2018

Linking Capacity Development to GOOS Monitoring Networks to Achieve Sustained Ocean Observation

Frank E. Muller-Karger

University of South Florida, carib@marine.usf.edu

Follow this and additional works at: https://scholarcommons.usf.edu/msc_facpub

Part of the Life Sciences Commons

Scholar Commons Citation

Muller-Karger, Frank E., "Linking Capacity Development to GOOS Monitoring Networks to Achieve Sustained Ocean Observation" (2018). Marine Science Faculty Publications. 708.
https://scholarcommons.usf.edu/msc_facpub/708

This Article is brought to you for free and open access by the College of Marine Science at Scholar Commons. It has been accepted for inclusion in Marine Science Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.
Linking Capacity Development to GOOS Monitoring Networks to Achieve Sustained Ocean Observation

Nicholas J. Bax1,2,*, Ward Appeltans3, Russell Brainard4, J. Emmett Duffy6, Piers Dunstan2, Quentin Hanich6, Harriet Harden Davies5, Jeremy Hills7, Patricia Miloslavich1,4, Frank Edgar Muller-Karger9, Samantha Simmons10, O. Aburto-Oropeza11, Sonia Batten12, Lisandro Benedetti-Cecchi13, David Checkley11, Sanae Chiba14, Albert Fischer15, Melissa Andersen Garcia4, John Gunn16, Eduardo Klein9, Raphael M. Kudela17, Francis Marsac16,19, David Obura20, Yunne-Jai Shin18,19, Bernadette Sloyan2, Toste Tanhua21 and John Wilkin22

OPEN ACCESS

Edited by: Marion Gehlen, UMR8212 Laboratoire des Sciences du Climat et de l’Environnement (LSCE), France

Reviewed by: Karen Stocks, University of California, San Diego, United States

Peter Wolfgang Swarzenski, IAEA, Environment Laboratories, Monaco

*Correspondence: Nicholas J. Bax nic.bax@csiro.au

Specialty section: This article was submitted to Ocean Observation, a section of the journal Frontiers in Marine Science

Received: 27 April 2018 Accepted: 07 September 2018 Published: 25 September 2018

Developing enduring capacity to monitor ocean life requires investing in people and their institutions to build infrastructure, ownership, and long-term support networks. International initiatives can enhance access to scientific data, tools and methodologies, and develop local expertise to use them, but without ongoing engagement may fail to have lasting benefit. Linking capacity development and technology transfer to sustained ocean monitoring is a win-win proposition. Trained local experts will benefit from joining global communities of experts who are building the comprehensive Global Ocean Observing System (GOOS). This two-way exchange will benefit scientists and policy makers in developing and developed countries. The first step toward the GOOS is complete: identification of an initial set of biological Essential Ocean Variables (EOVs) that incorporate the Group on Earth Observations (GEO) Essential Biological Variables (EBVs), and link to the physical and biogeochemical EOVs. EOVs provide a globally consistent approach to monitoring where the costs of monitoring oceans can be shared and where capacity and expertise can be transferred globally. Integrating monitoring with existing international reporting and policy development connects ocean observations
INTRODUCTION

The ocean provides essential services—food, transport, climate modulation, and recreation—for all nations, and particularly Small Island Developing States (SIDS) as recognized by Sustainable Development Goal 14 of the United Nations (UN) Agenda 2030. However, ocean changes such as warming, increased stratification, decreasing dissolved oxygen (Rhein et al., 2013; Schmidtko et al., 2017) and changes in productivity (Stock et al., 2017) are adversely impacting human activities and marine life. Reliable, spatially distributed, and interdisciplinary information is increasingly important to measure progress against agreed targets and support decisions that balance increased economic activities with long-term sustainability. This could be achieved by linking efforts to build ocean-observing capacity in developing countries with the growing global sustained observation networks.

