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Abstract. Chlorophyll a (Chl) concentrations derived from
satellite measurements have been used in oceanographic re-
search, for example to interpret eco-responses to environ-
mental changes on global and regional scales. However, it
is unclear how existing Chl products compare with each
other in terms of accuracy and consistency in revealing tem-
poral and spatial patterns, especially in the optically com-
plex marginal seas. In this study, we examined three MODIS
(Moderate Resolution Imaging Spectroradiometer) Chl data
products that have been made available to the community
by the US National Aeronautics and Space Administra-
tion (NASA) using community-accepted algorithms and de-
fault parameterization. These included the products derived
from the OC3M (ocean chlorophyll three-band algorithm
for MODIS), GSM (Garver–Siegel–Maritorena model) and
GIOP (generalized inherent optical properties) algorithms.
We compared their temporal variations and spatial distri-
butions in the northern South China Sea. We found that
the three products appeared to capture general features such
as unique winter peaks at the Southeast Asian Time-series
Study station (SEATS, 18◦ N, 116◦ E) and the Pearl River
plume associated blooms in summer. Their absolute magni-
tudes, however, may be questionable in the coastal zones.
Additional error statistics using field measured Chl as the
truth demonstrated that the three MODIS Chl products may
contain high degree of uncertainties in the study region. Root
mean square error (RMSE) of the products from OC3M and
GSM (on a log scale) was about 0.4 and average percent-
age error (ε) was∼ 115 % (Chl between 0.05–10.41 mg m−3,
n = 114). GIOP with default parameterization led to higher

errors (ε = 329 %). An attempt to tune the algorithms based
on a local coastal-water bio-optical data set led to reduced
errors for Chl retrievals, indicating the importance of local
tuning of globally-optimized algorithms. Overall, this study
points to the need of continuous improvements for algorithm
development and parameterization for the coastal zones of
the study region, where quantitative interpretation of the cur-
rent Chl products requires extra caution.

1 Introduction

Chl a is the primary phytoplankton pigment for photo-
synthesis, whose concentration (hereafter abbreviated as
Chl, mg m−3) has been commonly used as a phytoplank-
ton biomass index by oceanographers. Over the past three
decades, an unprecedented view of the spatiotemporal pat-
tern of Chl in the global ocean has been enabled by ocean
color satellites such as CZCS (Coastal Zone Color Scan-
ner), SeaWiFS (Sea-Viewing Wide Field-of-View Sensor)
and MODIS (Moderate Resolution Imaging Spectroradiome-
ter) (McClain, 2009). Based on these observations, a bet-
ter understanding of the ecosystem health and carbon cy-
cling associated with environmental changes at both global
and regional scales has been achieved (e.g., Behrenfeld and
Boss, 2006). Although the retrieval of Chl from satellite mea-
surements is often problematic in optically complex coastal
waters due to interference from non-pigment color matters,
i.e., colored dissolved organic matter (CDOM) and detri-
tus (e.g., Carder et al., 1989), and the use of optical indices

Published by Copernicus Publications on behalf of the European Geosciences Union.



270 S. L. Shang et al.: On the consistency of MODIS chlorophylla products

for phytoplankton pigmentation has become increasingly ac-
cepted (e.g., Cullen, 1982; Marra et al., 2007; Lee et al.,
2011; Hirawake et al., 2011; Shang et al., 2011), Chl remains
a basic, routinely sampled, and widely accepted oceano-
graphic parameter for oceanographers.

Among the past and present ocean color sensors, MODIS
is the major operational one at present and has been widely
used by researchers to study global and regional oceanogra-
phy. Previous evaluation of MODIS Chl demonstrated that
MODIS Chl had moderately good agreement with measured
Chl in oceanic waters (e.g., Zhang et al., 2006; Moore et
al., 2009), while overestimation was often observed in tur-
bid coastal waters (e.g., Darecki and Stramski, 2004; Mag-
nuson et al., 2004; Werdell et al., 2009). Currently, there are
three standard (operational) MODIS Chl data products pro-
vided by the US National Aeronautics and Space Administra-
tion (NASA) Ocean Biology Processing Group (OBPG,http:
//oceancolor.gsfc.nasa.gov), which are derived from MODIS
remote sensing reflectance (Rrs, sr−1) after atmosphere cor-
rection of MODIS measurements (http://oceancolor.gsfc.
nasa.gov) over the ocean. The algorithms used to derive these
products are the OC3M (ocean chlorophyll three-band algo-
rithm for MODIS) blue/green band ratio algorithm (O’Reilly
et al., 2000), the GSM (Garver–Siegel–Maritorena model)
semi-analytical inversion algorithm (Maritorena et al., 2002),
and the GIOP generalized IOPs (inherent optical properties)
algorithm (Franz and Werdell, 2010; Werdell et al., 2013).
Fundamentally, the OC3M empirical algorithm is different
from the other two spectral optimization algorithms in two
aspects (also see pp. 3–4 in the IOCCG report (2006) on the
rationales of the various algorithms): (1) unlike the GSM and
GIOP algorithms, the OC3M is not designed to differentiate
Chl from other in-water constituents (Fig. 1). This is because,
similar to Chl, both CDOM and detrital particles absorb blue
light strongly, and the OC3M blue/green ratio algorithm can-
not distinguish them explicitly. The GSM and GIOP are in-
herently similar in design. They are both based on a quan-
titative description of absorption and scattering properties
of all optical components in the water, and the same semi-
analytical reflectance model (Gordon, 1988) to describe how
these properties (i.e., IOPs) determine the water’s reflectance
spectrum (i.e., spectralRrs). Chl is then derived simulta-
neously with IOPs because Chl is a monotonous function
of phytoplankton pigment absorption coefficient (aph). Both
GSM and GIOP use mathematical optimization approaches
to search for an optimal solution. The difference lies solely in
the assumptions and parameterizations when modeling IOPs.
For example, GSM uses fixed constants for the chlorophyll-
specific phytoplankton pigment absorption coefficients (a∗

