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delineation of sinks and depressions. In regions where 
the DEM had been properly conditioned, the tools for 
automated delineation performed reasonably well as 
compared to the manually delineated depressions, but 
generally overestimated the number of depressions thus 
necessitating manual filtering of the final results. Results 
from the TPI thresholding analysis were not dependent 
on DEM pre-conditioning, but the ability to extract 
meaningful depressions depended on careful assessment 
of analysis scale and TPI thresholding. 

Introduction
Airborne LiDAR (Light Detection and Ranging) 
offers enormous potential for mapping sinkholes. 
However, techniques and approaches for using 
LiDAR to map sinkholes or other types of depressions 
have not been standardized.  In the past, contour 
maps or digital elevation models were visually 
inspected for the presence of closed depressions, 
and these depressions were identified or manually 
digitized within a Geographic Information System 
(GIS) (Angel, 2004; Seale et al. 2008). Visual 
interpretation and delineation of depression features 
is painstaking, subjective work. Therefore, datasets 
of sinkholes and other karst features mapped from 
GIS data may not be comparable among different 
interpreters or regions studied. Moreover, complete 
field verification of individual features is often 
impractical, thus the reliability of manually digitized 
sinkhole data produced by even a singular worker 
may be questionable. Other studies which have 
examined the use of digital data (including contours 
derived from LiDAR) for manual interpretation of 
karst features have shown that subjectivity in the 
methodology can result in false positive and false 
negative identification of karst features (e.g., Seale et 
al., 2008; Vacher et al., 2008).

Abstract
LiDAR (Light Detection and Ranging) surveys of 
karst terrains provide high-resolution digital elevation 
models (DEMs) that are particularly useful for 
mapping sinkholes. In this study, we used automated 
processing tools within ArcGIS (v. 10.0) operating on 
a 1.0 m resolution LiDAR DEM in order to delineate 
sinkholes and closed depressions in the Boyce 7.5 
minute quadrangle located in the northern Shenandoah 
Valley of Virginia. The results derived from the use 
of the automated tools were then compared with 
depressions manually delineated by a geologist.  Manual 
delineation of closed depressions was conducted using a 
combination of 1.0 m DEM hillshade, slopeshade, aerial 
imagery, and Topographic Position Index (TPI) rasters. 
The most effective means of visualizing depressions in 
the GIS was using an overlay of the partially transparent 
TPI raster atop the slopeshade raster at 1.0 m resolution. 
Manually identified depressions were subsequently 
checked using aerial imagery to screen for false positives, 
and targeted ground-truthing was undertaken in the 
field. The automated tools that were utilized include the 
routines in ArcHydro Tools (v. 2.0) for prescreening, 
evaluating, and selecting sinks and depressions as well 
as thresholding, grouping, and assessing depressions 
from the TPI raster. Results showed that the automated 
delineation of sinks and depressions within the ArcHydro 
tools was highly dependent upon pre-conditioning of 
the DEM to produce “hydrologically correct” surface 
flow routes. Using stream vectors obtained from the 
National Hydrologic Dataset alone to condition the flow 
routing was not sufficient to produce a suitable drainage 
network, and numerous artificial depressions were 
generated where roads, railways, or other manmade 
structures acted as flow barriers in the elevation model. 
Additional conditioning of the DEM with drainage paths 
across these barriers was required prior to automated 
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The goal of this study was to compare manual 
interpretation to automated detection of sinkholes and 
other depressions using raster GIS-based methods and 
a 1m resolution LiDAR-derived ‘bare-earth’ digital 
elevation dataset. Two approaches of automated 
depression detection were utilized. The first approach 
employed GIS reconditioning of the LiDAR DEM for 
watershed analysis (e.g. ArcHydro tools). Typically, 
reconditioning is done as a first step to watershed 
analysis to find and fill areas of closed depressions to 
their hydrologic spill point in order to correctly model 
surface flow patterns. Many depressions on coarse-scale 
DEMs are artifacts of the DEM production process and 
sink filling removes these errors (Maidment, 2002). 
However, these depressions are more likely to be actual 
geomorphic features in areas of karst terrain and on highly 
accurate LiDAR–derived DEMs (Zandenberg, 2010; 
Lindsay and Creed, 2006). By subtracting the original 
elevation data from the resulting filled elevation model, 
a new difference grid elevation dataset is produced 
representative of depression location and depths (Anders 
et al., 2011; Siart et al., 2009; Antonic et al., 2001).

