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Parts of the Whole  

A Column by D. Wallace 

 

The problem of how best to improve the numeracy of a society is a thorny one, 

embracing the learning process of a single student but rising in scale to include 

the management and alteration of an entire system of education.  With the issue of 

quantitative literacy always in mind, this column considers various aspects of the 

systemic workings of education, the forces acting on classrooms, teachers and 

students, and mechanisms of both stasis and change. 

Cognition, Schemas, and Quantitative Reasoning  

Any serious attempt to improve the extent to which students learn critical material 
has to be based on an understanding of how people learn.  This understanding, in 
turn, is linked to theories of cognition in general.  That is, what does it mean to 
know something?  How does the acquisition of knowledge work?  It is 
appropriate, at this point, to return briefly to the issues raised in the first column 
in this series.  Why are some kinds of knowledge easy to acquire on one’s own, 
whereas other kinds require a guide?  Anybody who plans to meddle with the 
educational system as a whole had best have a firm idea of how cognition is built.  
This column will outline some of the basic principles gleaned from the writings of 
Jean Piaget

1
 and Richard Skemp,

2
 and give examples of how they work.  

Everything presented is further colored by the author’s personal teaching 
experiences and reflection upon these. 

A brief caveat is in order before we proceed.  The overview presented here is 
based on theories that are on substantially less firm ground than the statistics 
discussed in the last column in this series, for example.  Nonetheless, these 
theories explain many aspects of cognition convincingly and give us more to 
work with than just our best guesses.  Enough work has been done with these 
ideas to show that they are good guideposts, even though the exact ways in which 
the mind manages to do these things are still quite opaque. 

Consider a simple example: the concept of “circle.”  Very small children 
know what a circle is, and every parent who pays attention to the process knows 
that they learn it by example.  The moon, the bicycle tire and the hula-hoop are 
all circles.  The concept is built by abstraction, categorizing numerous familiar 

                                                 
1
 J. Piaget, The Psychology of Intelligence, London: Routledge and Paul, 1950, 

among other writings. 
2
 R. Skemp, The Psychology of Learning Mathematics, Hillsdale NJ: Lawrence 

Erlbaum Associates, 1987. 
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objects under a single heading that captures a particular common property.  The 
process, although simple, requires guidance from someone that suggests the 
category and names it, and offers the first few examples.  Even into adulthood, 
the process of looking at unrelated things, abstracting a new, still nameless 
property that is common among them, and categorizing them accordingly, 
remains difficult for most people to accomplish without guidance. 

As the child grows older, his or her concept of “circle” grows larger.  
“Circle” becomes more than just a category of objects.  Related abstract ideas 
like “diameter” and “radius” are connected intimately to the concept of circle.  
The circle in all its abstraction becomes an object of categorization itself, as in 
“Circles and squares are both geometric things.”  In classical geometry the circle 
becomes an object of study, leading to concepts such as “All circles are similar 
figures” or “A circle is the set of points equidistant from a given one.”  The idea 
of “circle” becomes very rich by being connected in the mind with many other 
concepts such as “square,” “point,” “equidistant,” and “similar.”  The multitude 
of concepts, along with the connections among them, is called a “cognitive map.”   

The cognitive map, along with the individual’s ability to utilize it, is called a 
“schema.”  A schema includes processes, such as “I can draw a circle,” or “I can 
prove theorems about all circles.”  The complexity of the processes available to 
the individual is part of the growth of cognition also.  Enlarging the schema that 
children have when they say “I can draw a circle” to the one that a young adult 
has when saying “I can prove theorems about circles” represents a major shift in 
cognition for the student.  In a sense, the schema for the older person is a 
completely different structure from that of the child and must be built entirely 
through the artifice of education, even though it certainly includes the earlier 
schema intact within it.   

Another necessary form of cognitive growth does not require enlarging the 
schema of the individual, but merely extending the cognitive map.  For example, 
children who know what a circle is may very well observe on their own that 
round objects are capable of rolling.  The idea of rolling and the idea of circle 
will be forever connected in that child’s mind, yet the learning may have been 
entirely spontaneous with no guidance whatsoever.  The child now has a richer 
concept of “circle,” but may obtain this richness without altering the basic 
schema for the concept.  The schema is extended and reinforced in the process.  
The vast majority of learning that we do in school falls into this category and 
may be pursued in a relatively independent way by a student. 

The mechanism by which a schema is substantially enlarged or changed to 
enable the student to think in a new way about an old concept is called “cognitive 
dissonance.”  Now, this may not be the only mechanism by which such growth 
can happen, but it is the one that has been best understood and articulated.  The 
way it works is by confronting the student with numerous examples or problems 
or questions that cannot be approached with their present schema, and then 
offering the student a way of looking at these questions that resolves the dilemma 
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without completely erasing the previous schema.  Many of the experiments done 
by Piaget are of this nature.  It can be an uncomfortable process for the student, 
because it requires the realization that one does not understand something 
previously supposed mastered.  People do not usually change an intact schema 
easily or willingly.  Moments in history where an individual arrived at a new 
schema for a concept on his or her own have been true breakthroughs.  Cognitive 
dissonance almost always requires a teacher, although making productive use of 
it in the classroom requires a real understanding of the subject material and an 
overt recognition of how it is to be progressively understood.   

