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Abstract: A commercially available adenosine triphosphate (ATP) detection system (Hygiena, 
USA), supported by cultivable microbial indicators, was used to estimate bioburden 
in different habitats in and outside show caves: air, water and solid surfaces. A strong 
positive correlation between ATP concentration expressed as Relative Light Units (RLU) 
and Colony-Forming-Units (CFU) was observed for swab samples from cave surfaces. In 
terms of ATP units, surfaces in a single cave system (Postojna Cave) varied considerably  
(240-1,258,800 RLU/ 20 cm2) and commonly exceeded the bioburden level of analogues on 
the surface (0-114,390 RLU/ 20 cm2). Cave sub-habitats were colonized by physiologically 
distinct microbial communities in terms of their nutrient demands, temperature requirements 
and r/K growth strategy. The highest ATP biomass indicator (1,258,800 RLU/ 20 cm2) for the 
speleothem that had been touched but accompanied with comparable concentration of CFU 
(~106 CFU/ 20 cm2) for other cave sub-habitats, can be related to the presence of deposited 
human epithelium skin cells. Show cave infrastructures containing heavy metals, e.g. copper 
used in safety fences, reduce the viability of microbiota. Mass cave visitation and the presence 
of allochthonous organic matter result in high levels of airborne and total biomass. Once such 
material becomes airborne, the location of its settling depends upon natural and human-
induced air movements. Underground habitats play an important role in the preservation and 
concentration of microbial biomass using air and water as transport mechanisms.
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INTRODUCTION

Microbes face stressful environmental conditions 
during transfer through the atmosphere (Morris et 
al., 2011) and also within water (Balkwill et al., 1998). 
Having successfully overcome stressors while in 
transit and reached the new destination, preservation 
of their viability is further challenged by different 
factors. Once the microbes are in contact with the 
surface, their fate depends upon their ecophysiological 
capabilities (Guerrero et al., 2002; Schimel et al., 
2007), substrate characteristics (Warscheid & Braams, 
2000), environmental conditions, e.g. UV (Wynn-
Williams & Edwards, 2002), desiccation (Barnard et 
al., 2013), and interactions with any (eventual) pre-
existing microbiota (Friman et al., 2014). An example 
of constant transport of microbes passing different 
barriers is provided by karst caves, which commonly  
show good connectivity with the surface through many 
fissures and voids (Ford & Williams, 2007). Caves can 
thus serve as models for the transport of particulate 

material, and for microbial interactions, because 
some natural stressors, such as UV and desiccation, 
are absent (Summers Engel & Northup, 2008; Hauer 
et al., 2015). Accurate sampling and determination of 
microbial biomass in these habitats is normally one 
of the prerequisites that direct downstream analyses.

Direct microscopic fluorescent counts using 
nucleic-acids-staining dyes represent a good start 
in evaluating the microbial abundance rather than 
biomass (Norland, 1993; Senjarini et al., 2013). 
Different protocols based on fluorochrome-stained 
cells have been developed for distinct samples and 
applications (Cragg and Parkes, 2014). Techniques 
based on specific monoclonal antibodies represent 
another powerful tool to study microbial populations 
from natural environments (Hamasaki et al., 2016). 
Furthermore, nowadays, nucleic acids probing coupled 
with specific techniques offers powerful insights into 
individual constituents of the natural occurring 
microbial community, for example Fluorescence In 
Situ Hybridization (FISH) and its combinations with 
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microautoradiography, Raman spectroscopy and 
secondary ion mass spectroscopy  (Musat et al., 
2012). Flow cytometry is not used solely to estimate 
microbial biomass, but serves also for rapid microbial 
community fingerprinting (De Roy et al., 2012) and for 
tracking the changes in microbial subpopulations or 
on a single-cell level (Sgier et al., 2016).

Quantitative measurements of microbial cellular 
components give a reliable estimation of the biomass 
(White et al., 1997) and of community structure 
and functioning (Röling & van Bodegom, 2014). For 
example, lipid phosphate or phospholipid ester-
linked fatty acids provide a quantitative measure for 
microbes with intact cellular membrane (Gottschalk, 
2012), and lipopolysaccharides (LPS) as essential 
life molecules for the Gram-negative bacteria 
(Botos et al., 2016) are used specifically to estimate 
their presence in the environment (Parker et al., 
1982). Adenosine triphosphate (ATP) is a universal 
measure of metabolizing cells (Karl, 1993). Levels of 
environmental microbial ATP correlate strongly with 
the results of aerobic plate counts (Chen & Godwin, 
2006). ATP-based methods have previously been 
used in environmental microbiology, for example, to 
measure microbial activity in aquatic environments 
(Hammes et al., 2010), in marine oil spills (Röling 
& van Bodegom, 2014), in mineral leach liquors 
(Okibe & Johnson, 2011) and in an orthoquartzite 
(quartz-cemented sandstone) cave (Barton et al., 
2014). The surfaces from this cave contained a high 
level of microbial biomass determined by an ATP-
based luminescence assay when compared to other 
(carbonate) cave systems (Barton et al., 2014). 

Even though cultivable microbes represent only a 
very small part of the community (Stewart, 2012), 
cultivation is still widely used as a routine laboratory 
procedure to quantify environmental indicators, 

wider use in cave microbiology and cave management, 
as a monitoring tool in efforts to restrict the adverse 
human impact on a cave ecosystem.