The second approach used the Topographic Position 
Index (TPI), a GIS moving window operation that 
calculates the difference between the elevation at 
each pixel in the DEM and the mean elevation in a 
neighborhood surrounding the pixel (Jenness et al. 
2011). The TPI is similar in concept to other local 
topographic relief measures that can be calculated 
in GIS such as the Terrain Shape Index proposed by 
McNab (1989) and the difference in mean elevation 
moving window operator proposed by Gallant and 
Wilson (2000). Different feature scales can be assessed 
by varying the size of the analysis window, and 
various feature types can be assessed by using square, 
triangular, circular, or annular window shapes. The 
resulting GIS dataset quantifies the landscape position 
of each pixel as being either higher or lower than a 
localized average (Jenness et al., 2011). Negative 
TPI values represent topographic lows (concavities, 
depressions), while positive TPI values represent 
topographic highs (convexities, ridges). The TPI (or 
similar concepts) has been used recently to find small-
scale, concave (e.g., cave) openings (Weishampel et al., 
2011), and convex burial mounds (De Reu et al., 2011), 
and thresholding the TPI values has been suggested 
as a means of classifying depressional features on the 
landscape (Klingseisen et al., 2008).

For this study, no effort was made to distinguish among 
sinkholes and other types of depressions, whether natural 
or manmade. The goal was simply to test the reliability 
of automated techniques for finding depressions in a 
LiDAR elevation model against a manually produced 
dataset within a GIS. Further work to build a karst 
feature dataset of the area will focus on separating true 
karst features from manmade features, and sinkholes 
from other types of natural depressions such as ponded 
springs, estavelles, or suffosion depressions.

Study Area 
The study area is the northern half of the Boyce 7.5 
minute quadrangle in Clarke County, Virginia, a region of 
approximately 70 km2 (Figure 1). The Boyce quadrangle 
is located within the Shenandoah River drainage basin, 
an extensive karst region within the Great Valley 
physiographic province of the Appalachian mountain 
range. The geology of the quadrangle was originally 
mapped by Edmundson and Nunan (1973); however, 
an inventory of karst features was not included in the 
original mapping. Hubbard (1983) identified a small 

Figure 1. Map of study area. Red points are larger 
known sinkholes from Hubbard (1983).
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These three rasters were overlain upon a 1 m resolution 
orthorectified aerial imagery of the study region 
obtained in the years 2002 and 2008in a GIS using 
ArcMap© v. 10.0 software. Identification of closed 
depressions was conducted by close visual inspection 
within gridded areas defined by the LiDAR tile index; 
each grid tile region was 1.5 km square.

Depressions in the elevation surface were manually 
outlined by a single worker (the first author) with 
a minimum of five vertices per polygon. Upon 
digitization, each polygon was attributed with 
the method of recognition (from the field, the 
LiDAR elevation model, aerial imagery, or some 
combination of these), and some basic descriptive 
notes. Description of an individual feature was aided 
by toggling between LiDAR-derived rasters and 
georeferenced aerial imagery, and some aspect of 
the hydrologic condition was normally noted (e.g., 
ponded, ephemerally ponded, located within an 
ephemeral channel, takes water, flows as spring, etc.). 
In general, it was found that the LiDAR rasters were 
more reliable in terms of an accurately georeferenced 
dataset than were the aerial images, thus digitization 
was done on top of the LiDAR-derived imagery. 
Nonetheless, the georeferenced aerial imagery was 
critical for identifying false depressions that arose 
out of processing of the LiDAR bare earth elevation 
model, as noted by others (e.g., Seale et al., 2008).

