




or +dust treatments relative to cells in the control incubations, but nitrate/cell showed no signifi-
cant difference between the three treatments (Table 2). By contrast, for P. inermis, the silicate/cell
was the same for all three treatments, but the +FeCl3 and +dust incubations showed marked
increases in nitrate/cell (3-4x) relative to cells in the control incubations (Table 2).

A similar pattern is observed for Si:POC or Si:chlorophyll a, with both species dramatically
reducing ratios in response to +Fe or +dust but again for opposing reasons (Table 2); E. antarctica

Fig 5. Photomicrographs of Eucampia antarctica cells, showing higher number and density of
chloroplasts in amended treatments. Panels are labeled control, +dust or +FeCl3 to denote the incubation
conditions.

doi:10.1371/journal.pone.0158553.g005
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Fig 6. Photomicrographs of Proboscia inermis cells, showing higher number and density of
chloroplasts in amended treatments. Panels are labeled control, +dust or +FeCl3 to denote the incubation
conditions.

doi:10.1371/journal.pone.0158553.g006
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reduced silicate/cell relative to POC/cell or chlorophyll a/cell in response to Fe or dust, while in
contrast P. inermis increased POC/cell and chlorophyll a/cell for the same uptake of silicate/cell.
This means that although both species increased their carbon fixation relative to silicate in
response to both FeCl3 or dust, E. antarctica produced lighter less-silicate rich cells while P. iner-
mis fixed more carbon and nitrate for the same amount of silicate. So while these changes in mac-
ronutrient uptake ratios are consistent with observation in both open ocean or under laboratory
conditions, where diatoms grown under Fe replete conditions uptake relatively less Si compared
to C and N, resulting in relatively less silicified diatom frustules [82–87], it is interesting that the
reason for this varies. However, it is perhaps in line with the response of the two species, with E.
antarctica producing more cells in response to Fe or dust, while P. inermis instead changed cell
composition. Despite this difference in response, the fact that a change in Si:N ratio was observed
for P. inermis in this experiment thus also lends support for the assertion that the control incuba-
tions were at least partially Fe-limited.

E. antarctica also significantly changed Si:P (14–16) and N:P (18) ratios in response to both
Fe and dust, compared to the controls (10 and 6 for Si:P and N:P respectively; Table 2). Negligi-
ble uptake of phosphate in the P. inermis cultures meant that it was not possible to tell how
phosphate uptake varied with Fe addition in these experiments.

Conclusions and Implications
We have presented incubation experiments of the diatoms E. antarctica and P. inermis with
glacial-age atmospheric dust extracted from the EDC ice core. Both diatom species demon-
strated a different response to dust or FeCl3 addition. E. antarctica increased cell number, total
chlorophyll a and total POC production when given Fe or dust, but maintained similar chloro-
phyll a:cell and POC:cell ratios. By contrast, P. inermis strongly increased chlorophyll a:cell
and POC:cell but did not increase the overall number of cells in response to dust or Fe addition.
The different responses of two diatom species is consistent with previous studies on the role of
Fe and crustal desert dust addition on several diatom species [38,79], highlighting the fact that
different species would respond differently to an enhanced atmospheric dust supply, with
implications for changes in overall community structure. As phytoplankton community com-
position is known to have a major influence on carbon export [88], it is important to better
understand the different ecological strategies of individual phytoplankton species in response
to Fe fertilization. Nevertheless, the net result by both species in response to both Fe or dust
was to produce more POC and chlorophyll a, together with the production of frustules with
lower Si:C and Si:N ratios. Thus, these results confirm that the nutrient-utilization changes due
to Fe addition which have been previously documented for diatoms with dissolved Fe changes
in modern HNLC regions [87], would also have occurred due to enhanced deposition of atmo-
spheric dust at the LGM. This observation also lends weight to hypotheses that suggest relief of
Fe-limitation during glacial intervals could change the organic carbon:silicate ratio of diatoms
[89]. This will likely be different between species and as such will have implications for weight
of frustules and organic C:Si being exported from the surface ocean, the residence time of frus-
tules in sediments and the use of opal records as paleoproxy indicators of surface productivity
[89]. Furthermore, the lower silicate utilization relative to carbon in the Southern Ocean could
have resulted in silicate being transported to and utilized at lower latitudes of the surface
oceans with a consequent reduction in atmospheric CO2 levels [90,89,91].
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