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Regulation of Bax Activation and Apoptosis by Src and Acetylated Mutant p53 

 
Nicholas T. Woods 

 
ABSTRACT 

 Apoptosis is an inherent suicide mechanism that cells invoke for a variety of 

reasons including embryo cavitation, tissue homeostasis, excessive DNA damage and 

aberrant oncogene activation. Apoptosis is regulated by a diverse set of proteins 

including, but not limited to, the Bcl-2 family. This family set is comprised of both pro-

death and pro-survival proteins whose relative expression, localization and/or 

modifications regulate the balance between life and death for each cell. The keystones to 

this system are the proapoptotic proteins Bax and Bak, which are regulated by their 

conformation and localization. However, the exact mechanisms by which Bax and Bak 

become activated remains to be resolved. Similarly, research focusing on the cancer cell’s 

ability to deregulate apoptosis by preventing the activation of Bax or Bak will provide 

further insight into the development of targeted therapies for cancer that will hopefully 

contribute to the cure of this formidable disease.  

 Src, the classic oncogenic kinase, has been found to deregulate Bax activation in 

response to the detachment of a cell from its substratum support thereby preventing 

anoikis, the Bax-dependent apoptotic response involved in the impairment of metastatic 

dissemination of cancer. Our findings indicate that Src deregulates this response by 

altering the relative expression of Bcl-2 family members Mcl-1 and Bim through the PI3-

K/Akt and Erk1/2 pathways. However, Src retains its ability to prevent anoikis even in 



 xi

the setting of Akt and Erk1/2 signaling inhibition. Further evaluation of the role of Src in 

this process revealed that Bif-1, a protein known to associate with and activate Bax, could 

be directly phosphorylated by Src which prevented the association of Bax with Bif-1 and 

impaired the anoikis response.  

 In addition, our studies have also found that Bax activation in response to 

treatment with type Ι and II histone deacetylase inhibitors is dependent on the expression 

of the tumor suppressor p53. Acetylation of p53 at carboxy-terminal lysine residues 

enhances its transcriptional activity associated with cell cycle arrest and apoptosis. Here, 

we demonstrate that p53 acetylation at K320/K373/K382 is also required for its 

transcription-independent functions in Bax activation, ROS production, and apoptosis in 

response to the histone deacetylase inhibitors (HDACi) SAHA and LAQ824. Knockout 

of p53 in HCT116 cells markedly reduced HDACi-induced apoptosis. Unexpectedly, 

expression of transactivation-deficient p53 variants sensitized p53-null cancer cells to 

HDACi-mediated Bax-dependent apoptosis, whereas knockdown of endogenous mutant 

p53 inhibited HDACi-induced apoptosis. Evaluation of the mechanisms controlling this 

response led to the discovery of a novel interaction between p53 and Ku70. The 

association between these two proteins was acetylation independent, but acetylation of 

p53 could prevent and disrupt the Ku70/Bax complex and enhance apoptosis. These 

results suggest a new mechanism of acetylated p53 transcription-independent regulation 

of apoptosis. 
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Chapter One: 
Introduction 

 
Cancer 

 Cancer is a complex group of diseases that exhibit similar cellular traits such as 

uncontrolled growth, invasiveness, and sometimes metastasis of abnormal cells. When 

the spread of cancer is uncontrolled the result is often death. The lifetime risk of 

developing cancer in men is 1 in 2, and for women it is 1 in 3. Cancer can originate at 

many different sites but the cancer with the highest mortality rate is lung and bronchus in 

both men and women. Cancer associated mortalities remain alarmingly high accounting 

for 1 in every 4 deaths and averaging over half a million per year in the United States 

alone. Although cancer is the second leading cause of death in the United States after 

heart disease, over the years little advancement in improving survival rates has occurred 

compared to that for heart disease (Jemal et al., 2007). The diversity and heterogeneity of 

cancer has been the largest obstacle to advanced clinical therapies. It has become clear 

that the path to a cure will likely be a long-term research endeavor culminating in 

personalized therapeutics that will incorporate the lessons learned in a variety of different 

fields. 

 

Hallmarks of Cancer 

 The causes of cancer are diverse in nature and include environmental factors such 

as chemical carcinogens, ionizing radiation and viruses as well as internal factors such as 

inherited genetic mutations, hormones and the immune system. Therefore, the cause of 
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cancer is generally cryptic in nature with the exception of those caused by cigarette 

smoking or alcohol consumption, but even in these cancers it appears that the 

combination of genetic predisposition and carcinogen consumption determines cancer 

formation and progression (Sellers et al., 1992). Nonetheless, all cancer cells exhibit 

specific traits termed the ‘Hallmarks of Cancer’ that dictate malignant progression  

(Hanahan and Weinberg, 2000). These hallmarks are self-sufficiency in growth signals, 

resistance to anti-growth signals, evasion of cell-death, limitless replicative potential, 

angiogenesis, and tissue invasion and metastasis. The multiplicity of these hallmarks 

reflects the progressive nature cancer must exhibit to overcome biological barriers to their 

formation and dissemination. Multiple molecular pathways have been identified that 

control each one of these hallmarks and current research has focused on targeting these 

different pathways to eliminate cancer. 

 

Oncogenes 

 Oncogenes are protein encoding genes that drive malignant transformation and 

progression when mutated, overexpressed or hyperactive. There have been a number of 

oncogenes identified since the initial discovery of Src in the 1970’s (Erikson et al., 1980). 

The normal cellular counterparts are termed proto-oncogenes to indicate their potential to 

drive oncogenesis if activated. Proto-oncogenes can be activated by qualitative or 

quantitative mechanisms. Chromosomal translocations can cause oncogenes to be driven 

by promoters that are constitutively active in the target cells, such as the well known 

Philadelphia chromosome translocation t(9:22)(q34:q11) resulting in the oncogenic 

fusion product BCR-Abl found in chronic myelogenous leukemia and acute leukemia 
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(Kurzrock et al., 1987). Gene amplifications of oncogenes can also lead to aberrant 

signaling. An example of this is the dihydrofolate reductase gene (DHFR) amplification 

found in methotrexate-resistant acute lymphoblastic leukemia (Alt et al., 1978). 

Qualitative alteration of BRAF through the mutation V599E results in a constitutively 

active protein that drives the MAP kinase pathway (Davies et al., 2002). Since oncogenes 

are well studied and their role in cancer is generally pronounced, many therapeutic agents 

have been derived that specifically target them. One of the most successful inhibitors of 

oncogenes developed has been imatinib (Gleevec) targeting BCR-Abl, which has been 

highly effective in the treatment of Philadelphia chromosome positive leukemias. 

 

Src 

 The discovery of the first oncogene, Src, was set in motion by the discovery of the 

cell-free transmission of a malignant avian virus by Peyton Rous in 1910, for which he 

was awarded the Nobel Prize (1966). This retrovirus was later found to encode for the 

viral oncogene v-Src which shared sequence homology with DNA found in normal avian 

genetic material (Stehelin et al., 1976). Src was determined to exhibit protein kinase 

activity required for its transformation potential (Collett et al., 1979; Levinson et al., 

1978). The original v-Src was later determined to have a deletion of the c-terminal 

negative regulatory domain and was therefore constitutively active. The full-length 

mammalian homolog, c-Src, is often overexpressed, hyperactivated or mutated in a 

number of cancers of epithelial origin (Frame et al., 2002; Irby et al., 1999; Jacobs and 

Rubsamen, 1983; Rosen et al., 1986). Infrequent Src mutation in cancers results in a 

truncated and activated protein (Irby et al., 1999; Sugimura et al., 2000). Given Src’s well 
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established role in tumorigenesis, therapeutic disruption of its mechanisms of action has 

been aggressively pursued. 

 

Structure and Regulation of Src 

 Src is a non-receptor tyrosine kinase that localizes in the cytoplasm, but can also 

be recruited to membranes via N-terminal myristolation. Its three key domains are the 

SH3 domain, SH2 domain and the kinase domain (Figure 1). The SH2 domain recognizes 

pTyr motifs and is responsible for the auto inhibition of c-Src as it binds phosphorylated 

Tyr530 (Homo sapiens nomenclature; Tyr527 in chicken) in the c-terminal regulatory 

domain. Binding of the SH2 domain to pTyr530 also promotes the interaction of the SH3 

domain with the polyproline tract located within the linker region between the SH2 and 

kinase domains of Src. These coordinated effects lead to structural changes in Src that 

inactivate the kinase activity of the protein (Yamaguchi and Hendrickson, 1996). 

Phosphorylation of Tyr530 can be accomplished by proteins such as CSK or its homolog 

CHK. Alternatively protein tyrosine phosphatases SHP1, SHP2, PTPα, or PTP1B can 

dephosphorylate Src resulting in an open active conformation of the kinase (Yeatman, 

2004). Competitive binding of the SH2 domain by focal adhesion kinase (FAK), 

epidermal growth factor receptor (EGFR) or erbB2 can also promote the active 

conformation of Src (Cobb et al., 1994; Schaller et al., 1994). Likewise, SH3 binding by 

the HIV associated Nef protein can promote Src family kinase activity (Moarefi et al., 

1997). Full activation of Src is accompanied by autophosphorylation of tyrosine 419 

within the kinase domain. These multiple modes of Src regulation intricately regulate 

downstream signaling that control cell survival, proliferation, angiogenesis and 



metastasis. 

 

 

Figure 1. Domain structure of c-Src and v-Src. (Yeatman, 2004) 

 

Src Signaling 

 Src is involved in diverse and numerous signaling pathways. Src family kinases 

(SFKs), including Lck, Lyn, Fyn, Blk, Fgr, Hck, Yrk, and Yes, are also involved in a 

broad spectrum of cellular signaling, but for the sake of brevity this introduction will only 

attempt to summarize important Src signaling cascades relevant to the research outlined 

below. For an excellent comprehensive review on SFK signaling in different biological 

pathways please refer to Thomas and Brugge, 1997.  

 One of the most studied functions of Src is its role in the signaling cascade of 

focal adhesions. These structures regulate cell morphology, attachment and mobility. 

 5



 6

Many focal adhesion associated proteins are also substrates for v-Src such as focal 

adhesion kinase (FAK), p130CAS, paxillin, talin, vinculin, tensin, and β1 integrin subunit, 

which are phosphorylated on tyrosine residues when localized to these structures 

(Thomas and Brugge, 1997). Specifically, Src directly phosphorylates FAK which 

controls FAK kinase activity and creates binding sites for recruitment of proteins to FAK 

complexes thereby perpetuating downstream signaling that promote cell migration and 

survival (Calalb et al., 1996; Cobb et al., 1994; Schlaepfer and Hunter, 1996). The role of 

Src in cell migration was also demonstrated in src-/- fibroblasts which show reduced cell 

motility that could be rescued by kinase-active but not inactive Src (Hall et al., 1996). 

However, there is also evidence that the SH2 and SH3 domains of Src act as a scaffold 

responsible for assembly of FAK signaling complexes independent of Src’s kinase 

activity (Brunton et al., 2005; Schlaepfer et al., 1997).  

 Src is also an upstream mediator of such pathways as PI3-K, Erk1/2, and STAT3 

(Fincham et al., 2000; Park et al., 1999; Yu et al., 1995). Like Src, these cell signaling 

pathways are responsible for regulating a diverse set of biological functions. The 

phosphatidylinositol 3-kinase (PI3-K) and extracellular regulated kinase (Erk1/2) 

pathways are often deregulated in cancer by overexpression or mutation of key regulatory 

elements such as Src. The PI3-K regulatory subunit p85 can interact with Lck and Abl 

which directly phosphorylate the subunit at tyrosine 688 allowing the catalytic domain of 

p110 of PI3-K to become activated (von Willebrand et al., 1998). The PI3-K pathway is 

also deregulated by mutation or loss of phosphatase with tensin homology (PTEN). When 

PTEN is disrupted, the cell loses the ability to negatively regulate PI3-K dependent 

formation of the second messenger lipid phosphatidylinositol (3,4,5) triphosphate (PIP3), 
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which results in constitutive activation of the Akt pathway responsible for apoptosis 

inhibition and cell cycle progression (Cully et al., 2006). Overactive Src signaling can 

also promote aberrant signaling through the Erk1/2 pathway by promoting 

phosphorylation of the adaptor protein Shc which then leads to enhanced signaling 

through the Grb2-SOS-Ras pathway (Blake et al., 2000; Ravichandran, 2001; Salcini et 

al., 1994). Ras activation can also lead to the activation of PI3-K through direct binding 

to the p110 subunit (Sjolander et al., 1991; Walker et al., 1999). These convoluted 

pathways are essential to the progression of cancer as they collectively promote the tumor 

phenotype. However, for the purposes of this report the focus of their signaling outcomes 

will be their antiapoptotic potentiation. 

 

Anoikis 

 The development of a metastatic phenotype is a late event in tumor progression. 

Metastases are an indicator of poor prognosis. In fact, 90% of the mortalities associated 

with cancer arise from metastatic dissemination (Weigelt et al., 2005). In order for a 

tumor cell to acquire the metastatic phenotype it must first overcome or bypass the 

intrinsic cellular response of anoikis, detachment induced apoptosis. When normal cells 

are detached from the extracellular matrix (ECM) and deprived of integrin signaling they 

die by a process termed anoikis (Frisch and Francis, 1994). Anoikis is essentially a 

normal apoptotic reaction in response to the specific stimulus of improper integrin 

engagement. The execution of a cell by anoikis stimulation can rely on several different 

mechanisms of apoptosis. For instance, inhibition of the extrinsic apoptotic cascade 

results in the inhibition of apoptosis (Frisch, 1999). However, regulation of the intrinsic 
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pathway of apoptosis can also effectively prevent anoikis in a variety of systems. 

 Anoikis is essential for common biological processes involved in homeostasis, 

morphogenic changes, and inhibition of cancer metastasis. Integrins not only function as 

structural adhesive support between the cell and the ECM, they also serve as a scaffold 

for intracellular signaling proteins (Hynes, 2002). This signaling activates pathways 

involved in survival and proliferation which prevents anoikis. Cells of different origins 

express unique sets of integrins and preferentially adhere to specific complements of 

ECM ligands. Therefore, when a cell comes into contact with the improper complement 

of ECM ligands, signaling becomes insufficient and anoikis soon follows (Pullan et al., 

1996). However, upon mobilization some metastatic cells can change their complement 

of integrin receptors to adapt to a new ECM environment to prevent anoikis 

(Montgomery et al., 1994). Therefore, it is essential to understand integrin function and 

their signaling pathways to decipher the mechanisms of anoikis initiation. 

 

Integrin Signaling  

 The ECM provides adhesive support to normal tissues and controls numerous 

signals that regulate diverse cellular processes such as survival, growth, and 

differentiation (Hynes, 1999). These signaling mechanisms are regulated by integrins. 

Integrins are heterodimeric proteins that consist of two α and β type-I transmembrane 

subunits. There are 18 α and 8 β subunits that can be expressed in mammals, which can 

combine to form 24 recognized integrins. These integrins bind specific components of the 

ECM, but some overlapping is found between substrate recognition of different integrins 

(Guo and Giancotti, 2004). Integrin engagement of extracellular matrix substrates leads 



 9

to the formation of focal adhesions, as mentioned previously. These focal adhesions are 

membrane attachment plaques that couple the ECM attached transmembrane integrins to 

the intracellular actin cytoskeleton and other cellular structural components (Jockusch et 

al., 1995). Integrin signaling affects many different pathways such as the Erk1/2, PI3-

K/Akt, NF-κB and others through Src family kinase mediated signal propagation (Figure 

2). In this way, integrins regulate biological functions such as cell survival, proliferation 

and migration. 

 Integrin activation of the aforementioned signaling pathways is highly 

reminiscent of extracellular growth factor receptors. In fact, growth factor signaling by 

epidermal growth factor receptor (EGFR) can suppress the anoikis response in mammary 

epithelial cell line MCF-10A (Reginato et al., 2003). Detachment of this cell line leads to 

a downregulation of EGFR expression, repressed Erk1/2 signaling, and enhanced Bim 

expression leading to apoptosis. Further crosstalk between growth factor receptors and 

integrins has been documented in both primary oligodendrocytes and mammary epithelial 

cells that enhances growth factor signaling and survival (Gilmore, 2005). Given the high 

interconnectedness between integrin and growth factor receptor pathways, it will be 

important to determine the individual contributions of inhibited growth factor and 

integrin signaling in anoikis. 

 

 

 



 

Figure 2. Integrin signaling networks (Guo and Giancotti, 2004). 

 

Src Mediated Suppression of Anoikis 

 When cells are deprived of integrin signaling due to ECM detachment these pro-

survival pathways are ablated which triggers the anoikis response. Therefore, in order for 

a cell to suppress anoikis it must acquire the means to compensate for the lost signaling 

and prevent apoptosis. Aggressive breast, colon, and lung malignancies with a propensity 

to metastasize have been shown to lack the normal apoptotic response after detachment 

from the supporting matrix (Shanmugathasan and Jothy, 2000; Wei et al., 2001; Yawata 

et al., 1998). Moreover, cancer cells that are more apt to resist anoikis due to genetic 
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mutation or overactive survival signaling are increasingly likely to initiate distal 

metastases (Douma et al., 2004).  

 Src has been implicated in processes that increase the metastatic potential of 

cancer cells including cell adhesion (Kaplan et al., 1995), migration (Rahimi et al., 1998), 

and invasion (Zhang et al., 2004). Transient increases in Src activity upon detachment in 

both normal and cancer cells is critical to inhibition of anoikis (Loza-Coll et al., 2005; 

Wei et al., 2004). Active c-Src likely promotes survival once the cell is detached from the 

ECM by compensating for the loss of integrin and growth factor signaling. However, the 

direct mechanisms that potentiate Src mediated anoikis suppression are poorly 

understood. Two of the projects that have been included in this report attempt to delineate 

specific mechanisms of Src action in the prevention of anoikis and the promotion of 

metastatic dissemination of cancers (Woods et al., 2007; Yamaguchi et al., 2008). The 

findings presented herein provide insights into Src mediated disruption of Bax activation 

required for anoikis. 

 

Apoptosis 

 Apoptosis is a multi-step process that culminates in the self-destruction of an 

individual cell. This self-killing mechanism proceeds through a highly regulated set of 

events that lead to the activation of cellular cysteine proteases known as caspases (Wolf 

and Green, 1999). Apoptosis is characterized by specific biochemical and morphological 

characteristics. This process is essential to counteract normal proliferation resulting in 

relatively steady state in an organism’s total cell number. The deregulation of apoptosis 

has been characterized in many different diseases. Neurodegenerative disorders are often 
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the result of increased apoptosis of neuronal lineage cells. Alternatively, inhibition of the 

normal apoptotic response often results in the development of cancer when combined 

with sustained proliferation (Thompson, 1995). Luckily, there are many built-in 

regulatory mechanisms that maintain apoptosis at acceptable levels. 

 Morphological and biological features that distinguish apoptosis from other forms 

of cell death such as necrosis or autophagy include cell shrinkage, membrane blebbing, 

nuclear condensation, activation of cellular caspases, DNA fragmentation, mitochondrial 

membrane disruption, and exposure of phosphatidylserine (PS) on the outer leaflet of the 

plasma membrane (Fadok et al., 1992; Green and Evan, 2002; Reed, 1995). Unlike 

necrosis, apoptosis is a rather ‘clean’ process in that there is limited or no release of 

inflammatory intracellular components. The exposure of PS results in the recruitment of 

macrophages that recognize the signal and engulf the apoptotic cell.  

 Apoptosis can be triggered by a number of different stimuli. Depending on the 

specific stimulus, apoptosis can be initiated through one of two independent pathways 

referred to as intrinsic or extrinsic based on the origin of the initiating apoptotic signal. 

The intrinsic pathway of apoptosis is regulated by the integrity of the outer mitochondrial 

membrane (OMM) and the Bcl-2 family members that control it. Alternatively, the 

extrinsic pathway of apoptosis is regulated by transmembrane receptors that are activated 

by ligand specific binding. Whereas, the intrinsic apoptotic response is determined by the 

integrity of the OMM, extrinsic apoptosis may or may not require OMM disruption for 

efficient apoptosis. 
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Extrinsic Apoptotic Pathway 

 The extrinsic pathway of apoptosis is initiated upon binding of ligand to their 

cognate receptors. These receptors, ominously dubbed “death receptors” such as TRAIL, 

TNFR1-2, DR4, DR5 and Fas/CD95 all contain cysteine rich extracellular domains that 

allow specific binding of ligand resulting in trimerization and activation (Naismith and 

Sprang, 1998). This clustering of death receptors results in the recruitment of cytoplasmic 

adapter proteins FADD or TRADD to the complexes, which interact with the death 

domains (DD) of the receptor via their own DD. FADD also contains a death effecter 

domain (DED) which recruits initiator caspase-8 and/or caspase-10, via their own DED 

domain, to the receptor resulting in the formation of the “death inducing signaling 

complex” (DISC). The enhanced proximity of these initiator caspases promotes their 

proteolytic processing into mature proteases (Ashkenazi, 2002) (Figure 3A). Apoptosis 

resulting from death receptor signaling can be classified as type I or type II. Type I 

extrinsic apoptosis occurs when activation of initiator caspases alone is sufficient to 

activate effecter caspases-3 and 7 which then promote the enzymatic destruction of the 

cell. However, the much more common type II extrinsic apoptosis relies on the 

involvement of the intrinsic apoptotic pathway and outer mitochondrial membrane 

permeabilization through caspase-8 mediated enzymatic cleavage of Bid into two 

fragments. The C-terminal 15 kDa fragment, tBid, translocates to the mitochondria and 

acts as a potent inducer of apoptosis through its interaction with Bcl-XL and Bax (Luo et 

al., 1998). This mechanism allows for the amplification of the initial apoptotic insult and 

the efficient execution of apoptosis. 
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Intrinsic Apoptotic Pathway 

 Bcl-2 was originally identified in follicular lymphoma based on the common 

translocation t(14:18) in this tumor type (Tsujimoto et al., 1985). Originally classified as 

an oncogene, it was later found that expression of Bcl-2 had no effect on cell cycle 

progression and instead specifically prevented cell death in response to stimuli 

(Thompson, 1995). Subsequent identification of the rest of the Bcl-2 family members and 

several non-Bcl-2 proteins has led to our current understanding of the basic functions of 

these proteins in the regulation of apoptosis.  

 The Bcl-2 family is composed of opposing subsets of proteins such as 

antiapoptotic members Bcl-2, Bcl-XL, and Mcl-1 which protect the integrity of the OMM 

through inhibition of the multi-domain proapoptotic proteins Bax and Bak. Activation of 

proapoptotic molecules Bax and Bak is associated with the loss of OMM integrity and the 

release of apoptogenic proteins such as cytochrome c, AIF, endonuclease G, HtrA2/Omi 

and Smac/Diablo (Green, 2005). Release of cytochrome c into the cytoplasm allows it to 

bind Apaf-1 culminating in the formation of the apoptosome with the recruitment of 

procaspase-9 (Figure 3A). The clustering of procaspase-9 results in autolytic processing 

and maturation of the initiator caspase-9 and subsequent activation of downstream 

effecter caspases and the resultant apoptosis. Release of HtrA2/Omi and Smac/Diablo 

prevent the inhibition of cellular caspase activity by inactivating the inhibitors of 

apoptosis (IAP) proteins such as cIAP and XIAP. Endonuclease G and AIF are both 

nucleases that once released, translocate to the nucleus and participate in DNA 

fragmentation (Daugas et al., 2000; van Loo et al., 2001).  

 



 

A 

 

B 

Figure 3. Apoptotic Pathways and Bax Organization. (A) Extrinsinc and Intrinsic 
Apoptotic Pathways (Ashkenazi, 2002). (B) Native conformation of inactive 
Bax (Suzuki et al., 2000). 
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Bax Activation 

 Bax activation is a multi-step process that converts cytoplasmic monomers into 

pore forming membrane bound oligomers and is a key initiating step in the execution of 

intrinsic apoptosis and anoikis (Gilmore et al., 2000; Lindsten et al., 2000). Activation 

involves a conformational rearrangement, recruitment to the mitochondrial membrane, 

insertion into the membrane, oligomerization and pore formation. In aqueous solution 

Bax exists as a globular protein similar to other Bcl-2 family members (Petros et al., 

2004). Bax is composed of 9 α helices separated by amorphous loop regions (Figure 3B). 