Digital outlining of polygons created to represent 
depressions was best facilitated with the TPI raster at 
40% transparency draped over the slopeshade raster 
(Figure 2). This combination of LiDAR-derived images 
best illuminated the variations in surface elevation in 
a manner that could be most readily outlined, avoiding 
pitfalls of a traditional hillshade surface such as deep 
shadows, overly highlighted areas, or poor illumination 
angle and inclination. Although the slopeshade raster 
helps define edges of features by darkening pixels of 
high slope (e.g., the edges of a collapsed sinkhole), 
it does not distinguish between regions of higher or 
lower elevation; thus, a haystack may appear similar 
to a sinkhole. Fortunately, the TPI raster permitted 
distinguishing between areas of higher or lower local 
elevation (darker areas are local lows, lighter areas are 
local highs). Thus, the combined use of slopeshade 
and TPI rasters greatly enhanced the visualization of 
depressions for manual digitization.

number of only the largest depressions in the region from 
stereophotography and 20-foot contour 1:24,000 scale 
topographic maps. 

The rocks of the region are composed of Paleozoic 
sedimentary carbonate and siliciclastic rocks that were 
faulted and folded during the Alleghanian orogeny, and 
erosion has left the core of the ancient Appalachian 
mountain range exposed at the present land surface. 
Karstification in the study area has resulted in a mature, 
dissected karst surface of moderate to low relief, with 
90 m total elevation range and a mean elevation of 180 
m above sea level. Sinkholes and karstic depressions 
generally occur as a result of cover-collapse or suffosion 
processes within the residuum overlying the carbonate 
bedrock; the thickness of residuum varies between 0 
to upwards of 10 m. Bedrock structures (folds, faults, 
and fractures) exert strong control over the locations of 
karstic depressions in the region (Doctor et al., 2008; 
Doctor and Doctor, 2012).

Methods  
Manual delineation of depressions
Airborne LiDAR was acquired over the study area 
between March 01 and March 09, 2011. Flights took 
place during leaf-off vegetation conditions and within 
one week of complete melting of snow cover. Conditions 
were thus ideal for obtaining a representative bare-earth 
elevation surface. The vertical accuracy of the delivered 
LiDAR data was within 9.0 cm root mean square error 
(RMSE) and the LiDAR point cloud was acquired at 
a nominal point spacing of 1.0 m; hydro-flattening 
breaklines were manually collected based on the LiDAR 
surface model. Although hydro-flattening was performed 
on areas of known water surfaces, depressions or sinks 
in the bare-earth elevation model were not filled in the 
delivered LiDAR data.

The bare-earth LiDAR elevation model was used to 
derive 1) a hillshade raster, 2) a slopeshade raster, and 
3) a TPI raster. The hillshade raster was illuminated 
from azimuth 300 and an inclination of 20 degrees 
above the horizon and represented using a grayscale 
color ramp. The slopeshade raster applied a grayscale 
color ramp to the surface according to the slope of each 
pixel. The TPI raster was calculated using a circular 
annular window with an inner radius of 2 m and outer 
radius of 10 m (see Jenness et al., 2011 for details), and 
a grayscale color ramp applied to the resulting raster. 
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identifying true depressions. This eliminated many elongated depressions that appear within stream 

Figure 2. Comparative views of an area with multiple closed depressions in the Boyce quadrangle. In the 
lower left of each image is a cluster of manmade percolation pits (1); in the upper center are two sinkholes, 
one deeper than the other (2); in the upper right is a bedrock ridge surrounded by trees along a fence line 
(3). (A) Aerial image. (B) Hillshade of LiDAR DEM. (C) Slopeshade of LiDAR DEM. (D) TPI raster of LiDAR 
DEM (note: dark areas are depressions and light areas are ridges). (E) TPI draped over the slopeshade. (F) 
TPI draped over slopeshade, with manually delineated closed depressions. A red X indicates a false 
depression where building edges caused errors in the LiDAR elevation model. 
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field-checked depressions was 9.0 m2. In the following 
automated analyses, we conservatively chose an area 
cutoff of a true depression to be greater than or equal 
to 9.0 m2. 

