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INTRODUCTION

Despite protection since 1935, endangered North
Atlantic right whales Eubalaena glacialis remain
 vulnerable to human-related threats along the indus-
trialized Atlantic coast of North America (NMFS

2005). Primary causes of serious injury and mortality
are ship strikes and fishing gear entanglements
(Knowlton & Kraus 2001). Reducing deaths and seri-
ous injuries from these threats is the focus of conser-
vation efforts and regulatory measures to support
population recovery (NMFS 2005). Conservation
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ABSTRACT: Effective conservation of endangered North Atlantic right whales  Eubalaena glacialis
requires information about their spatio-temporal distribution. Understanding temporal distribution
is particularly important, because a portion of the population migrates between high-latitude sum-
mer feeding grounds off the northeastern US and Canadian Maritimes coasts and lower-latitude
calving and wintering grounds off the southeastern US coast (SEUS). Here, we modeled SEUS res-
idence patterns using photo-identification data from coastal South Carolina, Georgia, and Florida
from 7 winter seasons (2004/2005–2010/2011). We used multistate open robust design models to
evaluate effects of reproductive status, demographic group, and environmental conditions on
SEUS residence. Model estimates accounted for temporal variation and imperfect detection and
provided probabilities of entering the SEUS, staying in the SEUS, and being sighted in the SEUS.
We also derived estimates for residence time and seasonal abundance. We observed staggered
arrival and departure patterns and demographic differences in residence  patterns that are charac-
teristic of a differential migration strategy. Calving females arrived ear liest and, in most seasons,
had mean residence periods more than twice as long as other demographic groups. Conversely,
adult males arrived the latest and had the shortest residence times. Within-season detection was
positively influenced by survey effort, and overall seasonal mean (±SE) detection rate estimates
ranged from 0.83 ± 0.08 for non-calving adult females to 0.98 ± 0.02 for calving females. Results
provide insights into right whale behavior, biology, and temporal distribution in the SEUS and can
be used to evaluate spatially and temporally dynamic management measures.

KEY WORDS:  Mark-recapture · Open robust design · Phenology · Residence · Eubalaena glacialis ·
North Atlantic right whale
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efforts include aerial surveys to mitigate ship strikes
by notifying mariners about whale locations as well
as monitoring programs that provide right whale
sighting information to monitor population status,
habitat use, and the effectiveness of regulatory
measures (Brown et al. 2007). Regulatory measures
to reduce encounters between right whales and ships
or fishing gear include fishery time-area closures
(Farmer et al. 2016), vessel routing schemes (Vander-
laan & Taggart 2009), and time-area vessel speed
restrictions (Conn & Silber 2013).

These measures are implemented seasonally in
high-latitude summer feeding grounds along the
northeastern United States and Canadian Maritimes
coasts and lower-latitude calving and wintering
grounds in the southeastern United States (SEUS),
which have been identified as critical habitat areas
based on their ecological importance and the current
understanding of right whale distribution and move-
ment patterns (Winn et al. 1986, NMFS 2014). How-
ever, an incomplete understanding of variation in
right whale distribution among aggregation areas
complicates the development of effective manage-
ment and conservation strategies (Schick et al. 2013).
In fact, limited knowledge of right whale migration
timing and residence duration in critical habitat
areas has contributed to a lack of comparable protec-
tive measures and monitoring efforts along the mid-
Atlantic coast (Firestone et al. 2008), which is the pre-
sumed migratory corridor for the annually variable
portion of the right whale population that migrates
seasonally between high-latitude feeding grounds
and the SEUS (Kraus et al. 1986, Winn et al. 1986). An
improved understanding of when and where right
whales aggregate is necessary to design conserva-
tion and management actions that support popula-
tion recovery (Vanderlaan & Taggart 2009, Farmer et
al. 2016).

Although descriptions of right whale distribution
and movement patterns are available, there are few
quantitative studies of North Atlantic right whale
residence timing within high-use or critical habitat
areas. Since direct estimates of residence time from
tagging are limited, most estimates of arrival and
departure times and total residence time within a
given habitat are based on the first and last sighting
dates of individual whales identified from pho-
tographed sighting events (e.g. Burnell & Bryden
1997, Mayo et al. 2004, Fortune et al. 2013). Other
approaches have quantified SEUS residence and
departure timing by modeling frequency distribu-
tions of individual resighting histories (Hiby &
Leaper 2005) or with linear regression modeling of

aggregated sighting data (Firestone et al. 2008). Hiby
& Leaper (2005) estimated a modal departure date
from Jacksonville, FL, of the third week in February
and predicted later departure in years with more
calves present, while Firestone et al. (2008) predicted
a later modal departure date of 2−11 March from
Jacksonville, FL, and that almost all whales departed
the calving grounds by the end of March. These esti-
mates are consistent with the generally accepted mi -
gration model where right whales arrive in the SEUS
in the fall and leave the SEUS in the spring (Winn et
al. 1986), but do not account for imperfect detection,
survey effort influences, or demographic differences
beyond calf presence or absence. Not accounting for
imperfect detection can lead to incorrect inferences
or ineffective management decisions due to biased
estimates (Gu & Swihart 2004). These issues can be
addressed with capture-recapture models, which use
encounter histories of identifiable individuals from
multiple sampling periods to estimate population
parameters while accounting for imperfect detection
and have been used to estimate residence timing for
southern right whales (Fewster & Patenaude 2009).

Here, we apply a multistate open robust design
capture-recapture model (Kendall & Bjorkland 2001,
Kendall et al. in press) to 7 seasons (2004/2005 to
2010/2011) of right whale photo-identification data
for the SEUS wintering area. Our objectives were to
describe the phenology and duration of right whale
residence in the SEUS while accounting for imperfect
detection and to assess variability in residence pat-
terns across winter seasons; among life history states
defined based on age, sex, and reproductive class;
and in relation to environmental covariates. Specifi-
cally, we hypothesized that the duration of residency
would vary across demographic groups due to differ-
ences in life history and energy requirements, with
calving females having the longest SEUS residency
to support calf development. Additionally, we hypo -
thesized that right whales would reside in the SEUS
for more time during cold winters, but for less time
following years of low prey availability, to meet ener-
getic demands. We also provide the first estimates of
winter right whale abundance in the SEUS that
account for differences in detection across demo-
graphic groups. Quantifying phenology, residency,
and abundance for ecologically important areas like
the SEUS provides insight into the biology of this
highly mobile species, while also informing monitor-
ing and management actions to mitigate impacts
from ship strikes and entanglements. In particular,
knowledge of the phenology and duration of resi-
dence can increase the effectiveness of management
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actions by identifying the appropriate timing and
extent of monitoring surveys and protective meas-
ures (Bowlin et al. 2010, Bunnefeld et al. 2011);
inform risk assessments by identifying when whales
may be exposed to threats outside of existing pro-
tected areas (NMFS 2005); and inform marine spatial
planning to manage impacts to whales while mini-
mizing economic and social costs (Petruny et al.
2014).