MATERIALS AND METHODS 

Caves 
Different sites in two Slovenian caves were selected 

for the study. The Postojna Cave system (including 
Črna jama, Magdalena jama, Otoška jama, Pivka 
jama and Postojnska jama) formed in Cretaceous 
limestone (Šebela, 2012) is 24.1 km long, with the 
underground Pivka River, which sinks at 511 m 
a.s.l. (45°46’56.94”N, 14°12’12.10”E). The Postojna 
Cave system occupies 3,066,517 m3 of underground 
space, with 1,231,716 m2 of contact surfaces (Franjo 
Drole, personal communication). A 5.0 km section of  
Postojna Cave (Postojnska jama) is visited by more 
than 500,000 tourists each year (in the last two 
years approximately 640,000 per year), and includes 
a 3.2 km round trip by underground railway  
(Fig. 1). The extent of tourist footpaths is approximately 
3,788 m2. The railway lines lie on 5,300 wooden ties 
(contact surface of each tie is 0.82 m2). The tourist 
use of Postojna Cave is reflected in cave climate, 
crushed-sand and metal dust from beneath the train 
wheels, surface contamination, light eutrophication, 
lampenflora growth and the presence of ultrasonic 
smog (Šebela & Turk, 2011; Muri et al., 2013; 
Šebela et al., 2013; Mulec, 2014; Šebela & Turk, 
2014; Šebela et al., 2015). Some 7 km towards the 
northwest, Predjama Cave (Predjama, 45°48’55.89”N, 
14° 7’35.56”E), which formed in Cretaceous limestone, 
Upper Triassic dolomite and Jurassic limestone and 
dolomite (Čar & Šebela, 2001), is 13.1 km long with 
the Lokva River, which sinks at 462 m a.s.l. Some 
galleries host bat colonies (Presetnik et al., 2009; 

Fig. 1. Sampling sites of settled aerosols, swabs, and waters in Postojna 
Cave (see Table 1 and Table 2 for details), with bioburden ranges for the 
surface swabs (green: log10[ATP] < 25% of measured values for cave swabs; 
yellow: log10[ATP] < 75 and ≥ 25% of measured values for cave swabs; red: 
log10[ATP] ≥ 75% of measured values for cave swabs). Ground plan modified 
after the Cave Cadastre of the Karst Research Institute at ZRC SAZU.

estimate biomass and, particularly, in efforts 
to isolate new, biotechnologically important 
microorganisms (Bull et al., 2000; Giovannoni & 
Stingl, 2007). Data on bacterial growth dynamics 
on a nonselective agar medium can be used to 
work out their growth strategy. As a community 
develops, fast growing opportunistic species 
(r-strategists) are gradually replaced by slow-
growing equilibrium species (K-strategists). 
The ratio of r- vs. K-strategists is a measure for 
a succession state in a microbial community 
(Krištůfek et al., 2005; Andrews & Harris, 2013).

The objective of the study was to test the 
versatility of ATP biomass indicator (Hygiena, USA) 
in different natural environments: air, water, and 
substrate surfaces that included samples from 
underground karst and corresponding above-
ground analogues. Particularly in karst caves, a 
continuous flow of organic material and biota is 
well displayed (Pronk et al., 2006). In parallel with 
standard cultivation techniques, the biological 
burden of different cave sub-habitats expressed 
in ATP biomass was used to estimate the level of 
naturally occurring and human-induced microbial 
biomass in underground situations. This relative 
simple and affordable method has a potential for a 
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Subsurface samples Surface analogues
Location Substrate Sample (No.) Sample (No.) Substrate Location
Postojna Cave concrete tourist footpath (5) tourist footpath (12) concrete Postojna
Postojna Cave flowstone stalactite (7) limestone (21) limestone Predjama
Postojna Cave flowstone stalagmite (4) … … …
Postojna Cave flowstone stalagmite, touched (6) monument, touched (13) limestone Postojna
Postojna Cave limestone flooding zone, dry (1) flooding zone, dry (11) limestone Postojna
Postojna Cave limestone cave biofilm (18) subaerial biofilm (20) limestone Predjama
Postojna Cave metal protection fence (9) door handle (14) metal Postojna
Postojna Cave wood dead wood (10) dead wood (17) wood Postojna
Postojna Cave wood railroad tie (3) railroad tie (15) wood Postojna
Predjama Cave limestone bat guano (19) pigeon guano (16) concrete Postojna
Postojna Cave flowstone dust (2) … … …
Postojna Cave limestone tectonic slickenside (8) … … …

Mulec et al., 2013), which is why many surfaces in 
this cave section, including the tourist footpath, 
are spattered with bat excrement. Around 6,000 
tourists visit Predjama Cave annually. The long-term 
average precipitation level in the area is 1,578 mm  
(Nadbath, 2007).

Swab samples
Various surfaces that are subjected to microbial 

colonization were sampled: concrete, flowstone, 

limestone, metal, and wood (03 November 2015). Each 
underground sample had an analogue on the surface, 
except the surfaces subjected to dust contamination 
from the track of the underground railway, and the 
tectonically polished surface along an underground 
fault plane in Postojna Cave. Analogues to the cave 
samples, from the above-ground environment, 
were considered if they had a similar composition, 
e.g. concrete, and if they had suffered comparable 
environmental impact, e.g. tourist handling (Table 1).