ph)

while the default GIOP usesa∗

ph as a function of Chl (Bricaud
et al., 1995). Their performance can therefore be influenced
by the model parameterization (IOCCG, 2006; Huang et al.,
2013). (2) The algorithm inputs (MODIS-derivedRrs) are
also different. The inputs to the OC3M areRrs at 443, 488,
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Fig. 1. Conceptual diagram of the OC3M (Route 1), and the GSM and GIOP 637 

(Route 2). 638 
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Fig. 1. Conceptual diagram of the OC3M (route 1), and the GSM
and GIOP (route 2).

and 547 nm, while the inputs to the GSM and GIOP areRrs
data from all six MODIS bands. MODISRrs data in the blue
bands (412 and 443 nm) are usually of low quality owing to
the difficulties in atmospheric correction (e.g., Siegel et al.,
2005; Bailey and Werdell, 2006), representing another im-
portant uncertainty source for all three algorithms.

It has been well recognized that each algorithm has its
own strengths and weaknesses (e.g., O’Reilly et al., 1998;
Werdell, 2009). However, while an increasing number of
users from the oceanographic community are using the var-
ious Chl products to interpret biogeochemical processes or
temporal changes, the consistency between these Chl prod-
ucts is generally unknown, especially for marginal seas. Can
certain spatiotemporal patterns be revealed by one Chl prod-
uct but masked by another?

In this study, we attempted to address this question by us-
ing an extensive data set collected from a marginal sea. We
chose the South China Sea (SCS) as the study region, not
only because of the extensive effort in the past decade to col-
lect field data but also because of its regional and global im-
portance (e.g., Liu et al., 2002; Lin et al., 2003; Tang et al.,
2004; Isoguchi et al., 2005; Tseng et al., 2005; Gan et al.,
2009; Lin et al., 2010; Hong et al., 2011; Palacz et al., 2011;
Xiu and Chai, 2011). Indeed, the SCS is the second largest
marginal sea in the world. Data analysis will in particular
be focused on the northern SCS (NSCS), where in situ data
were collected for algorithm tuning and product evaluation
(Fig. 2).

The study focused on three easily accessible standard (op-
erational) MODIS Chl products (hereafter abbreviated as
C_OC3M, C_GSM, and C_GIOP). Our goal is to demon-
strate the consistency or discrepancy among the biogeochem-
ical features in the SCS derived from these three easily acces-
sible Chl products, to diagnose potential reasons of product
inconsistency or high uncertainty, and to seek for potential
solutions to reduce the product uncertainties. Specifically,
the analysis was through (1) comparison of Chl spatiotem-
poral variations at the Southeast Asian Time-series Study
station (SEATS), two typical coastal upwelling zones, and
the Pearl River estuary; (2) evaluation of MODIS-derivedRrs
and MODIS Chl products using field measuredRrs and Chl
as the truth; and (3) regional tuning of the algorithms for the
NSCS coastal zones based on a local bio-optics data set (Rrs,
Chl, andaph).

Biogeosciences, 11, 269–280, 2014 www.biogeosciences.net/11/269/2014/
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Fig. 2. Map of the study region. QDU and YDU refer to upwelling zones off 643 

Qiongdong and Yuedong (boundaries of the zones were defined following Jing et 644 

al. (2011)). PRE refers to the Pearl River estuary, and SEATS refers to the 645 

Southeast Asian Time- series Study station (18ºN, 116ºE). Blue circles show the 646 

locations where concurrent MODIS Rrs data and in situ observed Chl were used 647 

for algorithm evaluations. Red crosses show the locations where concurrent field 648 

measured Rrs and Chl were used for algorithm evaluations，121 groups of which 649 

were collected in the coastal waters (from the green dotted line towards the shore) 650 

and were also used for further regional algorithm tuning. 651 
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Fig. 2. Map of the study region. QDU and YDU refer to upwelling
zones off Qiongdong and Yuedong boundaries; zones were defined
following Jing et al. (2011). PRE refers to the Pearl River estuary,
and SEATS refers to the Southeast Asian Time-series Study station
(18◦ N, 116◦ E). Blue circles show the locations where concurrent
MODIS Rrs data and in situ observed Chl were used for algorithm
evaluations. Red crosses show the locations where concurrent field
measuredRrs and Chl collected in the coastal waters were used for
algorithm evaluations groups (from the green dotted line towards
the shore) and were also used for further regional algorithm tuning.