MATERIALS AND METHODS

Right whale data

Within the SEUS wintering grounds, systematic
aerial surveys have been conducted from approxi-
mately December to March since 1994 through the
multi-agency Early Warning System (EWS) aerial
survey and communication network (Brown et al.
2007). Although the objectives, level of effort, spatial
extent, and configuration of these surveys have
 varied, all surveys consisted of daily (weather-

 permitting) visual survey flights of up to 4 fixed-wing
aircraft. Survey teams documented right whale Eu -
balaena glacialis sightings and collected high-qual-
ity photographs of whales and their callosity pat-
terns, scars, and other distinguishing characteristics
or markings, which uniquely identify individual
whales (Payne et al. 1983, Kraus et al. 1986). Pho-
tographed sightings from aerial surveys, along with
sightings from opportunistic and other research plat-
forms, were integrated within the North Atlantic
Right Whale Consortium (NARWC) Identification
database (Hamilton et al. 2007), which is curated by
the New England Aquarium. The Identification data-
base also contains genetic information for individual
identification from skin biopsies collected during
vessel surveys, which are paired with photos of the
sampled individuals (Frasier et al. 2007, 2009).

For this study, we obtained photo-identification
records from the Identification database (accessed 14
February 2014; NARWC 2014) and analyzed sighting
records from south of the North Carolina/South Caro -
lina border for 7 winter seasons: 2004/2005 to
2010/2011. This study area (SEUS region, Fig. 1) is

part of the South Atlantic Bight, which
is characterized by a broad continen-
tal shelf ranging from ~10 to ~120 km
wide (Blanton et al. 2003) and a gently
sloping topography interspersed with
areas of hard bottom habitat (Good
2008). We defined a winter season
from November to April, since aerial
surveys were ex panded to these
months in some years. This study area
and range of years had relatively con-
sistent  aerial survey coverage of near-
shore waters from the central east
coast of Flo ri da to approximately
North Myrtle Beach, South Carolina
(Good 2008, Gowan & Ortega-Ortiz
2014), thus reducing heterogeneity in
detection probability.

Individual photo-identification re -
cords included sighting date and lo -
cation, descriptions of observed asso-
ciations, a unique identification, and
age class and gender information.
This information was used to assign
whales into 5 demographic groups for
each winter season: calving or non-
calving adult females, adult males, ju-
veniles, or unknown age/sex. Sex was
determined based on observation of
the genital area, close association
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Fig. 1. Southeastern United States (SEUS) study area and area boundaries
used to summarize environmental covariates in the northern right whale
habitats (NEUS). The NEUS-A area contains right whale habitats in the Bay
of Fundy, Gulf of Maine, Grand Manan Banks, Jeffrey’s Ledge, Cape Cod
Bay, and Massachusetts Bay, and the NEUS-B area includes habitats on the 

East Scotian Shelf and Roseway Basin
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with a calf, or genetic information (Brown et al. 1994).
Whales were considered adults when they had a
known age or sighting history of at least 9 yr or, for
females, after having their first calf (Hamilton et al.
1995). Individuals of any sex class (male, female, or
unknown) were classified as juveniles if they were
first identified as calves and had a known age <9 yr.
Individuals were classified as  calving females based
on close association with a calf (Knowlton et al. 1994)
at any point during the winter season. Since demo-
graphic group classifications were constant within
seasons, the calving female group included both fe-
males that were seen with a calf at their first sighting
in the SEUS and females that were first seen without
a calf and then later with a calf in the same season.
We assumed whales were classified as calving fe-
males without error because the intensive survey ef-
fort and nearshore tendency of whales in the SEUS
allows observers to reliably identify the presence of a
calf (Browning et al. 2010). Calves or yearlings still
associated with their mothers were excluded from
the analyses to prevent pseudoreplication.

Data analysis

Multistate open robust design model

We modeled the phenology and duration of right
whale winter residence in SEUS coastal waters using
multistate open robust design capture-recapture
models (MSORD; Kendall 2004, Kendall et al. in
press). The MSORD model structure includes para -
meters for arrival, detection, and persistence prob -
abilities across secondary sampling periods (e.g.
weeks) within a series of primary sampling periods
(e.g. years), in addition to survival probabilities and
probabilities of transition among states between each
successive primary period. However, in this applica-
tion, we ignore survival and state transitions and use
only the within-season part of the model structure to
characterize right whale residence.

For this study, primary periods were the 7 winter
seasons (hereafter seasons) from 2004/2005 to 2010/
2011, and secondary periods consisted of eleven 14 d
time periods (henceforth referred to as biweeks) from
15 November to 17 April (or 16 April in 2007/2008).
We chose a biweekly secondary period to balance the
number of parameters estimated relative to the amount
of available data. Sighting histories were compiled for
these time periods from photo-identification records
by determining if an individual was identified at least
once during each biweek in each season.

For each season and life history state (calving
females, non-calving adult females, adult males, ju -
ve niles, and unknown age/sex), we estimated para -
meters pentj, the probability an individual arrives in
the SEUS in biweek j; pj, the probability an individ-
ual present in the SEUS in biweek j is detected; and
ϕj

(v), the probability an individual in the SEUS in
biweek j, which has been in the study area for the
previous ν biweeks, is still in the study area in
biweek j + 1. The probabilities of entry and detection
probabilities can be modeled as a function of state,
covariates, or time. Persistence can be modeled as a
function of these factors and as a function of the num-
ber of biweeks since first arrival in the study area (i.e.
the time since arrival). Moreover, pentj is conditional
on those that use the study area for at least 1 time
period and, therefore, must sum to 1.0 across all
lt biweekly sampling periods each season (lt):

= 1.0 (1)

An example model structure for a study that
includes 3 time periods and has a detection history of
011 (1 for detection and 0 for non-detection in each
period) is:

(2)

where the individual is first detected in sampling
Period 2 and continues to be detected in Period 3, but
could have entered in Period 1 and was not initially
detected.

From the MSORD model structure, we also used 2
derived parameters for each life history state and
season t: abundance and residence time. The total
abundance of whales in each life history state that
utilized the SEUS in season t, N*t, was estimated as
N̂ *t = n*t / p̂*t , where n*t is the number of individuals of
a given state sighted at least once within the season
(Kendall 2006, Kendall et al. in press). Effective cap-
ture probability p*t is the probability that an individ-
ual in the SEUS in season t is sighted at least once
during the season, which is, in turn, a function of the
various model parameters pentj, pj, and ϕj

(v). The
total ex pected residence time in the study area for
each state and season t, Rt, was estimated as a
weighted average of biweekly periods, weighted by
the probability that an individual is in residence for
exactly that duration. For example, for a season of 3
sampling periods, the expression would be:

(3)

pent j
j

lt

1
∑
=

pent p p p pent p p(1 )1 1 1
(0)

2 1
(1)

3 2 2 2
(0)

3− ϕ ϕ + ϕ

R pent pent pentt 1 [ (1 ) (1 ) ]1 1 2 2 3= × − ϕ + − ϕ +

pent pent2 [ (1 ) ]1 1 2 2 2+ × ϕ − ϕ + ϕ

pent3 [ ]1 1 2+ × ϕ ϕ
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(Kendall 2006, Kendall et al. in press). The delta
method was used to estimate variances for N*t, Rt,
and p*t .