Table 1. Characteristics and locations of sampled surfaces in Postojna and Predjama caves with analogues on the surface.

Surfaces in the show caves were selected to estimate 
the human impact (e.g. tourist footpaths, stalagmites 
stained with a brownish patina due to tourist 
handling, and copper within the safety fences) vs. 
pristine surfaces. The location sampled at the safety 
fence is designated as an assembly point for tourist 
groups, and hence a high human impact (touching) 
was expected at this site. Surfaces that can provide 
nutrients and enhance microbial growth (dead wood, 
wooden railroad ties) were sampled too, as well as 
those that represent considerable microbial inoculum 
and biomass for the underground: a surface subjected 
to regular floods, a rock surface colonized by natural 
biofilm and exposed to bat droppings, a dusty rock 
surface along the underground railway, and a 
tectonically polished surface on an active fault (Šebela 
et al., 2010) 58 m beneath the land surface (Table 
1). It was demonstrated in a previous study (Šebela 
& Mulec, 2011) that heterotrophic aerobic bacteria 
(cultivated at 37°C) were detected four months after 
sterilization of this tectonic slickenside on a fault 
plane (Šebela & Mulec, 2011). Locations of sampling 
sites in Postojna Cave are shown in Figure 1.

Surface swab analogues were sampled in 
Predjama village close to the entrance of Predjama 
Cave (limestone cliff with subaerial biofilm) and in 
Postojna (limestone monument in the town centre, 
door handle at an apartment block, dead wood at 
the edge of the forest, railroad tie close to Postojna 
Railway Station and a concrete footpath spattered 
with pigeon guano). Surfaces spattered with pigeon 
guano are common in urban environments and, in a 
similar way to bat guano in caves, they represent a 
significant source of organic material. Sampling close 
to the entrance of Postojna Cave included: a footpath 
near where tourists enter the cave, and limestone 

rocks in the flooding zone where the Pivka River sinks 
into the cave (Table 1). To reduce transmission of  
microbes and organic matter by tourists, a disinfection 
barrier was introduced at the entrance of Postojna 
Cave in 2011.

Settled aerosol samples
The gravity-settling method (Borda et al., 2014) was 

used to sample airborne biomass in Postojna Cave. 
Sterilized limestone tablets with a diameter of 41 mm 
were exposed to the atmosphere for 34 days, starting 
on 30 September 2015. Stone tablets were cut from 
a limestone slab, taken from the homogenous upper 
Cretaceous Lipica Limestone (Gams, 1985; Mulec & 
Prelovšek, 2015). Tablets were placed in various parts 
of Postojna Cave to observe differences related to the 
surrounding environmental conditions: presence of 
sediments (sample No. 22 in Rov starih podpisov), 
underground train transportation (No. 23 in Stara 
jama), restricted visitation (No. 24 in Pisani rov, 
with less than 50 visitors during the study period), 
and mass tourism (No. 25 in Lepe jame where 
55,000 tourists passed by during that period, Fig. 1).  
A reference tablet (No. 26) was exposed to the external 
atmosphere in Postojna town centre. After incubation 
in the cave the tablets were swabbed as described 
below (Fig. 2).

Water samples
Three distinctive types of sample were taken in 

Postojna Cave (03 November 2015): Pivka River 
after the ponor (No. 100), percolation water from 
active drips (No. 101 and No. 102) and percolation 
water captured in a pool with cave pearls (No. 103,  
Fig. 1). The cave ceiling is 80 to 115 m thick above 
the sampling sites with dripping water (Franjo Drole, 



210 Mulec & Oarga-Mulec

International Journal of Speleology, 45 (3), 207-218. Tampa, FL (USA) September 2016 

Habitat Surface Air Water
Method Swabbing Gravity-settling Direct intake
ATP biomass estimator (units) RLU/ 20 cm2 RLU/ 20 cm2 † RLU/ ml
Cultivable biomass (units) CFU/ 20 cm2 CFU/ 20 cm2 † CFU/ ml
Medium: temperature: time NA: 10°C: 28D NA: 10°C: 28D NA: 10°C: 28D

WA: 10°C: 28D WA: 10°C: 28D WA: 10°C: 28D

MEA: 10°C: 28D MEA: 10°C: 28D MEA: 10°C: 28D

NA: 20°C: 3*, 7*, 14D NA: 20°C: 3, 7, 14D NA: 20°C: 3, 7, 14D

WA: 20°C: 3, 7, 14D WA: 20°C: 3, 7, 14D WA: 20°C: 3, 7, 14D

MEA: 20°C: 3, 7, 14D MEA: 20°C: 3, 7, 14D MEA: 20°C: 3, 7, 14D

NA: 37°C: 1, 2D NA: 37°C: 1, 2D NA: 37°C: 1, 2D

CF: 37°C: 1, 2‡D CF: 37°C: 1, 2D CF: 37°C: 1, 2D

* – r-/K- strategy; D – day(s) of cultivation; † –34 days period of collecting settled aerosols; ‡ –identification of Enterobacteriaceae with Api®20E

personal communication). To compare biomass input 
in the underground karst of the Pivka River, the 
Lokva River was sampled at the ponor in Predjama 
Cave (No. 104). pH, temperature, specific electrical 
conductivity (SEC) and oxygen were measured using 
a WTW Multi Line P4 (Germany) and a Multi 3420 
(Germany), respectively.