2 Data and methods

2.1 MODIS standard Chl products for spatiotemporal
analysis

Level 3 MODIS monthly mean and monthly climatology
data products of Chl (C_OC3M, C_GSM, and C_GIOP)
for 2002–2012 were obtained from the US NASA OBPG
(http://oceancolor.gsfc.nasa.gov/) using the most recent up-
dates in calibration and algorithms (reprocessing R2012.0),
with a spatial resolution of approximately 4 km by 4 km. Data
were extracted from the NSCS (105–121◦ E and 16–25◦ N)
for further analysis of spatial and temporal patterns.

2.2 Data for algorithm evaluation and tuning

In order to help understand the reasons causing product in-
consistency or uncertainty, we used both MODISRrs and in
situ Rrs to test the algorithm performance. Regional tuning
of algorithms, based on an in situ data set includingRrs, Chl
andaph, was also conducted.

Daily MODIS Rrs data (level 2) at original resolution (ap-
proximately 1 km2) were obtained from the same NASA
group. MODIS data associated with the following quality
control flags were discarded: atmospheric correction warn-
ing, large viewing angle, large sun angle, clouds, stray light,
low water-leaving radiance, Chl algorithm failure, question-
able navigation, and dark pixel.

For comparison between MODIS and in situ measure-
ments, it is difficult to strictly follow the methods recom-
mended by Bailey and Werdell (2006) due to heavy and fre-
quent cloud cover over the study region. While a 3-by-3 pixel
spatial window centered on the location of in situ measure-
ment with the variance threshold of 0.15 was used, the tem-
poral difference was relaxed to <±24 h to allow for sufficient
number of matchups for statistical analysis.

In situ Rrs Chl, andaph data were collected from targeted
and opportunistic cruise surveys between 2003 and 2011
(Fig. 2), for which the measurement details can be found
in Shang et al. (2011). Briefly,Rrs data were collected with
an above-water GER 1500 spectroradiometer (Spectra Vista
Corporation, USA), with a spectral resolution of 3.0 nm.
Water samples were collected from a CTD rosette, from
which Chl was measured fluorometrically (Lalli and Parsons,
1993), andaph was measured using a modified transmission–
reflection (T–R) measurement method (Tassan and Ferrari,
1995; Dong et al., 2010).

In total, we compiled 114 pairs of daily MODISRrs and in
situ Chl data (blue circles in Fig. 2), 87 pairs of daily MODIS
Rrs and in situRrs data, and 192 groups of in situRrs, in situ
Chl, and in situaph data (red crosses in Fig. 2). Of these, 121
groups were collected from the coastal waters (red crosses
within shoreline and the green dotted line in Fig. 2); these
in situ data were also used in regional algorithm tuning. The
entire data set covered a wide range of environmental set-
tings, with Chl ranging from 0.03 mg m−3 in the oligotrophic
NSCS to 51.15 mg m−3 in estuarine waters.

The three algorithms were implemented in IDL (inter-
active data language) to estimate Chl from the spectral
Rrs. The OC3M parameterization was obtained from the
NASA OBPG. The GSM algorithm, including its cod-
ing, was obtained from the International Ocean Color
Coordination Group IOCCG,http://www.ioccg.org/groups/
software.html, with necessary modifications to adjust for
the wavelength shift from SeaWiFS to MODIS (S. Mar-
itorena, personal communication, 2010). The GIOP algo-
rithm with its default parameterization and the product
failure flag set was taken from Brewin et al. (2012) and
the NASA OBPG (http://oceancolor.gsfc.nasa.gov/WIKI/
GIOPBaseline.html. Because no GIOP code was available,
and considering that the GIOP and GSM algorithms were
similar except in the IOPs parameterization, we implemented
the GIOP algorithm by modifying the GSM code. In our
GIOP code, the same optimization method (i.e., Levenberg–
Marquardt) was used, and the OBPG suggested product fail-
ure conditions were applied to filter non-valid and unreli-
able retrievals. We tested our GIOP code by using the NASA
Bio-Optical Marine Algorithm Data set (NOMAD) as input
and found that the results were consistent with those pro-
duced by the NASA OBPG (http://oceancolor.gsfc.nasa.gov/
cgi/giopval.cgi).

www.biogeosciences.net/11/269/2014/ Biogeosciences, 11, 269–280, 2014
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2.3 Error statistics

To assess the similarity or difference between measured
and algorithm-derived parameters, four statistical indicators
were calculated, following community-accepted standards
(IOCCG, 2006; Moore et al., 2009). These indicators in-
cluded the coefficient of determination (R2), mean absolute
percentage error (ε), bias (δ), and root mean square error
(RMSE) in log scale, defined as follows:

ε =
1

n

n∑
i=1

|yi − xi |

xi

× 100% (1)

δ =
1

n

n∑
i=1

[log10(yi) − log10(xi)] (2)

RMSE=

√√√√1

n

n∑
i=1

[log10(yi) − log10(xi)]2 (3)

wherex represents the measured parameter andy represents
the algorithm-derived parameter.