Automated generation of depressions by 
difference raster 
Several useful tools for processing elevation data exist 
in ArcGIS. For most raw elevation data it is necessary 
to preprocess or recondition the DEM in order to 
create a ‘hydrologically correct’ elevation model. A 
hydrologically correct elevation model is one in which 
every pixel in the surface slopes continually down 
gradient and out the edges of the elevation model 
boundaries. If a pixel (or region of pixels) is at a lower 
elevation than all of the surrounding pixels, the pixel 
acts as a ‘sink’, and surface flow will stop at that point 
unless the elevation is raised to a level at which flow 
would spill out of the sink. Therefore, reconditioning a 
DEM primarily involves three steps: 1) filling in sinks to 
their spill level (or ‘pour point’), 2) determining the flow 
direction within each pixel once the sinks in the DEM 
are filled, and 3) determining the flow accumulation of 
each pixel in the elevation model. The flow accumulation 
raster can then be reclassified to define streams, or those 
pixels that accumulate the most flow. 

The first step in the process uses the Fill tool (under 
the Spatial Analyst Tools → Hydrology → Fill) in 
ArcMap v. 10.0. Reconditioning the bare-earth LiDAR 
DEM with this tool results in a new elevation surface 
with all sinks filled to their spill elevation. Since a 
filled pixel may still act as a sink if located within a 
larger depression, the process is iterative until all pixels 
within the depression are filled and the depression 
spills over. As a result of this process, stream channels 
in the DEM that pass under roads through culverts or 
beneath bridges may become dammed if the culvert 
or bridge has not been represented (i.e., cut into the 
elevation surface to stream level) in the DEM (Figure 
3). For most larger streams and rivers, bridges and 
culverts are normally removed from the DEM during 
processing of the bare earth elevation model; however, 
in order to create a hydrologically correct DEM, all of 
the sinks within it need to be filled, thereby removing 
any evidence of natural depressions. As requested, the 
Shenandoah Valley LiDAR was not processed to have 
sinks filled by the vendor, thus necessitating the process 
by the end user. This presents an opportunity to partially 

Once the polygon data digitization was complete, the 
vector data were further attributed with geometric 
characteristics including area, perimeter, major and minor 
axis length (of an idealized ellipse), circularity index 
(deviation from area/perimeter ratio of a circle), and 
elliptical eccentricity. These geometric characteristics 
were examined to identify threshold values that could be 
used to filter out spurious depressions identified through 
the automated techniques. 

The eccentricity of an ellipse (commonly denoted as e) 
is calculated as:

     (1)

where a and b are one-half of the ellipse's major and 
minor axes, respectively. The eccentricity of an ellipse 
will be greater than 0 (a perfect circle) and less than 1. 
Thus, the elliptical eccentricity can be a useful measure of 
the shape of a possible depression. Based on the manual 
dataset, we found that an eccentricity of less than or 
equal to 0.98 worked as a good threshold for identifying 
true depressions. This eliminated many elongated 
depressions that appear within stream channels, road 
ditches, and other features that are unlikely to be true 
natural depressions.

Similarly, the circularity index is a measure of the 
deviation of a polygon from a perfect circle based upon 
its perimeter and area. Since a circle has the smallest  
perimeter to area ratio, a relationship can be established 
between the expected circular perimeter of a feature 
(based on area) and its measured perimeter to create an 
index of circularity (Circi):

     (2)

     (3)

Where A is area, Pe is the expected perimeter if the feature 
were a perfect circle, and Po is the observed perimeter. 
After some experimentation, we used a circularity 
threshold of less than 1.7 to capture closed depressions 
while eliminating linear features

The smallest area of any of the manually delineated 
depressions was 7.3 m2, and the smallest area of the 
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Once the reconditioned DEM was filled,

1. The original elevation DEM was then subtracted 
from the filled DEM to generate a ‘fill-difference’ 
raster that represented the depth of depressions in 
the original surface.  

2. All values in the fill-difference raster that were 
greater than 0.10 m (10 cm) were extracted to a 
new raster. The minimum depth threshold of a pixel 
was conservatively chosen to be 10 cm, or slightly 
greater than the vertical accuracy of the LiDAR 
bare earth model which has a RMSE of 9 cm.  

3. The values in this threshold fill-difference raster 
were re-classified to an integer type raster such that 
pixels in the fill-difference raster with values of less 
than 0.1 m (10 cm) were classified as ‘No Data.’ 