The two core helices α5 and α6 are largely hydrophobic and are surrounded by the seven 

remaining amphipathic helices. These seven helices maintain their hydrophobic regions 

toward the center of the protein and their hydrophilic regions toward the exterior, which 

promotes the solubility of the protein and its localization to the cytoplasm. The BH1-3 

domains of Bax form a hydrophobic pocket that is occupied by the C-terminal helix α9. 

Bax conformational activation involves the dissociation of helix α9 from the hydrophobic 

pocket. This C-terminal helix of Bax is responsible for the anchoring of Bax to 

intracellular membranes. Akt mediated phosphorylation of S184 in helix α9 or mutation 

to a charged residue prevents Bax localization to the mitochondria even under apoptotic 

conditions (Gardai et al., 2004).  Similarly, S184 deletion or mutation to valine results in 

constitutive association of Bax with the mitochondria, but without another stimulus this 

alone does not stimulate the apoptotic response (Nechushtan et al., 1999). Rather, the 

core hydrophobic helices α5 and α6, which strongly resemble the pore forming domain of 

diphtheria toxin, are required to be exposed in order for pore formation to occur. 

Exposure of these two helices is responsible for insertion of Bax into the OMM and as an 
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isolated region they able to insert into synthetic membrane lipids and form pores (Annis 

et al., 2005; Garcia-Saez et al., 2006). However, Bax localization to the OMM is 

independent of helices α5 and α6 and instead requires the exposure of the normally 

restricted N-terminal domain consisting of amino acids 20-37 (Cartron et al., 2003). 

Exposure of this N-terminal domain can be assessed using the conformation specific Bax 

6A7 antibody. As evidenced by these previous findings, in order for efficient Bax 

mediated apoptosis this protein must undergo extensive rearrangement of its three-

dimensional structure for proper targeting, insertion and pore formation. Although much 

is already known about the changes in Bax required for OMM permeabilization, the exact 

mechanism by which Bax is persuaded to undergo such gross rearrangement remains to 

be resolved.  

 

Bcl-2 Family Regulation of Bax  

 Bax activation status is regulated by other Bcl-2 proteins consisting of both pro- 

and antiapoptotic molecules with opposing functions. The antiapoptotic Bcl-2, Bcl-XL, 

Mcl-1, and Bcl-w proteins sequester proapoptotic BH3-only proteins as well as Bax and 

Bak. Currently two models have been proposed to explain the function of BH3-only 

molecules in the activation of Bax and Bak. In the displacement model, BH3-only 

proteins bind to antiapoptotic proteins and cause the release of Bax and Bak allowing 

them to become activated. In this model, BH3-only proteins Bim, tBid, and Puma are the 

most potent inducers of Bax activation presumably for their broad affinity for the 

majority of the antiapoptotic proteins. Indeed, the different BH3-only proteins exhibit 

drastically different affinities to antiapoptotic molecules (Certo et al., 2006). 
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Contrastingly, in the direct binding model Bim, tBid and Puma are classified as activators 

because they can directly activate Bax (Desagher et al., 1999; Harada et al., 2004; 

Kuwana et al., 2005; Letai et al., 2002; Wei et al., 2000). The remaining BH3-only 

proteins, such as Noxa, Bmf, Hrk, Bik, Bad, Blk, and Bnip3, are classified as sensitizers 

and bind to antiapoptotic proteins and prevent their inhibition of the BH3-only activators 

as well as Bax and Bak. Although both models adequately account for the regulation of 

Bax and Bak activation, definitive experimental evidence is still needed to resolve 

discrepancies in both models.  

 Although BH3-only proteins may affect Bax activation through several different 

mechanisms as hypothesized in the direct and indirect models, problems with both 

models still remain to be resolved. For instance, evidence that BimEL can directly 

associate with Bax is lacking. Co-immunoprecipitation of the two proteins has only been 

successfully tested in exogenous expression systems and this model is highly contested 

due to the lack of interaction seen by others (Harada et al., 2004; Marani et al., 2002). 

Interestingly, the BimS isoform is able to induce apoptosis without interacting with 

antiapoptotic proteins (Weber et al., 2007). This accumulating evidence suggests that the 

multitude of different Bim isoforms can display proapoptotic functions in a mutually 

exclusive manner. Our lab has also determined that Bcl-XL can protect against Bax 

activation and cytochrome c release independent of its direct interaction with Bax and 

Bim (Yamaguchi and Wang, 2002). Also, chemical inhibition of Bcl-2 and Bcl-XL by 

ABT-737 does not promote substantial apoptosis when Mcl-1 is expressed. 

Concomitantly, when Mcl-1 is knocked down, apoptotic induction still requires another 

stimulus. Interaction between the Bcl-2 family members is highly dependent on 
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conformation. Therefore, it is essential to critically analyze experimental methods used to 

probe the molecular interactions between these proteins as detergents used to make cell 

lysates have a large impact on the findings. Future work is needed to determine how the 

molecular interactions occur, where they occur and their biological significance. 

 

Regulation of Bax by non-Bcl-2 Family Proteins 

 Non-Bcl-2 proteins Ku70, Bif-1, humanin peptide, p53, 14-3-3, cardiolipin, 

Tom22, and ASC have been identified as potential mediators of Bax activation and it is 

likely that their individual role is determined by several factors such as the apoptotic 

insult and cell lines tested (Chipuk et al., 2004; Cohen et al., 2004a; Guo et al., 2003; 

Kuwana et al., 2002; Nomura et al., 2003; Ohtsuka et al., 2004; Ott et al., 2007b; 

Takahashi et al., 2005). Ku70, 14-3-3 and humanin control apoptosis through their 

inhibition of Bax activation by sequestering inactive Bax away from the mitochondria 

and preventing its activation (Guo et al., 2003; Nomura et al., 2003; Subramanian et al., 

2005). These retention factors may explain how Bax is kept in the inactive state when 

localized to the cytoplasm without direct interaction with Bcl-XL which resides on the 

mitochondria.  Although less well characterized than Bcl-2 proteins, these retention 

factors add another layer of control into the scheme of Bax activation and provide 

additional prospective therapeutic targets to potentiate an apoptotic response. 

 Non-Bcl-2 family membrane proteins are also required for Bax activation, as 

pretreatment of purified mitochondrial membranes with protease K prevents tBid induced 

Bax oligomerization (Roucou et al., 2002). Similarly, tBid and Bax can efficiently release 

pre-loaded dextran from outer mitochondrial vesicles compared to chemically defined 



 20

protein-free liposomes (Kuwana et al., 2002). However, controversy persists as to which 

mitochondrial proteins are required for Bax activation (Ott et al., 2007b). The research 

and discussion found in the following sections will explore the mechanisms of Mcl-1, 

Bim and Bif-1 regulation and their impacts on Bax activation in response to detachment 

from adhesive support, as well as the novel mechanism of acetylated p53 regulation of 

Bax activity through a Ku70 dependent manner.  

 

Bim  

 As mentioned previously, the two competing hypotheses of direct and indirect 

BH3-only protein regulation of Bax activation remain to be resolved. One of the proteins 

at the center of this conflict is Bim. Although the exact mechanism is debated, the fact 

remains that there is a positive correlation between Bim expression and apoptosis which 

can be prevented by overexpression of antiapoptotic proteins or the absence of Bax and 

Bak. The expression of Bim is regulated at both the transcriptional and posttranslational 

levels. Transcription is controlled by several transcription factors, most notably 

FKHRL1, Foxo3a (Dijkers et al., 2000; Gilley et al., 2003). Akt directly phosphorylates 

Foxo3a to promote its interaction with 14-3-3 and retention in the cytoplasm (Brunet et 

al., 1999). There have been many different isoforms of Bim identified but the most 

predominantly expressed are BimEL, L and S (EL, extra long; L, long; S, short) (Miao et 

al., 2007). At the posttranslational level, Bim can be regulated by phosphorylation events. 

Erk1/2 phosphorylates BimEL on Ser69 thereby targeting the protein for ubiquitination 

and degradation via the proteasome, which leads to inhibition of apoptosis as a result of 

repressed expression (Akiyama et al., 2003; Luciano et al., 2003). Akt can also 



 21

phosphorylate Bim at Ser87 and mutation of this site is associated with enhanced 

proapoptotic activity (Qi et al., 2006). Mouse models have also identified 

phosphorylation of Bim at Thr112 to be important for Bcl-2 binding and repression of 

apoptosis (Hubner et al., 2008). Bim is also maintained in an inactive state by binding to 

the dynein motor complex or by sequestration to the mitochondria by antiapoptotic Bcl-2 

family members, such as Bcl-XL and Mcl-1 (Puthalakath et al., 1999; Yamaguchi and 

Wang, 2002). One of the reasons Bim is thought to be such an efficient activator of 

apoptosis is its ability to interact with most antiapoptotic Bcl-2 proteins. However, Mcl-1 

has been shown to have a higher affinity for Bim compared to Bcl-2 and Bcl-XL 

(Gomez-Bougie et al., 2005).  

 

Mcl-1  

 Mcl-1 is a short-lived protein with a half-life of approximately 30 minutes.  It 

sequesters BH3-only proteins such as Bim and tBid to the mitochondria and prevents 

activation of Bax and Bak (Clohessy et al., 2006; Opferman et al., 2003). Mcl-1 is 

regulated transcriptionally by the Src/STAT3 pathway (Niu et al., 2002), and 

posttranslationally by Mule, Mcl-1 ubiquitin-ligase E3, which is able to ubiquitinate Mcl-

1 and promote its degradation (Zhong et al., 2005). GSK-3β phosphorylation of Ser159 

on Mcl-1 enhances its ubiquitination and degradation via the proteasome (Maurer et al., 

2006). The resulting decrease in Mcl-1 expression levels promotes apoptosis. Mcl-1 is 

also a substrate for cellular caspases. Truncation of Mcl-1 may result in the acquisition of 

a proapoptotic function that can enhance the apoptotic response similar to that observed 

for caspase cleaved Bcl-2 and Bcl-XL, but there is still some uncertainty as to what 



 22

impact this truly has (Clohessy et al., 2004; Weng et al., 2005).  

 In relation to metastasis, it was determined in a Lewis lung carcinoma model that 

the expression of Mcl-1 was directly related to metastatic potential of the tumor as these 

cells were more resistant to hypoxia-induced apoptosis (Koshikawa et al., 2006). 

Therefore, the selection of tumor cells with high levels of Mcl-1 may also give rise to 

anoikis resistant metastatic cells. Indeed, our research has demonstrated Mcl-1 to be a 

critical regulator of anoikis. Specifically, Src activity can prevent detachment induced 

Mcl-1 depletion through Akt mediated suppression of GSK-3β activity. This results in 

decreased phosphorylation of Mcl-1 at S159 which promotes its stabilization and 

inhibition of Bax activation after detachment from the ECM. 

 In this study, we have identified the stabilization of Mcl-1 and suppression of Bim 

as critical events during oncogenic suppression of anoikis.  The transition of cells to a 

metastatic phenotype correlates not only with increased Mcl-1 expression, but also to the 

altered regulation of its degradation profile in response to detachment.  Inhibition of 

survival signals mediated by active Src or downstream Akt and Erk1/2 kinases that 

control Mcl-1 degradation and Bim induction is able to restore Bax activation and anoikis 

susceptibility.  Furthermore, Mcl-1 repression, but not Bcl-2 or Bcl-XL inhibition, is 

capable of initiating anoikis in metastatic cancer cells.  This study is the first to 

characterize Mcl-1 degradation in anoikis and the oncogenic signaling that can disrupt 

this essential mechanism in human cancers.   

 

Bif-1 

 Bax interacting factor-1 (Bif-1), also known as SH3GLB1 or Endophilin B1, was 
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initially identified by two independent groups as a Bax interacting molecule (Cuddeback 

et al., 2001; Pierrat et al., 2001) even though it lacks homology with the Bcl-2 family. 

Bif-1, like other members of the Endophilin family, contains a carboxy-terminal SH3 

domain, binds to membranes through their N-BAR domain and promotes membrane 

curvature (Gallop et al., 2006; Masuda et al., 2006; Peter et al., 2004). Bif-1 localizes on 

the membranes of intracellular organelles such as the Golgi and mitochondria 

(Karbowski et al., 2004; Takahashi et al., 2005; Yang et al., 2006). Importantly, Bif-1 

directly interacts with Bax and enhances the kinetics of apoptosis induction by promoting 

conformational activation of Bax and Bak in response to intrinsic apoptotic signals 

(Cuddeback et al., 2001; Takahashi et al., 2005).  

 Bax pore formation in large unilamellar vesicles is accompanied by structural 

changes in the lipid bilayer caused by monolayer curvature (Terrones et al., 2004), and 

Bax has a tendency to accumulate at sites of fission and fusion on the OMM where lipids 

are likely to deviate from a bilayer structure (Karbowski et al., 2002). Together, these 

previous findings suggest that Bax pore formation can be regulated by mitochondrial 

proteins and those that alter membrane curvature, such as Bif-1, are increasingly likely to 

affect Bax conformational activation. However, the mechanism by which Bif-1 

accomplishes this regulation of Bax remains unclear.  

 The data presented below illustrates that Src signaling can prevent the initiation of 

anoikis by inhibiting both Mcl-1 degradation and Bim induction. However, depletion of 

Mcl-1 along with induction of Bim by blocking the Akt and Erk1/2 signaling is unable to 

illicit a robust anoikis response in the presence of Src activity. Therefore, Src must be 

acting at multiple levels to prevent Bax activation during detachment. In this study, we 
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found that Src directly interacts with Bif-1 and phosphorylates Bif-1 on tyrosine 80. This 

phosphorylation event has a direct impact on the ability of Bif-1 to bind Bax which 

correlates with a repression of Bax activation during anoikis. 

 

Ku70 

 Ku70 was originally identified as an essential regulator of nonhomologous end 

joining (NHEJ) DNA double strand break repair and is also essential for V(D)J 

recombination (Lieber et al., 2003). Ku70 associates with Ku80 to form the heterodimeric 

protein Ku that binds to both fragment ends of DNA double strand breaks to maintain 

them in close proximity. Recruitment of other NHEJ proteins such as DNA-PKCS, 

Artemis and DNA-ligase IV results in the repair of these DNA lesions. The Ku70/Ku80 

complex has also been shown to be an essential regulator of telomere maintenance 

(Tuteja and Tuteja, 2000). Ku70 knock-out mice are viable but smaller than their wild 

type counterparts, exhibit increased apoptosis in neuronal cells during development, are 

immune compromised and are hypersensitive to ionizing radiation (Gu et al., 2000; 

Manis et al., 1998; Ouyang et al., 1997). Ku70 is an abundant protein in the nucleus but 

also has been found to localize to the cytoplasm and may play a role in cell-cell or cell-

matrix adhesion (Muller et al., 2005; Subramanian et al., 2005).  

 In addition to its role in DNA damage repair, Ku70 forms an inhibitory complex 

with Bax that impairs apoptosis initiation. This complex is disrupted by acetylation of the 

carboxy-terminus of Ku70 mediated by CBP/p300, PCAF, SirT1 and HDACi treatment 

(Cohen et al., 2004a; Cohen et al., 2004b; Subramanian et al., 2005). The interaction 

between Ku70 and Bax also leads to decreased levels of ubiquitinated Bax but does not 
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affect the total pool of unmodified Bax (Amsel et al., 2008). This may lead to the 

enrichment of unmodified Bax that is more efficient at initiating apoptosis. Ku70/Bax 

association may serve a dual purpose of both inhibiting Bax translocation to the 

mitochondria while ensuring that adequate pools of functional Bax are available when 

needed. Specifically, we have found that acetylated p53 can also have a profound effect 

on the association between Ku70 and Bax.  

 

p53 

The tumor suppressor p53 is a highly regulated transcription factor that has a 

fundamental role in the prevention of tumorigenesis and response to chemotherapy, 

making it one of the most comprehensively studied molecules in cancer research. Normal 

cells exhibit low levels of p53 in resting conditions to maintain cellular homeostasis and 

prevent aberrant apoptosis. Cellular stress leads to rapid increases in p53 protein levels as 

a result of combined increases in transcription, translation and posttranslational 

modifications that repress degradation and enhance its activity. The characterization of 

p53 function is often accompanied by specific posttranslational modifications such as 

acetylation, methylation, ubiquitination, neddylation, and sumoylation (Figure 4) (Brooks 

and Gu, 2003; Toledo and Wahl, 2006). These modifications regulate diverse aspects of 

p53 function ranging from cellular localization, DNA binding, protein-protein 

interactions, and transcriptional regulation.  

 



 

Figure 4. Posttranslational modifications of p53 (Toledo and Wahl, 2006) 

 

Deregulation of p53 in Cancer 

A multitude of different tumorigenic mutations of p53 have been characterized. It 

is estimated that approximately half of all cancers have mutated p53. The other half 

retains wild type p53 but exhibit deregulated pathways of p53 control which generally 

leads to the constitutive repression of p53 expression thereby prohibiting its proapoptotic 

functions. The vast majority of p53 mutations occur in the central DNA-binding domain 

of p53. These mutations prevent p53 from binding DNA and inhibit the transcriptional 

activation of its target genes. The deregulation of wild type p53 in cancer can be caused 

by the overexpression of its negative regulator MDM2. Aberrant MDM2 mediated 

degradation of p53 can be caused by gene amplification of MDM2 or the loss of ARF, 

which directly binds to MDM2 in response to cellular stresses and inhibits its function 

(Momand et al., 1998; Ruas and Peters, 1998). This amazing rate of deregulation across 
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cancers illustrates the central role of p53 as a tumor suppressor. 

Knock-out of mdm2 results in an embryonic lethal phenotype that can be rescued 

by complimentary knock-out of p53. This is presumably because in the absence of 

Mdm2, p53 becomes overexpressed and causes aberrant apoptosis during embryogenesis. 

Mutation of a single allele of p53 is thought to functionally inactivate wild type p53 as it 

exists in a tetramer for proper transcriptional activity and the presence of a single mutant 

protein in this complex is inhibitory. Interestingly, p53+/R172H / mdm2-/- mice fail to be 

born, however p53+/R172H embryos exposed to ionizing radiation show decreased 

apoptosis in the hypothalamus compared to p53+/- mice (Lang et al., 2004). Furthermore, 

tumor development and metastatic potential in p53+/R172H mice have distinct spectrums 

dependent upon the strain of mice (Lang et al., 2004; Olive et al., 2004). Therefore, the 

function of mutant p53 varies depending upon the genetic background and cellular 

context in which it is assayed. Much research remains to be done to determine the 

multitude of factors that determine the function of both wild type and mutant p53 in 

different cellular settings and in response to stresses.  

 

Transcription-Dependent p53 Apoptosis  

Expression of Mdm2, an E3-ligase responsible for targeting p53 for proteasomal 

degradation, is transcriptionally activated by p53, which results in a negative feedback 

loop designed to maintain p53 at appropriate levels. Other E3 ligases including COP1, 

Pirh2 and ARF-BP1 are also capable of ubiquitinating p53 and repressing its expression 

(Chen et al., 2005; Dornan et al., 2004; Leng et al., 2003). Cellular stresses cause 

posttranslational modifications to p53 which negatively affects the ability of Mdm2 to 
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bind p53. For instance, DNA damage results in phosphorylation of p53 by ATM and 

Chk2 at serine 15 and serine 20, respectively (Toledo and Wahl, 2006). These two sites 

are within the Mdm2 binding domain of p53 and prevent the interaction between these 

two proteins. Phosphorylation of the N-terminus of p53 results in the increased 

association with histone acetyltransferases p300/CBP which can also cause acetylation of 

p53 at multiple lysine residues. Interestingly, Mdm2 appears to have several contacts 

points with p53 as it has recently been discovered that the C-terminus and DNA binding 

domains of p53 can also bind Mdm2 (Tang et al., 2008; Yu et al., 2006). Recruitment of 

Mdm2-p53 complexes to p53 responsive promoters results in their transcriptional 

repression (Ohkubo et al., 2006). Acetylation of p53 can prevent Mdm2 interaction with 

p53 at the p21 promoter and relieve its repressive effects. These multiple modes of 

Mdm2 mediated repression of p53 has led to the development of novel small molecule 

inhibitors that disrupt their interaction such as Nutlin-3 (Vassilev, 2007). 

Activated p53 can potentiate cell cycle arrest and apoptosis by inducing 

transcription of numerous cell cycle regulators and proapoptotic genes such as p21, Bax, 

DR5 and Puma as well as transcriptional repression of antiapoptotic proteins Bcl-2 and 

Mcl-1 (el-Deiry, 1998; Fridman and Lowe, 2003; Miyashita et al., 1994; Pietrzak and 

Puzianowska-Kuznicka, 2008; Yu et al., 2001). Histone acetyltransferases (HATs) such 

as p300/CBP or PCAF and histone deacetylases (HDACs) such as HDAC1, 2, 3 or 

SIRT1 regulate the acetylation of p53 at specific lysine residues (Gu and Roeder, 1997; 

Luo et al., 2000; Sakaguchi et al., 1998; Vaziri et al., 2001). The amount and specificity 

of p53 acetylation is regulated by diverse mechanisms in response to various cellular 

stresses (Luo et al., 2004; Sakaguchi et al., 1998). Acetylation of p53 enhances its DNA 
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binding activity and stability and may be responsible for determining the specific context 

in which p53 will function (Gu and Roeder, 1997; Luo et al., 2004). HDACi-induced 

hyperacetylation of p53 results in p53 transactivation-dependent apoptosis (Henderson et 

al., 2003; Roy et al., 2005; Terui et al., 2003).  

 

Transcription-Independent p53 Apoptosis 

 In addition to its function as a transcription factor, p53 promotes cell death 

through transcription-independent mechanisms as it can cause apoptosis in the presence 

of transcription and translation inhibitors (Caelles et al., 1994). In addition, p53 induces 

transcription-independent apoptosis through increasing Fas cell surface translocation and 

activation of caspase-8 (Bennett et al., 1998; Ding et al., 2000). Interestingly, mutant p53 

lacking transcriptional activity is fully capable of inducing apoptosis (Bissonnette et al., 

1997; Chipuk et al., 2003; Haupt et al., 1995; Kokontis et al., 2001; Yamaguchi et al., 

2004). 

 The best characterized transcription-independent apoptotic function of p53 

involves the intrinsic mitochondrial apoptotic pathway. Although normally a cytoplasmic 

protein, cellular stresses promote wild type p53 accumulation in the cytoplasm and 

mitochondria where it induces mitochondrial outer membrane permeabilization through 

displacement of BH3-only proteins from Bcl-2 and Bcl-XL, promoting the 

oligomerization of Bak and the activation of Bax (Chipuk et al., 2003; Dumont et al., 

2003; Erster et al., 2004; Leu et al., 2004; Pietsch et al., 2007). Furthermore, p53 may 

directly interact with Bax and promote its activation (Chipuk et al., 2004). Conversely, 

unlike their wild type counterparts, some naturally occurring DNA-binding domain 
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mutants of p53 lack the capacity to bind Bcl-XL and promote cytochrome c release at the 

mitochondria (Mihara et al., 2003; Tomita et al., 2006). This leaves open the possibility 

that mutant p53 may promote apoptosis in a transcription-independent manner other than 

its previously described role at the mitochondria. It is increasingly apparent that p53 has a 

dual role in the initiation of apoptosis through both transcription-dependent and 

independent mechanisms. Transcription-independent binding to Bcl-XL and 

displacement of Bax can combine with transcription-dependent upregulation of Puma 

which can directly activate Bax.  