3 Results

Figure 3 shows MODIS Chl distributions in four months dur-
ing spring, summer, fall, and winter. In general, all three
Chl products showed similar seasonality and spatial distri-
butions: (1) Chl is lower in spring and fall than in summer
and winter; (2) Chl is lower in the offshore SCS (< 0.1 –
∼ 0.1 mg m−3) than in nearshore waters (∼ 1 – > 1 mg m−3);
and (3) there is a large patch of elevated Chl in and to the
west of the Luzon Strait in winter. However, some appar-
ent differences among the three products were also found, as
shown in Figs. 3 and 4. The seasonality in C-GIOP was not
as apparent as in C_OC3M or C_GSM. While C_OC3M and
C_GSM showed maxima in winter, C-GIOP showed rather
flat temporal changes between summer and winter. Field ob-
servations showed high Chl during winter throughout the
SCS basin (e.g., Chen, 2005; Ning et al., 2004), confirm-
ing the observed patterns in C_OC3M and C_GSM. In addi-
tion, within the Chl minimum season (i.e., spring), monthly
variations for C_OC3M were quite different from those for
C_GSM and C_GIOP. C_OC3M decreased consistently from
March to May while the fluctuations of C_GSM and C_GIOP
within this time frame were not distinct. Unfortunately no in
situ data, either published or unpublished, could be found to
help clarify which monthly variation patterns during spring
were more convincing.

While Figs. 3 and 4 showed general patterns of the three
Chl products, their consistency and discrepancy are detailed
at several targeted locations, as shown below.
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Fig. 3. Climatological monthly mean Chl in the northern South China Sea in 655 

March, July, October and December from three algorithms: (top) C_OC3M; 656 

(middle) C_GSM; (bottom) C_GIOP. 657 
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Fig. 3. Climatological monthly mean Chl in the northern South
China Sea in March, July, October and December from three al-
gorithms: (top) C_OC3M; (middle) C_GSM; (bottom) C_GIOP.
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Fig. 4. Monthly climatology of MODIS Chl for the northern South China Sea 26 

(16-25ºN, 105-121ºE, the region of Fig. 3). 27 

 28 

 29 

 30 

Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

C
h

l 
(m

g
/m

3
)

0.0

0.5

1.0
GSM

GIOP

OC3M

C
h

l
(m

g
 m

-3
)

Fig. 4. Monthly climatology of MODIS Chl for the northern South
China Sea (16–25◦ N, 105–121◦ E, the region depicted in Fig. 3).

3.1 SEATS

The SEATS (18◦ N, 116◦ E), located in the deep (> 3000 m)
oligotrophic basin, was used to represent the SCS offshore
waters. All products showed similar seasonality of Chl, i.e.,
elevated Chl in winter (Fig. 5a). This is consistent with in
situ observations (Tseng et al., 2005). Very minor differ-
ences emerged in the detailed month-to-month and inter-
annual variations (Fig. 5b). This is also illustrated by the
strong correlation between C_GSM, C_GIOP and C_OC3M
(R > 0.8, Fig. 6). When compared with the limited in situ data
(red dots in Fig. 5b), differences were observed only for one
data point in winter 2010 when both C_GSM and C_GIOP
showed large departure from the in situ measurements. Note
that this difference could be natural because one data point
may not be representative of the mean state of the month. In
general, all three Chl products showed consistent temporal
patterns from this offshore SCS station.
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Fig. 5. Monthly climatology (a) and monthly variations (b) of MODIS Chl at 32 

SEATS. Red symbols refer to field measured Chl.  33 

Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.00

0.05

0.10

0.15

0.20

0.25

0.30

OC3M 

GSM

GIOP 

C
h

l 
(m

g
 m

-3
)

2002  2003  2004  2005  2006  2007  2008  2009  2010  2011  2012  

0.0

0.1

0.2

0.3

0.4
0.0

0.1

0.2

0.3

0.4
0.0

0.1

0.2

0.3

0.4
OC3M

GSM

GIOP

(a)

(b)

C
h

l 
(m

g
 m

-3
)

Year

Fig. 5. Monthly climatology (a) and monthly variations(b) of
MODIS Chl at SEATS. Red symbols refer to field measured Chl.

