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b5 reductase sequences identified so far and also includes H77 which provides 

hydrophobic interactions with the flavin isoalloxazine ring.  In addition, modeling studies 

of the interaction of human cytochrome b5 reductase with cytochrome b5 have suggested 

that the conserved histidine 77 is hydrogen bonded to the b5 propionate group in the 

cytochrome b5 reductase- cytochrome b5 complex [20]. 

 Homology modeling of the G75S variant suggested that substitution of the more 

bulky serine side chain for the glycine hydrogen atom would be expected to result in 

steric constraints which would require displacement of the Nβ7 strand that forms the 

initial part of the “linker” or “hinge” region that joins the FAD- and NADH-binding 

lobes.  Perturbation of the organization of this “linker” region would be anticipated to 

result in decreased diaphorase activity owing to a change in registration between the two 

structural lobes as previously reported for other “linker” domain RCM mutants, such as 

P144L [82], P144S [119], and L148P [48].  In addition, alterations in the organization of 

the two lobes would be expected to decrease the stability of the protein which has also 

been previously documented for the P144L and L148P variants [105].  The relative 

importance of a glycine residue at position 75 in the primary structure is also reinforced 

by its conservation in the majority of the other protein sequences that form part of the 

ferredoxin:NADP+ reductase (FNR) super-family of flavoprotein transhydrogenases, 

including FNR, phthalate dioxygenase reductase and assimilatory NADH:nitrate 

reductase [5].   

In contrast to the G75S mutation, the V252M substitution was determined to have a 

markedly less severe impact on either the structure or function of cytochrome b5 

reductase.  Unlike G75, residue V252 is not situated in a region of particularly well 
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conserved primary sequence and can be found to occur as valine, isoleucine or proline 

residues in cytochrome b5 reductase homologues, although the marked preference 

appears to be for the presence of an alipathic hydrocarbon side chain at this position in 

this sequence, as shown in Figure 62. 

 Within the rat cytochrome b5 reductase structure, V252 is part of a surface-

accessible loop region located midway between strand Nβ4 and helix Nα3 [21].  While 

V252 makes no direct backbone or side chain contacts with either the FAD- or bound 

NAD+, this loop region forms part of the NAD+ binding site and aids in correctly 

orienting the side chain of F251 over the adenine moiety of the substrate.  Carbon CG2 of 

the isopropyl side chain of V252 is only 5.3 Å away from the adenine O2 atom of the 

NAD+.  In addition, the V252 amide nitrogen atom participates in a water-mediated 

hydrogen bond to the NAD+ AO2* atom.  Thus, substitution of V252 by the considerably 

more bulky side-chain of methionine would be unlikely to have any dramatic effects on 

either the properties of the FAD prosthetic group or the specific activity of the protein but 

could decrease the affinity for NADH due to potential steric interactions which would 

disrupt the structure of the loop region and decrease the interaction with the adenine 

moiety.  This prediction is in good agreement with the results obtained from the 

NADH:FR activity studies which indicated a nearly 10-fold increase in the Km for 

NADH. 

 Previously, we have identified other mutations in the carboxy-terminal 

NADH-binding lobe of cytochrome b5 reductase, including D239G, E255-, and G291D 

[78, 105, 107], whose biochemical properties can be compared with those of the V252M 

variant.  The V252M variant was found to retain the spectroscopic properties typical of  
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Fig. 62.  Multiple Sequence Alignment of Selected Cytochrome b5 Reductase 
Primary Structures. Published amino acid sequences for cytochrome b5 reductases from 
various species were obtained from GenBank using the corresponding accession 
numbers, aligned using the CLUSTAL X algorithm [108] and the alignment manually 
adjusted for maximum sequence conservation. Only portions of the sequences 
surrounding the residues equivalent to G75 and V252 in H. sapiens cytochrome b5 
reductase are shown with the conserved “G” and “V/I” residues underlined. Superscripts 
indicate the positions of the starting residues for the two sequence portions within the 
respective primary sequence. Shown below the alignment is a “sequence logo” [109] that 
consists of stacks of symbols (one stack for each position in the sequence) with the 
overall height of the stack indicating the sequence conservation at that position and the 
height of the symbols within the stack indicating the relative frequency of each amino 
acid at that position. 
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the wild-type protein and to exhibit a full complement of FAD incorporation with the 