Swabbing procedure
After a surface with minimum irregularities was 

selected, it was further delimited by a template 
for bioburden control (5 × 4 cm, Copan). Up to 
three adjacent surfaces (60 cm2) were swabbed 
(FLOQSwabsTM, Copan) at sites with expected low 
biomass (Nos. 4, 7, 9, 11, 13, 14, 15, 17). Swabs 
were transferred in a tube with 1.0 ml of 0.9%  
physiological saline. In the laboratory, after 
vigorous vortexing, 0.8 ml of the saline solution was  
transferred into a new tube. Swabs in the original 
tubes were additionally centrifuged for 10 minutes 
at 4,000 RPM to release any remaining liquid  
(~0.1 ml). Samples were initially diluted 6-fold, 
and subsequently diluted serially up to 10-3. 
Dilutions were used for ATP measurements and 
plating on microbiological media. Because of the 
expected low biomass deriving from settled aerosols, 
all of the initial liquid (~0.9 ml) was used for  
the analyses.

Fig. 2. Swabbing a limestone tablet with a flocked swab after exposure in 
Postojna Cave.

Biomass estimation with ATP
The ATP content of 0.1 ml aliquots was 

estimated with an AquaSnapTMTotal test using 
a corresponding luminometer (Hygiena, USA). 
ATP concentration was expressed as RLU – 
Relative Light Units (where 1 RLU equates to 1 
fmol of ATP) and calculated per swabbed surface  
(RLU /20 cm2).

Biomass of cultivable microbes  
and identification of coliforms

Samples with corresponding dilutions were 
plated onto four different media to propagate 
microbial colonies: nutrient agar (NA, Fluka), 
malt extract agar (MEA, Fluka), CF-chromID™ 
Coli agar (CF, Biomérieux) and water agar (WA), 
which contained 1.5 % agar (Biomérieux) and 

percolation water that was sampled (26 October 
2015) from a permanent active drip (discharge during 
sampling was 1.1 l/min) in Planina Cave (Planinska 
jama). Planina Cave, part of which carries the 
underground Pivka River downstream of Postojna 
Cave, has a similar geological setting (Zupančič 
et al., 2011). WA was designed to mimic natural 
oligotrophic conditions. The sampled water had the 
following physicochemical characteristics: pH 8.38, 
SEC 496 μS/cm, temperature 10.6°C, oxygen 10.76 
mg/l (101.7%), Cl- 5.70 mg/l, NO3

- 13.73 mg/l, SO4
2- 

3.45 mg/l, PO4
3- 0.002 mg/l, Ca2++Mg2+ vs. Ca2+ 

1.46, hardness expressed as 267.8 CaCO3 mg/l and 
alkalinity expressed as 276.3 CaCO3 mg/l. The water 
was analysed using Standard methods (Clesceri et al., 
1998). The same set of media (nutrient-rich NA and 
MEA, and nutrient-poor WA) was used to estimate 
microbial biomass for all samples subjected to 
oligotrophic or eutrophic conditions (Table 2).

Petri plates with NA, MEA and WA were cultivated 
aerobically in Postojna Cave at 10°C for 28 days, and 
in a laboratory at 20°C for up to 14 days. Incubation 
on NA at 20°C served to estimate r- and K-strategists 
in communities. The general conditions require 3 days 
to determine r-strategists and an additional 4 to 7 days 
for K-strategists (Krištůfek et al., 2005). A subset of 
Petri plates with NA and CF was cultivated aerobically 
at 37°C for 2 days. Visible colonies were quantified in 

Table 2. List of sampling methodologies and biomass estimators for different habitats.
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terms of Colony-Forming-Units (CFU) and calculated 
as CFU/20 cm2. Colonies that expressed β-D-
galactosidase enzymatic activity typical for coliforms 
and β-D-glucuronidase typical for Escherichia coli 
on the CF medium were further confirmed using 
an Api®20E (Biomérieux) identification scheme.  
Table 2 summarizes sampling methodologies, biomass 
estimators, and cultivation media and conditions 
used in the study.

Statistical analyses
Statistical analyses were performed using PAST 

(Hammer et al., 2001) and Daniel’s XL Toolbox, an 
open-source add-in for Microsoft Excel (Version 6.60).