4. The remaining pixels were converted into 
polygons, without simplifying, such that polygon 
boundaries exactly matched pixel edges. 

The result is a polygon layer that is representative of the 
possible sinks from the reconditioned fill-difference raster 
based upon the accuracy of the LiDAR data alone. In 
order to refine these polygons down to those which may 
represent “true” depressions, we used a training polygon 
feature class of known depressions that had been identified 
in the field, and digitally outlined from the LIDAR data. 
Geometric properties of the true and candidate depression 
polygons were calculated, and the results were compared.

automate the process of locating natural depressions. It 
also represents a challenge for determining true sinks.

Poppenga et al. (2011) suggested a workflow utilizing 
a least cost path analysis in GIS as an automated means 
of conditioning a DEM to remove these artificial dams; 
however, this process does not directly discriminate 
between true depressions and those that are artifacts of the 
Fill process, thus all depressions in a DEM will be drained 
unless selected otherwise according to some criteria. 
Poppenga et al. (2011) suggested using a threshold area 
of depressions targeted for drainage greater than or equal 
to 1,000 square meters, and depth greater than or equal 
to 1 meter and greater than 0.5 standard deviation of the 
difference grid.  However, these thresholds may include 
true natural depressions in some karst areas, and exclude 
a number of depression artifacts.  In order to preserve 
true depressions, the best means is to manually digitize 
polyline features corresponding to bridges and culverts at 
known locations, and ‘burn’ these lines into the DEM, or 
lower the elevation of the DEM along the linear feature to 
allow flow to pass through the obstructions. This was the 
approach taken in this study, and was accomplished using 
the DEM Reconditioning tool in ArcHydro Tools 2.0 
(Maidment, 2002). Locating and digitizing actual culverts 
was facilitated using aerial imagery, and was assisted by 
the shape of the depression artifacts themselves such that 
any depression with a flat side parallel to a linear feature 
such as a road, railway, or driveway was immediately 
suspect, and targeted to be drained by addition of a culvert. 6    NCKRI SYMPOSIUM 2    13TH SINKHOLE CONFERENCE 

Figure 3. A) Artificial depressions created using the Fill tool in ArcGIS are shown with warm colors atop 
the LiDAR hillshade. Violet lines represent streams derived from the flow accumulation values applied to the 
Fill raster. Thick green outlines represent manually delineated depressions. Note that roads, railroads, 
driveways, and other features in the LiDAR elevation model act as ‘dams’ when streams pass beneath them 
through culverts. B) Culverts need to be manually digitized (short pink lines) and ‘burned’ into the DEM in 
order to allow streams to drain across the obstructions. Light green areas represent the resulting automated 
depressions from re-running the Fill routine on the reconditioned DEM. Some culverts were missed in the 
upper left, requiring further refinement through culvert addition. 

Once the reconditioned DEM was filled,
1. the original elevation DEM was then subtracted 

from the filled DEM to generate a ‘fill-
difference’ raster that represented the depth of 
depressions in the original surface.  

2. All values in the fill-difference raster that were 
greater than 0.18 m (18 cm) were extracted to a 
new raster. The minimum depth threshold of a 
pixel was conservatively chosen to be 18 cm, or 
twice the vertical accuracy of the LiDAR bare 
earth model which has a RMSE of 9 cm.  This 
allowed for a great number of possible artificial 
depressions to be culled from the fill-difference 
data, and provides a 95% confidence level that a 
given pixel is a true depression in the elevation
model.

3. The values in this threshold fill-difference raster 
were re-classified to an integer type raster such 
that pixels in the fill-difference raster with values 
of less than 0.1 m (10 cm) were classified as ‘No 
Data’ 

4. The remaining pixels were converted into 
polygons, without simplifying, such that polygon 
boundaries exactly matched pixel edges. 

The result is a polygon layer that is representative of the 
possible sinks from the reconditioned fill-difference 
raster based upon the accuracy of the LiDAR data
alone. In order to refine these polygons down to those 
which may represent “true” depressions, we used a 

training polygon feature class of known depressions 
that had been identified in the field, and digitally
outlined from the LIDAR data. Geometric properties of 
the true and candidate depression polygons were 
calculated, and the results were compared.