3.2 Summer upwelling zones

The NSCS is featured by upwelling (e.g., Xie et al., 2003;
Gan et al., 2009; Hong et al., 2009; Jing et al., 2011). The
consistency of the three Chl products was examined in two
well-known coastal upwelling zones in summer, which are
the upwelling zones off Qiongdong (QDU) and Yuedong
(YDU) (see Fig. 2 for the locations).

Although the general patterns agreed with each other, the
three products showed some differences in the mean monthly
Chl extracted from the two zones (Fig. 7). C_OC3M and
C_GSM appeared to have stronger seasonality (i.e., larger
difference between annual maximum and annual minimum)
than C_GIOP. More importantly, winter highs were more dis-
tinct than summer highs based on C_OC3M and C_GSM.
This appeared contradictory from the seasonal patterns ob-
served from very limited in situ measurements (e.g., Zhang
et al., 1997), and from the knowledge that these two zones
were short of nutrient supplies during winter (dry season)
but were rich in nutrients owing to upwelling and land-based
runoff during summer (wet season). This is possibly because
Chl is overestimated in winter for C_OC3M and C_GSM.
For C_OC3M, interference from non-phytoplankton mat-
ters (CDOM and detritus), which are commonly rich in
these coastal waters, would cause Chl overestimation. For
C_GSM, the globally optimized parameterization (Mari-
torena et al., 2002), such as Chl-specific absorption coef-
ficient, may not be applicable in these coastal waters. This
did not occur to C_GIOP possibly because data alongshore

 6 
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Fig. 6. Scatter plots showing the correlation between (a) C_OC3M and C_GSM; 36 

(b) C_OC3M and C_GIOP at SEATS. 37 
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were filtered during data processing. Unfortunately, on the
GIOP website there is no information on how the alongshore
data are screened. One possibility is that those data fall under
the preset product failure conditions (http://oceancolor.gsfc.
nasa.gov/WIKI/GIOPBaseline.html).

3.3 Pearl River plume

There are two big rivers in the SCS, the Pearl River and the
Mekong River. They contribute large amounts of fresh water
as well as nutrients and other matters to the nearby ocean,
thus having significant impact on the biogeochemistry of the
SCS. Here we chose the Pearl River plume as an example
to examine the time series derived from the three Chl data
products.

Figure 8a shows the monthly climatology of C_OC3M,
C_GSM and C_GIOP in the vicinity of the Pearl River es-
tuary (PRE, 21–2◦ N, 112–118◦ E) in four months of differ-
ent seasons. All three products consistently showed a distinct
river plume extending eastward in summer.

To further compare the Chl products in nearshore waters,
monthly climatology in January and July were extracted from
waters shallower than 50 m. The monthly climatologies for
the C_OC3M and C_GIOP were higher in July than in Jan-
uary (e.g., 3.30 mg m−3 versus 2.22 mg m−3). This is con-
sistent with the known seasonal patterns, i.e., higher Chl

www.biogeosciences.net/11/269/2014/ Biogeosciences, 11, 269–280, 2014
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Fig. 8. (a)Monthly climatology of MODIS Chl in the vicinity of the
Pearl River estuary in January, April, July and October. The isobath
of 50 m is annotated on the January image of C_OC3M;(b) MODIS
Chl anomaly (in percentage) in January and July of 2002–2012 for
the nearshore waters of the Pearl River estuary (depth < 50 m).

in summer (wet season) than in winter (dry season) (e.g.,
Zhang, 2001). However, C_GSM was almost the same in Jan-
uary and July (3.42 mg m−3 versus 3.36 mg m−3). This could
be due to the improper parameterization of the GSM model,
or due to high uncertainties in the MODISRrs data in the
blue bands in nearshore waters.

The differences between the Chl products are further illus-
trated in the monthly anomaly patterns (Fig. 8b). Note that
the monthly anomalies were calculated by simply deducing
the monthly climatology from the monthly mean. In January,
C_OC3M showed a strong positive anomaly in 2007, and
C_GSM and C_GIOP appeared to have anomalies in the op-
posite directions. In July, the anomaly patterns of the three
products were relatively similar to each other. A strong neg-
ative anomaly was found in 2004 in all three products, while
the years of positive anomalies showed some discrepancy.
Assuming that+25 % higher than climatology indicated a
positive anomaly, a unique positive anomaly was found in
2009 for C_OC3M and C_GSM, while a > 25 % anomaly
was found in 2008 for C_GIOP. Based on these observations,
it could be inferred that summer blooms associated with river
plumes and upwelling (e.g., Gan et al., 2010; Dai et al., 2008)

were relatively weak in 2004. The bloom would however be
inferred to be strong in 2009 if it was based on C_OC3M
and C_GSM, or in 2008 if it was based on C_GIOP. Thus,
without field-based validations (e.g., measured Chl, river dis-
charges, nutrient fluxes, wind forcing, etc.), interpretation of
the standard satellite-based Chl data products requires extra
caution for nearshore waters of the NSCS. Algorithm tuning
based on local data is thus advocated for these waters.