The model assumes closure (i.e. no changes in
occupancy due to births, deaths, immigration, or emi-
gration) of the population among biweeks and that
members of the population enter and exit the study
area just once each season. Given that right whales
are long-lived, large mammals (Brown et al. 2009)
and that calf sighting data were not modeled, closure
assumptions related to births and deaths are reason-
ably met. However, movement into or out of the
study area more than once within a season is possible
because surveys do not cover the entire area poten-
tially available to right whales in the SEUS (e.g. off-
shore waters) and long-distance travel has been
observed for right whales within periods as short as
2 wk (Mate et al. 1997). Nevertheless, completely
random movement in and out of the study area with -
in the season would not bias estimates of arrival or
persistence probabilities and would simply reduce
the effective sighting probability (Kendall 1999). An -
other assumption is that whales do not arrive before
or depart after the duration of sighting effort; viola-
tion of this assumption would require interpretation
of residence time estimates as minimum estimates.

We developed a candidate model set (see Table S2
in the Supplement at www. int-res. com/ articles/ suppl/
n036 p279 _ supp. pdf) to assess variation in residence
patterns across time and to evaluate hypotheses for
factors that may influence SEUS residence time by
combining different models for each parameter type
(pentj, ϕj

(v), and pj). We estimated parameters using
maximum likelihood with Program MARK (v. 8.1;
White & Burnham 1999) via the RMark package (v.
2.1.13; Laake 2013) in R (R Core Team 2015). Model
selection was based on Akaike’s Information Crite-
rion corrected for small sample sizes (AICc), and
parameter estimates were averaged based on AICc
weights (wi) to account for model selection uncer-
tainty (Burnham & Anderson 2002). AICc was calcu-
lated based on unadjusted parameter counts rather
than the numerically derived number of estimable
parameters (Laake 2013). Currently, there is no gen-
eral goodness-of-fit (GOF) test for the MSORD model
so we evaluated fit for fully time-dependent Cor-
mack Jolly Seber models run individually for each
season (Lebreton et al. 1992). We did not consider
demographic group differences here due to limited
data. Cumulative χ2 statistics and degrees of freedom
for Test 2 + Test 3 were obtained from Program
RELEASE GOF implemented in Program MARK
(v. 8.1; White & Burnham 1999). These tests assess

violation of model assumptions due to heterogeneity
in capture probability (Test 2) and survival (Test 3)
where, for our study, survival is interpreted as re -
maining in the study area.

Covariates for within-season parameters

The phenology of migration is likely influenced by
factors that are either group-specific, environmental,
or interactions between these factors (Knudsen et al.
2007). For right whales, we evaluated differences in
arrival (pentj), persistence (ϕj

(v)), and sighting proba-
bilities (pj) as a function of seasons, biweeks within
each season, and demographic groups, and we mod-
eled relationships of parameters with environmen -
tal covariates representing sea surface temperature
(SST), primary production, and climatic conditions.
Seasonal variation was evaluated using a factor vari-
able (SEASON) to group capture histories of individ-
uals that were observed in each season. To quantify
time dependence in arrival and persistence para -
meters, we evaluated models with time effects that
either varied across all biweeks (~Time) or that had
linear or quadratic relationships (on the logit scale)
for biweeks with either a multiplicative (~SEASON ×
QUAD) or additive (~SEASON + QUAD) seasonal ef-
fect. The linear and quadratic models were used to
characterize temporal trends in arrival and persist-
ence within a season while requiring fewer parame-
ters than a fully time-dependent model. We also con-
sidered an effect of survey effort (Caswell et al. 1999,
Fujiwara & Caswell 2001) on pj. We summarized EF -
FORT as kilometers flown in the SEUS study area
with in each biweek standardized relative to the mean
biweekly effort across the study period. We ig nored
the small contribution of non-aerial sightings to
effort, due to the absence of comparable effort data.

Demographic factors

We expected differences in arrival and persistence
probabilities among age, sex, and reproductive clas -
ses due to different life history and energy re quire -
ments (Clapham 2001, Craig et al. 2003, Fortune et
al. 2013) and expected different sighting probabili-
ties across demographic groups due to differences in
surface-to-dive time ratios or calf presence (Hain et
al. 1999, Fewster & Patenaude 2009). We therefore
evaluated differences across the 5 demographic
groups for all parameters by comparing models with
and without a demographic group factor variable
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(DG). Additionally, we tested the hypothesis that
calving female persistence is a function of the time
since arrival in the SEUS (i.e. the number of biweeks
since arrival; ~Cow:TSA), which may relate to a min-
imum amount of time needed for a calf to develop
prior to migrating north (e.g. developing sufficient
swimming skills; NMFS 2014). Differences across
demographic groups were also evaluated for interac-
tions with environmental covariates.

Environmental factors

Environmental covariates were summarized within
a subset of 4 regions among the SEUS and northeast
US and Canadian Maritimes (NEUS) coasts. Environ-
mental conditions in the SEUS (prior to northward
migration) were only considered relative to persist-
ence probabilities, and conditions in the NEUS (prior
to southward migration) were only considered rela-
tive to arrival probabilities. Regions in the NEUS
were defined based on historically high-use right
whale habitats that were simplified by aggregating
adjacent areas into either the NEUS-A (Bay of Fundy,
Gulf of Maine, Grand Manan Banks, Jeffrey’s Ledge,
Cape Cod Bay, and Massachusetts’s Bay) or NEUS-B
(East Scotian Shelf and Roseway Basin) regions

(Schick et al. 2013; Fig. 1). Aggregation was based on
similarities in observed SST during the study period.
We also considered the entire NEUS region by com-
bining the NEUS-A and NEUS-B regions. The SEUS
region was defined as the North Carolina/South Car-
olina border south to Jupiter, FL, with an offshore
extent out to the approximate location of the mid-
continental shelf (Fig. 1). This extent encompasses
historical right whale sightings in the SEUS region
since 1991 (Gowan & Ortega-Ortiz 2014).