Measuring progress toward achieving agreed performance targets requires robust indicators of state and trends of ocean health, but such indicators have been challenging to select and implement for several reasons (Tittensor et al., 2014; Inniss et al., 2016). First, indicators selected by international bodies are often limited to measures of governance or management, due to the limited availability of global scale information on the state and trends of marine life and ecosystem health. Secondly, it has been difficult to reach scientific consensus on what aspects of the ocean’s complex biological communities most need to be measured. Thirdly, scientific and technical capacity is unevenly split among nations (IOC/UNESCO, 2017). In order for indicators of ecological state and trends to be of use, they need to be systematically and widely collected for comparability among regions and utility among stakeholder groups (Tittensor et al., 2014). Much of the world’s ocean lies within the Exclusive Economic Zones of developing nations that host most of the world’s biodiversity (Appelans et al., 2016), and effective implementation of a global observing system will require their active engagement.

The international ocean observation community has proposed a framework to promote convergence of methods and reporting, particularly on in situ sampling (Lindström et al., 2012). The ocean observation community is also steadily developing and establishing observing networks with global aspirations. In this perspective, we explore whether linking continuing knowledge exchange, capacity development and technology transfer to established global ocean observing networks would meet the need expressed in Sustainable Development Goal (SDG) 14a supporting countries’ efforts to sustainably manage their ocean resources. We focus on scientific capacity development, including human, institutional, and technological capacity, where technology transfer includes access to hardware, software, data and information, and equipment (IOC/UNESCO, 2005). The development of capacity would not only enable developing countries to manage their own resources more effectively, but also build the global scientific capacity to monitor, manage, and adapt to ocean change.

GLOBAL MARINE POLICY ENVIRONMENT

The world’s oceans are faced with increasingly complex problems spanning different scientific domains and national jurisdictions (Ramirez-Llodra et al., 2011; Gjerde et al., 2013; Merrie et al., 2014). SDG14 is an international policy response to these “wicked problems” (Rittel and Webber, 1973), capturing the wide range of international aspirations for the conservation and sustainable use of marine resources and, through SDG14.7, recognizing their global importance for achieving all other SDGs (Singh et al., 2018). However, the fragmented and increasingly complex ocean governance framework, comprising a plethora of international legal instruments (Ardron et al., 2014; Warner, 2014; Figure 1) creates a complicated reporting environment for governments and a high demand for scientific information to underpin the design, monitoring, and evaluation of policy and implementation.

Meeting this information need requires a radical transformation in the way in which scientific information is acquired, made accessible, used, and reused. Increased capacity at national, regional and global levels to acquire and analyse relevant data will be required if all States are to participate equally. While indicators can be developed, applying them in effective management requires that data are synthesized into information that is useful for managers and policy makers, and reported in a standard and understandable way. However, there is a disconnect between the international legal and policy framework and the reality of global ocean science collaboration, capacity development, and technology transfer.

Keywords: capacity development, technology transfer, global ocean observing system, GOOS, monitoring, essential ocean variables, international reporting, SDG14

1https://sustainabledevelopment.un.org/sdg14
FIGURE 1 | Continued
Reporting requirements for countries are extensive, duplicative, and often conflicting; the European Environment Agency for example lists 146 national reporting obligations for “biodiversity change and nature” for European Union Member States http://dx.doi.org/10.1016/j.marpol.2017.05.030. These exhaustive reporting requirements place an undue burden on many countries (FFA, 2017), especially developing countries, many of which have limited technical capacity. The problem is exacerbated because global funding sources such as the World Bank or Global Environment Facility often link funding to the production of these reports. Further, progress toward global goals and targets, defined by high-level government officials and experts, is measured with highly technical and aggregated summary statistics, which are not readily usable by many stakeholders and do not always enable the evaluation of policy measures. Efforts through donor countries and philanthropic organizations risk becoming even more confounded as funding becomes increasingly diversified (California Environmental Associates, 2017). It might be hoped that these many similar reports would share common data and synthesize, yet this is rarely the case.