 In this report, we provide evidence that HDACi induce apoptosis through a p53 

acetylation-dependent but transactivation-independent mechanism. Expression of 

transactivation deficient p53 mutants in p53-null HCT116, H1299, K562, and MEF cells 

enhances apoptosis initiated by HDACi. Conversely, knockdown of endogenous mutant 

p53 in HT-29 and SW480 cells abrogates SAHA or LAQ824 induced apoptosis. 

Purification of p53 binding proteins and mass spectrometry analysis revealed a novel 

interaction between p53 and Ku70. This interaction is independent of p53 acetylation. 

However, acetylation at its carboxy-terminus is required for p53 to prevent and/or 

displace Bax from its inhibitory interaction with Ku70, thus allowing this key 

proapoptotic member of the Bcl-2 family to target mitochondria, generate ROS, and 

initiate apoptosis in response to HDACi. Furthermore, knockdown of Ku70 promotes 

apoptosis in p53-null but not p53 mutant cells treated with HDACi. These results 

highlight a novel mechanism by which acetylated p53 restrains the Bax/Ku70 interaction 

to potentiate HDACi-induced apoptosis. 
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Chapter Two: 
Src Mediated Suppression of Anoikis 

 
Abstract 

 
 Anoikis, a Bax dependent apoptosis triggered by detachment from the 

extracellular matrix, is often dysfunctional in metastatic cancer cells. Using wild type and 

c-Src transformed NIH3T3 cells as a model we identified Mcl-1 degradation and Bim 

upregulation as a critical determinant of anoikis initiation. Detachment rapidly degraded 

Mcl-1 via a GSK-3β-dependent proteasomal pathway and transcriptionally upregulated 

Bim expression. Mcl-1 degradation in the presence of Bim was sufficient to induce 

anoikis. By analyzing non-metastatic Saos-2 and metastatic derivative LM7 cells, we 

confirmed that dysregulation of Mcl-1 degradation and Bim induction during detachment 

contributes to decreased anoikis sensitivity of metastatic cells. Furthermore, knockdown 

of Mcl-1 or pharmacological inhibition of the PI3-K/Akt and MAPK pathways that 

suppress Mcl-1 degradation and Bim expression could markedly sensitize metastatic 

breast cancer cells to anoikis and prevent metastases in vivo. Therefore, Mcl-1 

degradation primes the cell for Bax activation and anoikis, which can be blocked by 

oncogenic signaling in metastatic cells. 

 

Results 

Src Signaling Ablates the Anoikis Response due to an Inhibition of Bax Activation 

 The anoikis response is known to be inhibited in cells expressing the Src 

oncogene (Windham et al., 2002), but the mechanisms involved are poorly understood. 



To determine the characteristics of the anoikis response, parental and Src transformed 

NIH3T3 cells were forcibly detached on polyHEMA coated plates for varying lengths of 

time. Wild type cells were observed to rapidly loose viability in a time dependent manner 

while cells with active c-Src 527F and v-Src exhibited limited cell death as determined by 

a trypan blue exclusion assay (Figure 5A). The loss of viability in wild type cells 

correlated to the activation of caspase-3 as measured by the DEVDase activity (Figure 

5B).   

 

 

Figure 5. Active Src prevents anoikis. (A) Wild type, c-Src 527F, and v-Src NIH3T3 
cells were detached on poly-HEMA coated plates and assayed for viability at 
the indicated timepoints by trypan blue exclusion assay. (B) Activity of 
caspase-3 in the aforementioned cell lines after 0, 8, and 12 hours of 
detachment. Data represented as mean + SD, n=3.  

 

 

 The activation of Bax is known to be an initiating event in the activation of the 

caspase cascade during anoikis (Valentijn et al., 2003). Therefore, we assessed the 

activation status of Bax by immunoprecipitation (Figure 6) with the Bax 6A7 monoclonal 

antibody and immunostaining (Figure 7) with the Bax N20 polyclonal antibody. Both of 
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these antibodies specifically recognize conformationally active Bax.  Figure 6 illustrates 

that Bax activation is completely inhibited in 527F and v-Src cells while wild type cells 

exhibit a time dependent increase in the conformationally changed Bax protein beginning 

as early as 8 hours post detachment. Similarly, the immunofluorescence staining in 

Figure 7 demonstrates that Bax becomes active in wild type cells but not 527F expressing 

cells in response to cell detachment. However, treatment with the Src family kinase 

inhibitor dasatinib clearly restored detachment-induced Bax activation in 527F cells 

(Figure 7A & B).   

 

 

Figure 6. Active Src prevents detachment-induced Bax activation. Wild type, v-Src, 
and c-Src 527F cells were forcibly detached on poly-HEMA coated plates for 
0, 8, 12, and 24 hours. Active Bax was immunoprecipitated using the 
conformation specific Bax 6A7 antibody. 
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Figure 7. Src inhibition restores Bax activation in response to detachment. (A) 
NIH3T3 wild type and c-Src 527F cells were immunostained for active Bax in 
attached and 8 hours detached samples using the conformation specific Bax 
N20 antibody. c-Src 527F cells were treated with control DMSO or 50 nM 
dasatinib during detachment. (B) Quantification of the percentage of cells 
staining positive for active Bax; experiment represented as average + SD, n=3. 
Att, attached. Det, detached. Das, dasatinib. 

 
 

 

Mcl-1 and Bim are Critical Regulators of Anoikis  

 To determine the role of protein neogenesis in the activation of Bax during 

anoikis, cycloheximide (CHX) was used to block de novo protein synthesis in both wild 

type and 527F cells detached on polyHEMA. CHX markedly reduced detachment-
 34
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induced Bax activation and cellular caspase-3 activity in wild type cells as well as 527F 

cells treated with dasatinib (Figure 8A & B). This prompted us to examine the gene 

expression profiles associated with anoikis in 527F cells treated with or without dasatinib 

by microarray (Figure 9). There was a clear increase in the induction of Bim and Puma, 

both known activators of Bax.  There was also a slight decrease in transcription of the 

antiapoptotic proteins Mcl-1 and Bcl-XL. Members of the caspase family were generally 

unchanged; however, their involvement in Bax activation was ruled out through the use 

of the pan caspase inhibitor z-VAD-fmk which was unable to inhibit Bax conformational 

change during detachment (Figure 10). 

 

 

 

 

 

 

 

 

 

 



 

Figure 8. De novo protein synthesis promotes anoikis. Wild type and c-Src 527F 
NIH3T3 cells were cultured on polyHEMA-coated plates containing DMSO 
control or 50 nM dasatinib, 10 µg/mL CHX or the combination of dasatinib 
and CHX for 8 hours and subjected to (A) immunoprecipitation with anti-Bax 
6A7 antibody and (B) caspase-3 activity assay; mean + SD, n=3. 
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Figure 9. Detachment induced changes in the microarray profile of  
 apoptosis related genes. NIH3T3 cells expressing c-Src 527F were detached 

on polyHEMA-coated plates in the presence of DMSO or 50 nM dasatinib for 
8 hours and subjected to microarray analysis. The bar graph shows the up- and 
down-regulation of apoptosis genes by dasatinib compared to DMSO control. 

 

 

 

Figure 10. Caspase activity is not required for detachment induced Bax activation. 
NIH3T3 wild type cells were assayed for conformationally active Bax in 
control attached samples and 8 hours detached conditions in the presence of 
either DMSO control or 25 µM z-VAD-fmk. 

 

 

 The microarray analysis allowed us to form a short list of Bcl-2 family proteins 

that are differentially transcribed between anoikis responsive and unresponsive cells.  

However, the prevalence or absence of transcripts does not always coincide with the 
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expression of the protein product. To this end, we examined the protein expression 

profiles of BimEL, Puma, Bcl-XL, Mcl-1 and Bax in 527F cells detached and treated 

with dasatinib or DMSO and compared them to wild type cells (Figure 11). Several 

reports have suggested that Bcl-XL is induced as the result of Src signaling and that this 

provides resistance to anoikis (Coll et al., 2002; Rosen et al., 2001). However, we 

observed little or no decrease in Bcl-XL at the time of Bax activation in either dasatinib 

treated 527F or wild type cells. Similarly, there was no significant increase in the protein 

levels of Bax in either of the two cell types. We did find that Mcl-1 and Bim were the 

most dynamically regulated proteins analyzed. In particular, Mcl-1 expression was 

substantially reduced while Bim was increased during anoikis; this response was also 

found in detached 527F cells treated with dasatinib indicating the relevance to a restored 

anoikis response by Src inhibition. Puma was moderately induced in dasatinib treated 

527F but not in wild type cells, suggesting that Puma may not be a key regulator of 

anoikis.   

 

 

Figure 11. Bcl-2 family protein expression during anoikis. Wild type and c-Src 527F 
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NIH3T3 cells were cultured in normal conditions or detached on 
polyHEMA-coated plates with DMSO or 50 nM dasatinib (Das) for 8 hours 
and subjected to western blot 

 

 

  The results from the microarray in relation to Mcl-1 and Bim were validated using 

semi-quantitative RT-PCR in samples of wild type and 527F cells (Figure 12). 

Transcripts of Mcl-1 were marginally decreased in dasatinib treated 527F cells. 

Interestingly, there did not appear to be any decrease in the transcription of Mcl-1 in the 

wild type samples, indicating that post-transcriptional regulation was responsible for the 

observed decrease in protein levels. Contrastingly, Bim transcripts were increased 

dramatically by detachment in wild type and dasatinib treated 527F cells. Bim 

transcription is known to be positively regulated through the transcription factor Foxo3a 

which is negatively regulated by Akt (Gilley et al., 2003). Therefore, the ability of Akt 

signaling in 527F cells to inhibit Bim expression was assessed through the use of 

LY294002, a PI3-K inhibitor. Indeed, this inhibitor restored Bim induction, indicating 

that the Src/Akt/Foxo3a pathway is likely involved in the transcriptional suppression of 

this proapoptotic protein. 

 

 



 

Figure 12. Semi-quantitative RT-PCR analysis of Mcl-1 and Bim in response to 
anoikis. Wild type and c-Src 527F NIH3T3 cells were cultured in normal 
conditions or detached on polyHEMA-coated plates with DMSO, 50 nM 
dasatinib (Das), or 50 µM LY294002 for 8 hours and subjected to semi-
quantitative RT-PCR analysis. 

 

 

Mcl-1 and Bim Regulate Detachment Induced Bax Activation 

 The functional importance of increased Bim expression in the anoikis response 

was assessed by shRNA mediated targeted knockdown. Both wild type and 527F cells 

were infected with Bim shRNA (shBim) or control retrovirus. Stable pools were detached 

on polyHEMA plates and their ability to initiate Bax activation and anoikis was assayed. 

Decreased Bim expression led to a similar decrease in the activation of Bax (Figure 13A) 

as well as the caspase-3 activity (Figure 13B) in cells cultured on polyHEMA plates. 

These results suggest that Bim is the major activator of Bax during anoikis, and the Puma 

induction seen in Figure 7 is of little functional relevance. 
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Figure 13. Knockdown of Bim prevents Bax activation in response to detachment. 
Wild type and c-Src 527F cells were infected with control (Puro) or Bim 
shRNA (shBim) retroviruses and selected for 14 days on puromycin. The 
resulting puromycin-resistant transfectants were maintained in normal culture 
(Att) or detached (Det) on polyHEMA-coated plates with DMSO or 50 nM 
dasatinib for 8 hours and subjected to (A) immunoprecipitation with anti-Bax 
6A7 antibody and (B) assayed for caspase-3 activity; mean + SD, n=3. 

 
 
 

 To test the functional significance of Mcl-1 repression during detachment, 

increasing amounts of the Mcl-1 construct were transfected into wild type cells along 

with the pGL3 Luciferase reporter construct. By measuring luciferase activity, we found 

that overexpression of Mcl-1 led to a dose dependent suppression of cell death in 
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detached as compared to attached conditions (Figure 14A). Bim alone was able to induce 

an apoptotic response in 527F cells as transfection of increasing amounts of the Bim 

construct led to a dose dependent decrease in cell viability (Figure 14B). This 

demonstrates that decreased Mcl-1 expression is vital to the induction of anoikis and that 

overexpression of Bim can induce apoptosis in 527F expressing cells, presumably 

through a mechanism that activates Bax once antiapoptotic Bcl-2 members are saturated 

by Bim. 

 

 

 

Figure 14.  Overexpression of Mcl-1 or Bim alters the anoikis response. (A) Wild 
type (WT) and (B) Src 527F NIH3T3 cells were co-transfected with 
increasing amounts of Mcl-1 or Bim expression plasmids, respectively, along 
with 10 ng pGL3-actin luciferase reporter plasmid. Luciferase expression 
was assayed as a measure of cell viability; mean + SD, n=3.  

 
 

Anoikis is Regulated by Proteasomal Degradation of Mcl-1  

 Mcl-1 is an ephemeral protein that is degraded in a proteasome dependent 

manner. This regulatory mechanism allowed us to study if stabilized endogenous Mcl-1 
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contributes to inhibition of anoikis. As shown in Figure 15, the proteasome inhibitor 

MG132 was able to stabilize Mcl-1 in wild type NIH3T3 cells detached on polyHEMA in 

a dose dependent manner with maximal stabilization occurring at 100 and 1000 nM. This 

stabilization of Mcl-1 correlated with a similar dose dependent decrease in Bax 

activation. We also observed the stabilization of Mcl-1 and the complete inhibition of 

Bax activation in detached 527F cells treated with the combination of dasatinib and 

MG132 (Figure 15). The addition of MG132 to the lysate of detached wild type cells had 

no effect on the ability to immunoprecipitate active Bax (data not shown).   

 

 

Figure 15.  Proteasome inhibition prevents detachment-induced Bax activation. 
Wild type NIH3T3 cells were maintained as attached on normal plates or 
detached on polyHEMA-coated plates containing DMSO or increasing 
amounts of MG132. c-Src 527F NIH3T3 cells were detached and treated 
with DMSO or 50 nM of dasatinib with or without 100 nM of MG132 for 8 
hours. Cells were then subjected to anti-Bax 6A7 
immunoprecipitation/immunoblot analysis. 

 

 

 Samples from the wild type cells detached and exposed to the MG132 gradient 

were also assayed for chymotrypsin-like activity and caspase-3 activity through in vitro 
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protease assays. In concordance with the above results, caspase-3 activity was decreased 

similar to the chymotrypsin activity inhibited by MG132 (Figure 16). The repression of 

Bax activation and anoikis in wild type NIH3T3 cells was also observed in a similar 

manner using Velcade, a proteasome inhibitor currently in clinical trials (Figure 17). This 

study identifies the ability of proteasome inhibitors to prevent Bax activation and anoikis 

in response to detachment. 

 

 

Figure 16.  MG132 mediated proteasome inhibition represses detachment-induced 
caspase-3 activation. Wild type NIH3T3 cells were collected in normal 
attached conditions (Att) or after 8 hours of forced detachment with 
treatment of DMSO control or increasing amounts of MG132. Chymotrypsin 
activity was assessed to determine the inhibition of the proteasome mediated 
by MG132 and caspase-3 assay was performed to analyze apoptotic 
induction. 
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Figure 17. Velcade-mediated proteasome inhibition stabilizes Mcl-1 and prevents 
detachment-induced Bax activation. Wild type NIH3T3 cells were assayed 
for Mcl-1, Bim, and Bax expression and the activation of Bax in attached 
(Att) and 8 hours detached cells that were untreated (NT) or incubated with 
DMSO or the indicated concentration of Velcade. 

 
 
 
 To determine whether MG132 mediated inhibition of Bax activation was due to 

the stabilization of Mcl-1 but not another unidentified protein(s), retroviral shRNA 

targeting Mcl-1 was infected into wild type cells to decrease its accumulation upon 

MG132 treatment. Three shRNA constructs were designed, of which constructs 1 and 3 

(c-1 and c-3) were the most effective at inhibiting Mcl-1 expression (Figure 18A). 

Treatment with MG132 led to the nearly complete inhibition of Bax activation in the 

Puro control line, but was less effective in suppressing the Bax conformational change 

when there was less Mcl-1 stabilized. An inverse correlation was found between the 

amount of Mcl-1 accumulated in MG132 treated samples and the activation of Bax. 

Similarly, there is decreased repression by MG132 on caspase-3 activation in Mcl-1 

knockdown cells compared to control (Figure 18B). These observations strongly suggest 

that anoikis is dependent on the proteasomal depletion of Mcl-1. 
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Figure 18.  Proteasome mediated suppression of anoikis is mediated by the 
accumulation of Mcl-1. NIH3T3 cells stably expressing Mcl-1 shRNA (c-1 
or c-3) were left in normal culture (control) or detached on polyHEMA-
coated plates in the presence of DMSO or 100 nM MG132 for 8 hours and 
subjected to (A) anti-Bax 6A7 immunoprecipitation/immunoblot analysis and 
(B) caspase-3 assay. 

 

 

Mcl-1 Degradation Elicits a Robust Anoikis Response  

 46

 Thus far it has been evident that both Mcl-1 degradation and Bim induction are 

key regulators of the normal anoikis response. While overexpression of Mcl-1 can 

undoubtedly protect cells from anoikis (Figure 18), other groups have shown that 

overexpression of other antiapoptotic Bcl-2 family proteins can also have the same effect 

(Rosen et al., 2000). Therefore, the vitality of Mcl-1 degradation for anoikis induction 
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was evaluated using retrovirally transduced NIH3T3 cells co-expressing Bcl-2, Bcl-XL, 

or Mcl-1 with the proapoptotic BimEL counterpart via a bicistronic mRNA construct 

(Figure 19A). Repression of protein translation using CHX illustrates that the instability 

of Mcl-1 is essential for the induction of anoikis, while the co-expression of Bcl-2:Bim or 

Bcl-XL:Bim had no effect on cell death due to the maintenance of the anti- and 

proapoptotic balance (Figure 19A & B). The anoikis response to Mcl-1 degradation could 

be completely resolved by MG132 mediated proteasome inhibition (Figure 20A & B). 

We confirmed that releasing Bim from the Bcl-XL:Bim complex by ABT-737, a specific 

Bcl-2/Bcl-XL inhibitor, was also capable of inducing an apoptotic response (Figure 20B). 

The uniquely short half-life of Mcl-1, compared to other antiapoptotic proteins such as 

Bcl-2 and Bcl-XL, makes this an essential element of anoikis initiation. 

 



 

Figure 19. Mcl-1 degradation alone is sufficient to induce anoikis in the presence of 
Bim. NIH3T3 cells were retrovirally transduced with constructs expressing 
Bcl-2-IRES-Bim, Bcl-XL-IRES-Bim, or Mcl-1-IRES-Bim. Cells were 
untreated or pretreated with 10 µM CHX for 30 minutes then detached for 
the indicated times in the presence of CHX and analyzed for (A) expression 
of the proteins by immunoblot and (B) caspase-3 activation; mean + SD, n=3. 
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Figure 20. Anoikis in Mcl-1-IRES-Bim cells induced by CHX can be prevented by 
proteasome inhibition. NIH3T3 cells expressing Mcl-1-IRES-Bim or Bcl-
XL-IRES-Bim were untreated or pretreated for 30 minutes with CHX or 
CHX and MG132 then detached for 5 hours in the presence of their 
respective inhibitors and analyzed for (A) protein expression and (B) 
caspase-3 activation; mean + SD, n=3. 

 

 

Mcl-1 Degradation is Mediated by GSK-3β 
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 The phosphorylation of Mcl-1 by GSK-3β at Ser159 is known to promote an 

increased turnover of Mcl-1 (Maurer et al., 2006). To determine if this phosphorylation 

controls Mcl-1 degradation during anoikis, the GSK-3β inhibitor TDZD-8, a non-ATP 
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competitive inhibitor, was used to treat cells beginning immediately with detachment. As 

shown in Figure 21A, TDZD-8 was able to stabilize Mcl-1 in both wild type and 527F 

cells when detached or sensitized with dasatinib, respectively. This stabilization was once 

again associated with a decrease in Bax activation and inhibition of the apoptotic 

response (Figure 21A & B). To further validate the role of GSK-3β in the degradation of 

Mcl-1 induced by detachment, wild type and GSK-3β knockout MEFs were either 

attached or detached on polyHEMA plates for 12 hours in the presence of DMSO or 

LY294002. Detached wild type MEFs showed a decrease in the protein levels of Mcl-1 

as did treatment with LY294002 (Figure 22). However, the GSK-3β null cells did not 

exhibit a decrease in Mcl-1 protein levels in response to detachment, and treatment with 

LY294002 resulted in only a slight decrease of Mcl-1; this decrease is likely due to the 

functional redundancy of GSK-3α.   

 



 

Figure 21. Inhibition of GSK-3β signaling stabilizes Mcl-1 and prevents Bax 
activation and anoikis. Wild type and c-Src 527F 3T3 cells were maintained 
in normal culture or detached on polyHEMA-coated plates containing 
DMSO, 25 µM TDZD-8, 50 nM dasatinib, or both inhibitors for 8 hours and 
subjected to (A) anti-Bax 6A7 immunoprecipitation/immunoblot and (B) 
caspase-3 activity assays; mean + SD, n=3. 
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Figure 22.  Knockout of GSK-3β prevents detachment-induced Mcl-1 degradation. 
Wild type and GSK-3β null MEFs were treated with DMSO or 25 μM 
LY294002 in normal or forced detachments conditions for 12 hours and Mcl-
1 expression was determined by western blot. 

  

 To determine if phosphorylation of Ser159 is required for Mcl-1 degradation 

during anoikis, constructs encoding the human Mcl-1 wild type and S159A mutant were 

transfected into wild type NIH3T3 cells. These cells were then detached and treated with 

CHX to observe the degradation of Mcl-1. Figure 23 shows that the half-life of wild type 

Mcl-1 is very short when compared to that of the S159A mutant. This suggests that Mcl-1 

is degraded in response to a phosphorylation priming event that in turn targets the protein 

for ubiquitination and degradation. Moreover, detachment was found to decrease the 

levels of phospho-Akt in wild type NIH3T3 cells (data not shown), which may explain 

the increased degradation of Mcl-1 regulated by GSK-3β.   

 

 

Figure 23.  Mutation of the GSK-3β phosphorylation site on Mcl-1 prevents 
detachment-induced degradation. NIH3T3 cells transfected with wild type 
or S159A mutant Mcl-1 were detached on polyHEMA plates for the 
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indicated times in the presence of CHX to determine the half-life of Mcl-1 
during detachment by immunoblot analysis.   

 

 

Src Regulated Akt and Erk Signaling Control Mcl-1 and Bim Expression 

 Src is known to promote survival signaling through multiple pathways. Two of 

the most well defined pathways controlled by Src are Akt and Erk, both of which have 

been implicated in preventing anoikis but debate remains over their involvement 

(Fukazawa et al., 2004; Martin et al., 2006). We therefore explored the consequences of 

Src, Akt, and Erk inhibition on Mcl-1 and Bim protein levels in 527F cells treated with 

dasatinib, LY294002, U0126, or the combination of LY294002 and U0126 during 

detachment (Figure 24A). Dasatinib inhibited signaling through both Akt and Erk, while 

treatment with LY294002 or U0126 specifically inhibited their target’s pathways.  

Inhibition of Akt but not Erk1/2 resulted in a significant decrease in Mcl-1 levels but did 

not extend to the levels observed in dasatinib treated cells. Also, Akt inhibition led to the 

appearance of multiple bands of Bim that are presumed to be Erk phosphorylated because 

U0126 inhibited these slower migrating bands and stabilized the Bim protein. Unlike 

dasatinib, however, treatment with LY294002, U0126 or the combination did not lead to 

the activation of Bax and caspase-3 (Figure 24A & B).    

 



 

Figure 24.  Src signaling through Akt and Erk1/2 controls the expression profiles of 
Mcl-1 and Bim during detachment. c-Src 527F NIH3T3 cells were 
cultured in normal conditions (Att) or detached on polyHEMA-coated plates 
containing DMSO, 50 nM dasatinib, 50 µM LY294002, 10 µM U0126, or 
the combination of LY294002 and U0126 for 8 hours and subjected to (A) 
immunoprecipitation/immunoblot analysis with the indicated antibodies and 
(B) caspase-3 activity assay; mean + SD, n=3. 