Sea surface temperature. Variation in right whale
distribution has been linked to SST (Keller et al.
2006, Pendleton et al. 2012), and right whales may
have an upper thermal limit (Kenney 2007, Good
2008), while cow-calf pairs may avoid particularly
cold water (Keller et al. 2006). Since SEUS shelf
waters typically cool rapidly between September and
October (Blanton et al. 2003), we quantified the tim-
ing of seasonal cooling for the corresponding period
in the NEUS using SST anomalies calculated as the
difference between October SST in the NEUS-A or
NEUS-B regions and mean October SST across the
study period in each region (Covariates 1 and 2;
Table 1). We expected earlier arrival in years with
below-average October SST. We also expected ear-
lier arrival when NEUS winter SST was colder than
average (Covariate 3; Table 1). Conversely, we pre-
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Parameter        Covariate                         Description

Arrival
1                       SSTAnomOct,NEUS-A          Anomaly of mean NEUS-A October SST relative to mean October NEUS-A SST 
                                                                  across all seasons
2                       SSTAnomOct,NEUS-B          Anomaly of mean NEUS-B October SST relative to mean October NEUS-B SST 
                                                                  across all seasons
3                       SSTAnomWinter,NEUS         Anomaly of mean December−February NEUS SST relative to mean winter NEUS 
                                                                  SST across all seasons
4                       CHLAnomSpring,NEUS        Anomaly of mean March−April NEUS CHL relative to mean spring NEUS CHL 
                                                                  across all seasons
5                       CHLAnomSummer,NEUS      Anomaly of mean May−July NEUS CHL relative to mean summer NEUS CHL 
                                                                  across all seasons
6                       CHLAnomFall,NEUS           Anomaly of mean August−November NEUS CHL relative to mean fall NEUS CHL 
                                                                  across all seasons
7                       NAO                                Mean North Atlantic Oscillation index values for October to April of each season

Persistence
8                       SSTSEUS                            Mean SEUS SST in degrees Celsius for each biweek
9                       SSTSlopeSEUS                            Rate of change in SEUS biweekly mean SST from the previous biweek
10                     SSTWinter,SEUS                    Mean SEUS SST in degrees Celsius from December to February for each season
11                     SSTAnomWinter,SEUS          Anomaly of mean December−February SEUS SST relative to mean winter SEUS 
                                                                  SST across all seasons
12                     NAO                                Mean North Atlantic Oscillation index values for October to April of each season

Table 1. Definitions of environmental covariates (SST: sea surface temperature; CHL: chlorophyll a; NAO: the North Atlantic
Oscillation index) evaluated for the arrival and persistence parameters of the multistate open robust design model. See Fig. 1
for region locations in the northeastern United States and Canadian Maritimes coasts (NEUS) and the southeastern United 

States (SEUS)
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dicted departure timing to be influenced by warming
SEUS SST and expected persistence probabilities to
decrease (1) with increasing biweekly mean SEUS
SST; (2) after the rate of change in biweekly SEUS
SST values became positive; or (3) earlier in the sea-
son (i.e. earlier departure) when SEUS winter mean
SST values for each season and SEUS winter SST
anomalies were above the study period mean winter
SEUS SST (Covariates 8 to 11, respectively; Table 1).

SST covariates were derived from global daily
mean SST (°C) data for October 2004 to April 2011
obtained from the NOAA OI SST V2 high resolution
blended data set (Reynolds et al. 2007) provided
online by the NOAA Earth System Research Labora-
tory Physical Sciences Division (www.esrl.noaa.gov/
psd/). Daily mean SST data were used as a bulk
measure of regional temperature and were summa-
rized into biweekly, October, and seasonal means
and anomalies across the study period (Table 1).

Primary production. Given the energetic demands
of long-distance migration and fasting within SEUS
wintering grounds (Kenney et al. 1986, Fortune et al.
2013), we expected arrival timing to be related to the
quality, abundance, and phenology of food resources
available to right whales prior to migration. Abun-
dance and phenology of Calanus finmarchicus, the
primary prey for right whales (Baumgartner et al.
2003), are influenced by oceanographic processes
and large-scale climatic fluctuations, such as the
North Atlantic Oscillation (Drinkwater et al. 2003,
Greene & Pershing 2003) as well as the magnitude,
timing, and duration of phytoplankton blooms (Dur -
bin et al. 2003, MERCINA 2004, Johnson et al. 2008).

We evaluated effects of phytoplankton bloom
magnitude and timing prior to the winter season on
arrival probabilities across seasons using satellite-
derived surface chlorophyll a concentrations in mg
m−3 (CHL) as an indicator of primary production
(Song et al. 2010). Seasonal NEUS CHL anomalies
were calculated relative to study period seasonal
means (Covariates 4−6 in Table 1) from 2004 to
2010, with seasons defined according to climatologi-
cal seasonal cycles observed for C. finmarchicus
(Spring: March− April, Summer: May−July, Fall:
August−November; MERCINA 2004). Seasonal
mean values were de rived from monthly mean CHL
data from SeaWiFS level-3, 1/12 degree resolution
data for 2004−2010 obtained from the NASA Ocean
Biology Processing Group (NASA 2014) using Mar-
ine Geospatial Eco logy Tools v. 0.8a43 (Roberts et
al. 2010) and summarized within the NEUS region
with the Spatial Ana lyst Zonal Statistics tool in
ArcGIS (ESRI 2014).

North Atlantic Oscillation Index. The North Atlan -
tic Oscillation (NAO) is a coupled ocean-atmospheric
system quantified using NAO index values that indi-
cate the difference of pressure anomalies between
the Azores and Iceland (Hurrell 1995). Most promi-
nent during boreal winter, the NAO influences
northern hemisphere climate, weather, and ecosys-
tems, including plankton communities (Hurrell 1995,
Drinkwater et al. 2003, Greene & Pershing 2003).
Negative winter NAO indices indicate a decreased
pressure gradient and are generally associated with
increased transport of cool, fresh Labrador Current
water to south of the Grand Banks and lower C. fin-
marchicus abundance in the northwest Atlantic
(Greene & Pershing 2000, Conversi et al. 2001,
Greene et al. 2013). Changes in oceanic conditions
associated with NAO variability have been linked to
ecological dynamics at multiple trophic levels (Otter -
sen et al. 2001), including C. finmarchicus abun-
dance in the Gulf of Maine (Greene & Pershing 2000)
and right whale body condition (Miller et al. 2012)
and calf production (Meyer-Gutbrod et al. 2015).

We calculated the winter NAO index from monthly
mean NAO index values normalized to 1981−2010
monthly means obtained from the NOAA Climatic
Prediction Center (www.cpc.ncep.noaa.gov/products/
precip/CWlink/pna/nao.shtml). Monthly mean NAO
index values were averaged from October to April for
each winter season (Covariates 7 and 12 in Table 1).
We expected later arrival (i.e. peak arrival probabili-
ties later in the season) during seasons with a nega-
tive NAO index, since whales may arrive later if
more time is needed to accumulate sufficient energy
stores before migrating or if whales disperse to alter-
native feeding grounds and then must travel farther
to reach the SEUS (Meyer-Gutbrod et al. 2015).
Alternatively, we expected higher persistence proba-
bilities to extend later into the season (i.e. later
departure) during negative NAO seasons because
coastal waters within the SEUS would be expected to
stay cooler longer than during a positive phase NAO
season.