4 Discussion

4.1 Causes of the inconsistency

The above results showed consistent Chl patterns in the
NSCS basin waters but large differences in upwelling zones
and river plumes from the three products. In order to help di-
agnose the reasons of such similarity and discrepancy, in situ
data were used to evaluate algorithm performance.

First, MODIS-derivedRrs data were used as the algorithm
inputs to derive Chl, and then compared with the measured
Chl. Figure 9 shows the evaluation results and the statistics
are listed in Table 1. The average percentage errors all ex-
ceeded the desired level of accuracy for satellite-derived Chl
(35 %, Bailey and Werdell, 2006) in this dynamic marginal
sea. Most of the MODIS-derived Chl values were overesti-
mated, as indicated by the positiveδ. However, except for
C_GIOP, MODIS-derived Chl agreed with in situ Chl rea-
sonably well (ε ∼ 113 % to 118 %, RMSE∼ 0.380 to 0.400,
δ 0.069 to 0.145, see Table 1). The poorer performance of
C_GIOP is due in part to its poor performance in shallow
waters (< 50 m, see red dots in Fig. 9c;ε = 441 %,δ = 0.464,
see Table 1).

To test whether the discrepancy resulted from the algo-
rithms or from uncertainties in the MODISRrs, the accuracy
of MODIS Rrs was evaluated using in situRrs (Fig. 10). In
general, MODISRrs agreed well with ground truth data ex-
cept at 412 nm. This is consistent from other reported results
(e.g., Siegel et al., 2005; Bailey and Werdell, 2006; Antoine
et al., 2008; Dong, 2010).R2 ranged between 0.72 and 0.86
andε was < 26 % for bands 443, 488, 531 and 547 nm, while
ε were 31 % and 49 % for 412 nm and 667 nm. Because the
443, 488, and 547 nm bands were used to estimate Chl in
the OC3M algorithm, the relatively lower uncertainties in
the MODISRrs in these bands suggest that C_OC3M would
be influenced less by the MODISRrs uncertainties than the
other two products, which used all six bands to estimate Chl.

The uncertainties introduced by the algorithms were fur-
ther examined by using in situRrs as the algorithm input,
with the derived Chl compared with the measured Chl. Re-
sults are shown in Table 1 and Fig. 11. When compared
with the field measured Chl, Chl derived from in situRrs
agreed better than Chl derived from MODISRrs because of
the reduction in theRrs uncertainties and because of the re-
moval of the mismatch between satellite pixel size and in
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Table 1.Error statistics between derived and in situ Chl.

Algorithm R2 ε (%) RMSE δ N n

MODIS Rrs derived (in situ Chl = 0.05–10.41 mg m−3,
mean = 0.87, std = 1.36)

OC3M 0.39 118 0.380 0.145 114 114
OC3M∗ 0.40 63 0.290 0.015 114 114
GSM 0.35 113 0.400 0.069 114 112
GSM∗ 0.29 76 0.329 0.029 114 112
GIOP 0.23 329 0.600 0.340 114 111
GIOP∗ 0.32 111 0.396 0.081 114 110

MODIS Rrs derived (< 50 m) (Chl = 0.09–10.41 mg m−3,
mean = 1.27, std = 1.70)

OC3M 0.32 155 0.433 0.225 64 64
OC3M∗ 0.32 75 0.330 0.012 64 64
GSM 0.28 147 0.438 0.163 64 63
GSM∗ 0.24 80 0.356 −0.002 64 63
GIOP 0.16 441 0.692 0.464 64 61
GIOP∗ 0.26 131 0.431 0.108 64 63

In situRrs derived (Chl = 0.03–51.15 mg m−3,
mean = 2.89,std = 6.63)

OC3M 0.81 111 0.363 0.132 192 192
GSM 0.85 94 0.342 0.086 192 174
GIOP 0.13 256 0.548 0.163 192 160

∗ N is the number ofRrs data input, whilen is the number of valid retrievals.

situ sample size. Both OC3M and GSM performed well (R2

∼ 0.81–0.85) although the error indices still exceeded the
mission specifications (35 %). Similar to the above satellite-
based analysis, GIOP showed lowerR2 (0.13) and higher er-
ror indices than the other two algorithms (e.g.,ε ∼ 256 %).
The results suggest that the uncertainties in the three Chl
products were mostly attributed to the inversion algorithms
as opposed to imperfect atmospheric correction. However,
it is unclear what caused the relatively poor performance of
the GIOP algorithm in this marginal sea. Indeed, in an algo-
rithm round-robin comparison, all 17 algorithms including
GIOP were found to perform reasonably well in estimating
Chl (Brewin et al., 2014). We speculate that the algorithm pa-
rameterization of GIOP requires a major tuning for the study
region.