RESULTS

Biomass of swabs
Biomass of swabs in terms of ATP was extremely 

varying, ranging from 240 to 1,258,800 RLU/ 20 cm2 for 
cave samples, and from 0 to 114,390 RLU/ 20 cm2 for 
external non-cave environments (Table 3). The highest 
in-cave value was for a stalagmite contaminated by 
touching (1,258,800 RLU/ 20 cm2, No. 6), followed by 
dead wood (848,880 RLU/ 20 cm2 No. 10), a surface 
with bat guano droppings (750,600 RLU/ 20 cm2,  
No. 19) and a tourist footpath (412,200 RLU/  
20 cm2, No. 5). The highest biomass level in the external 
non-cave environment was attributed to occasionally 
flooded limestone in a riverbed (114,390 RLU/ 20 cm2, 
No. 11) and rock colonized by biofilm (106,200 RLU/  
20 cm2, No. 20). The lowest biomass on a natural in-cave 
surface was on a flowstone in an undisturbed part of 
the cave (900 RLU/ 20 cm2, No. 4). An analogue on the 
surface expressed a higher bioburden (17,820 RLU/ 
20 cm2, No. 21). A relatively high value was found on 
a tectonically polished surface (32,040 RLU/ 20 cm2, 
No. 8). Biomass occurring as cave and aerial biofilms 
showed a similar order of environmental bioburden 
expressed in ATP units. Absence of microbial biomass 
on a tourist footpath just outside the cave entrance 
was attributed to the application of a cleaning 
solution on the day of sampling, although 70 tourists 
walked along the swabbed surface immediately prior  
to the sampling. 

The highest CFU counts were from a swabbed 
concrete footpath in the cave, 7.45×106 CFU/ 20 
cm2 (No. 5) on WA medium (20°C). The same order 
of microbial concentration on the WA medium 
was also for a swabbed limestone surface soiled 
with bat excrement (No. 19), dead wood (No. 10), a  
stalagmite contaminated by tourist contact (No. 6) 
and a wooden railroad tie (No. 3). Concentrations 
of microbial CFU comparable with these samples 
were also obtained on the NA medium. Using the 
same method, microbial biomass of the external 
non-cave surfaces was found to be poorer, with the 
highest concentration of viable microbes on the WA 
medium. The highest CFU counts from the external 
environments were from a swabbed railroad tie, 
3.02×104 CFU/ 20 cm2 (No. 15), followed by a limestone 
subjected to floods (No. 11), a concrete surface with 
pigeon guano (No. 16) and a limestone with biofilm 

(No. 20). MEA that supports fungal growth (Campbell 
et al., 2013) showed concentrations of cultivable fungi 
up to three orders of magnitude lower compared to 
bacteria (Table 3).

There was a strong positive correlation between ATP 
and CFU counts on all media for swabbed surfaces 
in caves (n = 12), but the statistical significance  
(p < 0.05) was only for CFU counts on WA medium 
cultivated at 10°C (r = 0.70, p = 0.012) and on MEA 
medium cultivated at 10°C (r = 0.71, p = 0.01). When 
log10 concentrations of ATP was used in the analysis, 
statistical significant correlations were obtained also 
for CFU counts on NA (10°C, 20°C) and WA (20°C).  
A positive correlation was also apparent between ATP 
and CFU counts for swabbed surfaces (n = 9) from 
external environments, but the statistical significance 
was only for CFU counts on NA medium cultivated at 
37°C (Table 4). 

Many samples incubated at 20°C expressed higher 
CFU counts compared to those incubated at cave 
temperature, except for: a limestone with bat guano 
(No. 19) and limestone colonized with subaerial biofilm 
(No. 20) on NA medium, a flowstone with dust (No. 2), 
a metal safety fence in the cave (No. 9), a limestone 
subjected to floods (No. 11), a limestone monument 
handled by the public (No. 13) and external dead 
wood (No. 17) on WA medium, and on MEA medium 
for a concrete footpath in the cave (No. 5), limestone 
with cave biofilm (No. 18), a limestone monument  
(No. 13), limestone with biofilm (No. 20), and the 
limestone cliff at Predjama (No. 21, Table 3). 

Swabbed microbial communities differed in terms 
of r-strategists. Microbes that initially colonize a 
habitat are most commonly r-strategists with the 
highest growth rates that would favour reproductive 
success at low population densities, which depends 
directly on the carrying capacity of the environment 
(Fontaine et al., 2003; Blagodatskaya & Kuzyakov, 
2008; Ciccazzo et al., 2015). The highest abundance 
of r-strategists (≥ 75%) was on dead wood (No. 17), 
a metal safety fence (No. 9), a limestone with cave 
biofilm (No. 18), a limestone with fresh bat guano (No. 
19), a limestone with biofilm (No. 20) and a stalagmite  
contaminated by handling (No. 6). The highest 
microbe abundances in communities growing at 
37°C compared to those growing at 20°C were from a 
swab from a metal fence (No. 9), a piece of dead wood 
in the cave (No. 10) and limestone with subaerial 
biofilm (No. 20). The surface of the dead wood in 
Postojna Cave was largely impacted by organic 
and faecal pollution related to the Pivka River. Its 
swabbed surface contained E.coli (% ID 98.4, good 
identification) and Citrobacter youngae (% ID 77.0%,  
good identification to genus).