flavin prosthetic group present in an environment spectroscopically indistinguishable 

from that of the native domain.  This was similar to the spectroscopic properties and FAD 

complement of the other NADH-binding lobe variants [105, 107].  In contrast, 

NADH:FR activity assays revealed the V252M mutant retained substantial diaphorase 

activity, as indicated by a specific  activity corresponding to 80% of the wild-type 

domain, similar to D239G at 94%, while the E255- and G291D variants only retained 

38% and 58% of wild-type activity, respectively. 

 There was reduced affinity towards the NADH substrate but no change in cofactor 

selectivity as with D239G [107] and no significant change in the thermostability of the 

V252M variant when compared to wild-type cytochrome b5 reductase.  Thus, loss of the 

non-polar side chain at residue 252 does not affect thermostability or enzyme activity but 

reduces affinity towards the NADH substrate, indicating the key role that this region of 

the primary structure plays in substrate affinity.  It is interesting to note that a change in 

the Km for NADH alone is sufficient to cause the development of type I RCM.  Since the 

NADH cofactor is required for the reduction of soluble cytochrome b5 and in turn 

methemoglobin reduction. 

 In summary, characterization of the individual G75S and V252M cytochrome b5 

reductase variants together with the G75S/V252M double mutant indicated decreased 

catalytic activity rather than total loss of enzyme function as predicted by the suggested 

type I recessive congenital methemoglobinemia phenotype of the infant.  In addition, the 

results for the G75S/V252M double mutant were intermediate between those of the two 

individual variants suggesting that the effects of the two individual mutations were not 
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synergistic.  All three cytochrome b5 reductase variants displayed an approximately 10-

fold decrease in catalytic efficiency combined with decreased protein stability, albeit 

slight for V252M, which would be expected to manifest as potentially increased 

methemoglobin concentrations.  In conclusion, these studies provide insight into the 

development of type I as opposed to type II disease and may be a potential diagnostic tool 

in young infants to aid in defining recessive congenital methemoglobin status.           
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4.  CONCLUSIONS AND FUTURE DIRECTIONS 

 

 The studies presented here were intended to provide additional structural and 

functional insight into the highly conserved motifs found within cytochrome b5 reductase, 

and other members of the FNR superfamily, in respect to FAD-binding and NADH-

binding as well as their catalytic function.  This was accomplished through two alternate 

approaches.  The first approach involved the generation of variants of the amino acid 

residues found within the conserved motifs based on alternative residues observed to 

occur at the same position in other members of the FNR family as well as within other 

species, charge reversal mutants, and the introduction of a positive charge as in the case 

of the G124 variants.  The second approach incorporated the analyses of naturally 

occurring recessive congenital methemoglobinemia mutants that are located within, or in 

close proximity to, the conserved motifs.  Through this method of characterization we 

were able to establish a role for each of the previously uncharacterized amino acid 

residues found in the FAD- and NADH-binding motifs as well as determine the 

molecular basis for disease for each of the RCM variants. 

 Previous studies based on the “RxYS
TxxS

N” motif had established it as being 

highly conserved within the β-barrel structure in the FNR superfamily of enzymes [39].  

