRDM1 is regulated in the B cells by transcription factors AP-1 and Bach2 as well as 

B cell specific transcription factors such as PAX5 and BCL6 (Vasanwala, Kusam et al. 2002; 

Ochiai, Katoh et al. 2006; Mora-Lopez, Reales et al. 2007). Stimuli leading to differentiation 

of these cells causes release of repression and induction of PRDM1. Our data demonstrates 

that activation of B lymphoma cells, which are malignant counter-parts of GC B cells, by 

anti-IgM induces expression of PRDM1. Induction of PRDM1 within four hours of anti-IgM 

stimulation elutes to the fact that the promoter is poised and ready for activation. This is 

confirmed by the EMSA data which shows that several factors are bound to the PRDM1 

promoter in the lymphoma cells.  Utilizing ChIP assay we have demonstrated that PU.1 is 

one of the factors binding to the PRDM1 promoter.  

This is the first study to show that, anti-IgM mediated B cell receptor activation in 

lymphoma cells, induces expression of PRDM1. The data presented demonstrates that PU.1 

is required for the expression of PRDM1 in anti-IgM stimulated B lymphoma cells. PU.1 is a 

transcription factor that can either activate or repress transcription of its target genes. This 

opposing activity is mediated by differential recruitment of co-regulators by PU.1 

(Yamamoto, Kihara-Negishi et al. 1999; Suzuki, Yamada et al. 2003). We have shown that 

PU.1 can recruit TLE4, a co-repressor, to the PRDM1 promoter which may lead to repression 

of PRDM1. Our observations indicate that PU.1/TLE4 complex is not acting as a dominant 

repressor but recruitment of TLE4 is significantly diminished upon activation by anti-IgM. 

This observation is further supported by the finding that TLE4 transcript levels are reduced in 

plasma cells which have high levels of PRDM1 (Underhill, George et al. 2003). 

 PU.1 is an Ets family transcription factor that is required for the normal 

differentiation of B cells and is expressed throughout B cell maturation (Scott, Simon et al. 
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1994). A recent report has shown its expression in primary human plasma cells but 

expression in myeloma cells and cell lines is variable (Tatetsu, Ueno et al. 2007). RPMI-

8226, myeloma cell line used in the study presented expresses PU.1. Thus in terms of 

expression of PU.1 RPMI-8226 may be similar to primary human plasma cells. We observed 

that knockdown of PU.1 in these cells leads to a reduction in the PRDM1 mRNA indicating 

PU.1 is required to maintain expression of PRDM1 in certain myeloma cells.  

 Thus our results suggest that PU.1 may contribute to the initial activation of PRDM1 

in lymphoma cells and is required for continued expression of PRDM1 in myeloma cells. 

Moreover, this is the first study to directly link apoptosis induced by anti-IgM treatment in 

lymphoma cells to induction of PRDM1. This ability of PRDM1 to induce apoptosis in 

lymphoma cells was the bases for the second study described in this dissertation.  

The second study identifies the specific involvement of PRDM1 in MCL in response 

to Bortezomib. MCL cells are pre-germinal center B cells that have little to no expression of 

PRDM1. Treatment of MCL cells with Bortezomib induces expression of PRDM1 along 

with apoptosis. Our observations are in line with the notion that PRDM1 has the ability to 

induce apoptosis in lymphoma cells and plays a tumor suppressor role in several B cell 

lymphomas (Messika, Lu et al. 1998; John and Garrett-Sinha 2009). Initial observations in 

Bortezomib treated MCL cells have shown that the PU.1 levels are unaffected by the 

treatment. It would be interesting to identify if the TLE4 expression is reduced after 

Bortezomib treatment. This would provide a possible mechanism of regulation of PRDM1 

expression in these cells upon Bortezomib treatment.  

Bortezomib induced apoptosis in MCL is associated with up regulation of pro-

apoptotic gene NOXA (Gomez-Bougie, Wuilleme-Toumi et al. 2007). We observe that 



 
135 

knockdown of PRDM1 in MCL leads to reduction in pro-apoptotic gene NOXA along with 

reduction in apoptosis in the cells. This observation further illustrates the requirement of 

PRDM1 to achieve a full apoptotic response to Bortezomib. Though, NOXA is not a direct 

target of PRDM1, its levels are affected by presence or absence of PRDM1. It will be crucial 

to identify PRDM1 targets that could directly affect the expression of NOXA.     