Airborne biomass
Cave air carries a significant quantity of dust and 

diverse microbes (Mulec et al., 2012b; Martin-Sanchez 
& Saiz-Jimenez, 2014). An approximately 10-times 
higher concentration of biomass was retrieved from 
settled aerosols on a limestone tablet (379 RLU/ 
20 cm2) in the restricted access part of Postojna 
Cave (No. 24) during a period of 34 days, compared 
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11°C 20°C 37°C
ATP estimator Environment NA (r/p) WA (r/p) MEA (r/p) NA (r/p) WA (r/p) MEA (r/p) NA (r/p)
[ATP] subsurface 0.56/0.056 0.70/0.012 0.71/0.010 0.56/0.061 0.55/0.064 0.46/0.135 0.52/0.081
log10[ATP] subsurface 0.58/0.048 0.82/0.001 0.71/0.010 0.65/0.021 0.71/0.010 0.49/0.105 0.52/0.080

[ATP] surface 0.57/0.107 0.53/0.139 0.21/0.581 0.31/0.412 0.55/0.125 0.07/0.867 0.96/0.001
log10[ATP] surface 0.61/0.146 0.58/0.170 0.26/0.574 0.43/0.332 0.65/0.116 0.12/0.793 0.90/0.006

ATP
(RLU/20 cm2)

10°C
(CFU/ 20 cm2)

20°C
(CFU/ 20 cm2)

37°C
(CFU/ 20 cm2)

Aerosol site (No.) WA NA MEA WA NA MEA NA
Cave sediment (No. 22) 3,075 96,375* 38,550* 470 95,421 24,101 470 163,831
Train dusting (No. 23) 30 2,197 2,560 136 2,606 2,863 303 167
Visitors restricted (No. 24) 379 11,028 192,751* 30 42,795 57,822 15 1,409
Tourist visits (No. 25) 7,908 48,188* 77,100* 1,636 82,878 67,457 3,939 57,928
External control (No. 26) 15 15 30 15 30 30 0 0

* - estimated

Table 4. Summary of correlations between ATP concentrations and CFU of swabs on different media and cultivation conditions (r – Pearson’s 
correlation coefficient, p < 0.05 bold).

to the cave section exposed to dust pollutions from 
the underground train (No. 23) and the external 
atmosphere (No. 26). The sampling point along the 
underground railway (No. 23) is close to the Rov pri 
Mumiji passage, where a strong air flow is present 
in the cold season and is also responsible for local 
air circulation (Mulec et al., 2012b). Cave air close to 
alluvial sediments, cave biofilms and aerosols partly 
originating from the Pivka River (No. 22, Fig. 1) had 
3,075 RLU/ 20 cm2 (Table 5). The highest recorded 
biomass during the same period was in the cave 
air along the tourist footpath, 7,908 RLU/ 20 cm2  
(No. 25). 

The highest concentration of biomass expressed 
as ATP (No. 25) did not correspond to the highest 
concentration of biomass estimated as CFU (Table 5). 
The highest CFU count (~ 200,000 CFU/ 20 cm2 on NA 
at 10°C) during a period of 34 days was for the settled 
aerosols in the section of the cave with restricted 
access. The effect of a temperature shift from 10 to 
20°C was not clearly expressed in the corresponding 

increases of CFU counts. The highest CFU count at 
37°C was at the site with cave sediment (No. 22); 
the high level of this count can also be attributed to 
settled aerosols that also contained high CFU at 37°C 
originating from the Pivka River (Table 6).

Biomass in karst waters
Water samples differed in physicochemical 

parameters and biomass indicators. Drip water 
values were below the detection limit or showed very 
low concentration of biomass, both in terms of ATP 
and CFU. Ponor rivers bring many viable microbes 
and abundant organic matter into the underground 
environment compared to drip water (Table 6). 
A three-times higher concentration of microbial  
biomass expressed as ATP for the Pivka River 
compared to that of the Lokva River was not reflected 
in all corresponding values of CFU on different media. 
The Pivka River also deposits faecal microbes on cave 
surfaces, as was indicated by dead wood surface 
colonized by E. coli (swab No. 10).

Table 5. Estimated biomass of settled aerosols during 34 days in Postojna Cave.

Table 6. Physico-chemical conditions and comparison of microbial biomass in different water bodies.

Temp.
(°C)

SEC
(μS/cm) pH Oxygen

(mg/l)
ATP

(RLU/ml)
10°C

(CFU/ml)
20°C

(CFU/ml)
37°C

(CFU/ml)
Sample (No.) WA NA MEA WA NA MEA NA
Drip (101)† 11.8 452 8.22 10.47 0 0 0 0 0 0 0 0
Drip (102)‡ 10.2 276 8.37 10.90 10 40 0 0 0 0 0 0
Pool water (103) 10.1 320 8.60 10.87 10 120 40 10 130 50 0 10
River, Lokva (104) 5.3 298 8.33 12.46 630 4,990 3,175 40 14,100 3,535 290 840
River, Pivka (100) 7.0 413 7.98 9.52 1,925 12,300 890 365 14,700 1,980 70 395

† - drip rate: 0.65 ml/s; ‡ - drip rate: 0.67 ml/s

DISCUSSION

Surface and subsurface biomass
Not all microbial colonization attempts are 

(completely) successful, because of unsuitable surface 
conditions (Kargar et al., 2014). In a continuous 
flow of allochthonous organic matter in karst, the 

new-coming microbes play a significant role in the 
colonization-succession process (Barton et al., 2013; 
Brannen-Donnelly & Engel, 2015). A relative high  
input of biomass in the underground karst occurs 
in well-fissured areas, as was demonstrated on 
a tectonically polished surface of an active fault 
plane inside Postojna Cave in this and a previous 
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study (Šebela & Mulec, 2011). A high percentage 
of r-strategists (74.03%) and microbes able to grow 
at 37°C were detected at this site (Table 3). Rapidly  
growing r-strategists commonly dominate in 
uncrowded and unstable habitats where resources  
are temporarily abundant (Andrews & Harris, 2013). 
Low abundances of r-strategists were found on 
external (2.28%, No. 15) and in-cave wooden railroad 
ties (37.01%, No. 1), an untouched and pristine 
stalagmite (9.09%, No. 4), and in dust associated 
with the underground railway (19.82%, No. 2). 
Dust particles collected along the main passage in 
Postojna Cave contained increased concentration of 
heavy metals, Cu, Pb, Zn, Fe and Mn (Muri et al., 
2013), which can adversely affect microbes and their 
metabolism processes (Giller et al., 1998).