Work by Kirksey et al. determined that in monoamine oxidase B the equivalent arginine 

residue beginning the motif possessed a necessary charge for proper incorporation of the 
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FAD- cofactor [120].  More recently, a role for the R91, P92, and Y93 has been 

established [76, 77].  It was demonstrated that these residues were not in fact “essential” 

for flavin incorporation, yet R91 and Y93 were both required for the modulation of the 

biophysical and catalytic properties of cytochrome b5 reductase as well as maintaining the 

proper active site structure.  The work presented here determined a role for the remainder 

of the motif to include: T94, P95, V96, and S97.  While the V96S and S97N variants 

yielded results that were comparable to wild-type cytochrome b5 reductase, indicating 

that these residues were not essential for proper flavin incorporation or catalysis,  the 

introduction of a T94H variant involved the removal of the polarity of a hydroxyl group 

and caused a significant perturbation with respect to the environment of the flavin 

prosthetic group.  The introduction of the imidizole side chain resulted in a steric 

hindrance effect directly affecting the interaction of the T94 residue with that of the FAD 

isoalloxazine ring and displacing it away from the FAD binding site.  This was further 

confirmed in the analyses of the spectroscopic binding constants, where the T94H variant 

displayed a greater affinity for the product NAD+ but a reduced affinity for the H4NAD 

substrate analog.  Inhibition studies concluded that upon substrate binding the NAD+ 

product was not able to disassociate efficiently from the NADH-binding site which may 

be due to the displacement of the flavin.  Similar, yet not as dramatic, effects were 

observed for the P95I and P95G variants.  Interestingly, we were never able to generate a 

stable protein for either the T94G or T94P variants.  We believe that this is due in part to 

the fact that the introduction of a glycine leads to a relaxation in the secondary structure 

of the protein and the introduction of a proline causes a kink in the backbone structure.  

Due to its highly conserved position these dramatic alteration to the T94 residue would 
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lead to the generation of an unstable form of the protein that was unable to properly 

incorporate the flavin prosthetic group.  

 Further analysis of the “RxYS
TxxS

N” motif was accomplished through the 

characterization of the naturally occurring RCM double mutant P92H/E255-.  The 

examination of this variant not only afforded an opportunity to determine the properties 

of a RCM mutant occurring within a highly conserved motif but also allowed us to 

investigate the effects of a mutation found in both the FAD-binding and NADH-binding 

domains of cytochrome b5 reductase.  The substitution of a proline by a histidine at 

residue position 92 leads to the introduction of an imidizole side chain that would result 

in a steric hindrance with the isoalloxazine ring of the flavin prosthetic group.  The 

results of this steric hindrance lead to a significant decrease in the efficiency of substrate 

utilization as well as a dramatic perturbation of the environment of the flavin causing a 

partial displacement of the cofactor as observed in the potentiometric titration with a 

positive shift towards that of free flavin.  The E255- variant has been previously 

characterized and has been demonstrated to have a profound effect on the NADH-binding 

motif “CGxxxM” that results in a decrease in substrate affinity and a reduction of the 

catalytic efficiency of over 50% [79].  Thus, the combination of the P92H and E255- 

variants in the double mutant combined the effects of the P92H on the FAD-binding 

domain and the E255- on the NADH-binding domain resulting in a 103 decrease in the 

overall catalytic efficiency. 

The analysis of the crystal structure of cytochrome b5 reductase exposed the 

critical importance of the “G
RxxS

T” motif which has been proposed to be involved in the 

regulation of FAD or FMN specificity [5].  Each of the four residues found within this 
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motif are shown to be directly involved in proper FAD-binding and orientation through 

hydrophobic or electrostatic interactions.  Additionally, the residues of this motif are 

located within the only α-helical segment found within the FAD-binding lobe of 

cytochrome b5 reductase.  Therefore, any mutations of the residues of this motif would 

have a significant impact on the environment of the flavin prosthetic group.  This was 

previously demonstrated through the characterization of the type II RCM variant S127P 

[80], in which the ADP moiety of the flavin prosthetic group was displaced into the 