 

 

 It is possible that decreasing Mcl-1 and increasing Bim expression by LY294002 

and/or U0126 could not reach the threshold to shift the anti- and proapoptotic balance of 

the cell towards anoikis. To test this possibility, we used the c-3 shMcl-1 construct 

(Figure 18) to knockdown Mcl-1 expression in detached 527F cells treated with 
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dasatinib, LY294002, U0126, or the combination of LY294002 and U0126. Knockdown 

of Mcl-1 led to a more anoikis sensitive phenotype in the presence of these kinase 

inhibitors determined by casapse-3 activity (Figure 25A). Importantly, the activation of 

Bax was also found to be enhanced in Mcl-1 knockdown cells over that of control (Figure 

25B). This not only indicates that the level of Mcl-1 is critical for the initiation of Bax 

activation in response to Akt and Erk inhibition, but also illustrates the multi-faceted role 

of Src and implicates other unidentified Src pathways that contribute to anoikis 

suppression.  

 

 

Figure 25. Knockdown of Mcl-1 enhances the anoikis response in c-Src 527F cells 
treated with kinase inhibitors. c-Src 527F NIH3T3 cells stably expressing 
Mcl-1 shRNA (shMcl-1) or control vector (Puro) were treated as in Figure 24 
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and subjected to (A) caspase-3 activity assay and (B) immunoprecipitation 
with anti-Bax 6A7 antibody; mean + SD, n=3. 

 

Metastatic Cancers Exhibit Reduced Mcl-1 Degradation and Bim Induction 

 Resistance to anoikis is known to enhance the metastatic potential of cancer cells 

by affording them increased survival potential once detached from the ECM. Using the 

non-metastatic osteosarcoma cell line Saos-2 and its metastatic derivative LM7 (Jia et al., 

1999), we found that parental Saos-2 cells were sensitive to anoikis which correlated with 

Mcl-1 degradation and Bim induction (Figure 26A & B). However, LM7 cells exhibited 

increased basal levels of Mcl-1 and maintained this expression during detachment, as 

well as decreased induction of Bim. Inhibition of Src signaling using dasatinib in both 

cell lines caused Bim induction and Mcl-1 degradation and increases in caspase-3 

activity. The relatively slight increase in dasatinib sensitivity in LM7 cells likely 

indicates that oncogenic signaling other than Src is responsible for anoikis resistance. To 

determine if the stabilization of Mcl-1 in LM7 cells was required for their resistance to 

anoikis, we inhibited Mcl-1 expression using lentiviral delivered shRNA. Knockdown of 

Mcl-1 was able to restore caspase-3 activation to levels similar to parental Saos-2 cells, 

while non-targeting scrambled shRNA had no effect on anoikis compared to uninfected 

LM7 cells (Figure 26C).  

 



 

Figure 26.  Metastatic progression in osteosarcoma is associated with deregulation 
of Mcl-1 and Bim. Saos-2 and LM7 cells were untreated or detached on 
polyHEMA in the presence of DMSO or 50 nM dasatinib for 24 hours. 
Protein expression profiles were assayed by (A) immunoblot, and (B) 
apoptotic index was measured by caspase-3 activity. (C) LM7 cells were 
infected with lentivirus containing control shScr or shMcl-1 constructs.  
Stably infected cells were analyzed for Mcl-1 expression by immunoblot 
(insert). The anoikis response of the transfectants was measured by the 
activation of caspase-3 in response to detachment and compared to the 
anoikis resistant parental LM7 cells; mean + SD, n=3. 

 

 

 Similarly, the highly metastatic breast cancer MDA-MB-231 cells were also 
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observed to be resistant to anoikis. This was correlated with the maintenance of Mcl-1 

expression and repressed Bim induction (Figure 27, lower panel), indicating the 

dysregulation of the normal response of these proteins to detachment is a contributing 

factor to metastatic potential. To decipher the signaling pathways involved in the 

observed expression profiles of Mcl-1 and Bim during detachment, we treated the cells 

with dasatinib, LY294002, U0126, or the combination of LY294002 and U0126. 

Inhibition of MEK or PI3-K individually resulted in similar apoptotic indices as 

measured by caspase-3 activation (Figure 27, upper panel). Similar to results seen in 

Figure 24A, PI3-K inhibition caused a decrease in Mcl-1 expression, likely through the 

derepression of GSK-3β, as well as a limited increase in Bim expression, albeit the Bim 

protein was highly phosphorylated and likely rapidly turned over (Figure 27, lower 

panel). Inhibition of MEK with U0126 had no effect on Mcl-1 expression but did confirm 

an earlier report of increased Bim expression upon Erk1/2 inhibition (Fukazawa et al., 

2004). Importantly, the combinational treatment of LY294002 and U0126 enhanced the 

anoikis response which correlated with Mcl-1 degradation and Bim induction. The failure 

of dasatinib to sensitize these cells to anoikis is likely the result of independent 

downstream oncogenic signaling mediated by previously identified mutations in K-RAS 

and BRAF (Hollestelle et al., 2007) which activate both the PI3-K/Akt and MEK/Erk 

pathways (Campbell et al., 1998). 



 

Figure 27.  The concerted effects of decreased Mcl-1 and increased BimEL 
expression correlate with enhanced anoikis response. MDA-MB-231 
breast cancer cells were untreated or detached on polyHEMA-coated plates 
containing DMSO, 50 nM dasatinib, 25 µM LY294002, 10 µM U0126, or 
the combination of LY294002 and U0126 for 24 hours and subjected to 
immunoblot analysis with the indicated antibodies (lower panel) and caspase-
3 activity assay (upper panel). 

 

 

 To determine if Mcl-1 degradation alone was able to promote anoikis in the 

MDA-MB-231 cells similar to PI3-K inhibition, we again knocked down Mcl-1 (Figure 

28A, insert) and assayed the response to detachment. After only 24 hours of detachment, 

cells with depleted Mcl-1 displayed markedly increased caspase-3 activity and by 48 

hours contained a much higher fraction of dead cells (Figure 28A & B). To further 

confirm that the loss of Mcl-1 function but not other antiapoptotic Bcl-2 members is 

essential for initiation of anoikis in metastatic cancer cells, we tested the ability of ABT-

737, which targets Bcl-2, Bcl-XL and Bcl-w but not Mcl-1 (Oltersdorf et al., 2005), to 
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induce apoptosis of detached MDA-MB-231 cells. As expected, treatment with ABT-737 

was unable to trigger anoikis in control cells, although it significantly enhanced 

detachment induced apoptosis of Mcl-1 knockdown cells (Figure 28A & B). 

Furthermore, in vivo experiments demonstrated that knockdown of Mcl-1 alone can 

significantly reduce tumor establishment of metastatic MDA-MB-231 cells in lungs of 

nude mice (Figure 29A &B). These results strongly imply that inhibition of Mcl-1 

degradation during detachment is vital to the establishment of metastatic cells. 

 

 

Figure 28.  Mcl-1 depletion sensitizes human breast cancer cells to anoikis. MDA-
MB-231 cells were infected with lentivirus encoding control shScr or shMcl-
1 constructs and selected by 0.5 µg/mL puromycin for 14 days. The 
knockdown of Mcl-1 was confirmed by immunoblot (insert). The anoikis 
response of shScr and shMcl-1 cells cultured in the presence of DMSO or 
100 nM ABT-737 was measured by (A) caspase-3 activation and (B) LDH 
release after 24 or 48 hours detachment respectively; mean + SD, n=3. 
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Figure 29.  Mcl-1 depletion reduces human breast cancer metastasis in vivo. MDA-
MB-231 cells constitutively expressing luciferase were infected with shScr or 
shMcl-1, injected into nude mice and tumor establishment was measured 
three weeks post-injection. (A) Representative mice and (B) photon 
emissions were quantified; mean + SD, n=9. 

 
 
 

Discussion 

 Despite recent advances in early detection and new therapeutic options for cancer 

patients, metastatic progression is attributed to 90% of human cancer fatalities (Weigelt 

et al., 2005). Anoikis is a vital regulatory mechanism that can prevent metastases in a 

process that requires Bax translocation to mitochondria, which is inhibited by survival 

kinase signaling found in many human cancers (Gilmore et al., 2000). In spite of our 

current knowledge of apoptosis, how metastatic cancers escape anoikis remains poorly 

defined. In this report, we are the first to provide evidence of the unique importance of 

Mcl-1 degradation in the anoikis response. The Mcl-1 protein rapidly undergoes 

proteasome-dependent degradation in normal NIH3T3 cells at very early time points after 

detachment, which allows the subsequently induced Bim to activate Bax. Indeed, 
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depletion of Mcl-1 alone is not enough to activate Bax under conditions in which the 

induction of Bim is blocked. Conversely, stabilization of Mcl-1 by proteasome inhibition 

suppresses Bax activation during anoikis, whereas overexpression of Bim causes dose 

dependent apoptosis. Together, these results suggest a model for anoikis where Mcl-1 

degradation is required as a priming event to sensitize the cell towards Bax activation, 

which occurs in a manner that is dependent on the BH3-only protein Bim induction. 

These events are suppressed by active Src, Akt, and Erk1/2 signaling thereby conferring 

cancer cells with activating mutations in these pathways a survival advantage upon 

detachment from the ECM. 

 The ability of cancers to inhibit anoikis is propagated by the inability of these 

cells to activate Bax after the loss of adhesion. Bim, a known activator of Bax, is 

suppressed in active Src expressing cells through a mechanism controlled by Akt and 

Erk1/2 signaling pathways. The transcriptional repression of Bim in 527F cells is likely 

through the Akt pathway, which is known to phosphorylate the Bim transcription factor 

Foxo3a and promote its retention in the cytoplasm by interacting with 14-3-3 (Brunet et 

al., 1999). BimEL is also regulated posttranslationally by phosphorylation of Ser69 by 

Erk1/2, which promotes its targeting to the proteasome and degradation (Luciano et al., 

2003). JNK is also known to control transcription and sequestration of Bim (Lei and 

Davis, 2003; Whitfield et al., 2001), but upon treatment of 527F cells with JNK inhibitors 

there are no significant changes in the Bim expression or apoptosis (data not shown).   

 Although Src can directly phosphorylate STAT3 thereby promoting the 

expression of Mcl-1 (Bowman et al., 2001), our microarray and semi-quantitative RT-

PCR analyses indicate that the Mcl-1 transcripts decrease marginally during anoikis in 
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dasatinib sensitized 527F but not wild type cells. At posttranslational levels, however, we 

found that GSK-3β mediated phosphorylation at Ser159 of Mcl-1 in response to 

detachment promotes its rapid proteasomal degradation. Akt negatively regulates GSK-

3β by phosphorylation at Ser9 (Cross et al., 1995). Consistently, our studies in 527F and 

human metastatic cancer cells indicate that Mcl-1 expression is mainly regulated 

posttranslationally through inhibition of GSK-3β activity by Akt. However, in 527F cells 

the lower expression of Mcl-1 and higher sensitivity to anoikis observed when treated 

with dasatinib compared to LY294002 suggest that other regulatory mechanisms 

mediated by Src, such as STAT3-dependent transcription, are also involved. 

 Mcl-1 degradation is required but by itself is insufficient to induce anoikis which 

requires the subsequent induction of Bim. Once there is an excess of Bim in relation to 

Mcl-1 the activation of Bax is initiated. These coordinated events determine the anoikis 

response, which are deregulated in cells with active oncogenic signaling. The comparison 

of human osteosarcoma cell line Saos-2 and its metastatic derivative LM7 illustrates that 

stabilization of Mcl-1 during detachment can afford metastatic cells considerable survival 

advantage. Consistent with this finding, knockdown of Mcl-1 enhances the sensitivity of 

metastatic LM7 and MDA-MB-231 cells to anoikis and can prevent establishment of 

metastases. Likewise, repression of the PI3-K/Akt and MAPK signaling pathways that 

control Mcl-1 stability and Bim expression can resensitize metastatic breast cancer cells 

to anoikis.   

 The unique role of Mcl-1 in the anoikis response is likely attributed to its short 

half-life as its depletion coincides with the commitment of the cell to anoikis. The 

mechanism of Mcl-1 mediated anoikis inhibition appears to be non-redundant with that of 
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Bcl-2 or Bcl-XL as ABT-737 is unable to initiate anoikis whereas loss of Mcl-1 does. 

However, the failure of initiation of anoikis by inhibition of Bcl-2/Bcl-XL does not 

exclude the role that these antiapoptotic Bcl-2 members play in suppression of anoikis. 

Indeed, treatment with ABT-737 enhances anoikis initiated by knockdown of Mcl-1 in 

MDA-MB-231 cells. This finding is consistent with others that show an increased 

apoptotic response when Mcl-1 inhibition is combined with ABT-737 (Chen et al., 2007). 

Moreover, there is no significant decrease in the protein levels of Bcl-XL at early 

timepoints of anoikis where Bax conformational change and caspase activation are 

observed. Therefore, Bcl-XL overexpression in cancer cells may promote viability by 

repressing the velocity of the apoptotic insult initiated by Mcl-1 degradation when 

detached from the ECM. The prolonged viability may give the cells more time to re-

attach to the ECM at a distal site or for the accumulation of additive mutations that can 

disrupt anoikis execution. Due to the unique characteristics of Mcl-1, such as a short half-

life, higher affinity to Bim, and verified intricate regulation, we propose that Mcl-1 serves 

at the convergence point of many resultant signals downstream of detachment from the 

ECM that mediates the initiation of an anoikis response and the prevention of metastasis. 

 

Materials and Methods 

Reagents  

 Poly(2-hydroxyethyl methacrylate) (polyHEMA), caspase-3 assay kit, 

cycloheximide, MG132, oligonucleotides for shRNA constructs, and monoclonal 

antibodies specific for Bax (clone 6A7), α-tubulin and β-actin were purchased from 

Sigma.  3-[3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) was 
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purchased from MP Biomedical. Anti-mouse Mcl-1 was purchased from Rockland.  

Monoclonal anti-Akt and polyclonal anti-p473 Akt antibodies were purchased from R&D 

Systems. Anti-p202/204 Erk1/2 and Anti-Erk1/2 polyclonal antibodies and U0126 were 

purchased from Cell Signaling. Polyclonal Bax (N20) and Goat anti-rabbit IgG-HRP 

were purchased from Santa Cruz. Polyclonal anti-Bim antibody, TDZD-8, and the 

fluorogenic chymotrypsin substrate III were purchased from Calbiochem. The anti-

human Mcl-1 antibody was purchased from BD Biosciences. LY294002 was purchased 

from Alexis. 

 

Plasmids  

 The pcDNA3-BimEL vector was described previously (Yamaguchi and Wang, 

2002).  The pcDNA3.1/V5-His-TOPO plasmids encoding wild type and mutant Mcl-1 

were described previously (Maurer et al., 2006). Oligos for shRNAs targeting Bim 5’-

GTTCTGAGTGTGACAGAGA-3’ and Mcl-1 5’-GAGGACGACCTATACCGCC-3’ (c-

1) and 5’-GCCCTAATTAACAACGTTG-3’ (c-3) were synthesized and cloned into the 

Bgl II and Sal I restriction sites of LTRH1-puro (Ken Watanabe, National Center for 

Geriatrics & Gerontology, Aichi, Japan). The retroviral constructs expressing Bcl-2-

IRES-Bim, Bcl-XL-IRES-Bim, and Mcl-1-IRES-Bim were described previously (Kim et 

al., 2006). The pLKO.1-based lentiviral shRNA targeting human Mcl-1, 

TRCN0000005517 was purchased from Open Biosystems. The pLKO.1-based scrambled 

control shRNA vector was purchased from Sigma. 
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Cell Culture and Transfection  

 Wild type, v-Src, and c-Src 527F NIH3T3 cells were previously described (Yu et 

al., 1995). GSK-3β-/- MEF cells were kindly provided by James Woodgett (Hoeflich et 

al., 2000). NIH3T3 and MEF cells were maintained in Dulbecco’s modified Eagle’s 

medium supplemented with 10% fetal bovine serum (FBS) and 1% 

penicillin/streptomycin. Saos-2, LM7, and MDA-MB-231 cell lines were maintained in 

MEM medium supplemented with 10% FBS, 1% penicillin/streptomycin, 1 mM 

NaPyruvate, and 1x MEM non-essential amino acids. To induce anoikis, cells were 

maintained in the same media supplemented with 1% (for mouse cell lines) or 10% (for 

human cell lines) FBS in polyHEMA coated plates. Transfection was completed with 

Lipofectamine2000 (Invitrogen) according to the manufacturer’s recommendations.  

Recombinant retrovirus and lentivirus were produced in Amphotropic 293T packaging 

cells and 293FT cells with ViraPowerTM Packaging Mix (Invitrogen), respectively. 

 

Caspase-3, Chymotrypsin and LDH release  

 Caspase-3 activation was assayed as DEVDase activity with the Caspase-3 

fluorescence assay kit (Sigma). Briefly, cells were lysed in 1% Chaps lysis buffer and 

cleared by centrifugation at 13,000g for 5 minutes. The supernatant was collected and 

protein concentration was determined by BCA method. 1X reaction mixture was 

aliquoted into a 96-well plate and 50 µg total protein lysate was added. The reaction was 

incubated at room temperature in the dark for 1 hour and the fluorescence was measured 

by an automated plate reader. Values are represented as the change in fluorescent units 

(ΔFU) per µg protein per hour. The fluorogenic chymotrypsin substrate III (Calbiochem) 
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was used to measure chymotrypsin-like activity using the same protocol as that used for 

the caspase-3 assay. Cell death was measured using the LDH cytotoxicity assay 

(Biovision) according to the manufacturer’s recommendations.   

 

Semi-Quantitative RT-PCR 

 Semi-quantitative RT-PCR was completed using the Qiagen OneStep RT-PCR 

system according to the manufacturer’s recommendations. Primers used for the reactions 

are: 5’-TGCAGGGTTATGGAATCCTC-3’ and 5’-GCCCCTACCTCCCTACAGAC-3’ 

for Bim; 5’-GCAGCTTCAAGTCCACCTTC-3’ and 5’-

AGATGGCGTAACAAACTGGG-3’ for Mcl-1; 5’-AATGTGTCCGTCGTGGATCT-3’ 

and 5’-CCCTGTTGCTGTAGCCGTAT-3’ for GAPDH. 

 

In Vivo Metastasis Model 

 MDA-MB-231-luc-D3H2LN cells were obtained from Xenogen and infected with 

lentiviral Mcl-1 shRNA (shMcl-1) or control scrambled shRNA (shScr). After 10 days 

selection with 0.5 µg/mL puromycin, 1 x 106 cells were injected into 10-12 week-old 

Harlan nude mice via the tail vein. Three weeks post-injection mice were imaged using 

the IVIS200 system (Xenogen) as per the manufacturer’s recommendations. Statistical 

significance was determined using Student’s t-test. 
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Chapter Three: 
 Src Phosphorylation of Bif-1 Disrupts the Interaction with Bax and Inhibits 

Anoikis 
 
Abstract 
 
 Bif-1 interacts with Bax and enhances its conformational rearrangement resulting 

in apoptosis. However, the molecular mechanism governing the interaction between Bif-1 

and Bax is poorly defined. Here we provide evidence that Bif-1 is phosphorylated, an 

event which can be repressed by apoptotic stimuli. The protein kinase c-Src binds to and 

directly phosphorylates Bif-1 on tyrosine 80. Moreover, Src phosphorylation of Bif-1 

suppresses the interaction between Bif-1 and Bax resulting in the inhibition of Bax 

activation during anoikis. Together, these results suggest that phosphorylation of Bif-1 

impairs its binding to Bax and represses apoptosis, providing another mechanism by 

which Src oncogenic signaling can prevent cell death. 

 

Results 

Bif-1 Phosphorylation In Vivo is Repressed upon Apoptotic Stimuli 

 Because Bif-1 binding to Bax is induced by apoptotic stimuli with no apparent 

changes in either protein’s expression profile (Cuddeback et al., 2001; Takahashi et al., 

2005; Yamaguchi et al., 2002), we reasoned that the ability of Bif-1 to activate Bax might 

be regulated by posttranslational modifications. To determine if Bif-1 could be 

phosphorylated in intact cells, 293T cells were metabolically labeled with 32PO4 and 

subjected to immunoprecipitation with anti-Bif-1 or control anti-Myc antibodies (Figure 



30). A specific 32P-labeled band corresponding to Bif-1 was pulled down with anti-Bif-1 

but not control anti-Myc antibody.  

 

 

Figure 30. Bif-1 phosphorylation. 293T cells were metabolically labeled with 32PO4 for 
6 hours; lysates were collected and subjected to immunoprecipitation with 
anti-Bif-1 or anti-Myc antibodies followed by SDS-PAGE and 
autoradiography. 

 

 

 To determine the phosphorylation status of Bif-1 in stressed versus unstressed 

cells, 293T cells expressing Myc-tagged Bif-1 were metabolically labeled with 32PO4 and 

treated with DMSO, thapsigargin (THG), or serum starvation (Figure 31). The levels of 

phosphorylated Bif-1 were found to be highest in unstressed cells.  Similarly, the level of 

tyrosine phosphorylation of Bif-1 was repressed in a time dependent manner upon 

treatment with staurosporine (STS) (Figure 32). The kinetics of Bif-1 dephosphorylation 

correlated with the activation of Bax as determined by immunoprecipitation of 

conformationally active Bax with the 6A7 monoclonal antibody (Figure 32). Together, 

these results clearly indicate that Bif-1 is phosphorylated in whole cells and apoptotic 
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stresses promote the dephosphorylation of Bif-1. 

 

 

Figure 31.  Phosphorylation of Bif-1 is inhibited by cellular stress. 293T cells were 
transfected with Myc-Bif-1 and labeled with 32PO4 for 6 hours after serum 
deprivation (- FBS) for 24 hours or exposure to 2 μM thapsigargin (THG) or 
DMSO for 8 hours. Myc-Bif-1 protein was immunoprecipitated with anti-
Myc antibody and subjected to SDS-PAGE/immunoblot and 
autoradiography. 

 

 

 

 

Figure 32.  Bif-1 is dephosphorylated in a time-dependent manner upon treatment 
with staurosporine. 293T cells were transfected with Myc-Bif1 and treated 
with 1 µM staurosporine (STS) for various times prior to 
immunoprecipitation/immunoblot analysis with the indicated antibodies. 

 

 70



 

 
Src Interacts with Bif-1 in Both Yeast and Mammalian Cells 

 A search of Bif-1 interacting proteins through the use of a yeast two-hybrid assay 

resulted in the identification of c-Src kinase. The LexA-c-Src fusion protein specifically 

interacted with the wild type Bif-1 fused to the B42 transactivation domain in yeast 

(Figure 33). The region of Bif-1 required for the interaction with c-Src was determined 

using a series of Bif-1 deletion mutants. It was found that full length Bif-1 was the most 

effective at binding c-Src but appeared to require the presence of the region between 

amino acid residues 238-285 (Figure 34).  

 

 

Figure 33. Bif-1 interacts with c-Src in the yeast two-hybrid assay. LexA-c-Src and 
B42-Bif-1 fusion proteins interact in yeast. 
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Figure 34.  Schematic representation of the domain structure of Bif-1 and mapping 
the Src binding domain of Bif-1. LexA-c-Src was transfected into yeast 
with the indicated deletion mutants of Bif-1 fused to B42. Interactions of 
pairs of fusion proteins were determined by visual examination of β-
galactosidase activity and represented graphically. 

 

 

 To determine if Bif-1 was a binding partner for c-Src in mammalian cells, 293T 

cells were transfected with empty vector, Flag-tagged c-Src or the naturally occurring Src 

mutant, Src531, which results in a truncated protein that has been shown to be activating, 

transforming, and tumorigenic (Irby et al., 1999).  Immunoprecipitation with anti-Flag 

antibody revealed that endogenous Bif-1 could indeed interact with both c-Src and 

mutant Src531 (Figure 35A). Similarly, Bif-1 was found to interact with wild type c-Src 

and mutant c-Src (Y527F) in 3Y1 rat fibroblasts and NIH3T3 cells, respectively (Figure 
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35B). Src binding to Bif-1 is therefore a common event with implications in Bif-1 

regulation. 