Different media and cultivation conditions 
resulted in different numbers of CFU, which also 
gave distinct correlations between total biomass 
estimator – ATP and counted colonies. Particularly 
for the cave samples, stronger correlations were 
observed for samples cultivated at the cave 
temperature rather than at 20°C (Table 4). A 
stronger correlation between ATP and CFU plate 
counts at low cultivation temperature (10°C vs. 
35°C) has already been established for bacteria 
from cold environments, for example refrigerators 
(Chen & Godwin, 2006). Interestingly, a very strong 
relationship between ATP and CFU on NA (37°C) 
for above-ground samples was observed, but this 
cultivation condition enabled growth only of a small 
proportion of the microbial community (Table 3). In 
the study, anaerobic plate count was not evaluated 
because only a smaller portion of the microbial 
community may be attributed to strict anaerobes, 
because all the sampling sites were exposed to 
normal oxygen concentrations.

Results of the study indicate that underground 
microclimatic conditions might play an important role 
in the preservation or even the concentration of non-
viable microbial biomass and viable microorganisms. 
This is especially the case for big cave systems 
that intercept a karst massif subject to high levels 
of precipitation, which accelerate the transport of 
organic matter and microbes. A microbial community 
colonizing cave surfaces can produce a notable 
influence on the cave ecology. Surfaces contaminated 
with animal excrement, e.g. from bats (Mulec et al., 
2012a) and the presence of visible microbial biofilms 
(Mulec et al., 2015) are important sources of microbial 
biomass (Table 3) in the underground. Some caves do 
not rely only upon the input of organic matter from 
the surface, but are characterized by in situ microbial 
biomass production based on chemoautotrophic 
metabolism (Jones & Macalady, 2016). For example, 
a metagenomic analysis of surface speleothems from 
Kartchner Cavern, located in an arid zone (Arizona, 
USA) revealed the presence of a chemoautotrophic 
community adapted to low-nutrient conditions 
(Ortiz et al., 2014). In chemoautotrophy-based cave 
ecosystems, e.g. Frasassi Cave, Italy, in situ low 
nitrogen can be surmounted by a diazotrophy (Desai 
et al., 2013).

Areas where aerosols settle provide high bioburden 
potential for the cave (Table 5). Locally there are 
major differences in the sampled presence of organic  
matter, which can also be explained by the low 
percentage of r-strategists – for example on a swabbed 
stalagmite (900 RLU/ 20 cm2, No. 4). Interestingly, at 
the same location (Fig. 1), in only 34 days the settled 
aerosols showed a rather high biomass (379 RLU/ 
20 cm2, No. 24, Table 5), which can be attributed 
to the circulation of biomass-rich air masses in the 
cave across longer distances. As well as through 
the movements of air masses, microbes enter caves 
with both flowing and seeping water, as well as with  
animals and humans (Mulec, 2015). Not just the major 
flows of ponor rivers, but also dispersed epikarstic 
seepage water bring along considerable amounts of 
organic carbon (Simon et al., 2007).

In comparison to UltraSnapTM (data not 
shown), which basically consists of cotton swabs, 
AquaSnapTMTotal, when used in combination with 
flocked swabs (FLOQSwabsTM) as an ATP biomass 
estimator tool, showed correlations with CFU counts 
and thus considerable promise for determination of 
the microbial biomass in various cave sub-habitats. 
UltraSnapTM kit has previously been used for surface 
swabbing in Lechuguilla Cave (New Mexico, USA), 
where the DAPI total cell count did not change 
significantly in line with changes in ATP levels 
(Johnston, 2013). In a previous study in Postojna 
Cave (Mulec et al., 2012a), similar surfaces were 
swabbed using RIDA®COUNT test plates directly 
for swabbing. The swabbing procedure described 
in this study and the use of comparable nutrient-
rich media (NA vs. RIDA®COUNT Total for bacteria 
and MEA vs. RIDA®COUNT Yeast&Mold Rapid for 
fungi), with similar cultivation conditions (35°C and 
37°C for 48 hours for bacteria, 20°C for 72 hours for 
fungi) resulted in 3-times up to 80-times higher CFU 
retrieval. However, more data collection is needed to 
help develop this procedure as a general estimator for 
the bioburden of underground habitats. An example of 
bioburden ranges for Postojna Cave, based upon the 
ATP levels of swab samples is given in Fig. 1. An ATP 
biomass estimator (AquaSnapTMTotal) can be used as 
the first and easiest step in studying factors that affect 
microbial transport and colonization underground. 