Solutions to these challenges require an enabling framework for science collaboration, technology transfer and capacity development. Although the international legal framework for marine scientific research under the United Nations Convention on the Law of the Sea (UNCLOS) is linked to technology transfer and capacity development https://sustainabledevelopment.un.org/post2015/moiandglobalpartnership, there is no specific institutional or financial mechanism. The International Oceanographic Commission (IOC-UNESCO) under the UN Educational Scientific and Cultural Organization (UNESCO) provides a leading role in coordinating marine scientific research, transferring technology and developing capacity. Resources to fully implement the IOC programs are inadequate, however, both for the IOC Secretariat (about 2% of UNESCO budget) and the national or regional implementation of IOC programs (Ardron et al., 2014; Warner, 2014; Harden-Davies, 2016). To be meaningful, such programs must boost national and regional capacity where it is needed, but vulnerabilities in the current system must first be overcome. These arise from the fact that most ocean observing initiatives, while globally and regionally coordinated, typically compete for national funding in an environment that does not encourage broader coordination.

Crucially, technology development, transfer, and capacity development to enable the sustainable use of the oceans must focus on actionable information. Such information requires a focus on elements of the ocean that are most relevant to the global community such as fisheries and living habitat, as well as the supporting physical and biogeochemical environment. EOVs provide a clear opportunity to focus on an agreed set of information that would assist countries in their international reporting obligations, while supporting national management, and policy development (Lindstrom et al., 2012).

MARINE OBSERVING COMMUNITY

There is an urgent need to measure the ecological response of the biological community to the ongoing physical and biogeochemical changes to inform progress against Agenda 2030 and the many international reporting pathways (Figure 1). Despite recent improvement in documenting trends in the drivers of change (Halpern et al., 2017), however, and some early successes in forecasting abundance and distribution of marine life from physical forcing (Payne et al., 2017), few marine ecological assessments include long time series of data (Miloslavich et al., 2018). Most are limited by geographic range and taxonomic representation, with only modest global progress made in agreeing the primary indicators of marine biodiversity or methods to measure them. The most common assessments of life in the sea are for fisheries resources through the Food and Agriculture Organization of the UN, Regional Fisheries Bodies, national assessment institutions, and some assessments that focus on marine mammals, sharks, sea birds, turtles, plankton, and coral reefs.

There is considerable scope for marine ecologists to acquire more timely and relevant measurements. Rapid advances in assessing the physical state of the ocean by satellite supported by in situ observations, such as the 3800 Argo robotic floats, and 300 biogeochemical Argo robotic floats that upload data within 24 h (Gould et al., 2004), will require increased and more standardized observing and improved delivery of data to interested parties. A large fraction of marine environmental data collected today is not available in a timely manner, if at all, through open access databases and varies widely in format (Tenopir et al., 2015), it is often overlooked in national and global assessments. Developing
countries, in particular, typically lack the personnel, financial resources, and technical expertise to collect observations, much less to process and publish them in international databases, and rarely have the human or infrastructure capacity to access the available open data.

The global ocean observing community is providing guidance and incentives for researchers to systematize and share their measurements. The Framework for Ocean Observing published in 2012 (Lindstrom et al., 2012) outlines a series of standards, and a process through which EOVs can be identified and progressed from conceptual through prototype to a mature level where they support global observation and reporting (Constable et al., 2016). The usefulness of the Ocean Biogeographic Information System as a general repository for marine biodiversity data is being substantially upgraded (Appeltans et al., 2016; De Pooter et al., 2017). Collaboration with the Marine Biodiversity Observation Network and the Smithsonian’s MarineGEO observatory (Duffy et al., 2013; Muller-Karger et al., 2014) is helping to develop an integrated and practical pathway toward a Global Ocean Observing System (GOOS) that includes biological measurements supported by existing physical and biogeochemical EOVs.

In future, improving understanding of the condition of the ocean will require: sustained engagement of national stakeholders; capacity development; standardized methodologies; increased sampling effort; improved access to historical, and new data; consistent measurements that are relevant to management and policy decisions; appropriate model-based analytical capacity to synthesize scientific data into relevant information products; and continued efforts to enable uptake of relevant information into national and global decision-making processes.