RESULTS

Right whale sightings

Of the records obtained from the Identification
database, we analyzed 7601 photo-identified sight-
ing records for 408 individual whales Eubalaena
glacialis. Most records (86%) were from EWS aerial
surveys, with other sighting sources consisting of
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ves sels (10.3%), land-based sightings (2.5%), and
unspecified platforms (1.1%). The 2009/2010 season
had the most unique individuals (220), while 2008/
2009 had the highest number of sightings (1560; see
Fig. S1 in the Supplement). Except for 2004/ 2005
when adult males were most common, most identi-
fied individuals in each season were juveniles, and
the proportion of juveniles increased across the study
period (Table S1). Across all demographic groups,
the average number of days between sightings was
5.3 d (SD = 6.6), but 7% of sighting gaps were longer
than the biweekly secondary period. Where SEUS
sighting gaps were >14 d, the Identification database
(NARWC 2014) was further examined for movement
out of the study area, but we found no photo-identi-
fied sightings of these whales in other locations to
confirm the whales had left the SEUS during these
gaps (P. Hamilton pers. comm.).

Model results

Of the models evaluated (Table S2), 6 models had
some support (wi > 0.001), and Model 1 had 90.7% of
the AICc weight (Table 2). Cumulative goodness-of-
fit results did not indicate a lack of fit (χ2 = 134.34, df
= 125, p = 0.268; ĉ = 1.07). The models best supported
by the data indicated differences among DGs for all
parameters; differences in arrival (pent ) and persist-
ence (ϕ) parameters across biweeks that were mod-
eled with a quadratic time trend (QUAD); and
biweekly sighting probabilities (p) that were mod-
eled with an interaction between demographic group
and survey effort (DG × Effort). Four of the 6 sup-
ported models included 1 of 3 environmental anom-
aly covariates for arrival timing: NEUS-A October

SST, NEUS-B October SST, or NEUS fall CHL
(Fig. S2). In contrast, top persistence models did not
indicate support for the environmental covariates
evaluated or for the time-since-arrival hypothesis for
calving females. All top models in cluded either addi-
tive or multiplicative seasonal effects on persistence,
and models with an additive effect received the most
support (cumulative wi = 0.950; Table 2). We used
model averaging to account for model selection
uncertainty and present averaged results for each
parameter, noting that Model 1 had the most support.

Arrival probabilities indicated staggered arrival
that varied across demographic groups and time
(Fig. 2a−e). For each season, each biweekly arrival
probability was >0 for at least 1 demographic group,
indicating that right whales arrived throughout the
winter. However, arrival patterns were distinct
among demographic groups, with calving and non-
calving adult females tending to arrive earliest, fol-
lowed by juveniles, unknown age/sex individuals,
and then adult males (Fig. 2a−e). Across seasons,
some calving females and non-calving adult females
arrived or were already present in the study area
during the first biweek from 15 November to 28 No-
vember (first occasion pent values; Fig. 2a,b). In con-
trast, few juveniles were present in the first biweek
(Fig. 2d), unknown age/sex individuals did not arrive
until the second biweek except in 2006/ 2007
(Fig. 2e), and most adult males did not arrive until af-
ter late January (Fig. 2c). Juvenile whale arrival pat-
terns were very consistent across seasons (Fig. 2d).

Similar to arrival probabilities, departure times
were staggered, with variation across seasons and
demographic groups. In all seasons, calving females
stayed in the SEUS until at least mid-January, while
other groups had lower persistence probabilities
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Model K ΔAICc wi Deviance

1   pent (DG × QUAD × SSTAnomOct,NEUS-A), ϕ (QUAD × DG + SEASON), p (DG × EFFORT) 61 0.000 0.907 8039.49
2   pent (DG × QUAD × SSTAnomOct,NEUS-A), ϕ (QUAD × DG × SEASON), p (DG × EFFORT) 145 5.863 0.048 7864.27
3   pent (DG × QUAD), ϕ (QUAD × DG + SEASON), p (DG × EFFORT) 46 6.814 0.030 8077.49
4   pent (DG × QUAD × SSTAnomOct,NEUS-B), ϕ (QUAD + SEASON × DG), p (DG × EFFORT) 61 8.971 0.010 8048.46
5   pent (DG × QUAD × CHLAnomFall,NEUS), ϕ (QUAD × DG + SEASON), p (DG × EFFORT) 61 11.549 0.003 8051.04
6   pent (DG × QUAD), ϕ (QUAD × DG × SEASON), p (DG × EFFORT) 130 14.035 0.001 7905.61

Table 2. Top 6 multistate open robust design models of arrival (pent ), persistence (ϕ), and sighting probabilities (p), with >0.001
AICc weight (wi) where AICc is Akaike’s information criterion corrected for small sample sizes, K is the total number of parameters
in each model, and ΔAICc is the difference in AICc values from model [1]. Variation in linear and quadratic relationships for second-
ary periods across seasons is indicated by the QUAD term. Factor variables were demographic group (DG) and the primary period
winter seasons (SEASON), while covariate values were October sea surface temperature anomalies for the NEUS-A
(SSTAnomOct,NEUS-A) and NEUS-B (SSTAnomOct,NEUS-B) regions; surface chlorophyll a anomalies for August to November in the
NEUS region (CHLAnomFall,NEUS); and standardized biweekly aerial survey effort (EFFORT). See Table S2 in the Supplement at 

www.int-res.com/articles/suppl/n036p279_supp.pdf for full AICc table

http://www.int-res.com/articles/suppl/n036p279_supp.pdf
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Fig. 2. Model-averaged parameter estimates for biweekly probabilities of (a–e) arrival (pent ) and (f–j) persistence (ϕ) for each
season for (a,f) calving females, (b,g) non-calving adult females, (c,h) adult males, (d,i) juveniles, and (e,j) unknown age/sex 

individuals. Error bars indicate SE
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overall (Fig. 2). In fact, calving female
persistence probabilities were >0.50
through at least Biweek 7 (7−20 Febru-
ary) for all seasons, indicating that these
individuals were more likely to stay in
the study area than to leave (Fig. 2f).
Similar patterns were ob served for non-
calving adult females, except in 2005/
2006, 2006/2007, and 2010/2011. For
juveniles and unknown age/sex indi-
viduals, 7 of 11 biweeks had persistence
probabilities > 0.50 in most seasons;
persistence probabilities were lower for
these groups in 2005/2006 and
2010/2011 and higher in 2006/2007
(Fig. 2i,j). In contrast, adult males were
more likely to leave than to stay during
the majority of biweeks in each season
except for 2006/2007, 2007/2008, and
2009/2010 (Fig. 2h). We note the large
uncertainty associated with persistence
estimates for adult males for the first 3
biweeks; this is because persistence is
conditional on prior arrival, and male
arrival probabilities were near zero for
these biweeks. Adult males were the
only demographic group for which per-
sistence probabilities decreased to zero in all sea-
sons, with this occurring during Biweek 11 (3−16
April). Across demographic groups, 2005/2006 and
2010/ 2011 had the lowest overall persistence proba-
bilities, and persistence probabilities were highest
during 2006/2007 (Fig. 2f−j).