Human impact in show caves
Karst caves and karst aquifers are highly susceptible 

to pollution and biomass input from various sources 
such as wastewater discharge, agricultural and urban 
run-off (Mahler et al., 2000; Reed et al., 2011), and 
tourism (Jurado et al., 2014; Mulec, 2014). Locally 
high concentrations of biomass in Postojna Cave are 
related to human activities (Fig. 1). Based on biomass 
estimates  recorded during this study, Postojna Cave 
seems to be mainly affected by human intervention 
that is attributed to the surface biomass of wooden 
railroad ties (~1.30×1011 RLU of ATP, ~3.50×1012 
CFU) and tourist footpaths (~7.80×1011 RLU of ATP, 
~1.41×1013 CFU). In comparison to the Postojna 
Cave system as a whole, this surface bioburden 
can represent up to a 1.6-times greater biomass in 
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terms of ATP or 6.4-times in terms of CFU, when a 
standardized bioburden of 900 ATP RLU/ 20 cm2 and 
4.50×103 CFU/ 20 cm2 (Table 3, No. 4 as a reference 
site) is adopted for the entirety of the surveyed 
cave surfaces, comprising wall and floor areas but 
excluding isolated speleothems. 

The absence both of UV radiation and desiccating 
conditions in caves results in the survival of microbes 
from organic pollution, for example Enterobacteriaceae 
(Campbell et al., 2011). Enterobacteriaceae, more 
specifically E. coli and Citrobacter, were retrieved from 
an occasionally flooded surface in Postojna Cave. 
These two organisms are particularly relevant in 
the environment as a source of antibiotic resistance 
determinants that can spread quickly among different 
species through horizontal gene transfer (Mulec et al., 
2002; Perry et al., 2014). It seems that cave conditions 
(high humidity, presence of sediments and organic 
debris) enable longer survival of these bacteria. 
However, in the long term, survival of enterobacteria 
in aquatic environments is known to be briefer than 
their survival in soils (McFeters et al., 1974).

The highest ATP value in the study, recorded from 
a handled speleothem, can also be attributed to 
epithelium cells from human skin with an average 
value inside a human cell of between 3 and 5 mM 
(Gribble et al., 2000). More so, ATP is also present 
in extracellular compartments where it operates in 
cell-to-cell signal transduction (Hayashi et al., 2004). 
High biomass in terms of ATP for this sample was 
accompanied by a high percentage of r-strategists 
(77.45%) and low percentage of microbes able to grow 
at 37°C compared to at 20°C (Table 3). Nonetheless, 
human-derived biomass consequently becomes 
available for exploitation by cave biota.

Application of a cleaning product on walking 
surfaces, and use of a disinfecting barrier at the 
cave entrance contribute to the overall reduction 
of microbial biomass by tourist footprints, though 
related levels still remain high in the cave (Fig. 1). The 
low ATP concentration of a swab on a safety fence in 
the cave (240 RLU/ 20 cm2, No. 9) can be attributed 
to the known toxic effect of copper on biota (Baker 
et al., 2014), even though the sampling site suffers 
heavy contamination as a result of tourist contact. 
Copper surfaces are significantly effective in lowering 
the bioburden (Schmidt et al., 2015). Heavy metals 
introduced as a part of the tourist infrastructure, 
e.g. copper within safety fences, metal particles 
deriving from the railway, particles from the wear and 
corrosion of the railway tracks (Muri et al., 2013) very 
likely have an adverse effect on microbiota.

The direct tourist impact in Postojna Cave is not only 
evident on contact surfaces, but also in the air quality 
(Mulec et al., 2012b). Whereas one might expect one of 
the highest levels of biomass in the air to be along the 
main passage, with the tourist railway, in the cave, 
this was not the case. Human-induced and natural 
air streaming direct the movement and settling of 
aerosols. This can explain the relatively low biomass 
along the route of the tourist railway (dilution) and 
the relatively high biomass accumulation in the part 
of the cave with restricted access.

CONCLUSIONS

ATP luminescence assay (Hygiena, USA) was tested 
successfully on different samples. Using flocked swabs 
(FLOQSwabsTM, Copan) the assay proved its versatility 
in estimating the bioburden of solid surfaces. Surfaces 
inside caves displayed similar or even higher levels 
of bioburden than surfaces exposed to the external 
atmosphere that can be attributed partly to human 
impacts. There is a high variability of surface microbial 
biomass within single cave systems. These cave sub-
habitats are colonized by physiologically different 
microbial communities. The highest in-cave values 
of ATP and CFU from swabbed surfaces were from a 
stalagmite contaminated by touching, bat guano and 
tourists’ footprints. These samples exhibited also high 
percentages of r-strategists in a community, whereas 
wood surfaces and untouched pristine stalagmite 
exhibited low abundances of fast growing bacteria. 
Not only microbial ATP, but also ATP deriving from 
human epithelium cells contributed to the highest 
concentration of ATP from a handled stalagmite. The 
toxic effect of copper in the metal safety fence can 
be attributed to low total biomass. A strong positive 
correlation was recognized between ATP and CFU for 
swabbed surfaces from caves. Enterobacteriaceae 
were easy to retrieve from a surface exposed to the 
underground river, which was contaminated by 
faecal bacteria. Mass visitation in the tourist part 
of Postojna Cave resulted in an increased microbial 
airborne biomass. Microbial biomass on non-cave 
surface analogues was generally lower. 
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