 Since both STS and THG prevented the phosphorylation of Bif-1 (Figures 27 & 

28), we sought to determine whether apoptotic stimulation affects the binding of Src to 

Bif-1. As shown in Figure 36, H1299 cells treated with STS did not prevent the 

association of Bif-1 with Src at endogenous levels as compared to DMSO control, but 

instead prevented the kinase activity of Src as determined by the activation associated 

pTyr-416 western blot.  Alternatively, THG treatment could effectively prevent the 

association between Bif-1 and Src. Treating cells with THG did not suppress but rather 

enhanced the activation of Src, which is consistent with previous observations (Chung et 

al., 2001). Together, these results suggest that apoptotic stresses can prevent the 

phosphorylation of Bif-1 through either inhibition of Src interacting with Bif-1 or by 

preventing Src activity. 

 



 

Figure 35.  Bif-1 interacts with Src in mammalian cells. (A) 293T cells were 
transiently transfected with pFlag-c-Src or c-Src531 or parental pFlag-CMV2 
vector. After 2 days, immunoprecipitation was performed using anti-Flag 
antibody or anti-Myc (control) followed by SDS-PAGE/immunoblot analysis 
with anti-Bif-1 polyclonal antiserum. (B) 3Y1 rat fibroblasts stably 
expressing c-Src or NIH3T3 cells stably expressing a constitutively active c-
Src (Y527F) were subjected to immunoprecipitation with anti-c-Src or 
control antibody followed by SDS-PAGE/immunoblot analysis. 

 
 

 

Figure 36.  Dephosphorylation of Bif-1 can be achieved via two independent 
mechanisms in response to cellular stresses. H1299 cells were treated with 
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1 µM STS, 2 µM THG, or DMSO for 8 hours. Left panel, lysates were 
immunoprecipitated with anti-Bif-1 antibody or control Flag antibody and 
then probed with anti-Src and anti-Bif-1 antibodies. Right panel, whole cell 
lysates were probed for Src activity with anti-pY416 antibody. 

 

 

Src phosphorylation of Bif-1 at Y80 

 We next sought to determine whether Src could directly phosphorylate Bif-1 

using an in vitro kinase assay. Incubation of recombinant c-Src with GST-Bif-1 fusion 

protein but not GST alone resulted in detectable phosphorylation determined by 

autoradiography (Figure 37A). The subsequent Src phosphorylation site on Bif-1 was 

narrowed down through the use of deletion mutants (Figure 37B).  

 

 



 

Figure 37.  Minimal Bif-1 sequence required for Src phosphorylation. Recombinant 
c-Src kinase was incubated with GST, GST-Bif-1, or various GST-Bif-1 
deletion mutants and [γ-32P]-ATP at 30°C for 15 minutes before analysis by 
SDS-PAGE and autoradiography.  

 

 

 Src mediated phosphorylation of Bif-1 occurred in the N-terminal region of Bif-1 

encompassing amino acids 47-126. A closer evaluation of this region revealed a potential 

Src phosphorylation consensus motif (EEFVY80EKLD), and substitution of Y80 to F 

abrogated Src mediated Bif-1 phosphorylation (Figure 38). 
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Figure 38.  Src phosphorylates Bif-1 at Y80 in vitro. Recombinant c-Src kinase was 
incubated with GST, GST-Bif-1 wild type (WT), or GST-Bif-1 Y80F mutant 
and [γ-32P]-ATP at 30°C for 15 minutes before analysis by SDS-PAGE and 
autoradiography. Coomassie staining shows the input of GST and GST-Bif-1 
proteins. 

 

 

Src Phosphorylates Bif-1 at Y80 in Intact Cells 

 Although the in vitro kinase assay illustrates that Src directly targets Y80 in Bif-1, 

it remained to be determined whether this event could be recapitulated in whole cells. 

Therefore, 293T cells were co-transfected with Flag-Bif-1 along with empty, c-Src, or 

Src531 constructs. Bif-1 was then immunoprecipitated from lysates using anti-Flag 

antibody and subjected to immunoblotting with antibodies specific for phosphotyrosine 

or Bif-1 (Figure 39A). Co-expression of Src with Bif-1 led to a marked increase in 

tyrosine phosphorylation of Bif-1. It was also found that expression of Src531 could 

induce the phosphorylation of both endogenous and ectopic Bif-1 regardless of tag 

presence in 293T cells (Figure 39B).  
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Figure 39.  Src phosphorylates Bif-1 in intact cells. (A) 293T cells were transiently co-
transfected with Flag-Bif-1 and either c-Src, c-Src531 mutant or empty 
vector. After two days, Flag-Bif-1 was immunoprecipitated with anti-Flag 
antibody, followed by SDS-PAGE/immunoblot analysis with anti-Bif-1 
rabbit antiserum or anti-phosphotyrosine PY20 antibody. (B) 293T cells were 
transiently co-transfected with Src531 and plasmids encoding Bif-1, Flag-
Bif-1 or parental vector. Cells were lysed 2 days later and Bif-1 was 
immunoprecipitated with anti-Bif-1 monoclonal antibody and subjected to 
SDS-PAGE/immunoblot analysis with antibodies specific for Bif-1 or 
phosphotyrosine. 

 

 

 Performing the same co-transfection experiments confirmed that Y80 was the 

major phosphorylation target of Src as the Bif-1Y80F mutant showed a significant 

reduction in the level of tyrosine phosphorylation of Bif-1 (Figure 40).  However, it 
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appears as if there is some level of phosphorylation still present in the Bif-1Y80F mutant.  

This is likely due to phosphorylation at other tyrosine residues regulated by Src or the 

immunoprecipitation of endogenous Bif-1.  

 

 

Figure 40.  Src phosphorylates Y80 of Bif-1 in whole cells. 293T cells were transfected 
with Bif-1 or Bif-1(Y80F) alone or together with c-Src expression plasmids. 
Bif-1 proteins were immunoprecipitated and analyzed 2 days post 
transfection. 

 

 

 Similarly, A431, 293T, and NIH3T3 cells were assayed for the ability of EGF to 

stimulate endogenous Bif-1 phosphorylation (Figure 41A). EGF was found to promote an 

increase in Bif-1 phosphorylation, which could be inhibited by co-treatment with the Src 

specific inhibitors PD180970 in NIH3T3 cells as well as dasatinib in A431 and 293T 

cells, indicating that this phosphorylation is associated with intracellular signals that are 

associated with oncogenic suppression of apoptosis. Pretreatment with pervanadate, a 

broad spectrum tyrosine phosphatase inhibitor, was found to enhance the amount of Bif-1 

phosphorylation on tyrosine by Src (Figure 41B). This indicates that the phosphorylation 
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of Bif-1 is a tightly regulated process. 

 

 

B 

A 

Figure 41.  Endogenous phosphorylation of Bif-1 by c-Src. (A) A431, 293T, and 
NIH3T3 cells were serum starved for 16 hours then treated with or without 
500 nM PD180970 or 50 nM dasatinib for 2 hours, and then stimulated with 
50 ng/mL recombinant EGF for 5 minutes. Cell lysates were prepared and 
subjected to immunoprecipitation with anti-Bif-1 antibody followed by SDS-
PAGE/immunoblot with anti-phosphotyrosine or anti-Bif-1 antibody. (B) 
A431 cells were treated as in A with and without pervanadate, which was 
added 10 minutes prior to the addition of EGF and maintained during the 5 
minute incubation with EGF. 

 

 

Bif-1Y80 Phosphorylation by Src Prevents Bif-1 Mediated Bax Activation during Anoikis  

  Based on the previous knowledge of Bif-1 activation of Bax upon apoptotic 

stimuli and our current findings of Src mediated phosphorylation of Bif-1, we sought to 
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determine the role of Src mediated Bif-1 phosphorylation in the context of anoikis 

initiation. Bif-1-/- MEFs expressing empty control vector (pKI) or re-established wild 

type or Y80F mutant Bif-1 in the presence of Src531 or control GFP expression were 

created (Figure 42A) and detached on poly-HEMA coated plates for 24 hours or left 

attached on normal culture dishes. Lysates were then collected and the interaction 

between Bif-1 and Bax was determined (Figure 42B). Detachment caused an increase in 

Bif-1/Bax binding, consistent with our previous findings that apoptotic stimuli increase 

this interaction (Cuddeback et al., 2001; Takahashi et al., 2005). The Bif-1Y80F mutant 

was able to bind Bax with the same affinity as wild type. Importantly, co-expression of 

Src531 with wild type Bif-1 repressed the ability of Bif-1 to interact with Bax in response 

to detachment. However, the non-phosphorylatable Bif-1Y80F mutant retained Bax 

binding potential even in the presence of Src expression (Figure 42B). This interaction 

was specific as immunoprecipitation with normal rabbit serum (NRS) was unable to pull 

down either Bax or Bif-1 (Figure 42C).  

 



 

Figure 42.  Src phosphorylation of Bif-1 inhibits Bax conformational activation 
during anoikis. (A) Bif-1 -/- MEFs were infected with retrovirus encoding 
empty control, Bif-1 wild type (WT) or Bif-1 mutant (Y80F) and selected on 
1.0 µg/mL puromycin for 10 days. These cells were then re-infected with 
retrovirus encoding GFP or Src531 proteins. Expression of transgenes was 
confirmed by immunoblot. (B) The cells created in A were left attached or 
detached on poly-HEMA coated plates for 24 hours. Lysates were prepared 
and subjected to immunoprecipitation with anti-Bax polyclonal antiserum or 
monoclonal 6A7 antibody. The resulting immune complexes and whole cell 
lysates were analyzed by immunoblotting with anti-Bax or anti-Bif-1 
antibody. (C) Lysates prepared from Bif-1(Y80F) cells detached for 24 hours 
were subjected to immunoprecipitation with anti-Bax polyclonal antibodies 
or normal rabbit serum. 
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 Detachment induced Bax activation was increased in cells expressing Bif-1. 

Importantly, the enhanced Bax conformational change was inhibited by co-expressing 

Src531 in wild type Bif-1 but not Bif-1Y80F cells (Figure 42B). Similarly, co-expression 

of Src531 could partially rescue cells expressing empty or wild type Bif-1 from caspase-3 

activation, but overexpression of Src531 had no inhibitory effect on cells expressing the 

non-phosphorylatable Bif-1Y80F mutant (Figure 43A). These results were confirmed by a 

cell death assay measuring LDH release (Figure 43B). These findings clearly indicate 

that Src phosphorylation of Bif-1 has direct biological impacts that affect the ability of a 

cell to undergo apoptosis. 

 

 

Figure 43.  Src phosphorylation of Bif-1 inhibits caspase-3 activation and cell death 
in response to cell detachment. Cells were left attached or detached on 
poly-HEMA coated plates for 24 hours. Lysates were prepared and subjected 
to (A) caspase-3 assays or (B) LDH release. LDH release representation is 
normalized to their attached conditions; mean + SD, n=3.  

 
 
 
Discussion 

 Bax activation is known to control the initiation of apoptosis. However, the exact 
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mechanism by which the conformational rearrangement and insertion of Bax into the 

OMM is controlled remains elusive. Although it is generally believed that activating 

BH3-only molecules such as tBid, Puma, and Bim can directly facilitate the activation of 

Bax, there remains debate as to whether Bax can directly interact with these molecules 

(Kim et al., 2006; Willis et al., 2007). Furthermore, it appears that activating molecules, 

other than BH3-only proteins, are crucial to the ability of Bax to form pores in 

membranes (Lutter et al., 2000; Ott et al., 2007b; Roucou et al., 2002). These 

observations have led to the pursuit and discovery of novel Bax interacting proteins, such 

as Bif-1.  

 Identification of Bif-1 as a novel Bax interacting factor has led to the finding that 

Bif-1 is able to potentiate the activation of Bax as well as Bak (Cuddeback et al., 2001; 

Takahashi et al., 2005). Reasons as to why Bif-1 is able to enhance the activation of Bax 

are not entirely understood. One possible explanation is that Bif-1 can alter the 

mitochondrial membrane structure such that it becomes suitable for conformational 

rearrangement and/or insertion of Bax into the mitochondria. As a member of the 

endophilin family of proteins, Bif-1 contains the N-BAR domain which is known to 

promote membrane curvature (Gallop et al., 2006; Peter et al., 2004). Given that Bax 

accumulates at fission and fusion sites on the mitochondrial membrane and that Bif-1 is 

known to regulate mitochondrial morphology (Karbowski et al., 2004; Karbowski et al., 

2002), it is likely that the Bif-1/Bax interaction observed is the consequence of changes 

in membrane structure mediated by Bif-1. Interestingly, the use of deletion mutants has 

identified the first eleven amino acids in Bif-1 as essential for its ability to bind Bax 

(Pierrat et al., 2001). This region of Bif-1 is a part of the amino terminal amphipathic 
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helix know as helix zero, which is essential for binding and tubulating membranes 

(Farsad et al., 2001; Gallop et al., 2006). The overlapping Bax and membrane binding 

functions of this region in Bif-1 may indicate that the interaction between Bif-1 and Bax 

is dependent on membrane dynamics. 

 Given the aforementioned role of Bif-1 in the activation of Bax and apoptosis 

(Cuddeback et al., 2001; Takahashi et al., 2005) as well as its newly defined role in 

autophagy (Takahashi et al., 2007), the mechanisms that regulate Bif-1 function are of 

increasing importance. Yeast two-hybrid analysis has identified Src as a Bif-1 interacting 

protein, an association that is also evident in both exogenous and endogenous expression 

systems. Furthermore, we have shown that Src can directly phosphorylate Bif-1 at Y80. 

This residue is part of the internal amphipathic helix common to members of the 

endophilin family but weakly conserved therein. Previous deletion mutation analysis 

revealed that this domain is required for membrane binding and tubulating activities of 

Endophilin A1 (Gallop et al., 2006). Similarly, mutating positively charged residues to 

negative ones in this region of Endophilin A1 also inhibits membrane binding and 

tubulation (Gallop et al., 2006). Phosphorylation of Y80 on Bif-1 is likely to alter 

membrane binding by changing the charge distribution in the internal amphipathic helix, 

as well as altering the helix organization with the addition of a bulky phosphate group. 

Mutant Bif-1Y80F would lack the ability of Src to alter the charge structure of the helix 

and allow binding to membranes, which could explain why this mutant maintained Bax 

binding potential in cells with active Src. Future studies will be needed to determine 

specifically how Src mediated phosphorylation at Y80 of Bif-1 affects helix organization, 

membrane binding, and tubulation potential of the protein. 
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Materials and Methods 

Metabolic Labeling and In Vitro Kinase Assays 

 For detection of Bif-1 phosphorylation, 293T cells were incubated for overnight in 

phosphate-free Dulbecco's modified Eagle's medium (DMEM) containing 5% dialyzed 

fetal bovine serum (FBS), and then labeled with 0.5-1.0 mCi of [32P]-orthophosphate for 

6 hours in the presence of 10% dialyzed FBS. Plates were washed with ice-cold 

phosphate-buffered saline, and lysed with radioimmunoprecipitation assay buffer 

containing protease and phosphatase inhibitors. Lysates were pre-cleared with Protein G 

agarose prior to immunoprecipitation with anti-Bif-1 or anti-Myc monoclonal antibodies. 

For in vitro kinase assays, a recombinant c-Src was obtained from Upstate 

Biotechnology.  The phosphorylation reaction was carried out at 30oC for 15 min in 40 µl 

reaction mixture (50 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 0.1 mM EDTA, 1 mM DTT, 

0.015% Brij 35, 0.1 mg/ml BSA, 10 µM ATP, 5 µCi [γ-32P]ATP (3000 Ci/mmole), 5 

units Src kinase) containing 1 µg of indicated GST fusion protein.  The reaction was 

stopped by addition of 14 µl of 4 x SDS loading buffer and heat denaturation, resolved by 

SDS-PAGE and analyzed by autoradiography. 

 

Yeast Two-Hybrid Assays   

 Two-hybrid assays were performed as previously described (Cuddeback et al., 

2001). Briefly, c-Src fused to the LexA DNA binding domain was transfected into S. 

cerevisiae EGY48 cells with the full length or deletion mutants of Bif-1 fused to the B42 

transactivation domain. Five independent transformants were grown on either galactose 
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or glucose containing agar plates for inducing or repressing β-galactosidase activity, 

respectively. 

 

Expression and Purification of GST-Bif-1 

 The GST-Bif-1 wild type and deletion mutants proteins were cloned into pGEX-

4T-1 plasmid and expressed in the DH5α strain of E. coli. Briefly, transformed cells were 

grown in LB medium containing ampicillin (100 µg/ml) at 37ºC to an OD600nm of 0.8, 

then 1 mM IPTG was added to induce protein expression at 37ºC for 3 hours. Cells were 

lysed in PBS (pH=7.4) containing protease inhibitors by sonication and centrifuged at 

14,000 x g for 30 min. The resulting supernatant was incubated with glutathione-

sepharose 4B (Amersham Bioscience) at 4º for 1 hour then washed three times with PBS, 

the protein was eluted with 10 mM of reduced glutathione in 50 mM Tris-HCl (pH=8.0) 

and dialyzed against 50 mM Tris-HCl buffer (pH=7.5). 

 

Immunoprecipitation and Immunoblot Assays 

 Cells were lysed using 1% Chaps lysis buffer (150 mM NaCl, 10 mM HEPES, pH 

7.4, 1% Chaps) containing protease and phosphatase inhibitors. Immunocomplexes were 

pulled down with the indicated antibodies and washed 3 times in lysis buffer. 

Immunoprecipitates were resolved using SDS-PAGE and immunoblotted with the 

indicated antibodies. For detection of active Bax, anti-Bax 6A7 monoclonal antibody 

(Sigma) was used for immunoprecipitation and anti-Bax N20 polyclonal antibody (Santa 

Cruz) was used for subsequent immunoblot analysis. The Bax/Bif-1 interaction was 

determined by immunoprecipitation of Bax using polyclonal anti-mouse/rat Bax 1696 
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antiserum (Krajewski et al., 1994) followed by immunoblotting with anti-Bif-1 

monoclonal antibody (Imgenex). The Src/Bif-1 interaction was determined in H1299 cell 

lysate in 1% Chaps lysis buffer by immunoprecipitation of Bif-1 with monoclonal 

antibody (Imgenex) and subsequent immunoblotting for Src (Cell signaling #2108). For 

detection of tyrosine phosphorylation of Bif-1, A431, 293T, and NIH3T3 cells were 

deprived of serum for 18 hours in DMEM containing 0.1% BSA. Cells were then 

incubated with Src inhibitors PD180970 or dasatinib for 2 hours. Cells were then 

stimulated by the addition of EGF to 50 ng/mL for 5 minutes, washed once with 5 mL 

ice-cold PBS, and collected in 900 µL Buffer A (50 mM Tris-HCl, pH 7.5, 150 mM 

NaCl, 1 mM EDTA, 1 mM EGTA, 25 mM NaF, 5 mM sodium pyrophosphate, 1 mM 

Na3VO4, 2 µg/ml aprotinin, 2 µg/mL leupeptin, 100 µg/ml phenylmethylsulfonyl 

fluoride, 1 mM dithiothreitol, 20 mM p-nitrophenyl phosphate, 1% Triton X-100) as 

previously described (Ren et al., 2004). One mg of pre-cleared cell lysate was incubated 

with Bif-1 rabbit polyclonal antibody for one hour on ice and then 20 µl Protein A 

agarose was added and rocked overnight at 4°C. Beads were washed three times with 

Buffer A and then boiled in 20 µl Laemmli sample buffer and resolved by SDS-PAGE. 

Proteins were transferred onto nitrocellulose membrane (Bio-Rad) and blocked in 3% 

chicken egg white albumin in TBS-T for 2 hours. The phosphorylated Bif-1 protein was 

detected with HRP-conjugated anti-phospho-tyrosine (PY20) mouse monoclonal 

antibody (BD Biosciences). 

 

Retrovirus Production 

 Retroviral plasmids encoding Bif-1 wild type and Y80F mutant were cloned into 
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the BglII-XhoI sites of pKI vector. For Src expression, active c-Src531 mutant was 

cloned into the EcoRI-XhoI sites of pBMN-IRES-GFP vector. Retrovirus production was 

carried out in Amphotropic 293T cells. Briefly, cells were transfected with the indicated 

retroviral vector using the calcium phosphate method overnight in the presence of 25mM 

Chloroquine. Media were replaced the next morning and 36-48 hours later the viral 

containing media were collected and used to infect the target Bif-1-/- MEFs in the 

presence of 8 µg/mL polybrene.  

 

Cell Culture and Transfection  

 293T, NIH3T3, 3Y1, and Bif-1-/- MEFs were maintained in DMEM containing 

10% FBS supplemented with 100 µg/mL streptomycin and 100 U/mL penicillin. 

Transfection was performed using the calcium phosphate precipitation method. For 

anoikis assays, the indicated MEFs were grown to approximately 80-90% confluency and 

then forcibly detached on poly(2-hydroxyethyl methacrylate; poly-HEMA) coated culture 

plates for 24 hours in 1% FBS as previously described (Woods et al., 2007). Control 

attached cells were also cultured for 24 hours in 1% FBS before collection.  
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Chapter Four: 
p53 Acetylation Is Crucial for Its Transcription-Independent Proapoptotic 

Functions 
 

Abstract 
 
 Acetylation of p53 at carboxy-terminal lysine residues enhances its transcriptional 

activity associated with cell cycle arrest and apoptosis. Here, we demonstrate that p53 

acetylation at K320/K373/K382 is also required for its transcription-independent 

functions in Bax activation, ROS production, and apoptosis in response to the histone 

deacetylase inhibitors (HDACi) SAHA and LAQ824. Knockout of p53 in HCT116 cells 

markedly reduced HDACi-induced apoptosis. Unexpectedly, expression of 

transactivation-deficient p53 variants sensitized p53-null cancer cells to HDACi-

mediated Bax-dependent apoptosis, whereas knockdown of endogenous mutant p53 

inhibited HDACi-induced apoptosis. Evaluation of the mechanisms controlling this 

response led to the discovery of a novel interaction between p53 and Ku70. The 

association between these two proteins was acetylation independent, but acetylation of 

p53 could prevent and disrupt the Ku70/Bax complex and enhance apoptosis. These 

results suggest a new mechanism of acetylated p53 transcription-independent regulation 

of apoptosis. 

 

Results 
 

Transactivation Activity of p53 Is Dispensable for Apoptosis Induced by SAHA or 

LAQ824 



To investigate the transcription-independent function of p53 in HDACi-mediated 

cell death, we utilized the previously established p53-/- HCT116 cell line expressing the 

p53QS transactivation deficient mutant that retains the proapoptotic function of p53 in 

which two key amino acids (Leu22 and Trp23) in the transactivation domain were 

replaced with Gln and Ser, respectively (Yamaguchi et al., 2004). The inability of this 

mutant to transcriptionally activate p53 target genes was confirmed by using p53 

responsive luciferase reporter plasmids containing the p21 or Mdm2 promoter (Figure 

44).  

 

Figure 44.  Treatment with HDACi does not robustly induce p53QS transactivation. 
HCT116 p53-/- cells stably expressing control empty Puro, p53 wild type 
(WT) or p53QS mutant were transiently co-transfected with firefly luciferase 
constructs driven by either p21 or mdm2 promoter together with pRL-SV40 
renilla luciferase vector. The cells were then treated with DMSO, 5 μM 
SAHA or 200 nM LAQ824 and subjected to Dual-Luciferase assay according 
to manufacturer’s instructions (Promega). The results are represented as the 
mean ratio of firefly/renilla luciferase activities + SD, n=3. 