ESSENTIAL OCEAN VARIABLES

In the past two decades, IOC-GOOS has worked closely with the Joint World Meteorological Organization–IOC Technical Commission for Oceanography and Marine Meteorology (JCOMM) and the Global Climate Observing System (GCOS) to coordinate global climate observing and information products. The focus on Essential Climate Variables (Stephan et al., 2014) was successful in coordinating the international research community and communicating important physical indicators of the changing ocean such as ocean temperature, salinity, and sea surface height. This concept was adopted in the Framework for Ocean Observing that has at its core EOVs that are defined as an interdisciplinary, feasible set of observations needed to characterize change and improve predictive skills for identifying and communicating ocean state and trend (Lindstrom et al., 2012).

In the past decade, the addition of biogeochemical EOVs (e.g., dissolved oxygen, nutrients, inorganic carbon and dissolved organic carbon), has broadened the approach from strictly climate-related issues to include other issues impacting the ocean (Feely et al., 2004). These measurements across domains are critical to understanding the changing ocean state and the processes driving these changes. Examples include ocean acidification driven by the ocean’s uptake of anthropogenic carbon and the increasing size of dissolved oxygen minimum zones which are the habitat volume of the ocean for many organisms.

Since 2013, IOC-GOOS has worked to identify biological EOVs based on societal need for information, their scientific relevance and scalability (Miloslavich et al., 2018). The selected EOVs are broad in scope, societally relevant, capitalize on a long history of ocean observations and prioritize key components of benthic and pelagic environments. Together with the established physical and biogeochemical EOVs (Table 1), they would provide a comprehensive picture of the state and trends of the ocean that would be of immediate relevance for national management and global reporting. It is anticipated that the same framework used above will be used to identify additional biological EOVs, such as marine microbes or genetic diversity, as science and technology advance and new observation types become part of policy and management discussions.

The biological EOVs depend on the measurement of a series of more specific sub-variables, many of which correspond to EBVs as defined by the Group on Earth Observations Biodiversity Observation Network (GEO BON) (Pereira et al., 2013). Coordination of ocean relevant EBVs within the EOV framework is imperative to avoid duplication, maintain consistency and ensure they achieve the goal of reporting on progress toward achieving SDGs (Reyers et al., 2017).

CAPACITY DEVELOPMENT AND TECHNOLOGY TRANSFER

National inventories of ocean science capacity exist only in a few countries (IOC/UNESCO, 2017). Building scientific capacity, including local scientific expertise and suitable data management systems, is crucial to realizing the benefits from ongoing research results and data (Salpin et al., 2016). But SIDS and Least Developed Countries (LDCs) often do not even have sufficient vessels and deployable technologies to conduct ocean observations and research. Furthermore, biological processes are localized and context-dependent so typically need more in situ observations than physical and biogeochemical processes. Building such time-series observations is hampered in SIDS and LDCs by a lack of long-term resource commitment. Sustained observing requires a coordinated, collaborative and culturally appropriate process, incorporating indigenous and local knowledge, with long-term resourcing that meets identified local, national and regional needs (Veitayaki and South, 2001; Keppel et al., 2012; Veitayaki and Manoa, 2014).

Traditionally, capacity development focused on project-based needs, rather than strategic capacity development, resulting in disconnected and ephemeral activities (National Research Council, 2008). Successful capacity development efforts need
to engage and receive support from local communities, key stakeholders, and national leaders, and include sustainability plans to maintain and grow the capacity with regular employment. It must also be regularly reviewed (National Research Council, 2008). This may be more than the training, education, mutual assistance approach initiated by IOC and used in Large Marine Ecosystem (LME) projects globally (Hempel et al., 2016). Long-term engagement, repeated intervention, and mentoring are some of the processes that can help in building the relationships that are often more important than the knowledge imparted at the time.

Political will and international partnerships will be crucial to overcoming the resource constraints that currently restrict the capacity of IOC, and its regional sub-commissions such as IOC-Sub-Commission for the Western Pacific, to deliver the strategy (Harden-Davies, 2016).