Xbp-1 splicing indicates that Bortezomib treatment induces ER stress in MCL which 

may cause the cells to undergo apoptosis. The data presented in this study shows that ER 

stress alone is not sufficient to bring about apoptosis in these cells. Interestingly PRDM1 is 

able to induce apoptosis in these cells in absence of any ER stress. Furthermore, our data 

confirms that induction of PRDM1 is required to bring about the full apoptotic effect of 

Bortezomib. These findings indicate that PRDM1 represses certain downstream targets that 

may be required for the survival of the cells. ChIP-on-chip assay identified two novel 

PRDM1 targets, MKI67 and PCNA, involved in cell survival and viability. Analysis of 

histone modifications at the promoters of these genes, along with analysis of their RNA 

levels further confirms repression by PRDM1. This is the first study that identifies that 

MKI67 and PCNA are directly regulated by PRDM1. This discovery may explain the cell 

cycle arrest caused by Bortezomib treatment. Bortezomib has been shown to lead to a G2/M 

cell cycle arrest (Lioni, Noma et al. 2008) and this may be because of lack of expression of 

PCNA and Ki67.  

PRDM1 has also been shown to be expressed in hematopoietic as well as non 

hematopoietic cell lineages. In most of these cells, expression of PRDM1 leads to loss of 

proliferation as observed in plasma cells or induction of apoptosis as observed in effector T 

cells and sebaceous gland cells (Horsley, O'Carroll et al. 2006; Kallies, Hawkins et al. 2006). 
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It would be important to determine if PRDM1 can directly repress expression of MKI67 and 

PCNA in these different cell types. This would give important clues in understanding the 

mechanism of action of PRDM1 in development and cell differentiation.   

This is the first study identifying an important role for PRDM1 in Bortezomib- 

induced apoptosis of MCL. This finding may provide clues as to the ineffectiveness of other 

therapeutic agents. Preliminary experiments in our laboratory have shown that treatment of 

MCL with DNA damaging agents was unable to induce PRDM1. PRDM1 induction is 

observed specifically upon treatment with FDA approved Bortezomib and certain HDAC 

inhibitors (SAHA and LBH589), which are in clinical trials. Thus this indicates that PRDM1 

expression is necessary for a higher and robust response rate in MCL patients. Moreover, the 

ability of the treatment to induce PRDM1 in these cells may prove to be a useful tool to 

predict response outcome. Finally, data presented in the above study supports that approaches 

to directly target induction of PRDM1 may be attractive means to enhance current therapies 

of MCL patients.  

 PRDM1 is a transcription repressor which acts as a scaffold, and is known to recruit 

several co-repressors to the promoters of its target genes. The third study presented in this 

dissertation uses Tandem Affinity Purification technique followed by tandem mass 

spectrometry to identify novel PRDM1 interacting proteins. This study identifies and 

confirms interactions between PRDM1 and Reptin52.  

 PRDM1 has been known to repress its targets, in part by introducing histone 

modifications. It can achieve this by recruiting co-repressors such as G9a, Groucho proteins, 

HDAC2, LSD1 and PRMT5 (Ren, Chee et al. 1999; Yu, Angelin-Duclos et al. 2000; Gyory, 

Wu et al. 2004; Ancelin, Lange et al. 2006; Su, Ying et al. 2009). All these proteins recruited 
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by PRDM1 are known to directly introduce histone modifications that eventually lead to a 

closed chromatin structure causing repression of the target genes. The above study is the first 

to identify that PRDM1 has the ability to also recruit ATPase dependent helicase – Reptin52 

to modify chromatin structure inducing repression. TIP49b/Reptin52 is a ubiquitously 

expressed protein with both ATPase and helicase activities. TIP49b/Reptin52 has been 

identified as a repressor of ATPase helicase Pointin52 because of its ability to unwind DNA 

opposite to that of Pontin52 (Bauer, Chauvet et al. 2000). It has been shown to interact with 

and elicit inhibition of c-Myc, ATF2 and β-catenin transcription (Wood, McMahon et al. 

2000; Cho, Bhoumik et al. 2001). Moreover, Reptin52 has also been shown to repress NFκB 

target KAI1 as well as β-catenin targets by complexing with co-repressors TLE1 and 

HDAC1 and HDAC2 (Kim, Kim et al. 2005). Thus the identified PRDM1-Reptin52 

interaction may play an important role in the functionality of PRDM1 as a repressor. The 

findings presented in this dissertation provide initial evidence to further study the functional 

significance of PRDM1 and Reptin52 interaction. Moreover, future studies to identify the 

ability of PRDM1-Reptin52 complex to be recruited to the PRDM1 targets after Bortezomib 

treatment in MCL, may provide further understanding of role of PRDM1 in MCL.    

 This dissertation provides an insight in the regulation of PRDM1 at the level of 

transcription in myelomas and lymphomas and specifically addresses its role in mantle cell 

lymphoma. The dissertation also presents work which provides clues that PRDM1 protein 

function may be regulated by the proteins it interacts with.  
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