 

 

 91

When compared to p53+/+ HCT116 cells, p53-/- HCT116 cells displayed a 

drastically reduced cell death (Figure 45) and caspase-3 activity (Figure 46) following 



SAHA or LAQ824 treatment. Surprisingly, transfection of not only wild type p53 but 

also the p53QS mutant with Puromycin (Puro) selection marker completely resensitized 

p53-/- HCT116 cells to SAHA and LAQ824 (Figures 45-48), suggesting that HDACi 

require the presence of p53 but not its transcriptional activity to induce apoptosis. Similar 

results were obtained in three additional independent transfection clones harboring p53QS 

with Blasticidin (Bsd) selection marker (Figures 45-48). 

 

 

Figure 45.  p53 status affects HDACi-induced cell death. Wild type HCT116 (p53+/+) 
and HCT116 p53-/- cells stably transfected with empty vector (Puro or Bsd), 
p53 WT or p53QS were treated with either 5 µM SAHA or 200 nM LAQ824 
for the indicated periods of time. The percentage of cell viability was 
determined by trypan blue dye exclusion assay; mean + SD, n=3. 
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Figure 46.  The transactivation-deficient p53QS mutant sensitizes HCT116 p53-/- 

cells to HDACi-induced caspase-3 activation. HCT116 cell lines 
expressing p53 as outlined in Figure 45 were treated with DMSO, 5 µM 
SAHA or 200 nM LAQ824 for 28 hours and subjected to caspase-3 assay; 
mean + SD, n=3. 

 
 
 

 

 
Figure 47. HDACi promotes stabilization of exogenously expressed p53. The same 

cell lines used in Figures 45 & 46 were treated with DMSO, 5 µM SAHA or 
200 nM LAQ824 for 18 hours and subjected to immunoblot analysis. 

 
 
 
 

Mutations in p53 have been documented in more than half of all human cancers, 

of which most arise in the DNA binding domain. Since there are no known naturally 
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occurring mutation at both Leu22 and Trp23 residues of p53 and the transcriptional 

activity of p53QS is not equal to other common mutations (Johnson et al., 2005), the 

ability of tumor-associated p53 mutants, R175H, R273H, and D281G (Hinds et al., 

1990), to promote apoptosis in response to HDACi treatment in cancer cells was 

assessed. Consistently, all of these transactivation deficient p53 mutants potentiated 

HDACi-induced apoptosis in p53-/- HCT116 cells, with p53QS remaining the most potent 

inducer of apoptosis (Figures 48 & 49).  

 

 

Figure 48. Expression of p53 mutants in HCT116 p53-/- background enhances Bax 
activation induced by HDACi. HCT116 p53-/- cells were stably transfected 
with empty, Myc-p53QS, p53R175H, p53R273H or p53D281G, treated with DMSO, 
5 µM SAHA or 200 nM LAQ824 for 24 hours and subjected to anti-Bax 6A7 
immunoprecipitation and western blot analysis. 
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Figure 49.  Expression of p53 mutants in HCT116 p53-/- background enhances 
caspase-3 activation induced by HDACi. HCT116 p53-/- cells were stably 
transfected with empty, Myc-p53QS, p53R175H, p53R273H or p53D281G, treated 
with DMSO, 5 µM SAHA or 200 nM LAQ824 for 24 hours and subjected to 
caspase-3 activity assay. 

 
 

Additionally, K562 and H1299 cells (both p53-null) stably transfected with p53 

constructs containing R175H or D281G mutations, respectively, showed a marked 

increase in apoptotic response to LAQ824 treatment, as demonstrated by the ability to 

activate Bax and caspase-3 (Figures 50 & 51). Bax activation was determined by 

immunoprecipitation with anti-Bax 6A7 monoclonal antibody that only recognizes the 

active conformer of Bax (Hsu and Youle, 1997).   

 

 

Figure 50.  Naturally occurring p53 mutations promote Bax activation after HDACi 
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treatment. K562 and H1299 cells were stably transfected with p53R175H and 
p53D281G, respectively, treated with DMSO or LAQ824 (100 nM for K562 
and 200 nM for H1299) for 24 hours and subjected to western blot analysis 
and anti-Bax 6A7 immunoprecipitation. 

 
 
 

 
Figure 51.  Expression of naturally occurring p53 mutants promotes caspase-3 

activity in response to HDACi. K562 and H1299 cells were stably 
transfected with p53R175H and p53D281G, respectively, treated with DMSO or 
LAQ824 (100 nM for K562 and 200 nM for H1299) for 24 hours and 
subjected to caspase-3 assay. 

 
 

 

Notably, after exposure to SAHA or LAQ824, the exogenously expressed p53 

proteins were robustly increased (Figures 47, 48, & 50). Proteasome-directed degradation 

of p53 is tightly regulated through specific ubiquitin ligases such as Mdm2 (Honda and 

Yasuda, 1999). The increase in p53 protein levels by HDACi coincides with acetylation 

of p53 (Figures 48 and 50) that contributes to the inhibition of Mdm2-mediated p53 

ubiquitination (Li et al., 2002). In addition, microarray analysis indicated that the mRNA 

levels of exogenous p53 were increased two to five fold by HDACi treatment (data not 

shown). We speculate that the exogenously integrated p53 genes are normally silenced by 

HDACs and reactivated by HDACi. This may explain at least in part why the 
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upregulation of endogenous p53 by HDACi was less than that of exogenous p53 (Figure 

47). To evaluate the consequences of p53 stabilization after HDAC inhibition, H1299 

p53-/- and p53D281G cells were treated with DMSO (vehicle), MG132 (proteasome 

inhibitor), or LAQ824. Inhibition of the proteasome has been shown to induce p53 

accumulation without specific modifications and activation (Sakaguchi et al., 1998). Both 

MG132 and LAQ824 promoted a similar amount of p53 stabilization, but only LAQ824 

treatment resulted in an increase in p53 acetylation (Figure 52). While MG132 caused a 

similar loss of viability in both p53-/- and p53D281G cell lines, LAQ824 specifically 

promoted apoptosis in p53D281G expressing cells (Figure 53). Therefore, the presence of 

mutant p53 does not predispose cells to apoptosis under certain stresses, but HDACi 

preferentially promotes apoptosis in p53 expressing cells. This unique ability of HDACi 

correlates with the acetylation of p53 but not just its accumulation. 

 

 

Figure 52.  p53 expression and acetylation in response to HDACi and proteasome 
inhibition in H1299 cells. H1299 p53-/- and p53D281G cells were treated with 
DMSO, 200 nM LAQ824, or 1 µM MG132 for 24 hours and subjected to 
western blot analysis. 
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Figure 53.  HDACi but not proteasome inhibitor induced cell death is enhanced by 
mutant p53 expression. H1299 p53-/- and p53D281G cells were treated with 
DMSO, 200 nM LAQ824, or 1 µM MG132 for 24 hours and subjected to 
Annexin V-APC/7AAD staining and analysis by flow cytometry. Data are 
represented as mean + SD, n=3. 
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To further evaluate the potential of p53 to initiate HDACi-induced apoptosis, two 

colon carcinoma cell lines SW480 and HT-29 harboring R273H/P309S and R273H p53 

mutations, respectively, were infected with lentiviral constructs expressing p53 shRNA 

(shp53), scrambled (shScr) shRNA or empty vector. Infection with the shp53 lentivirus 



effectively knocked down p53 expression in both cell lines (Figure 54). Loss of mutant 

p53 conferred significant resistance to HDACi-induced caspase-3 activation and cell 

death (Figure 55A & B). The viability and caspase-3 results were also confirmed by 

Annexin V-APC/7AAD staining of shScr and shp53 SW480 clones (Figure 56). 

Furthermore, knock-in of murine p53-R172H, corresponding to human R175H mutation, 

results in enhanced cell death response of MEFs over control p53 null cells when treated 

with LAQ824 (Figure 57). These results highlight the functional significance of 

endogenous p53 status in determination of apoptotic index in response to HDACi 

regardless of its transactivational ability. 

 

 

Figure 54.  Knockdown of mutant p53 in SW480 and HT-29 cell lines. SW480 and 
HT-29 colon carcinoma cell lines were infected with lentiviral empty, 
scrambled shRNA (shScr) or p53 shRNA (shp53) constructs and selected on 
puromycin for 10 days. Cells were treated with DMSO, 5 µM SAHA or 200 
nM LAQ824 for 36 hours and subjected to immunoblot analysis. 
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Figure 55.  Knockdown of mutant p53 in SW480 and HT-29 cell lines prevents 
caspase-3 activation and cell death.  (A) Cells described in Figure 54 were 
treated with DMSO, 5 µM SAHA or 200 nM LAQ824 for 36 hours and 
subjected to caspase-3 assay. (B) Cells were treated with DMSO, 5 µM 
SAHA or 200 nM LAQ824 for 24 and 48 hours and subjected to trypan blue 
exclusion assay. 
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Figure 56.  Knockdown of mutant p53 in SW480 cells prevents HDACi-induced 
apoptosis. SW480 cells were infected with either scrambled control (shScr) 
or p53 targeting (shp53) lentivirus as described in Figure 54. Cells were 
treated with DMSO or 200 nM LAQ824 for 24 hours and subjected to 
Annexin V-APC/7AAD staining and analysis by flow cytometry. Data are 
represented as mean + SD, n=3. 
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Figure 57.  Knock-in of mutant p53 in MEFs enhances HDACi-induced apoptosis. 
MEFs derived from p53-/- or knock-in p53R172H were treated with the 
indicated concentration of LAQ824 for 24 hours and subjected to Annexin 
V-APC/7AAD staining and analysis by flow cytometry. Graphical 
representation of the different cell populations are presented as the mean + 
SD, n=3. 

 

 

C-Terminal Acetylation Is Essential for Mutant p53-Mediated Apoptosis in Response to 

SAHA or LAQ824 Treatment  

Inhibition of HDACs by SAHA or LAQ824 resulted in a significant increase in 

the levels of acetylated p53 (Figures 48, 50, and 52). To investigate the possible 
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involvement of p53 acetylation in its transcription-independent proapoptotic functions, 

three lysine residues (K320, K373, and K382), which are known to be acetylated by 

HDACi treatment (Terui et al., 2003), in human p53R175H protein were mutated to 

arginine individually and in triplicate (K3R) to mimic the unacetylated state. These p53 

constructs were cloned into retroviral vectors and infected into HCT116 p53-/- cells to 

comparable levels (Figure 58A). The apoptotic index was then measured by caspase-3 

activity after LAQ824 treatment (Figure 58B). Single mutations at the individual lysine 

residues yielded marginal decreases in apoptosis. However, mutation of all three lysines 

completely abolished the proapoptotic activity of p53R175H in response to HDAC 

inhibition.  

 

 



 

Figure 58. Substitution of K320, K373 and K382 to R attenuates the proapoptotic 
activity of mutant p53 in response to HDACi. HCT116 p53-/- cells were 
infected with retroviral empty (pKI), p53R175H, p53R175H/K320R, p53R175H/K373R, 
p53R175H/K382R or p53R175H/K3R constructs. (A) p53 expression was confirmed 
by western blot analysis. (B) The ability of p53 mutants to enhance HDACi-
induced apoptosis was assessed by caspase-3 activation; mean + SD, n=3. 
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To further validate the importance of these residues in transactivational deficient 

p53, Myc-tagged p53QS or p53QS/K3R (all three lysines, K320/373/382, were mutated to 

arginine) was stably expressed in HCT116 p53-/- cells (Figure 59A). Immunoblot analysis 

with anti-acetylated K382-p53 antibody confirmed the absence of HDACi-induced K382 

acetylation in cells expressing the p53QS/K3R mutant (Figure 59A). Consistently, the 

ability of p53QS to induce caspase-3 activation and apoptotic cell death in response to 

SAHA or LAQ824 was drastically impaired by the K3R mutations (Figures 59B and 60). 



 

 

Figure 59. Mutation of K320, K373 and K382 to R attenuates the proapoptotic 
activity of p53QS initiated by HDACi in HCT116 cells.  HCT116 p53-/- 
cells stably transfected with empty (Puro), Myc-p53QS or Myc-p53QS/K3R 
were treated with DMSO, 5 µM SAHA or 200 nM LAQ824 for 18 hours and 
subjected to (A) immunoblot analysis and (B) caspase-3 assay; mean + SD, 
n=3. 
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Figure 60.  p53-dependent HDACi-induced cell death is repressed by mutation of 
three C-terminal lysine residues. HCT116 p53-/- stably transfected with 
empty (Puro), Myc-p53QS or Myc-p53QS/K3R were treated with DMSO, 5 µM 
SAHA or 200 nM LAQ824 for 18 hours and subjected to Annexin V-
FITC/PI staining and flow cytometry analysis. 

 
 

 

SirT1 is a class III HDAC whose activity also influences p53 acetylation status, 

but is not inhibited by LAQ824 or SAHA. To determine if SirT1 has a functional role in 

LAQ824 mediated apoptosis, H1299 p53-/- and p53D281G cells were transfected with 

empty control or SirT1 expressing plasmids. Overexpression of SirT1 resulted in a 

minimal reduction in acetylated K382-p53 (Figure 61A) and did not impact caspase-3 

activation in either cell line treated with LAQ824 (Figure 61B).  
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Figure 61.  Overexpression of SirT1 does not impact p53 acetylation or p53-
dependent HDACi-induced apoptosis. H1299 p53-/- and p53D281G cells 
were transfected with empty pCDNA3.1 or pCDNA3.1-SirT1 expression 
vectors and then treated with DMSO or 200 nM LAQ824 for 24 hours and 
subjected to (A) western blot and (B) caspase-3 assay. 

 
 

 

Because SirT1 can be specifically inhibited by the compound EX527 (Napper et 

al., 2005), we treated p53-/- and p53D281G H1299 cells with EX527, LAQ824, or the 

combination of both compounds. Although EX527 alone had no effect on K382 

acetylation, when combined with LAQ824 there was a significant increase in p53 

acetylation (Figure 62). However, EX527 failed to enhance LAQ824-meciated apoptosis 

(Figure 63). This could possibly be due to a saturation of the acetylated p53 needed for 
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apoptosis induction after LAQ824 treatment. Overall, it appears that SirT1 does not play 

a significant role in LAQ824-mediated cytotoxicity. 

 

 

Figure 62.  Pharmacological inhibition of SirT1 enhances p53 acetylation. H1299 
p53-/- and p53D281G cells were treated with DMSO, 1 µM EX527, 200 nM 
LAQ824 or the combination of 1 µM EX527 and 200 nM LAQ824 for 24 
hours and subjected to western blot analysis. 
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Figure 63.  SirT1 inhibition does not affect p53-dependent HDACi-induced 
apoptosis. H1299 p53-/- and p53D281G cells were treated with DMSO, 1 µM 
EX527, 200 nM LAQ824 or the combination of 1 µM EX527 and 200 nM 
LAQ824 for 24 hours and subjected to Annexin V-APC/7AAD staining and 
flow cytometry analysis. 
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SAHA- or LAQ824-Mediated ROS Production Is Dependent on p53 Acetylation and Bax 

ROS production plays a central role in HDACi-mediated cell death (Ruefli et al., 

2001). In addition, ROS is a mediator of p53-induced apoptosis (Polyak et al., 1997). We 

therefore examined the correlation between ROS generation and p53 transactivation-

independent proapoptotic function after HDACi treatment. To this end, HCT116 p53-/- 

cells stably expressing p53QS or empty control vector (Puro) were treated with SAHA or 

LAQ824 and the ROS levels were determined as previously described (Chandel et al., 

2001). LAQ824 increased the ROS level in p53QS but not control cells (Figure 64A). The 

antioxidant NAC reversed this ROS generation (Figure 64A) and decreased cell death 

(Figure 64B) induced by SAHA or LAQ824 in p53QS cells.  

 

 

Figure 64.  HDACi-induced p53-dependent ROS production promotes cell death. 
(A) HCT116 p53 -/- cells stably expressing control Puro or p53QS were 
treated with 200 nM LAQ824 in the presence or absence of 10 mM NAC for 
12 hours and the changes in intracellular ROS level were determined. (B) 
HCT116 p53-/- cells stably expressing p53QS were treated with 5 µM SAHA 
or 200 nM LAQ824 in the presence or absence of 10 mM NAC for 48 hours. 
The percentage of cell viability was determined by trypan blue dye exclusion 
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assay; mean + SD, n=3. 
 

 

Moreover, substitution of K320/373/382 to R (K3R) completely abolished the 

ability of p53QS to induce ROS generation after LAQ824 treatment (Figures 65A & B). 

These results suggest that SAHA and LAQ824 require p53 acetylation but not its 

transcriptional activity to induce ROS production that is essential for HDACi-mediated 

cytotoxicity. 

 

 

Figure 65.  K3R mutation prevents HDACi-induced p53-dependent ROS 
production. HCT116 p53-/- stably transfected with p53QS or p53QS/K3R were 
treated with 200 nM LAQ824 and intracellular ROS levels were determined 
by analysis of DCF staining using (A) cell-free analysis by 
spectrofluorometry or (B) live cell analysis by flow cytometry. 

 
 

Mitochondria are the main source of cellular ROS and Bcl-2 family proteins are 

essential mediators of the amount of ROS production by HDACi (Ott et al., 2007a). To 
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determine the role of Bax in HDACi-induced ROS production and cell death, we took 

advantage of HCT116 Bax knockout cells (Zhang et al., 2000). Similarly to p53-/- 

HCT116 cells, Bax-/- HCT116 cells were also resistant to SAHA- or LAQ824-induced 

cell death regardless of normal p53 expression (Figure 66).  

 

 

Figure 66.  Bax expression promotes HDACi-induced cell death. Bax +/- and Bax -/- 
HCT116 cells were treated with 5 µM SAHA or 200 nM LAQ824 for the 
indicated periods of time and subjected to trypan blue dye exclusion assay. 

 
 

Furthermore, the upregulation of ROS levels induced by SAHA or LAQ824 was 

not observed in Bax-null HCT116 cells (Figures 67A & B). Taken together, these data 

suggest that p53 exerts its transcription-independent function upstream of Bax signaling 

to control ROS generation and apoptosis in response to HDACi treatment. 
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Figure 67.  Bax expression promotes ROS generation in response to HDACi. Bax +/- 
and Bax -/- HCT116 cells were treated with 5 µM SAHA or 200 nM 
LAQ824 for 12 hours and the changes in intracellular ROS level were 
determined by DCF using (A) cell-free analysis by spectrofluorometry or (B) 
live cell analysis by flow cytometry. 

 

 

Acetylated p53 Binding to Ku70 Activates Bax by Disrupting the Bax/Ku70 Complex 

To gain further insight into the transactivation-independent proapoptotic function 

of p53 in response to HDACi, we took a proteomics approach combined with the tandem 

affinity purification (TAP) (Wang et al., 2004) to identify p53QS binding proteins. The N-

terminal TAP-tagged p53QS fusion protein was stably expressed in HCT116 p53-/- cells 
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and its ability to enhance HDACi-mediated cytotoxicity was confirmed (Figure 68).  

 

 

Figure 68.  TAP-p53QS mediated HDACi-induced cell death. HCT116 p53 -/- cells 
stably expressing control TAP or TAP-p53QS were treated with 200 nM 
LAQ824 for indicated periods of time. The percentage of cell viability was 
determined by trypan blue dye exclusion assay. 

 
 

These cells were then treated with LAQ824 and subjected to TAP purification and 

SDS-PAGE/mass spectrometry analysis. As a result, we identified Ku70 in the p53QS 

complex (Figure 69). This association was not disrupted by DNase or ethidium bromide, 

indicating that the p53/Ku70 interaction is not mediated by DNA (data not shown). To 

determine if p53 acetylation is required for its binding to Ku70, we performed co-

immunoprecipitation analysis in p53-/- HCT116 cells stably transfected with empty 

control vector (Puro), Myc-p53QS, or Myc-p53QS/K3R constructs (Figure 70). A specific 

interaction between Myc-p53QS and endogenous Ku70 was observed after LAQ824 

treatment. However, substitution of K320/373/382 to R (K3R) in p53QS did not affect this 

interaction, suggesting that acetylation at these lysines is dispensable for p53 binding to 

Ku70.  
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Figure 69.  Identification of Ku70 in complex with TAP-p53QS. Cell lysates prepared 
from HCT116 TAP and TAP-p53QS cells treated with 200 nM LAQ824 for 
20 hours were subjected to TAP purification followed by SDS-PAGE and 
mass spectrometry analysis. 

 
 
 
 

 

Figure 70.  Ku70/p53 binding is independent of p53 acetylation at K320/373/382. 
HCT116 p53-/- cells stably transfected with empty (Puro), Myc-p53QS or 
Myc-p53QS/K3R were treated with DMSO or 200 nM LAQ824 for 16 hours. 
Cell lysates were subjected to immunoprecipitation with anti-Myc antibody. 

 
 

The observed increase in p53/Ku70 interaction after LAQ824 treatment is likely 

due to the increased protein levels of exogenous p53, because stabilization of p53 with 

MG132 also led to increased p53/Ku70 interaction (Figure 71). Moreover, in vitro GST 
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pull-down assays using GST-Ku70 and purified unacetylated or acetylated recombinant 

p53 revealed that the interaction between p53 and Ku70 is direct and acetylation-

independent (Figure 72). Additionally, endogenous p53 could co-immunoprecipitated 

with endogenous Ku70 in both LAQ824 treated and untreated SW480 cells (Figure 73), 

providing further evidence that the p53/Ku70 interaction occurs at physiological protein 

levels in an acetylation-independent manner. 

 

 
 

Figure 71.  Increased p53 and Ku70 expression and complex formation is induced 
by proteasome inhibition or HDACi. H1299 p53-/- and p53D281G cells were 
treated with DMSO, 1 µM MG132 or 200 nM LAQ824 for 24 hours and 
subjected to immunoprecipitation for Ku70. 

 
 
 
 

 

Figure 72.  In vitro pull-down of GST-Ku70 and purified p53. Purified recombinant 
GST and GST-Ku70 was immobilized on Glutathione Sepharose 4B agarose 
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and incubated with purified non-acetylated or acetylated p53 for 2 hours, 
washed, and subjected to western analysis to determine p53 binding. 

 
 
 
 

 
 

Figure 73.  Ku70 associates with endogenous mutant p53 with and without HDACi 
treatment. SW480 cells were treated with DMSO or 200 nM LAQ824 for 24 
hours and subjected to immunoprecipitation with HA or Ku70 monoclonal 
antibodies and normal rabbit serum (NRS) or p53 polyclonal antibodies. 

 
 

 

The interaction between Ku70 and Bax prevents Bax conformational change and 

mitochondrial translocation (Cohen et al., 2004a; Li et al., 2007). Moreover, it has been 

shown that Ku70 acetylation reduces the Bax/Ku70 association and plays a role in 

HDACi-induced cell death (Subramanian et al., 2005). Thus, we speculated that the 

interaction between acetylated p53 and Ku70 may be involved in Bax activation induced 

by HDACi. After LAQ824 treatment, a drastic conformational activation of Bax 

measured by exposure of the 6A7 epitope was observed in p53QS cells compared to 

p53QS/K3R and Puro control cells that coincided with increased p53 acetylation (Figure 

74). Analysis of Bcl-2 family proteins in these cell lines revealed that LAQ824 treatment 

resulted in an increase in BimEL, with a lesser extent to Bak and Mcl-1, and a slight 

decrease in Bcl-2 (Figure 74). However, there are no clear differences in these Bcl-2 

family members between p53QS, p53QS/K3R, and control Puro expressing cells, suggesting 

that acetylated p53 has other modes of action besides regulating Bcl-2 family protein 
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expression for the induction of apoptosis in response to HDACi. 

 

 

Figure 74.  Acetylation of p53QS is required for HDACi-induced Bax activation 
without impact on Bcl-2 family member expression. HCT116 p53-/-, 
p53QS and p53K3R cells were treated with DMSO or 200 nM LAQ824 for 18 
hours and subjected to Bax 6A7 IP and western blot analysis. 