Pacific Island countries have recognized the importance of sustained marine scientific capacity development programs and technology transfer programs (Veitayaki and South, 2001; Veitayaki and Manoa, 2014). The Pacific Islands Forum Fisheries Agency and the Secretariat of the Pacific Community have a long history of implementing and supporting data collection and reporting programs that enable SIDS members to monitor fishing effort and impacts within their extensive waters under national jurisdiction, and in adjacent areas beyond national jurisdiction (Harden-Davies, 2016). These data are analyzed by these regional institutions, through capacity building programs that mentor government officials and provide critical support for governments as they manage and monitor fishing activities and impacts (Hanich and Tsamenyi, 2009). Technology transfer, facilitates these activities, including sophisticated maritime domain open-source access to satellite databases, such as the automatic identification system for fishing vessels (Hanich et al., 2008; Goodman, 2017). These efforts are mandated and owned by the SIDS themselves and align closely with SIDS development priorities, which collectively empower SIDS to voluntarily commit institutional and national resources in deciding where, how, and what to monitor. The approach is long term and programmatic in nature, with a regional institutional focus on development and strengthening sovereign rights, and

<table>
<thead>
<tr>
<th>Physic</th>
<th>Biogeochemistry</th>
<th>Biology and Ecosystems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea state</td>
<td>Oxygen</td>
<td>Phytoplankton biomass and diversity</td>
</tr>
<tr>
<td>Ocean surface stress</td>
<td>Nutrients</td>
<td>Zooplankton biomass and diversity</td>
</tr>
<tr>
<td>Sea ice</td>
<td>Inorganic carbon</td>
<td>Fish abundance and distribution</td>
</tr>
<tr>
<td>Sea surface height</td>
<td>Transient tracers</td>
<td>Marine turtle, bird and mammals abundance and distribution</td>
</tr>
<tr>
<td>Sea surface temperature</td>
<td>Particulate matter</td>
<td>Hard coral cover and composition</td>
</tr>
<tr>
<td>Subsurface temperature</td>
<td>Nitrous oxide</td>
<td>Seagrass cover</td>
</tr>
<tr>
<td>Surface currents</td>
<td>Stable carbon isotopes</td>
<td>Macroalgal canopy</td>
</tr>
<tr>
<td>Subsurface currents</td>
<td>Dissolved organic carbon</td>
<td>Mangrove cover</td>
</tr>
<tr>
<td>Sea surface salinity</td>
<td>Ocean color</td>
<td></td>
</tr>
<tr>
<td>Subsurface salinity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocean surface heat flux</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Emerging EOVs include Microbe biomass and diversity, and Benthic invertebrate abundance and distribution.
vital for robust management and regulation of emerging and potentially impactful ocean activities such as deep sea mining (Bradley and Swaddling, 2016; Bourrel et al., 2017). The IOC criteria and guidelines for the transfer of marine technology outline the necessary components that could link national efforts to a global monitoring system (IOC/UNESCO, 2005).

The call for action from the UN SDG14 Oceans Conference http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/71/3128&Lang=E, recognized the need for global collaboration and the need to support SIDS and LDCs in particular. Linking global observing networks and their expertise with local capacity development based on national need provides a mechanism to shape and unite progress toward sustainable ocean development. The UN Decade of Ocean Science for Sustainable Development (2021–2030) provides a time frame to achieve a globally integrated ocean observing system.

AUTHOR CONTRIBUTIONS

NB conceived and contributed to writing. WA, RB, JED, PD, QH, HHD, JH, PM, FM-K, and SS contributed to conception and writing. OA-O, SB, LB-C, DC, SC, AF, MAG, JG, EK, RK, FM, DO, Y-JS, BS, TT, and JW contributed to writing.

REFERENCES

September 2018 | Volume 5 | Article 346

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer KS declared a shared affiliation, with no collaboration, with the authors DC and OA-O to the handling Editor at the time of review.