The geometric properties were calculated as follows:
1. The Zonal Statistics as Table tool was used to 

extract the MAXIMUM value (depth) from the 
fill-difference raster overlain by each polygon. 
The table also contains the area of the polygon, 
and a count of the number of pixels per polygon 
(which are both equal values for 1m square 
pixels). 

2. The results of the zonal statistics table were 
joined to the attributes of the polygons.  

3. The Zonal Geometry of each of the polygons was 
calculated and each polygon was attributed with 
its area, perimeter, and major and minor axis 
length of an idealized ellipse that would contain 
the polygon. 

4. The eccentricity of an ellipse was calculated as a 
measure of elongation of a potential sink, with 
values between 0 and 1. A threshold value of
0.98 was chosen for the eccentricity based on
visual examination of the manually delineated
polygons, and any depressions above this
threshold were removed.

A B 
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the LiDAR hillshade. Violet lines represent streams derived from the flow accumulation values applied to the 
Fill raster. Thick green outlines represent manually delineated depressions. Note that roads, railroads, 
driveways, and other features in the LiDAR elevation model act as ‘dams’ when streams pass beneath them 
through culverts. B) Culverts need to be manually digitized (short pink lines) and ‘burned’ into the DEM in 
order to allow streams to drain across the obstructions. Light green areas represent the resulting automated 
depressions from re-running the Fill routine on the reconditioned DEM. Some culverts were missed in the 
upper left, requiring further refinement through culvert addition. 

Once the reconditioned DEM was filled,
1. the original elevation DEM was then subtracted 

from the filled DEM to generate a ‘fill-
difference’ raster that represented the depth of 
depressions in the original surface.  

2. All values in the fill-difference raster that were 
greater than 0.18 m (18 cm) were extracted to a 
new raster. The minimum depth threshold of a 
pixel was conservatively chosen to be 18 cm, or 
twice the vertical accuracy of the LiDAR bare 
earth model which has a RMSE of 9 cm.  This 
allowed for a great number of possible artificial 
depressions to be culled from the fill-difference 
data, and provides a 95% confidence level that a 
given pixel is a true depression in the elevation
model.

3. The values in this threshold fill-difference raster 
were re-classified to an integer type raster such 
that pixels in the fill-difference raster with values 
of less than 0.1 m (10 cm) were classified as ‘No 
Data’ 

4. The remaining pixels were converted into 
polygons, without simplifying, such that polygon 
boundaries exactly matched pixel edges. 

The result is a polygon layer that is representative of the 
possible sinks from the reconditioned fill-difference 
raster based upon the accuracy of the LiDAR data
alone. In order to refine these polygons down to those 
which may represent “true” depressions, we used a 

training polygon feature class of known depressions 
that had been identified in the field, and digitally
outlined from the LIDAR data. Geometric properties of 
the true and candidate depression polygons were 
calculated, and the results were compared.

The geometric properties were calculated as follows:
1. The Zonal Statistics as Table tool was used to 

extract the MAXIMUM value (depth) from the 
fill-difference raster overlain by each polygon. 
The table also contains the area of the polygon, 
and a count of the number of pixels per polygon 
(which are both equal values for 1m square 
pixels). 

2. The results of the zonal statistics table were 
joined to the attributes of the polygons.  

3. The Zonal Geometry of each of the polygons was 
calculated and each polygon was attributed with 
its area, perimeter, and major and minor axis 
length of an idealized ellipse that would contain 
the polygon. 

4. The eccentricity of an ellipse was calculated as a 
measure of elongation of a potential sink, with 
values between 0 and 1. A threshold value of
0.98 was chosen for the eccentricity based on
visual examination of the manually delineated
polygons, and any depressions above this
threshold were removed.
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Since the TPI calculates the local relative surface elevation 
of all pixels in the LiDAR DEM (above or below the local 
mean elevation), a threshold of the TPI values was used such 
that only depressional elevations are represented. TPI values 
were summarized within manually mapped, field-checked 
depression polygons (n=116) to determine appropriate 
thresholds that would separate significant depressions from 
shallow swales. TPI thresholds were assessed within size-
based classes of field mapped depressions (Table 1). Based 
on the overall mean of TPI, the TPI threshold was set to 
distinguish actual depressions as the overall mean TPI 
value minus one standard deviation, or -0.3 meters. 