Differences in arrival and persistence probabilities
across seasons and groups were reflected in variation
in residence patterns. In most seasons, calving fe -
males stayed in the SEUS more than twice as long as
individuals in other groups, with an overall mean res-
idence time (±1 average SE) of 87.5 ± 4.9 d (range:
78.9 − 99.6 d; Table 3). Adult males consistently had
the shortest residence times with an overall mean of
20.4 ± 1.1 d (range: 16.8 − 22.8 d; Table 3). Mean res-
idence times for non-calving adult females and juve-
niles were similar in all seasons (Table 3). Within
demographic groups, estimated mean residence
times were shortest in 2010/2011 (except for calving
females and unknown age/sex individuals, which
were shortest in 2005/ 2006) and longest in 2006/2007
(except for adult males, which were longest in
2009/2010).

Demographic and seasonal differences were also
indicated in estimates of pj (i.e. biweekly sighting
probabilities); however, overall patterns generally

followed patterns in biweekly aerial survey effort
(Fig. S3). Survey effort and detection probabilities
were lower during the first and last biweeks, due in
part to variable timing in survey start and end dates
across seasons. In all seasons, calving females had
the highest seasonal detection rates (p*), followed by
juveniles, adult males, unknown age/sex individuals,
and non-calving adult females (Table 4). However,
p* values decreased for all demographic groups dur-
ing the 2010/2011 season, which had 21% less effort
than the study period average (Fig. S3 in the Supple-
ment). Seasonal abundance estimates indicated that
there were more juveniles, adult males, and
unknown age/sex individuals in the SEUS than
observed (Fig. 2).

DISCUSSION

Although right whale Eubalaena glacialis distribu-
tion and movement patterns have been described
(Winn et al. 1986, Schick et al. 2013), temporal com-
ponents of right whale distribution, including resi-
dence time in high-use areas, are less well under-
stood. The generally accepted North Atlantic right
whale seasonal migration model consists of south-

288

Primary Calving Non-calving Adult Juveniles Unknown 
period females adult females males age/sex

2004/2005 80.8 ± 5.0 41.3 ± 4.6 21.7 ± 1.1 41.5 ± 2.2 27.5 ± 2.4
2005/2006 78.9 ± 5.2 33.1 ± 4.5 18.9 ± 0.9 34.9 ± 2.0 24.6 ± 2.0
2006/2007 99.6 ± 5.9 55.5 ± 9.7 21.5 ± 1.5 45.3 ± 3.0 38.4 ± 5.4
2007/2008 93.8 ± 4.7 44.3 ± 6.9 20.1 ± 1.1 41.1 ± 1.9 33.3 ± 3.8
2008/2009 89.3 ± 3.5 42.7 ± 5.3 20.9 ± 0.9 40.8 ± 1.6 29.8 ± 2.5
2009/2010 87.4 ± 4.1 45.0 ± 6.8 22.8 ± 1.1 44.1 ± 1.8 30.4 ± 2.6
2010/2011 82.3 ± 5.3 26.1 ± 4.3 16.8 ± 1.0 29.2 ± 1.6 25.3 ± 3.6
Mean 87.5 ± 4.9 41.1 ± 6.3 20.4 ± 1.1 39.6 ± 2.1 29.9 ± 3.4

Table 3. Expected mean residence times for each season (±1 SE) and the entire 
study period (±1 average SE) in days for each demographic group

Primary Calving Non-calving Adult Juveniles Unknown 
period females adult females males age/sex

2004/2005 0.99 ± 0.00 0.90 ± 0.04 0.95 ± 0.02 0.96 ± 0.10 0.91 ± 0.03
2005/2006 0.99 ± 0.02 0.87 ± 0.06 0.95 ± 0.03 0.96 ± 0.01 0.89 ± 0.04
2006/2007 0.99 ± 0.01 0.89 ± 0.04 0.92 ± 0.07 0.96 ± 0.01 0.86 ± 0.04
2007/2008 0.98 ± 0.01 0.85 ± 0.06 0.91 ± 0.08 0.95 ± 0.01 0.89 ± 0.04
2008/2009 0.99 ± 0.01 0.86 ± 0.05 0.90 ± 0.05 0.95 ± 0.01 0.84 ± 0.05
2009/2010 0.99 ± 0.01 0.84 ± 0.07 0.92 ± 0.03 0.95 ± 0.01 0.87 ± 0.04
2010/2011 0.94 ± 0.04 0.58 ± 0.17 0.66 ± 0.11 0.89 ± 0.02 0.74 ± 0.07
Mean 0.98 ± 0.02 0.83 ± 0.08 0.89 ± 0.06 0.95 ± 0.01 0.86 ± 0.05

Table 4. Seasonal and overall mean probabilities (±1 SE) that an  animal in the 
study area is observed at least once during the primary period t (p*t )
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ward movement during fall or early winter and
northward movement during late winter or spring
(Kraus et al. 1986, Winn et al. 1986, Firestone et al.
2008). However, we ob served staggered arrival and
departure patterns that are not consistent with this
model. Instead of a distinct peak in arrival probabili-
ties early in the season, our models indicated arrivals
for at least one demographic group in all biweeks of
the winter. Furthermore, instead of a sharp decline in
persistence probabilities at the end of the season, we
observed per sistence probabilities below 0.50 as
early as Bi week 6 (24 January to 6 February), which
indicates that some right whales likely leave the SEUS
in the middle of the winter season. Our capture-
recapture modeling framework results described
variation in SEUS wintering ground residence pat-
terns among demographic groups, identified poten-
tial influences for variation across time, and provided
estimates of winter abundance in the SEUS study
area, which can inform monitoring and management
actions to support right whale recovery.