Thus, differences in the MODIS Chl data products ap-
peared to have resulted mainly from the algorithm design
in addressing the dependence of reflectance on the various
in-water constituents. In the offshore (bottom depth >200 m)
SCS whereaph / at at 443 nm of the surface ocean ranges
from 0.2 to 0.8 (at refers to the total absorption coefficient
without water,n = 119; Shang, unpublished data), water’s
optical properties are predominantly driven by phytoplank-
ton, or the optical properties of phytoplankton, CDOM, and
detritus co-vary. Therefore, the three Chl products showed
almost the same spatial and temporal patterns although their
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Fig. 9.Comparison between MODISRrs derived Chl and field mea-
sured Chl where MODIS Chl was derived using three algorithms
and their tuned forms:(a) OC3M; (b) GSM; (c) GIOP; (d) tuned
OC3M (OC3M*); (e) tuned GSM (GSM*); and(f) tuned GIOP
(GIOP*). Red symbols refer to data collected from nearshore waters
(depth < 50 m). Statistics of the algorithm performance are listed in
Table 1.

magnitudes varied slightly. In coastal upwelling zones and
river plumes where the water is optically complex with sig-
nificant amount of CDOM and detrital particles (both organic
and mineral particles) (adg / at at 443 nm could be up to 0.97,
whereadg refers to the absorption coefficients of the sum of
CDOM and detritus, Shang, unpublished data; also see Hong
et al., 2005; Du et al., 2010), larger differences were found
from the three Chl products. The OC3M empirical algorithm
was not designed to differentiate Chl from other in-water
constituents. The spectral optimization algorithms such as
GSM and GIOP were designed to separate Chl from other
in-water constituents, yet their performance was influenced
by their fixed parameterization (IOCCG, 2006; Huang et al.,
2013). For example, the parameterization for backscattering
coefficients of particles (including both organic and mineral
particles) may not reflect the truth in coastal waters rich in
mineral particles. Failure in finding an optimal solution may
be one reason for the pixel speckling in the C_GSM images
and those masked nearshore pixels in the C_GIOP images
(Fig. 8a). These failed pixels would cause a bias in calculat-
ing the mean and anomalies. Clearly, when time series data
were analyzed, image series would need to be examined in
order to identify these potential artifacts and to improve data
interpretation.

4.2 Algorithm tuning

Based on the above analysis, in coastal waters the three
Chl products are not consistent and might not reflect the
truth. In order to solve the problem, we tuned the algorithms
for coastal waters of the NSCS. In situ data for algorithm
tuning were specifically collected from waters between the
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shoreline and the green dotted line in Fig. 2 (generally in the
regions of PRE, QDU, and YDU). To facilitate data compar-
ison, hereafter the regionally tuned algorithms are referred to
as OC3M∗, GSM∗, and GIOP∗.

The C_OC3M was derived fromRrs ratios as

Chl = 10(c0+c1×Rratio+c2×R2
ratio+c3×R3

ratio+c4×R4
ratio) (4)

Rratio = log10

(
Max(Rrs(443),Rrs(488))

Rrs(547)

)
(5)

wherec0–c4 are the algorithm coefficients determined from
nonlinear regression between Chl andRrs ratios. An in situ
data set ofRrs and Chl (n = 121, sampled from coastal wa-
ters between the shoreline and the green dotted line in Fig. 2),

was used to determine the algorithm coefficients, with results
shown in Fig. 12 (blue dots and blue curve). For comparison,
also shown in the figure, are the original NOMAD data set
(http://seabass.gsfc.nasa.gov/, green crosses) and the default
OC3M algorithm (green curve). Note that the local data cov-
ered almost the entire range of the NOMAD data set except
for extremely clear waters. MODIS Chl calculated using the
regionally tuned OC3M∗ were then compared to in situ Chl
(Fig. 9d), which showed substantial improvements. The er-
rors were almost halved (ε decreased from 126 % to 63 %,
and RMSE decreased from 0.380 to 0.290; see Table 1).
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In GSM and GIOP,aph, adg, andbbp (particle backscatter-
ing coefficient) are modeled as

aph(λ) = Chl× a∗

ph(λ) (6)

adg(λ) = a(λ0) × exp(−Sadg(λ − λ0)) (7)

bbp(λ) = bbp(λ0) × (
λ

λ0
)−η (8)

where Chl,adg(λ0) andbbp(λ0) are three scalar variables to
be derived from a knownRrs spectrum via optimization.λ0
is a reference wavelength and is generally set as 440 nm. In
the models,a∗

ph, Sadg (spectral slope ofadg) andη (power co-
efficient of bbp) can be tuned using local data. In the GSM
parameterization,Sadg andη are optimized as 0.0206 nm−1

and 1.03373 for global waters, respectively; anda∗

ph is also
optimized as a fixed spectrum for global waters, for example,
aph(443) = Chl· 0.05582 (Maritorena et al., 2002). In the de-
fault GIOP parameterization,Sadg= 0.018 nm−1, andη and
a∗

ph are no longer fixed spectrum but using functional forms
following that of the QAA Eq. (9), Lee et al. (2002, 2009)
and Bricaud et al. (1995) Eq. (10), respectively:

η = 2.2× (1− 1.2× e
−0.9×

rrs(443)
rrs(555) ), (9)

(rrs(λ) =
Rrs(λ)

0.52+ 1.7× Rrs(λ)
)

a∗

ph(λ) = A(λ) × Chl−B(λ). (10)

Table 2.Coefficients ofa∗
ph(λ) for tuned GSM and GIOP.