Additionally, the grouped TPI values characterize linear 
(e.g. gullies, road cuts) as well as circular depressional 
features, so we classified and selected features to eliminate 
non-circular depressions from further consideration. 
We did this by grouping together pixels from significant 
depressions into coherent features, and then assessing the 
shape of these features by computing an index of circularity 
using area and perimeter relationships in a manner similar 
to Seale et al. (2008). 

By establishing a threshold on circularity of depressional 
features, elimination of linear or elongated depressions was 
possible. We also removed from consideration depressions 
that were located within a 2.0 m buffer zone of building 
footprints or within major stream channels as false 
depressions that were likely artifacts of the TPI analysis. 
Lastly, we set a size threshold of greater than or equal to 9 
m2 on features to eliminate small, spurious depressions that 
may have been the result of errors in the bare-earth LiDAR 
elevation model.

The geometric properties were calculated as follows:

1. The Zonal Statistics as Table tool was used to 
extract the MAXIMUM value (depth) from the 
fill-difference raster overlain by each polygon. 
The table also contains the area of the polygon, 
and a count of the number of pixels per polygon 
(which are both equal values for 1m square 
pixels). 

2. The results of the zonal statistics table were 
joined to the attributes of the polygons. A 
threshold value was used to remove polygons 
with a maximum depth less than 18 cm. This 
allowed for a great number of possible artificial 
depressions to be culled from the fill-difference 
data, and provides a 95% confidence level that a 
given pixel is a true depression in the elevation 
model. 

3. The Zonal Geometry of each of the polygons 
was calculated and each polygon was attributed 
with its area, perimeter, and major and minor axis 
length of an idealized ellipse that would contain 
the polygon. 

4. The eccentricity of an ellipse was calculated as 
a measure of elongation of a potential sink, with 
values between 0 and 1. A threshold value of 0.98 
was chosen for the eccentricity based on visual 
examination of the manually delineated polygons, 
and any depressions above this threshold were 
removed.

5. The circularity index was calculated. A threshold 
value of less than 1.7 was used in order to compare 
to the elliptical eccentricity results. 

Automated generation of depressions by 
Topographic Position Index (TPI)
While the TPI is useful for guiding visual 
interpretation, it is also useful for quantitative 
analysis and classification. We examined the potential 
for mapping closed depressions by thresholding, 
grouping, and selecting appropriate ranges of TPI 
values. We calculated TPI across the study area using 
the Topographic Position Index ArcGIS tool (Jenness 
et al., 2011) with an annular (i.e. doughnut-shaped) 
region. We used an inner radius of 2 meters and an 
outer radius of 10 meters to capture small closed 
depressions based on previous analysis in Jefferson 
County, West Virginia (Young, 2007). 

Size Class Mean TPI SD TPI
Depressions 

(n)

< 20 m2 -0.1702 0.1627 5
20-50 -0.1010 0.1385 11
50-100 -0.1592 0.1206 21
100-200 -0.1133 0.1698 18
200-500 -0.1706 0.2243 27
500-1000 -0.1232 0.1837 14
100-5000 -0.1034 0.1877 16

> 5000 m2 -0.0194 0.1576 4
Overall -0.1328 0.1740 116

Table 1. Mean and standard deviation of 
topographic position index (TPI) values found at 
manually mapped, and field checked depressions. 
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fill-difference method (69%). Of the 36 uncaptured 
field-checked sinks, all except one were below the 18 
cm maximum depth threshold obtained from the fill-
difference grid. The one remaining depression had been 
drained by the addition of a culvert in the reconditioned 
DEM, and thus ended up being a false negative. Of the 
other depressions that were too shallow to be captured 
by the 18cm threshold, 12 additional depressions would 
have been captured if the threshold were relaxed to 
within the RMSE of 9 cm, or one standard error.