NADH-binding domain, thereby acting as its own inhibitor.  This work represented the 

first application of site-directed mutagenesis to the G124, K125, and M126 residues 

found within the cytochrome b5 reductase “GxxS
T” motif to gain insight into the roles of 

each of these residues in regulating flavin binding and orientation.  Significant 

perturbations were first observed in the visible CD spectra for each of the variants.  The 

most dramatic effect was determined for the M126 variants which displayed spectra 

comparable to that of the previously described S127P variant, indicating that, much like 

the S127P mutation, alterations of the M126 residue also lead to the displacement of the 

ADP moiety of the FAD- cofactor.  The perturbations were also found to effect a 

decrease in the overall catalytic efficiency for all of the variants in regards to both 

turnover and substrate binding.  Interestingly, in establishing the differential binding 

constants for the “GxxS
T” variants, the introduction of a positive charge at position 124 

displayed an enhanced affinity for both H4NAD and NAD+ yet showed an altered 

conformation of binding for the NAD+ product.  This indicated, that much like that of the 

T94H variant, the substrate is not able to bind as efficiently yet is not able to disassociate 

due to the perturbation of the flavin prosthetic group caused by the introduction of a 
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positive charge on residue G124.  Finally, evidence suggests that the disruption of the 

flavin environment leading to a displacement of the FAD- cofactor were supported by the 

shifts observed in the values of the midpoint potentials obtained in the presence of NAD+ 

which all displayed a negative shift towards that of the potential of free flavin.  The 

results from the kinetic, thermodynamic, and spectral data clearly demonstrate that any 

alterations introduced into the “GxxS
T” motif of cytochrome b5 reductase lead to a partial 

displacement of the flavin prosthetic group resulting in a reduction in the overall catalytic 

efficiency and electron transfer. 

The characterization of the naturally-occurring RCM variants M272- and P275L 

allowed for the determination of the importance of the conserved NADH-binding motif 

“CGxxxM” motif as well as establishing a molecular basis for disease for each of the 

variants.  The M272 residue has no direct interaction with the NADH substrate yet it 

directly precedes the highly conserved residue C273, which has been determined to be an 

“essential” residue within the “CGxxxM” motif.  The deletion of residue M272 has also 

been shown to give rise to type II RCM [81] and initial kinetic analyses has demonstrated 

that this mutation has the lowest catalytic efficiency observed thus far for any 

methemoglobinemia variant [40].  The deletion of this residue results in a frame-shift of 

the entire nucleotide binding motif which displayed a significant decrease in the substrate 

binding affinity as well as a reduction in the catalytic efficiency.  As demonstrated in the 

determination of the spectral binding constants, no spectroscopic changes were observed 

for the M272- variant even at very high concentrations of substrate.  Interestingly, the 

same effects were witnessed for the M272R mutation.  The introduction of the arginine 

side chain was hypothesized to protrude towards the C273 residue resulting in a 
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disruption of the essential contacts that C273 makes with the NADH substrate leading to 

the decreased substrate binding affinity.  The effects upon substrate affinity as well as the 

modulation of electron transfer by the M272- and M272R variants was observed in the 

potentiometric titrations performed in the presence of NAD+.   For the wild-type 

cytochrome b5 reductase a shift of +77 mV was observed for the FAD/FADH2 couple in 

the presence of NAD+, however, this shift was significantly decreased for the M272- and 

M272R variants, further confirming that substrate binding had been severely 

compromised.   

Residue P275 is a critical residue found within the “CGxxxM” motif that 

functions in proper NADH-binding and orientation of the pyridine nucleotide.  Through 

analysis of the crystal structure of cytochrome b5 reductase in complex with NAD+ it was 

observed that the bound NAD+ conforms itself and actually bends around the P275 

residue.  The mutation of the proline to that of a leucine, as determined in a patient 

exhibiting a type I RCM phenotype, demonstrated the critical role that this amino acid 

residue plays.  The initial rate kinetic analyses provided the first evidence of the effects of 

the introduction of a leucine at position 275.  Surprisingly, the P275L variant displayed 

an activity that was comparable to that of wild-type cytochrome b5 reductase, however, 