GSM: GIOP:a∗
ph(λ)

Bands a∗
ph(λ) =A(λ) Chl −B(λ)

A B

412 0.0672 0.067 0.299
443 0.0754 0.071 0.281
488 0.0498 0.046 0.299
531 0.0176 0.019 0.292
547 0.0125 0.014 0.308
667 0.0264 0.027 0.209

The parameters ofa∗

ph, Sadg, and η were tuned, and after
trial and error we found that the following combination led
to the lowest error budgets for Chl retrievals. (1) GSM∗:
Sadg= 0.018 nm−1 andη were calculated from Eq. (9). They
were in fact the default setting of the GIOP;a∗

ph was re-
derived based on an in situaph and Chl data set collected in
the target region, for example, nowaph(443) = Chl· 0.0754
(Table 2). (2) GIOP∗: There was no change forSadg andη

while a∗

ph derived from regression based on the same in situ
aph and Chl data set used for the GSM∗ (Table 2). In other
words, for GIOP, only the coefficients ofa∗

ph were tuned,
while the GSM was tuned more thoroughly, with all three
functions changed.

The regionally tuned algorithms were then used to calcu-
late Chl using the MODISRrs as the algorithm inputs, and
compared to concurrent in situ Chl. Evaluation results for the
regionally tuned GSM∗ and GIOP∗ are shown in Fig. 9e and
f and Table 1. Similar to OC3M∗, the algorithms showed no-
table improvements over the original forms. For example,ε

was reduced from 113 % to 76 % for the GSM∗ and 329 %
to 111 % for the GIOP∗. More substantial improvements
were found for shallow waters (< 50 m, Table 1), whereε

reduced from 441 % to 131 % for the GIOP∗. Such improve-
ments are better than those obtained from similar efforts for
the Mediterranean Sea and western Canada coastal waters
(D’Ortenzio et al., 2002; Komick et al., 2009). However, the
errors are still higher than those from the OC3M∗, suggest-
ing more room for future algorithm development (Werdell et
al., 2013).

Finally, based on the improved error statistics, OC3M∗

was chosen to re-derive the spatiotemporal patterns for the
three coastal zones (Figs. 7 and 8a). In the QDU and YDU,
the absolute magnitudes of Chl decreased while the seasonal
patterns, i.e., peaking in winter, remained. Regardless of the
tuning, it seems impossible to completely remove the inter-
ference of CDOM and detritus to the blue light absorption.
However, in the PRE, the serious overestimation of Chl from
the OC3M was partially corrected using the OC3M∗.

www.biogeosciences.net/11/269/2014/ Biogeosciences, 11, 269–280, 2014
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5 Summary

Three MODIS Chl products are currently being used by the
research community to address global and regional ques-
tions. These are derived from the OC3M, GSM, and GIOP
algorithms. Yet their accuracy and consistency between each
other are often unclear for marginal seas. Using a field data
set collected from the NSCS, we evaluate the accuracy of the
three MODIS Chl data products as well as their consistency
in revealing spatial and temporal patterns under various sce-
narios.

The temporal changes and spatial distribution patterns in
the three Chl data products differed mainly in optically com-
plex nearshore waters, where certain spatiotemporal patterns
revealed by one Chl product can be masked by another. In
offshore SCS waters where optical properties are mostly
dominated by phytoplankton, Chl seasonality and interan-
nual changes derived from the three products were similar.
This was mainly attributed to the algorithm design as op-
posed to the uncertainties in the inputRrs. The in situ valida-
tion (using in situRrs as input) showed RMSE errors > 0.3 in
log scale and percentage errors > 90 % for all three Chl algo-
rithms. While nearly identical statistical results were found
for OC3M and GSM, GIOP showed significant deviation
from the ground truth, possibly due to the incompatibility be-
tween its default parameterization and the optical properties
of the NSCS. The three algorithms were then locally tuned.
Tuning of the OC3M resulted in significant improvement in
product accuracy for coastal waters, while the improvement
from the tuned GSM and GIOP algorithms was not as pro-
found.

Overall, for the study region of the NSCS it is suggested
that (1) all three standard MODIS products yielded reason-
able spatial and temporal patterns for the offshore basin wa-
ters; (2) current C_GIOP (with its default parameterization)
is not proper for coastal water analysis because nearshore
data are masked; (3) a clear specification of Chl product
in oceanographic time-series studies would facilitate cross-
study comparisons; and (4) regional tuning of the algorithms
for coastal waters of the NSCS is necessary to reduce product
uncertainty.
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