 
 

Interestingly, the Bax/Ku70 interaction was increased at 12 hours following 

LAQ824 treatment (Figures 75). However, while the enhanced Bax/Ku70 complex was 

maintained up to 36 hours in p53-/- (Puro) cells, the Bax/Ku70 association was decreased 

at 24 hours in p53QS cells. Similar results were obtained in p53-/- and p53+/+ HCT116 cells 

(Figure 76).  
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Figure 75.  Ku70/Bax complex stability after HDACi treatment is regulated by p53. 
HCT116 p53-/- cells stably expressing empty (Puro) or Myc-p53QS were 
treated with 200 nM LAQ824 for the indicated times and subjected to 
immunoprecipitation with anti-Bax polyclonal antibody or control NRS. 

 
 
 
 

 

Figure 76.  Endogenous wild type p53 retains the ability to disrupt the Bax/Ku70 
complex. HCT116 p53 -/- and p53+/+ cells were treated with 200 nM of 
LAQ824 for the indicated times and subjected to immunoprecipitation with 
anti-Bax polyclonal antibody or control IgG. 

 
 

 

Interestingly, the interaction between Ku70 and Bax was increased in p53QS/K3R 

cells during LAQ824 treatment and the p53QS/K3R protein was detected in the Bax/Ku70 

complex after 24 hours treatment (Figure 77). These findings suggest that HDACi 

treatment initially promotes an increase in the interaction between Bax and Ku70, but 

prolonged treatment leads to the disruption of this complex probably through acetylated 
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p53. 

 

 

Figure 77.  Acetylation deficient p53 expression prevents HDACi-induced 
disruption of Ku70/Bax complex. HCT116 p53 -/- cells stably expressing 
Myc-p53QS or Myc-p53K3R were treated with 200 nM of LAQ824 for the 
indicated times and subjected to immunoprecipitation with anti-Bax 
polyclonal antibody or control NRS. 

 
 

Since p53 interacts with Ku70 independently of its acetylation status, the ability 

of acetylated p53 to disrupt the Bax/Ku70 interaction was assayed in vitro. The 

Bax/Ku70 immune complexes were isolated from HCT116 p53-/- cell lysate and 

incubated with purified non-acetylated or acetylated recombinant p53 (Piluso et al., 2005) 

(Figure 78A). Only acetylated p53 was able to release Ku70 from the Bax/Ku70 complex 

when compared to control vehicle and unacetylated p53. Similar results were also 

obtained in a GST-Ku70 pull-down assay; acetylated p53 could prevent Bax binding to 

Ku70, whereas non-acetylated p53 had no effect (Figure 78B). These results clearly 

indicate that p53 acetylation is important for Bax release from Ku70.  
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Figure 78.  Purified acetylated p53 disrupts Bax/Ku70 complexes in vitro. (A) 
HCT116 p53-/- cell lysate was immunoprecipitated with anti-Bax polyclonal 
antibody and the resulting isolated immunocomplexes were incubated with 
purified non-acetylated or acetylated p53 for 30 minutes. The supernatant 
was collected and the immunocomplexes were washed 3 times and subjected 
to western analysis. (B) Purified recombinant GST and GST-Ku70 were 
isolated by Glutathione Sepharose 4B agarose pull-down, after which 
purified Bax, non-acetylated or acetylated p53 were incubated together for 2 
hours. Samples were washed and subjected to immunoblot analysis. 

 
 

To elucidate the role of Ku70 in HDACi-induced apoptosis, H1299 p53-/- and 

p53D281G cells were infected with control shScr or shKu70 lentivirus. Knockdown of 

Ku70 was assayed by Western blot (Figure 79A). These cells were then treated with 

LAQ824 for 24 hours and subjected to apoptosis analysis with Annexin V-APC/7AAD 

staining and flow cytometry (Figure 79B). Knockdown of Ku70 in p53-/- cells promotes 

an enhanced apoptotic response over shScr control cells. However, knockdown of Ku70 

in p53D281G cells did not significantly impact LAQ824 induced apoptosis. This result 

suggests that the Bax/Ku70 complex is essential to the prevention of HDACi-induced 

apoptosis in p53-/- cells. However, when p53 is present and able to disrupt the Bax/Ku70 

complex, reduction in Ku70 expression is redundant and unnecessary to promote 
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HDACi-induced apoptosis. 

 

 

Figure 79.  Ku70 knockdown preferentially enhances HDACi-induced apoptosis in 
p53-/- cells. H1299 p53-/- and p53D281G cells were infected with shScr or 
shKu70 lentivirus. 24 hours after infection cells were treated with DMSO or 
200 nM LAQ for an additional 24 hours and analyzed for (A) Ku70 
knockdown by western blot and (B) apoptotic response measured by Annexin 
V-APC/7AAD staining and flow cytometry. Data represented as mean + SD, 
DMSO treated n=3, LAQ treated n=5. 

 
 

To determine the cellular localization of the Bax/Ku70 complex, co-

immunoprecipitation experiments were performed using heavy membrane, cytosolic, and 
 122
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nuclear fractions isolated from p53-/- HCT116 cells transfected with control empty vector 

(Puro), or Myc-tagged p53QS or p53QS/K3R (Figure 80). The Bax/Ku70 complex was 

increased in both cytosolic and nuclear fractions of Puro and p53QS/K3R cells after 

LAQ824 treatment. Since the complex formation was only assayed at 24 hours after 

treatment, the accumulation of the Bax/Ku70 complex was not observed in p53QS cells as 

it was at 12 hours seen in Figure 74. Furthermore, the Ku70/p53 complex was most 

readily detected in the nuclear fraction corresponding to the prominent localization of p53 

and Ku70 to this cellular compartment. However, p53 could also be found localized to 

the cytosolic and heavy membrane fractions and in a complex with Ku70 at reduced 

levels compared to that in the nuclear fraction after LAQ824 treatment. The localization 

of p53QS, Bax, and Ku70 was also confirmed by immunofluorescence (Figures 81A & B).  

 



 

Figure 80.  Cellular localization of p53/Ku70/Bax interactions. (A) HCT116 p53-/- 
cells stably expressing Puro, Myc-p53QS or Myc- p53QS/K3R were treated with 
DMSO or 200 nM LAQ824 for 24 hours and subjected to cell fractionation 
and immunoprecipitation with the indicated antibodies. 
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Figure 81.  Cellular localization of p53, Ku70 and Bax in HCT116 cells. (A) HCT116 

p53-/- or p53QS cells were treated with 5 µM SAHA for 18 hours and then 
immunostained for Bax and HSP60 with DAPI counter staining. (B) HCT116 
p53-/- or p53QS cells were treated with 5 µM SAHA for 18 hours and then 
immunostained for Ku70 and p53 with DAPI counter staining. 

 



To determine whether p53QS affects the intracellular redistribution of Bax after 

HDACi treatment, we performed subcellular fractionation and immunoblot analysis. 

Ku70 localization was not affected by p53QS after HDACi treatment, while the nuclear 

Bax was decreased in p53QS cells but not in p53-/- cells (Figure 82). Conversely, the 

cytosolic Bax was increased in p53QS cells after HDACi treatment. These results support 

the hypothesis that Bax dissociation from Ku70 and subsequent translocation to the 

cytoplasm after HDACi treatment is mediated by acetylated p53.Consistent with the 

retained association of Ku70 with Bax, HDACi-induced Bax conformational activation at 

the mitochondria was attenuated in p53-/- and p53QS/K3R compared to p53QS cells (Figure 

83A), which correlated with an apparent increase in Bax translocation to the 

mitochondrial fraction specifically in HDACi treated p53QS cells (Figure 83B).  

 

 

Figure 82.  p53-dependent HDACi-induced Bax translocation from the nucleus to 
the cytoplasm. HCT116 p53-/- cells stably expressing Puro or p53QS were 
treated with DMSO, 5 µM SAHA or 200 nM LAQ824 for 18 hours and 
subjected to subcellular fractionation and immunoblot analysis. 
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Figure 83.  HDACi-induced acetylated p53-dependent Bax activation and 
mitochondrial accumulation. (A) Immunoprecipitation using Bax 6A7 
antibody in mitochondrial fractions of HCT116 p53-/-, p53QS and p53QS/K3R 
cells treated with DMSO, 5 µM SAHA or 200 nM LAQ824 for 18 hours. (B) 
HCT116 p53-/- cells stably transfected with Puro, Myc-p53QS or Myc- 
p53QS/K3R were treated with DMSO, 5 µM SAHA or 200 nM LAQ824 for 16 
hours and subjected to subcellular fractionation and immunoblot analysis. 

                     

 

Discussion 

HDACi represent a new class of chemotherapeutic agents that have shown 

promise in pre-clinical and clinical trials and work by modifying the acetylation status of 

histone and non-histone proteins. Acetylation is accepted as an important 

posttranslational modification that impacts protein structure and/or function but relatively 

few non-histone proteins have been identified as regulated by acetylation. Of those 

identified are several important apoptotic molecules such as Ku70, p53, Rb, and p73 

(Chan et al., 2001; Cohen et al., 2004a; Costanzo et al., 2002). The findings presented in 
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this report indicate that HDACi can induce apoptosis by a p53 transactivation-

independent apoptotic mechanism. Expression of various mutants of p53 in p53-/- 

backgrounds enhances HDACi-induced apoptosis, and knockdown of endogenous mutant 

p53 results in an abrogated apoptotic response. Both mutant and wild type p53 bind Ku70 

and promote Bax dissociation from Ku70 in an acetylation dependent manner. 

Additionally, HDACi can induce substantial apoptosis in p53-/- but not mutant p53 

expressing cells when Ku70 is knocked down. Therefore, we propose a model where the 

interaction between Ku70 and p53 is acetylation independent; however, acetylation of 

p53 is absolutely required for Bax dissociation from Ku70, conformational activation, 

and enhanced apoptosis upon HDACi treatment (Figure 84). Given that p53 is frequently 

mutated in human cancers, our findings that mutant p53 sensitizes cancer cells to 

HDACi-induced apoptosis via Bax activation further explain why this class of inhibitors 

displays preferential anti-neoplastic potential.  

 

 

Figure 84.  Proposed model for p53/Ku70/Bax interaction disrupted by HDACi-
induced acetylation. In normal resting cells p53/Ku70/Bax can likely be 
found in complex. After HDACi, Bax is displaced from Ku70 by acetylated 
p53 and becomes activated to induce apoptosis. 
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Transcription-Independent p53 Mechanism of HDACi-induced Apoptosis 

The transcriptional activity of p53 is able to efficiently enhance apoptosis in 

response to various cellular stresses. Genotoxic stresses result in activation of DNA 

damage response pathways that activate kinases such as ATM, ATR, CHK1 and CHK2 

or methyltransferases such as Set7/9 that respectively phosphorylate or methylate p53 

which in turn promotes the acetylation of p53 at C-terminal lysines resulting in enhanced 

protein stability and sequence specific DNA binding (Ivanov et al., 2007; Toledo and 

Wahl, 2006). However, through the course of our experiments into the nature of p53-

dependent HDACi-induced apoptosis we found that the transcriptional activity of p53 

was dispensable but acetylation of C-terminal lysines was not. There are conflicting 

reports as to what role p53 transcription has on HDACi-induced apoptosis. Much of this 

could be attributed to global changes in transcription due mainly because of histone 

acetylation and maybe less so through acetylation of other factors such as p53 or other 

transcription factors. Indeed, our experiments have found that expression of wild type 

p53 marginally enhanced HDACi-induced caspase-3 activity over the response from 

expression of mutant p53QS (Figure 46), although this does not necessarily correlate 

exactly with the cell death response (Figure 45). This could indicate several possible 

scenarios. First, expression of wild type p53 could preferentially promote apoptosis 

through transcriptional regulation. However, our results have shown that wild type p53 

still functions to disrupt the Bax/Ku70 complex when acetylated by HDACi treatment, 

suggesting that this pathway is active even in the presence of functional transactivation 

activity. This gives favor to the alternative scenario where wild type acetylated p53-

dependent HDACi-induced apoptosis functions in a predominantly transcription-
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independent manner to illicit such a response, likely through disruption of the Bax/Ku70 

complex as shown above. This would explain why there was limited additive effect on 

HDACi-induced caspase-3 activation in wild type p53 over p53QS expressing cells. 

However, this does not explain why there is enhanced viability in wild type p53 cells 

compared to p53QS after HDACi treatment. This could possibly be caused by the 

increased stability of p53QS over wild type p53 as the Mdm2 binding site is disrupted in 

this mutant. Nonetheless, more experiments will be needed to rectify the roles of 

acetylated wild type p53 in transcription-dependent and independent HDACi-induced 

apoptosis.  

We sought to confirm that mutant p53QS lacks HDACi-induced transcriptional 

activity by luciferase reporter gene assays (Figure 44). Expression of wild type p53 

dramatically enhanced transcription from the p21 and MDM2 promoters, but p53QS also 

exhibited low levels of target promoter activation compared to p53-/- cells. However, this 

residual transactivation potential of p53QS likely plays a minor role in HDACi-induced 

apoptosis for several reasons. First, microarray analysis revealed that there was no 

specific increase in p53 responsive target gene expression after treatment with HDACi 

(data not shown). The expression of p21 was also found to be similar between p53-/-, 

p53QS, and p53QS/K3R stably expressing cell lines (Figure 74). Indeed, it has been shown 

that p21 expression is enhanced by HDACi in a p53-independent manner (Huang et al., 

2000). Although p53QS has been reported to retain the potential for transcriptional 

activation of Bax and repression of Bcl-2 (Johnson et al., 2005), we were unable to detect 

changes in apoptotic proteins controlled by p53QS such as Bax, Bcl-2, and Puma after 

HDACi treatment in (Figure 74). Additionally, studies with transfection of prominent 
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naturally occurring p53 mutants into p53 deficient HCT116, K562, and H1299 cells, and 

knockdown of endogenous mutant p53 in SW480 and HT-29 cells further support our 

hypothesis that p53 retains a transcription-independent proapoptotic function mediated by 

acetylation. 

 

p53 Localization and HDACi-Induced Apoptosis 

Although it is widely accepted that p53 has a transcription-independent 

mechanism of apoptosis induction, several controversies remain. For instance, it has been 

shown that p53 translocates to mitochondria where it interacts with anti- or proapoptotic 

Bcl-2 family proteins including Bcl-XL, Bcl-2, and Bak to induce Bax and Bak 

activation, thereby leading to the release of cytochrome c from mitochondria to the 

cytoplasm (Chipuk et al., 2004; Deng et al., 2006; Leu et al., 2004; Mihara et al., 2003). 

However, other reports suggest that the level of mitochondrial p53 does not correlate with 

the level of apoptosis (Essmann et al., 2005; Mahyar-Roemer et al., 2004). Upon HDACi 

treatment, relatively low levels of p53QS and p53QS/K3R were detected in the mitochondrial 

fraction (Figure 80). Furthermore, there were no differences between wild type p53, 

p53QS, and p53QS/K3R for their ability to interact with Bcl-XL (Figure 85), even though 

p53QS/K3R cannot significantly enhance HDACi-induced apoptosis, suggesting that the 

mitochondrial translocation of mutant p53 may not play a major role in HDACi-mediated 

apoptosis.  

However, the small increase in HDACi-induced apoptosis in p53QS/K3R over p53-/- 

cells may rely on its ability to bind Bcl-XL at the mitochondria. Alternatively, this 

observation could possibly be due to another mechanism such as residual transcriptional 



activity of p53QS/K3R. Although our results suggest that p53QS and p53QS/K3R have no 

impact Bcl-2 family or p21 expression profiles in response to HDACi treatment 

compared to p53-/- cells, other unexamined proteins may be affected which could 

theoretically also lead to the slight increase in apoptosis seen in the p53QS/K3R cell line. 

The exact mechanism by which this occurs remains to be resolved. 

 

 

Figure 85.  Wild type and mutant p53 interaction with Bcl-XL and Bak. p53-/- 
HCT116 cells were transiently transfected with the indicated p53 expression 
plasmids. 36 hours after transfection, the cells were treated with LAQ for 
additional 12 hours. The cells were then lysed and subjected to IP with myc 
monoclonal antibody, followed by immunoblot analysis with anti-Bcl-XL or 
Bak polyclonal antibodies. 

 
 

As a transcription factor, p53 principally localizes in the nucleus, but certain 

apoptotic stimuli can promote p53 accumulation in the cytosolic and mitochondrial 

fractions. Ku70 is an important mainly nuclear protein involved in non-homologous end 

joining DNA repair and V(D)J recombination (Gu et al., 1997). Therefore, it is not 

surprising that the nucleus is the compartment that contains the highest concentration of 

p53 associated with Ku70 (Figure 80). Alternatively, Bax has been classified as a 

predominantly cytosolic protein that loosely associates with the mitochondrial membrane 

in unstressed cells. Enigmatically, Bax has also been classified as a nuclear protein and 
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under certain stresses interacts with p53 (Nishita et al., 1998; Raffo et al., 2000). 

Similarly, our results indicate that a substantial amount of Bax can be found in the 

nucleus of HCT116 cells (Figures 80 and 81A). It seems that HDACi-induced p53 

acetylation disrupts the Ku70/Bax complex, which results in Bax conformational change 

and translocation from the nucleus to the cytoplasm. However, cytosolic p53 is also 

equally capable of disrupting Bax from Ku70. The individual contributions of Ku70/Bax 

dissociation in the separate cellular compartments remain to be determined. 

Bax has been traditionally characterized as a cytoplasmic and mitochondrial 

protein, however increasing evidence has suggested that Bax can also be found in the 

nucleus but its function there is almost completely unknown. Here we provide evidence 

that nuclear Bax activation can be initiated in response to HDACi treatment through 

displacement from Ku70 by acetylated p53 and translocation to the cytoplasm. Nuclear 

Bax localization may predispose cells to enhanced HDACi-induced apoptosis as 

Ku70/Bax interactions there have an increased probability of dissociation due to p53 

enrichment. This localization of Bax may also have impacts on other proapoptotic signals 

originating in the nucleus such as genotoxic stresses. However, future research is still 

required to fully understand this seemingly misplaced population of Bax. 

 

p53 Acetylation and Bax/Ku70 Disruption 

LAQ824 treatment results in a transient increase in the association between Ku70 

and Bax (Figures 75-78). This phenomenon could be due to several reasons. First, this 

apoptotic stimulus may encourage a cellular response designed to prevent Bax activation 

by sequestration through Ku70 binding. The increased association could be caused by a 
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variety of different mechanisms such as posttranslational modifications or intracellular 

distribution. Another intriguing possibility is that the increase in Ku70/Bax complex 

could serve a dual role as Ku70 promotes the deubiquitination of Bax in addition to its 

sequestration (Amsel et al., 2008). Thus, this interaction could prime cells for apoptosis 

by increasing the pool of unmodified Bax able to promote apoptosis after release from 

Ku70. In either case, prolonged HDACi treatment that results in the disruption of the 

Ku70/Bax complex can enhance the apoptotic response. 

Expression of wild type and mutant p53 capable of being acetylated promotes the 

dissociation of Bax from Ku70 after a prolonged HDACi treatment (Figures 75-78). 

Moreover, acetylated but not unacetylated recombinant p53 is able to disrupt the 

Ku70/Bax complex in vitro (Figures 78A & B). However, the acetylation deficient 

p53QS/K3R mutant retains the ability to interact with Ku70 and accumulates in the 

Ku70/Bax complex during HDACi treatment (Figures 77 and 80). Since acetylation of 

p53 alters its structure (Giordano and Avantaggiati, 1999), it is plausible that once p53 is 

acetylated changes in conformation lead to competition for the Bax binding site on Ku70. 

Acetylation and altered structure of p53 could also lead to conformational changes in 

Ku70, which may depend its own acetylation, and the release of Bax as previously 

proposed (Cohen et al., 2004a). Furthermore, past studies into the acetylation of Ku70 

and the regulation of apoptosis were carried out primarily in 293T cells which would 

preclude p53 transactivational activity but not necessarily its transcriptional-independent 

role in HDACi-induced apoptosis (Cohen et al., 2004a; Li et al., 2007). Our results 

suggest that the cellular status of both p53 and Ku70 determines apoptotic responses 

(Figure 79B) and is warrant to be further evaluated as biomarkers for clinical therapeutic 
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response to HDACi such as SAHA and LAQ824. Additional assays designed to 

determine how acetylated p53 affects the Ku70/Bax complex at the structural level will 

give additional insights into this novel interplay between proteins with hopes of 

developing advanced therapeutic strategies to benefit cancer patients. 

 

Materials and Methods 

Cell Culture and Transfection  

HCT116 cells were grown in McCoy’s 5A medium, K562, SW480 and HT-29 

cells were grown in RPMI, and H1299 and MEFs were grown in DMEM. Medium was 

supplemented with 10% FBS and 1X penicillin/streptomycin. MEFs p53-/- and p53-

R172H/R172H were a kind gift from Guillermina Lozano and were described previously 

(Lang et al., 2004). Cell transfection using Lipofectamine 2000 (Invitrogen) was 

described previously (Yamaguchi et al., 2004). The plasmids expressing p53 WT, QS, 

R175H, R273H, and D281G mutants were described previously (Hinds et al., 1990; 

Yamaguchi et al., 2004). The p53QS/K3R mutant was prepared by two-step PCR and 

subcloned into pcDNA3-Myc vector. To establish stable transfectants, plasmids were co-

transfected with pBabe-puro or pEF6-Myc-His (Invitrogen) empty vector and selection 

was performed with puromycin (puro) or blasticidin S HCl (Bsd). The p53R175H lysine 

mutants were prepared by site directed mutagenesis (Stratagene) using pcDNA3-p53 as 

the template, cloned into the retroviral pKI vector between the BglII/XhoI restriction sites 

and transfected into 293 Ampho cells to produce recombinant retroviruses. The lentiviral 

pLK0.1 empty, scrambled, Ku70 shRNA (TRCN0000039611) and p53 shRNA 

(TRCN0000010814) constructs were purchased from Sigma. The shRNA lentivirus was 
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produced in 293FT cells using the ViraPower kit from Invitrogen as per the 

manufacture’s recommendations. 

 

Reagents 

LAQ824 and SAHA were kindly provided by Novartis Pharmaceuticals Inc. (East 

Hanover, NJ) and Merck & Co., Inc. (Flemington, NJ), respectively. Anti-Ku70 

monoclonal and polyclonal antibodies and anti-Myc polyclonal antibodies were 

purchased from Santa Cruz Biotechnology. Anti-p53 (CM1) polyclonal and monoclonal 

(DO-1) antibodies, anti-Bax polyclonal and monoclonal antibodies, anti-actin, tubulin 

and Myc monoclonal antibodies were described previously (Yamaguchi et al., 2004; 

Yamaguchi and Wang, 2006). Anti-Myc or Flag agarose beads were purchased from 

Sigma. Anti-histone H3 and anti-acetylated p53 (K382) antibodies were purchased from 

Cell Signaling. Anti-HSP60 and anti-Lamin B antibodies were purchased from BD 

Biosciences and Calbiochem, respectively.  

 

Tandem Affinity Purification of p53QS Binding Protein 

The p53QS cDNA was subcloned into the EcoRI and XhoI sites of pcDNA3-TAP 

vector (Wang et al., 2004). The N-terminal TAP-tagged p53QS was stably expressed in 

p53-/- HCT116 cells and treated with 200 nM LAQ824 for 20 hours. The cells were lysed 

in TAP lysis buffer (0.5% Triton X-100, 0.5 mM DTT, protease inhibitor cocktail, 

phosphatase inhibitor cocktail, 100 nM LAQ824) and sonicated. After centrifugation, the 

cell lysate was subjected to purification/mass spectrometry analysis as described 

previously (Wang et al., 2004).  
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GST-Ku70/Bax/p53 In Vitro Binding Assay 

 GST or GST-Ku70 conjugated Glutathione Sepharose 4B were resuspended in 1% 

Chaps buffer and 100 µl were aliquoted into separate tubes. Approximately 0.5 µg Bax 

was added with or without 200 ng purified non-acetylated or acetylated p53 and brought 

up to a total volume of 300 µl with 1% Chaps buffer, then incubated with rocking at 4º C 

for 2 hours. Beads were spun down at 1,000g for 1 minute, supernatant was removed and 

beads were washed 3X with 1 mL ice-cold 1% Chaps buffer. Laemmli buffer was then 

added to the beads, boiled for 3 minutes, vortexed, and then run on an SDS-PAGE. 