Demographic factors

We observed distinct residence patterns among de-
mographic groups, which supports our hypothesis
that life history and behavioral differences influence
right whale residence timing in the SEUS. Demo-
graphic differences were more apparent in arrival
patterns than in persistence, with calving and non-
calving adult females arriving earlier than other
groups (Fig. 2a−e). Our estimates of right whale ar-
rival patterns for the SEUS area are consistent with
arrival patterns for males and females described by
Schick et al. (2013), although that work did not con-
sider differences due to age class or calving status.
Earlier arrival by calving females contributed to calv-
ing females having the longest mean (± 1 average SE)
residence time of any demographic group (87.5 ±
4.9 d; Table 3). Fortune et al. (2013) also described
longer SEUS residence periods for calving females
(46.32 ± 14.60 d) than for non-lactating females (23.75
± 18.6 d), juveniles (16.33 ± 8.50 d), or adult males
(3.11 ± 3.33 d) using first and last sighting dates in the
SEUS from 1991 to 2009 (estimates from Fortune et al.
2013 are means ±SD). Longer mean residence
periods have also been documented for Southern
right whale Eubalaena australis calving females rela-
tive to other demographic groups at wintering
grounds in Península Valdés, Argentina (calving fe-
males mean = 77 d; other groups mean = 52 d; Rown-
tree et al. 2001) and southern Australia (calving fe-

males mean = 70.9 d; whales without calf mean =
20.4 d; Burnell & Bryden 1997). Our mean residence
time estimates are longer than estimates for these
Southern right whale wintering grounds and much
longer than previous estimates by Fortune et al.
(2013). This disparity may reflect real differences
across time, populations, or habitats; however, direct
comparison may not be ap propriate since these other
studies did not account for imperfect detection, which
could result in underestimates of residence duration.
Furthermore, our calving female residence time esti-
mates should be considered a minimum residence
period since calving females have occasionally been
sighted in the SEUS before aerial surveys begin
(NARWC 2014) and may stay after aerial surveys end
(last occasion ϕ values > 0; Fig. 2f). This interpretation
may not apply to adult males if they only enter and
exit the SEUS once, since adult male arrival and de-
parture was fully encompassed by the timing of dedi-
cated aerial surveys. Underestimating residence time
by not ac coun ting for imperfect detection or survey
effort influences can lead to incorrect inferences. For
example, our longer residence duration estimates
suggest the physiological implications of fasting in
the SEUS wintering grounds predicted by Fortune et
al. (2013) may be underestimated.

The SEUS residence patterns described by our
study are more typical of differential migration than
the generally accepted North Atlantic right whale
migration model. Differential migration is character-
ized by variable migration timing among individuals
in different age, sex, and reproductive classes and
has been observed in other baleen whale species,
including Antarctic blue whales (Thomisch et al.
2016) and humpback whales (Craig et al. 2003, Ste-
vick et al. 2003). Possible reasons for a differential
migration strategy for right whales include the influ-
ence of feeding ground location on migration timing
and the impacts of migration timing on body condi-
tion and fitness. For example, adult females may
require different prey types at different times of their
reproductive cycle and exhibit flexibility in their use
of spring, summer, and fall feeding habitats (Brown
et al. 2001). In turn, flexibility in feeding ground loca-
tion may result in variable arrival and departure tim-
ing due to the difference in time required to migrate
to and from the SEUS from different locations (Ste-
vick et al. 2003). Additionally, early arrival and
longer residence times by calving females may
increase calf  fitness by allowing calves more time to
develop in the supportive conditions of the SEUS
habitat prior to migration to higher-latitude habitats
(Clapham 2001). Although a time-since-arrival co -
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variate was not supported in our top models for calv-
ing female persistence (Table 2), this was not surpris-
ing since arrival does not necessarily coincide with
calf birth (Kraus et al. 1986) and cow-calf associations
can last longer than one winter season (Hamilton &
Cooper 2010). Estimates of calf survival will be
required to compare the fitness of calves of early-
arriving fe males to calves of later-arriving females,
while also accounting for calf age. Furthermore, de -
parture timing patterns across demographic groups
were more similar than arrival timing patterns across
demographic groups, which may be due to whales
leaving the SEUS to take advantage of NEUS food
resources that occur at a predictable time in late
 winter or early spring. In particular, the end date
of Calanus finmarchicus seasonal dormancy (approx-
imately late January through late February) is more
consistent than when it begins (Melle et al. 2014).
Potential impacts of climate change, including
warmer deep-water temperatures in the Gulf of
Maine, could shift food resource phenology, causing
C. finmarchicus to end dormancy earlier and result-
ing in shorter residence of right whales in the SEUS
(Melle et al. 2014, Thomisch et al. 2016).

For demographic groups other than calving fe -
males, whose motivation for migration is unclear
(Corkeron & Connor 1999), observed arrival timing
patterns are likely influenced by social factors, life-
history related differences in energetic needs, and
distributions prior to migration (Corkeron & Connor
1999, Clapham 2001). For example, Murison & Gaskin
(1989) proposed that migrating to fast in warmer, low-
latitude waters may be more beneficial than compet-
ing for potentially limited food resources in colder,
high-latitude waters throughout the year. Our obser-
vations of peak adult male arrival during February
corresponding with the coldest SST in our NEUS sum-
mary area during February and March are consistent
with this  theory. Social considerations may be impor-
tant for juveniles, who lack historical knowledge
about temporally or spatially variable aspects of the
seasonal migration (Hamilton & Cooper 2010). Shaw
& Couzin (2013) also theorized that individuals with-
out knowledge of resource conditions would rely on
social sources to inform migration, including pooling
individual knowledge of conditions through social in-
teractions. Consistent with this theory, we observed
juvenile arrival patterns that were similar over all sea-
sons and overlapped with those of other demographic
groups (Fig. 2a−e), which may reflect re liance on so-
cial interactions for migrating juvenile whales.

For unknown age/sex individuals, arrival patterns
were similar to those of juveniles and adult males

(Fig. 2c−e). This is not unexpected since juveniles
and adult males may be harder to age or sex due to
lack of calving identifiers. Interestingly, calving and
non-calving females had similar arrival patterns,
which may reflect some uncertainty in the assign-
ment of calving status. Although we expected low
uncertainty for the calving female state assignment
due to the intensive survey effort and survey condi-
tions in the SEUS, some calving females may have
been misclassified as non-calving females due to ter-
minated pregnancies, undetected calf mortality, or
departure from the SEUS before a calf was detected
(Browning et al. 2010). If present, this misclassifica-
tion would result in non-calving female residence
time estimates being biased towards that of calving
females while abundance estimates of non-calving
females and calving females would be overestimated
and underestimated, respectively. In future work,
model frameworks that account for state uncertainty
(Kendall 2004, Pradel 2005) could potentially use ob-
served patterns in residence or other behaviors to in-
form the assignment of age, sex, or reproductive state
for some unknown age/sex individuals or to account
for potential misclassification of calving status.

Environmental factors

Demographic group influences on arrival time var-
ied with changes in environmental factors across sea-
sons. For instance, arrival patterns among seasons
differed with NEUS October SST anomalies, al -
though this relationship was different between adult
males and all other demographic groups. Calving
females, non-calving adult females, and unknown
age/sex individuals arrived later, while adult males
tended to arrive earlier, during seasons with below-
average October NEUS-A SST (2004/2005, 2005/
2006, and 2009/2010; see Fig. S2 in the Supplement).
In seasons where October NEUS-A SST was above
average (2006/2007, 2007/2008, 2010/ 2011; Fig. S2),
arrival timing for these groups was earlier and later,
respectively. This may indicate differences in ther-
mal tolerance or energetic budgets across demo-
graphic groups or that whales respond to another,
unknown environmental cue that is correlated with
NEUS October SST.