the Km for NADH utilization was increased 437 fold compared to that of wild-type cb5r, 

indicating a dramatic decrease in the affinity for the NADH substrate.  To further confirm 

the reduced affinity for NADH, spectral binding constants were determined for both the 

analog H4NAD and the reaction product NAD+.  In this experiment, no complex 

formation could be detected even upon the addition of concentrations of substrate that 

were 10-fold greater than that required for saturation of the wild-type enzyme.  
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Additionally in the potentiometric titrations, the redox potential in the absence of NAD+ 

was comparable to the value obtained for wild-type cytochrome b5 reductase, indicating 

that the P275L variant had no effect on the FAD- cofactor.  However, upon the addition 

of NAD+ the potential was significantly more negative, confirming that the replacement 

of the proline residue with a leucine does in fact lead to a decreased affinity for the 

NADH substrate that is capable of giving rise to type I RCM.  It is evident from these 

results that any alterations in the highly conserved “CGxxxM” motif can significantly 

affect the overall catalytic efficiency of cytochrome b5 reductase and the correct 

maintenance of the motif is imperative in proper NADH substrate binding and 

orientation. 

Finally, the characterization of the naturally occurring double mutant 

G75S/V252M again allowed us to examine the effects of a RCM mutation that occurs in 

both the FAD-binding and NADH-binding domains and use this information as a 

potential aid to determine the methemoglobinemia status (type I or type II) upon the first 

onset of the disease.  Although the patient was actually heterozygous for the double 

mutation, we decided to generate the double mutant as a homozygote in order to examine 

the possible synergistic effects.  Previous studies have described the V252M as giving 

rise to type I RCM [40, 84].  It was then our prediction that the G75S variant would also 

be capable of demonstrating characteristics of that of type I RCM, yet the combination of 

the two mutations affecting both the NADH-binding and FAD-binding domains would 

give rise to the more severe type II RCM.  However, although both the single and the 

double mutants displayed a decrease in catalytic efficiency, the double mutant actually 

yielded results that were intermediate between that of the two single mutants.  This 
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information can therefore provide valuable insight towards the early diagnosis of RCM 

type I versus type II status in an infant. 

This data provides valuable insight into the structural and functional properties of 

the highly conserved motifs of cytochrome b5 reductase that are involved in FAD- or 

NADH-binding and orientation as well as a determination of the molecular basis of the 

disease recessive congenital methemoglobinemia.  These results support logical 

conclusions based on the kinetic, spectral, thermodynamic, and molecular modeling 

properties of each of the generated variants.  However, in order to complete this work and 

support our conclusions, crystal structures of the variants, both in the absence and 

presence of NAD+ should be obtained.  This would provide the most concrete evidence to 

support the conclusions presented in this work.  The evaluation of the naturally occurring 

methemoglobinemia variants M272- and P275L provided us with a clear definition of the 

importance of the “CGxxxM” motif in regards to NADH substrate binding and 

orientation.  In order to fully elucidate the role of each residue though, a project is already 

underway that will involve alanine scanning of the entire motif.  The data presented here 

in this research provided a broad analysis of the motif whereas the alanine scanning data 

will provide information on the structural and catalytic role of each individual residue.    

Additional work could also be carried out involving the “G
RxxS

T” motif.  The 

generation of the G124, K125, and M126 variants established the critical role that each 

residue plays towards the proper incorporation of the cb5r flavin prosthetic group.  To 

gain a broader understanding of the roles of these residues, a series of double and triple 

mutants could be generated and only the most interesting variants selected for further 

characterization.  As previously mentioned, the G
R124 residue not only forms a 
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hydrophobic interaction with the FAD- cofactor of cb5r but also has been proposed to 

regulate FAD/FMN specificity within members of the FNR superfamily.  To investigate 

this, flavin analog substitution could be performed utilizing the G124R variant.  From 

this a Ks for FAD, FMN, and various other analogs could be determined.                                                   
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