 

Immunoprecipitation 

 Immunoprecipitation of active Bax by anti-Bax 6A7 antibody and co-

immunoprecipitation of Ku70 and Bax were carried out as described previously (Li et al., 

2007; Yamaguchi et al., 2004). For co-immunoprecipitation of Ku70 and p53, cells were 

treated or untreated with HDACi for the indicated times and lysed in 1% Chaps lysis 

buffer. After sonication and centrifugation, the lysates were immunoprecipitated with 

Myc monoclonal, Ku70 monoclonal or p53 (CM1) polyclonal antibodies followed by 

immunoblot analysis with the indicated antibodies. For Figure 80, 500 µg proteins were 

incubated overnight with 4 µl of anti-Bax serum, 1 µg of Myc (Sigma) or 1 µg of Ku70 

(Santa Cruz) polyclonal antibodies. Samples were further incubated with 15 µl of Protein 

A agarose at 4°C for 2 hours, washed three times and analyzed by immunoblot. 
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Subcellular Fractionation 

To isolate the mitochondria-enriched heavy membrane (HM) fraction, cells were 

homogenized in isotonic mitochondrial buffer (210 mM sucrose, 70 mM mannitol, 

10 mM Hepes pH 7.4, 1 mM EDTA) containing protease inhibitor cocktail and 

centrifuged at 1,000 × g for 10 min to discard nuclei and unbroken cells. The resulting 

supernatant was centrifuged at 10,000 × g for 15 min to pellet the heavy membrane 

fraction and the supernatant was centrifuged further at 100,000 × g for 30 min to obtain 

cytosolic fraction, which was transferred to new tubes and the NaCl and CHAPS 

concentrations were adjusted to 150 mM and 1%, respectively. To isolate the nuclear 

fraction, cells were resuspended in 5 volume of Buffer A (10 mM Tris-HCl pH8.0, 10 

mM NaCl, 1 mM EDTA, 0.5 mM DTT, and protease inhibitor cocktail). After incubation 

on ice for 15 min, Triton X-100 was added to a final concentration of 0.2%. The lysates 

were then vortexed for 5 sec followed by centrifugation at 10,000 x g for 10min. The 

crude nuclear pellets were washed with Buffer A twice, resuspended in Buffer B (10 mM 

Tris-HCl pH8.0, 150 mM NaCl, 1 mM EDTA, 0.5 mM DTT, 0.5% Triton X-100, and 

protease inhibitor cocktail) and sonicated. The sonicated lysates were then centrifuged at 

15,000 x g for 10 min and the supernatant was used as nuclear fraction. For 

Ku70/Bax/p53 co-immunoprecipitation experiments, the nuclear and heavy membrane 

fractions were lysed in 1% Chaps and sonicated.  

 

Caspase Assay, ROS Measurement and Annexin V staining 

Caspase-3 activity was measured using the fluorometric caspase-3 activity assay 

kit according to the manufacturer's instructions (Sigma). ROS level was determined as 
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described previously (Chandel et al., 2001). Briefly, cells treated or untreated with 

HDACi for 12 to 16 hours were incubated in PBS containing 10 µM 

dichlorodihydrofluorescein diacetate (H2DCFDA, Molecular Probes) for 10 min at room 

temperature and lysed in ROS lysis buffer. H2DCFDA oxidation into DCF was measured 

using a spectrofluorometer (excitation 485 nm, emission 535 nm). Data are normalized 

by protein concentration and expressed as relative change from untreated cells. For flow 

cytometry measurement of ROS, cells were treated or untreated with 200nM of LAQ for 

14 hours then trypsinized, washed with PBS once and incubated in PBS containing 10 

µM H2DCFDA for 20 minutes at room temperature. The cells were analyzed by flow 

cytometry and the results were analyzed by BD FACSDiva software (BD Bioscience). 

The results were shown as a change of mean area of fluorescence signals (measured by 

the software). Annexin V-FITC/PI or Annexin V-APC/7AAD staining was completed as 

per the manufacturer’s recommendations (BD Biosciences) and analyzed by BD 

FACSCalibur and FlowJo software. 

 

Luciferase Assays 

Cells were seeded on 24-well plates and grown to 70% confluency. Cells were 

then transfected with 100 ng of reporter constructs and 10 ng internal control renilla 

luciferase internal control plasmid pRL-SV40 using Lipofectamine2000 transfection 

protocol. 24 hours after transfection cells were treated with 5 µM SAHA or 200 nM LAQ 

for an additional 12 hours. Cells were then lysed and subjected to Dual-Luciferase assay 

as per the manufacturer’s recommendations (Promega). 
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Protein Purification 

Human Ku70 cDNA was subcloned into pGEX-4T-1 vector using BamHI and 

XhoI restriction enzyme cloning sites. pGEX-4T-1-Ku70 or empty vector was 

transformed into the BL21 strain of E. coli and grown overnight at 37º C in LB. One mL 

of this turbid culture was used to inoculate 200 mL of LB which was then grown to an 

OD600 between 0.6-0.8. At this time, IPTG was added to a final concentration of 0.5 mM 

and then incubated for 6 hours at room temperature with shaking. E. coli was isolated by 

centrifugation at 25,000g for 10 minutes and resuspended in 2 mL PBS supplemented 

with protease inhibitors (Sigma). The resulting E. coli suspension was sonicated, and 

Triton X-100 was added to a final concentration of 1% and incubated for 30 minutes at 

room temperature with rocking. Cell debris was removed by centrifugation at 20,000g for 

20 minutes at 4º C. The supernatant was collected and incubated with Glutathione 

Sepharose 4B (Amersham) for 30 minutes at room temperature with rocking. After wash 

3X with 1 mL PBS and 1X with 1 mL 1% Chaps lysis buffer, the GST protein was eluted 

with 10 mM of reduced glutathione in 50 mM Tris-HCl (pH=8.0) and dialyzed against 

PBS (pH=7.4). 

Recombinant full-length Bax protein was purified using the IMPACT system 

(New England Biolabs) as previously described (Suzuki et al., 2000). The pYTB1-Bax 

construct, which expresses a Bax and intein tag fusion protein, was transformed into E. 

coli BL21. Recombinant proteins were isolated by chitin affinity chromatography 

according to the manufacturer’s protocol. The Bax protein was cleaved off from the 

intein tag by dithiothreitol and dialyzed in 10 mM HEPES (pH=7.4), 100 mM NaCl, 0.2 

mM EDTA. 
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Purification of non-acetylated and acetylated p53 proteins was performed as 

previously described (Piluso et al., 2005). Briefly, Sf21 armyworm cells were co-infected 

with HA-p53 and either empty or p300-6XHis baculoviruses. Forty-eight hours after 

infection, nuclear lysates were prepared, and total HA-p53 was purified with 12CA5 

monoclonal antibody conjugated to protein A-Sepharose (Pierce) and washed three times 

in ten volumes of buffer D (20mM Hepes, pH 7.9, 20% glycerol, and 0.2mM EDTA) 

containing 0.5 M KCl. A final fourth wash used buffer D containing 0.1 M KCl. HA-p53 

was then eluted with synthetic 12CA5 peptide. HA-p53 isolated from HA-p53/p300-

6XHis co-infected lysate was subsequently depleted of non-acetylated p53 using Pab421-

protein A beads that specifically recognizes non-acetylated p53.  

 

In Vitro Disruption of Endogenous Bax/Ku70 Complex   

 Bax was immunoprecipitated from HCT116 p53-/- cells using polyclonal Bax 

antibody immobilized on Protein A agarose beads. Immune complexes were washed 3X 

with 1mL ice-cold 1% Chaps lysis buffer and then resuspended in 20 µl 1% Chaps lysis 

buffer. Approximately 200 ng purified non-acetylated or acetylated p53 was then added 

and incubated with shaking at room temperature for 10 minutes. The immune complexes 

were then spun down and the supernatant was collected to detect unbound proteins. The 

beads were again washed 3X with 1 mL ice-cold 1% Chaps lysis buffer and then 

resuspended in Laemmli buffer. The supernatant and immune complexes were analyzed 

for released and bound proteins, respectively. 
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Immunostaining 

 Cells were cultured in chamber slides and treated with SAHA for 18 hours. The 

cells were then washed with PBS, fixed with 4% paraformaldehyde for 15 min, 

permeabilized with 0.5% Triton X-100 for 15 min, and incubated with 3% BSA for 1 h. 

The cells were then incubated with the primary antibodies, anti-Myc monoclonal 

antibody (Sigma) plus anti-Ku70 polyclonal antibody (Santa Cruz), or anti-HSP60 

monoclonal antibody (BD Bioscience) plus anti-Bax polyclonal antibody (Cell signaling), 

overnight at 4 °C, washed, and further incubated with anti-mouse IgG-FITC and anti-

rabbit IgG-Texas Red secondary antibodies. Nuclei were stained with mount medium 

containing DAPI. Fluorescence images were captured with a fluorescence microscope. 
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Chapter Five: 
Scientific Significance & Future Directions 

 
 Interestingly, even with the vast amounts of data accumulated on the topic of Bax 

activation in the regulation of apoptosis, there persists a relative uncertainty as to the 

exact molecular mechanisms that govern the process. One of the most prominent 

questions is how can BH3-only molecules such as Bim directly promote Bax activation if 

the molecular interaction between the proteins is undetectable in most systems? This 

could be due to a transient ‘hit-and-run’ interaction where no stable complex is created. 

This may also be the byproduct of the assay system employed. However, other factors 

such as membrane lipid composition, structural forces and membrane curvature may also 

play a role. The one thing that is clear is that Bax is an exquisitely regulated protein. 

Cells seem to exist on the edge of apoptosis induction with antiapoptotic molecules 

preventing the aberrant activation of Bax. When an apoptotic insult does occur and the 

insult is strong enough, Bax can become activated by a number of different proteins and 

mechanisms to initiate cell death. Although most researchers have been hoping to 

discover an all-encompassing pathway of apoptosis to exploit, it has become clear that 

apoptosis depends on many different factors such as cell type, apoptotic stimulus and the 

microenvironment. Research into the multiple modes of Bax regulation will therefore 

likely be paired with individualized treatments in the future based on known pathways of 

Bax activation, the compliment of Bax regulatory elements expressed in the target cell 

population, and the mechanism of action of the drug.  
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Src Regulation of Anoikis 

 Contextual clues from the extracellular matrix provide survival signals to adherent 

cells, and once the cell becomes dissociated from these signals it dies by anoikis. 

Oncogenic signaling can lead to the inhibition of anoikis, a necessary regulatory 

mechanism to overcome in order for cancers of attachment dependent origin to 

metastasize. Anoikis inhibition can promote cell survival after detachment from their 

normal ECM, while detached in the circulatory and lymphatic system and after 

attachment to the incorrect ECM. Indeed, the research presented above illustrates the 

robust ability of Src oncogenic kinase to prevent anoikis through several independent 

mechanisms that ultimately converge on regulation of Bax activation.  

 Src activation of classic Akt and Erk1/2 survival signaling pathways regulate the 

expression profiles of Bcl-2 family proteins Mcl-1 and Bim. Specifically, we have found 

that forced detachment of non-transformed NIH3T3 cells results in a dramatic decrease in 

Mcl-1 and increase in Bim expression. Src transformation represses these two events 

which promotes cell survival during detachment. Src-Akt signaling results in suppression 

of BimEL transcription, likely through phosphorylation of Foxo3a which retains this 

positive regulator of Bim transcription in the cytoplasm. Furthermore, Src-Erk1/2 

signaling can also suppress Bim expression through phosphorylation which promotes an 

increase in its proteasomal degradation. Interestingly, our research has identified Mcl-1 

as a critical regulator of anoikis. This protein is maintained at high expression levels by 

cellular attachment and by Src-Akt signaling which functionally suppresses the kinase 

activity of GSK-3β which in turn prevents Mcl-1 phosphorylation at serine 159 and its 

targeting to the proteasome. Oncogene induced elongation of the half-life of Mcl-1 
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potently prevents anoikis. These findings are further confirmed in that cells are not 

dramatically sensitized to anoikis by combined inhibition of Bcl-XL and Bcl-2 through 

ABT-737 treatment, but repression of Mcl-1 expression alone potently enhances the 

anoikis response. Also, knockdown of Mcl-1 can dramatically reduce the propensity of 

cancer cells to metastasize in vivo.  

 As a novel compound designed to potentiate apoptotic responses ABT-737 has 

illustrated the need to target Mcl-1, if present at appreciable levels, in order to be 

effective. It is therefore necessary to continue the search for novel inhibitors of Mcl-1 to 

provide enhanced treatment strategies that can target individual or groups of Bcl-2 family 

proteins. One can envision the use of Mcl-1 small molecule inhibitors in the treatment of 

cancers that could prevent metastatic progression. Unfortunately, inhibition of Mcl-1 

expression alone is unable to promote anoikis which also requires the increased 

expression of proapoptotic Bim to activate Bax. Development of Bax activating factors is 

also needed for therapeutic potentiation of apoptosis. These may include factors that 

promote the expression of BH3-only proteins, which could possibly be accomplished 

through inhibition of Foxo3a cytosolic retention. Also, small molecule compounds 

capable of displacing helix α9 and/or promoting Bax conformational activation could also 

prove beneficial. However, such compounds would likely require tumor specific targeting 

to avoid toxicity to normal cells. Another option, assuming the p53 pathway is intact, is 

to combine traditional chemotherapeutic agents that function through DNA damage and 

those that inhibit Bcl-2, Bcl-XL or Mcl-1. This would provide both the induction of 

proapoptotic molecules as well as the inhibition of their repression and may prove 

effective in some cancers. Ultimately, promotion of Bax activity specifically in tumor 
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cells remains highly promising but it is evident that enhanced therapeutic options still 

need to be developed. 

 Furthermore, our studies have also discovered that Src can prevent anoikis in a 

manner independent of Akt and Erk1/2 regulation of Mcl-1 and Bim expression. Our lab 

has previously discovered a novel Bax interacting factor, Bif-1, that has the potential to 

enhance Bax activation in response to cellular stresses. However, the molecular 

mechanisms regulating the interaction between Bax and Bif-1 are not clearly defined. We 

have discovered that Bif-1 is a direct phosphorylation target of Src kinase. Interestingly, 

the phosphorylation of Bif-1 mediated by Src was found to inhibit its interaction with 

Bax during cellular detachment and this was associated with lower anoikis potential. This 

finding illuminates another mechanism by which Src can prevent anoikis through its 

direct kinase activity.  

 Phosphorylation of Bif-1 by Src at tyrosine 80 occurs in the internal amphipathic 

helix domain which is essential for binding and tubulating membranes. Since 

phosphorylation imparts a negative charge to this region it may affect the helix 

organization and/or function of this critical domain. This may provide clues as to the 

causation of Bif-1 association with Bax. It should be determined what effects 

phosphorylation of Bif-1 by Src has on its membrane binding and tubulation potential 

and then determine if these properties influence the association between Bif-1 and Bax. It 

is possible that the association between these two proteins relies on the ability of Bif-1 to 

modify membrane structure which could in turn lead to Bax activation. If it is found that 

Bif-1 regulation of membrane dynamics is required for Bax binding and activation, the 

functional impacts should be delineated to determine at what step Bax activation is 
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affected. This could be found to be important for Bax conformational alteration, 

recruitment to the mitochondrial membrane or the insertional step. Furthermore, as Bif-1 

is involved in autophagy the functional impacts on this pathway should also be evaluated. 

Bif-1 may be required for autophagosome maturation by regulation of membrane 

dynamics, a process that may potentially be impacted through Src, or Src family kinase, 

mediated phosphorylation at tyrosine 80.  

 Src kinase inhibitors are therefore promising therapeutic agents against certain 

cancers that rely on this signaling for metastatic progression. Inhibition of Src not only 

prevents survival signaling through downstream mediators such as Akt and Erk1/2 that 

regulate Mcl-1 and Bim, assuming other mutations that independently regulate these 

pathways are not activated, but also prevent the inhibition of other anti-anoikis 

mechanisms such as phosphorylated Bif-1. Elucidation of other direct targets of Src that 

can prevent anoikis need to be determined to fully understand its role in anoikis 

prevention. Furthermore, it should be noted that many cancers have multiple oncogenic 

alterations that may bypass or enhance Src signaling. Src expression systems are useful at 

delineating the pathways that are controlled, but it should be recognized that independent 

activation of other signaling pathways in cancer may prevent significant therapeutic 

responses in a clinical setting.  

 

Ku70 and p53 Interaction 

 Interestingly, the expression of transactivation deficient p53 can enhance HDACi-

induced apoptosis. Whereas activation of p53 and its stabilization through 

hyperacetylation by HDACi treatment can conceivably impact transcription of 
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proapoptotic genes, the discovery of transactivation incompetent p53 mediated apoptosis 

in response to HDACi is somewhat less intuitive. Exploring the regulation of this event 

we have discovered the novel interaction between p53 and Ku70. This interaction results 

in the release of Bax from its inhibitory complex with Ku70 upon acetylation of p53 at 

three critical C-terminus lysine residues. Indeed, knockdown of Ku70 in p53-null but not 

p53R175H H1299 cells robustly enhanced apoptosis, which indicates that Bax retention by 

Ku70 inhibits HDACi-induced apoptosis in the absence of acetylated p53. Although 

acetylation of Ku70 has been shown to be important for the release of Bax and the 

induction of HDACi-induced apoptosis, it remains to be determined what role acetylation 

of Ku70 plays in p53-mediated disruption of the Ku70/Bax complex.  

Increasing evidence implicates the Ku70/Bax complex as a critical cellular 

determinant of apoptosis that can be disrupted by HDACi treatment as well as proteins 

such as NBS1 and p18-cyclin E fragment caused by genotoxic stress  (Iijima et al., 2008; 

Mazumder et al., 2007; Subramanian et al., 2007). Therefore, it is likely that many 

proteins that bind Ku70 as well as direct Ku70 modification can disrupt Bax and promote 

apoptosis. However, our findings are important to the understanding of the role p53 plays 

in apoptosis independent of its transcriptional activity. It remains to be determined if 

other cellular stresses that promote p53 acetylation such as DNA damage can also 

promote the dissociation of Bax from Ku70 to enhance the apoptotic response. This 

newly identified apoptotic function of acetylated p53 may work in concert or 

independently of its previously described role at the mitochondria in the inhibition of 

Bcl-XL and Bcl-2 to activate Bax. 

Cell lines that exhibit higher levels of Bax in the nucleus may be more susceptible 
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to acetylated p53 disruption from the Ku70 complex and may have a larger role in the 

initiation of apoptosis. A lower prevalence of Bax in the nuclear compartment may 

exhibit delayed apoptosis due to the time lapse required for the translocation of acetylated 

p53 to the cytoplasm. Also, since p53 was previously shown to activate Bax directly 

(Chipuk et al., 2004), the prevalence of nuclear Bax could result in its activation and 

recruitment to the mitochondria independently of its dissociation with Ku70 as described 

here. Indeed, p53 association with nuclear Bax has already been found to correlate with 

cisplatin induced apoptosis in cells expressing wild type p53 (Raffo et al., 2000). These 

results should also be confirmed by additional experiments including those that use 

mutant p53 expressing cell lines. It also remains to be determined whether nuclear Bax 

specifically associates with Ku70 in the nucleus. Immunodepletion of Ku70 could be 

performed to determine the amount of Bax associated with Ku70 in the nucleus. 

Furthermore, Bax localization should be assessed in Ku70 knockdown and knock-out cell 

lines because Ku70 may be required for nuclear Bax.  

Another issue is the role of Ku80 in this complex as it is commonly associated 

with Ku70 in the nuclear compartment. It should be determined what effects nuclear 

Ku70/Ku80 complex formation has on the inhibition of nuclear Bax activation in both 

acetylated p53-dependent and independent models. Reciprocally, does nuclear Bax 

modify the function of Ku70 in NHEJ or V(D)J recombination? Bax bound to Ku70 

could act as a direct surveillance mechanism of DNA damage and repair processes. If 

genotoxic stresses are found to activate Bax in the nucleus, then nuclear Bax could 

theoretically act more efficiently in the apoptotic cascade as signals would not have to 

amplify through transcription and translation relaying signals from the nucleus to the 
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cytoplasm to activate Bax. Furthermore, Ku-mediated NHEJ DNA repair has been found 

to be inhibited by Bcl-2 (Wang et al., 2008). It is possible that Bax somehow plays a role 

in this process, and release of Bax from Ku70 might block the inhibitory effect of Bcl-2 

on Ku thereby allowing Ku to act in DNA repair. Similarly, the binding potential between 

Ku70, Bax, and Bcl-2 should be evaluated to determine the functional effects of their 

presence and/or absence in Ku70-mediated NHEJ and V(D)J recombination. 

 There also remains the issue of how this novel interaction between p53 and Ku70 

impacts their respective functions. There is the possibility that binding to Ku70 can 

change p53 DNA binding affinity, transactivation or transrepression capabilities or other 

protein-protein interactions. It is tempting to speculate that Ku70 localization to sites of 

DNA damage may recruit p53 to signaling complexes that enhance its activation. This 

interaction may tether the independent functions of these two proteins as a mechanism of 

DNA integrity surveillance. Further research is required to answer these and many other 

questions that arise out of the association between these two important proteins. 

 

HDAC Inhibitor Regulation of Apoptosis 

Histone acetyltransferases and histone deacetylases regulate cellular 

transcriptional machinery by controlling the levels of acetylation of the core histones as 

well as non-histone proteins including transcription factors such as p53 (Glozak et al., 

2005; Minucci and Pelicci, 2006). HDAC inhibitors (HDACi) SAHA and LAQ824 are 

potent inhibitors of class I and II HDACs and are currently under development as 

chemotherapeutic agents. The FDA has even approved SAHA for the treatment of 

cutaneous T cell lymphoma, a form of non-Hodgkin’s lymphoma (Martinez-Iglesias et 
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al., 2008). HDAC inhibitors are considered to be promising chemotherapeutic agents due 

to their ability to induce differentiation, cell cycle arrest and apoptosis in a variety of 

cancer cells through altered expression of various cell cycle and apoptosis proteins 

(Bhalla, 2005; Minucci and Pelicci, 2006). HDACi mediated hyperacetylation of core 

histones causes transcriptional activation of genes which aid in their proapoptotic and cell 

cycle arrest capabilities (Johnstone, 2002). Reactive oxygen species (ROS) generation 

also contributes to the apoptotic response incurred by HDACi. The genome wide effect of 

HDACi and their varied non-histone targets has made the elucidation of their mechanism 

of action challenging. As our understanding increases of how this class of anti-neoplastic 

drugs works so does their potential for beneficial use in the clinic. 

Our experiments have helped shed light onto a novel mechanism of HDACi-

induced apoptosis that relies on acetylated p53-dependent disruption of Bax/Ku70 

complexes. We have also found that this effect of p53 is independent of its transcriptional 

activity. This has potential therapeutic implications for the treatment of neoplastic 

malignancies using HDAC inhibitors as a platform. Mutations of p53 are one of the most 

common occurrences found in cancer and cause these cancers to be refractory to 

traditional chemotherapeutic agents that induce genotoxic stress. It could therefore be 

envisioned that HDAC inhibitors might be used in personalized therapies to enhance their 

effectiveness. Analysis of a patient’s p53 status in cancer could identify those patients 

that would respond favorably to HDACi therapy based on expression of p53, which will 

likely be independent of its mutational status. However, those patients that lack p53 

expression would be theorized to respond much less favorably to this treatment. To 

confirm that this hypothesis is correct, additional analysis of p53 expression and 
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mutational status in patient samples should be correlated to clinical responses to HDACi 

treatments. Similarly, in vivo experiments using p53-/- and mutant p53 knock-in mice 

could also be used to compare cancer progression and survival rates to determine if p53 

status imparts a survival advantage after challenge with HDACi treatment. Positive 

results in these experiments would then be justification for moving experiments into the 

clinic to determine if this personalized care can increase the efficacy of HDAC inhibitors. 
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