In contrast to arrival, none of the environmental
covariates evaluated for persistence had support in
our top models; however, support for the seasonal
effect suggests that temporal variability in some
unidentified environmental condition influences de -
parture timing from the SEUS. The lack of support
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for models with persistence SEUS SST covariates was
unexpected given the importance of SST in SEUS
habitat models (Gowan & Ortega-Ortiz 2014).
Within- season weather variability that influences
SEUS SST may have masked the relationship be -
tween the SST covariates considered and variation in
persistence among seasons. For example, 2010/2011
had the lowest persistence probabilities overall and
the warmest SEUS biweekly temperatures for the last
biweek, which agrees with our prediction that
warmer SEUS biweekly SST at the end of the season
would be associated with earlier departure. How-
ever, 2010/2011 also had the coldest SEUS December
SST of the seasons considered and this variability
likely contributed to the relative lack of support for
SST covariates for persistence in the top models.
Future work should account for such within-season
variability when evaluating relationships with envi-
ronmental covariates.

The NAO index was not a useful predictor of
arrival or persistence in our models. The duration of
our study may have been insufficient to detect effects
of the NAO, which operates at a decadal scale
(Greene & Pershing 2000). In fact, 2007/2008 was the
only winter in our study that had a positive winter
index. We also did not consider lagged or cumulative
effects that might be more relevant to right whale
condition and behavior (Meyer-Gutbrod et al. 2015).
Furthermore, the spatial or temporal scale used to
summarize environmental data may not match the
scale relevant to right whales. In addition to consid-
ering other environmental or biological variables
such as right whale health (Rolland et al. 2016),
future work should evaluate summarizing the vari-
ables we considered at different scales and incorpo-
rate information from large-scale oceanographic and
physical-biological models (Pendleton et al. 2012).

Management implications

Beyond insights into right whale life history, our
results can inform temporal components of monitor-
ing, management, and conservation actions along
the Atlantic coast. Current protection measures for
right whales are determined based on the generally
accepted migration model. However, our results
show that this model is incomplete and that infer-
ences should not be determined based on residence
patterns averaged across demographic groups. For
instance, Hiby & Leaper (2005) predicted later modal
departure dates in years with more calves present.
This suggests that the presence of calves influences

the residence time of all whales, whereas our results
indicate that the later departure timing in seasons
with more calves was due to the presence of more
calving females, which had much longer residence
periods than other groups. Also, variable residence
patterns and phenology may result in different risk
exposure among demographic groups if current pro-
tections do not provide spatial or temporal coverage
for all individuals. For example, with the longest res-
idence times and potential to arrive in the SEUS prior
to the start of dedicated surveys, calving females that
are critical to population growth (Fujiwara & Caswell
2001) may have increased exposure to threats in the
SEUS or while in transit along the mid-Atlantic coast
if regulations do not account for the different resi-
dence patterns among demographic groups.

In addition to clarifying residence timing and dura-
tion in the SEUS, our results support the potential for
right whale occurrence outside of known, high-use
areas. Specifically, staggered arrival and persistence
patterns suggest that whales may occur along the
mid-Atlantic coast throughout the winter. This is con-
sistent with observations from acoustic monitoring ef-
forts that have documented winter acoustic presence
of right whales along North Carolina and Georgia
during all seasons without the bi-modal occurrence
pattern that would be expected if southward and
northward migrations occurred collectively (Hodge et
al. 2015). Another acoustic study detected right whale
presence off Virginia with peaks in detections during
October to December and February to March (Salis-
bury et al. 2016). Although these peaks align with the
expected southward and northward migration peri-
ods, the spring peak was larger than the fall peak. Our
results suggest that the smaller fall peak could be ex-
plained by the higher variability in arrival dates
across demographic groups compared to departure in
the spring, or that the larger spring peak might
include southward movement of late-arriving migrat-
ing individuals such as adult males. However, these
explanations cannot be fully evaluated since Salisbury
et al. (2016) did not identify individual animals. Our
results, together with observations from other work,
provide additional evidence that SEUS winter resi-
dence and migratory corridor use are more dynamic
than pre viously thought. The residence timing esti-
mates  provided by our study could provide prelimi-
nary information to plan more detailed surveys of the
pre sumed migratory corridor.

Aerial surveys are an important tool for monitoring
right whale population status, habitat use, and the
effectiveness of management actions. Our models
highlighted the close relationship between aerial sur-
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vey effort and right whale detection
probabilities in the SEUS. Survey
effort should therefore be allocated to
meet desired conservation and man-
agement objectives. For example, if
identifying calving fe males to esti-
mate their survival and reproductive
rates (Fujiwara & Caswell 2001) or
mitigating their ship strike risk (e.g.
Keller et al. 2006, Martin et al. 2016)
are primary goals, survey effort levels
ob served across the study period
were very effective (mean p* = 0.98 ±
0.02 SE) at sighting these individuals
even when reduced effort in 2010/
2011 decreased p* to 0.94 ± 0.04 SE.
This effectiveness is likely due to the
typically long residence periods of
calving females in the area, which
make calving females more available
to be sighted at least once in a given
season. In contrast, p* values for individuals in other
groups were more negatively impacted by the de -
crease in survey effort in the last season of our study
period, possibly due to their shorter residence times.
Detection rates could be further re duced if the timing
of residency coincides with poor survey conditions.
For instance, survey effort de creased in Bi weeks 5 or
6 in most seasons during the short window when
adult males were present, and this decrease may be
related to poor weather conditions that can impact
the ability to fly surveys in the SEUS during late Jan-
uary and early February.

In addition to informing monitoring efforts, detec-
tion probabilities can also be used to adjust abun-
dance estimates from observed counts. Here, we pro-
vided the first estimates that account for imperfect
detection of the number of whales in each demo-
graphic group that used the study area each winter
(Fig. 3). These abundance estimates could be used to
make better predictions about risk of mortalities
associated with major threats (e.g. ship strikes, see
Martin et al. 2016), for example. We recommend that
future population assessments consider the effects of
survey effort and variable residency on right whale
detection probabilities.

The modeling approach presented in this study pro-
vides information about the temporal distribution and
phenology of mobile or migratory species where
mark-recapture-type data are available and could be
applied to other species or other right whale aggrega-
tion areas. For right whales, our within-season models
can also be used to inform a more comprehensive cap-

ture-recapture modeling analysis using the full
MSORD model to estimate survival, state transitions,
and temporary emigration dynamics. Our work con-
tributes to a more complete understanding of right
whale phenology and duration in the SEUS. Under-
standing where and when whales occur is  critical for
planning spatially and temporally dyna mic conserva-
tion, research, and monitoring efforts; evaluating
habitat use; and completing risk assessment analyses
to reduce deaths and serious injuries from ship strikes
and fishing gear entanglements, which impede the
recovery of this highly endangered species.
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