Overall the semi-automated fill-difference method 
performed very well in capturing the manually 
delineated depressions. Before applying area and shape 
threshold criteria, the total number of depressions 
identified by the fill-difference method was 3154, nearly 
four times greater in number than the manually identified 
depressions. Many of these depressions were unlikely 
to be true sinks since they were of a very small area. 
Using 9 m2 as a conservative area cutoff below which 
a fill-difference depression would be thrown out, 706 
of the fill-difference sinks were removed, and all were 
less than 60 cm maximum depth. Also, many artificial 
depressions occur at the edges of structures due to 
artifacts introduced in the LiDAR processing. Using a 
polygon layer of building outlines obtained from the 
Department of Information Technology and GIS for 
Clarke County, Virginia, the depressions that intersected 
the building polygons within a  2.0 m buffer distance 
were removed from the dataset (n=124). 

Finally, a large number of depressions appear within 
stream channels, and although meeting the area, depth, 
and eccentricity criteria are still artificial depressions 
within the LiDAR-derived fill-difference dataset. Both 
the elliptical eccentricity and circularity thresholds are 
attempts tofilter out these artifacts since they account 
for all but the most linear depressions, which are likely 
to be spurious. Linear depressions often are observed 
in gullies, ravines, and stream channels and are not true 
closed depressions.  Using the flow accumulation raster 
to define stream paths at a threshold flow accumulation 
of 410,000 (a threshold visually consistent with stream 
channels in the LiDAR imagery), depressions that 
directly intersected the stream paths (n=779) were also 
removed. Applying these threshold criteria of 1) more 
than 18 cm depth, 2) elliptical eccentricity less than 0.98, 
3) area greater than or equal to 9 m2, 4) not intersecting 
building outlines, and 5) locations outside of known 

Results
In order to evaluate the performance of the semi-
automated fill-difference method, the dataset of manually 
delineated depressions was compared against the fill-
difference polygons. Each polygon in the manual dataset 
was assigned a confidence level as shown in Table 2.

Out of the 842 total manually delineated depressions, 
594 were captured by the semi-automated fill-difference 
method thresholded to 18 cm maximum depth (70%). 
However, the manually delineated depressions that 
were greater than 18 cm maximum depth totaled 600. 
Thus, the semi-automated method captured 99.5% of the 
depressions it was capable of capturing in the manually 
created dataset given the 18 cm depth threshold set for 
removing probable artifacts. In other words, 242 of the 
manually delineated depressions were shallower than the 
18 cm maximum depth threshold used to filter out the 
fill-difference results. These additional depressions were 
included in the manual dataset because all depressions 
that could be seen in aerial imagery were included, 
regardless of depth. Many of these shallow depressions 
were likely ponded with water, thus appearing to be 
shallower in the LiDAR than they truly are due to hydro-
flattening or loss of point return intensity. 

Of the 6 other manually identified depressions, one 
(a manmade retention basin) was outside of the 0.98 
eccentricity threshold, three were drained during 
creation of the fill grid, and two were below the 18cm 
depth threshold in the fill-difference grid. A very small 
number of depressions (3) were artificially drained 
during the reconditioning of the fill grid, resulting in 
false negatives.

Out of the 116 possible field-checked sinks of highest 
confidence, 80 were captured by the semi-automated 

Confidence	
Level

Identification	Method Depressions (n)

1 air photo 27
2 LIDAR 453
3 air photo, LIDAR 229
4 LiDAR, air photo 17
5 in field 116

Total Depressions: 842

Table 2. Identification method and confidence of 
manually identified depressions.
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in the LiDAR DEM. More work is needed to assess 
mapping performance at multiple TPI window sizes as 
the single scale analysis presented here may not capture 
the variation in depression feature area and shape.  

It was found that a number of fill-difference depressions 
were evident in the results that were likely artificial, but 
had not been drained due to the uncertainty of culvert 
locations. Thus, additional work is needed to cull out 
possible artificial fill-difference depressions ‘dammed’ 
against roads where culverts were not identified in aerial 
imagery. Fieldwork targeted at defining culvert locations 
would likely prove fruitful for mapping sinkholes from 
LiDAR, perhaps as much as the effort expended to map 
the locations of depressions themselves.
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