Again, these issues are closely linked to the work of Piaget on 
developmental stages, each of which is characterized by particular schema.  
Piaget was looking for stages characterized roughly by the age of the child, at 
which certain concepts become teachable.  For older students the question of 
what is teachable resides more in the current structure of their schema and the 
experiences and tutelage we offer based on that knowledge.  Recent research on 
late stage growth spurts of the brain may also help our understanding of how to 
teach material more effectively.  If, indeed, the brain experiences a growth spurt 
during late adolescence, it must surely result in new learning possibilities for the 
individual at that point.  Such physiological changes must necessarily be a major 
source of variation in learning among students during the time frame when they 
happen, although until maturity this variation is a temporary phenomenon that 
could be addressed by a flexible educational structure. 

Given the two kinds of schema construction we have described, it might be 
useful to visualize the cognitive map as a sort of pyramid.  As the schema for a 
given concept grows, there are points at which it must be enlarged and 
substantially changed in order to accommodate new information.  This is the 
vertical direction in the pyramid.  At every stage, however, it is necessary to 
reinforce the existing schema by connecting it broadly with as many contexts as 
possible.  A subject that can be learned independently will have little growth in 
the vertical direction and much growth horizontally.  A subject that requires a lot 
of vertical growth, such as mathematics, will need substantial instruction and 
leading.  In order to grow vertically, the subject will also require horizontal 
growth, because it is difficult to enlarge a schema that is not a fully functioning 
part of the cognitive structure in the first place.  The range of possibilities is 
pictured in Figure 1. 

The existence of multiple schemas for a concept, arranged from simplest to 
most complex or abstract (in the case of mathematics), is a major source of 
variation in student achievement that has an impact across the entire educational 
system.  It is possible, for example, to teach algebra in such a way that a low- 
level schema is consistently reinforced even though the problems being solved by 
the student get harder and harder.  Another teacher of algebra may demand that 
the students shift their schema to one of the more abstract ones in order to solve a 
new kind of problem.  The result will be a wide variation in the achievement of 
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students in those two classes.  A sketch of the corresponding pyramids would 
look like Figures 2 and 3. 

 

 
Figure 1: A metaphor for how cognition is built. 

 
 

 
Figure 2:  An intact, useful and well-supported schema. 
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Figure 3: A path to abstraction with few supporting connections. 
 

The same amount of learning has taken place, but completely different kinds 
of learning predominate in each class.  If these students are mixed together in the 
subsequent course, what should the next teacher do?  It is completely unclear.  It 
is possible to complete either pyramid to look like Figure 1, yet the process for 
teaching would be completely different for each of the two starting structures.  
None of this is the fault of any teacher or student, but rather the fault of an 
educational system that hasn’t figured out its own internal process or what to aim 
for at each stage of the process, and textbooks that amplify the confusion. 

Improving quantitative reasoning 

If numeracy, as many authors have suggested, resides in using mathematics to 
understand the real worlds of data and science and money, then it seems clear 
that teaching quantitative reasoning specifically means broadening the pyramid 
in Figure 1 at each level as mathematics concepts are learned.  Both mathematics 
and quantitative reasoning textbooks really try to do this by providing 
applications of core concepts in both the text and exercises for students.  And yet 
we see that the resulting cognitive structure is far from secure.  Students do not 
recognize the math out of context and it does not occur to them to use it even 
when encountering similar applications.  It is worth considering various reasons 
why the system might be failing the student.  

The core concept 

It is of little use to know that an income tax rate is a proportion of the salary if 
the concept of proportion is not firmly in place.  It is of no use to include 
problems on interest rates in the section of the text describing exponential growth 
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if the concept for exponential growth is “something that grows kind of like the 
exponential function.” Interest rates only make sense in the context of 
exponential growth if the concept in play is “growth that is in proportion to the 
current amount.”  In this example, the student could have a very firm grasp of the 
first concept for exponential growth yet be fairly unaware of the second one.  In 
this case there is a robust intact core concept, but it’s not the one needed.  The 
student has to move vertically up the scale pictured in Figure 1 at least a little bit 
in order to tie the example of interest rates to the math concept of exponential 
growth.   

This kind of breakdown in the system is probably the most frequently 
mentioned source of difficulty in teaching quantitative reasoning.  “They don’t 
know the basic math, so how can they apply it?”  But as the example of 
exponential growth shows, there can be multiple schemas associated to a 
concept, and reinforcing the wrong one may leave the student still unable to 
make necessary connections to a given application.  Rarely are schema made 
explicit in textbooks or in the classroom, and instructors may be unaware of 
which schema are necessary to support particular kinds of quantitative reasoning.   

Of course, some of the time the students really do not understand the basic 
concepts, and this has to be fixed before they can apply them.  Two things are 
important to remember in this case.  First, it is hard to tell this situation from the 
last one, in which a schema is mastered that is inadequate to the task.  Second, 
because it really is difficult to apply a piece of mathematics you don’t 
understand, the push to introduce applications requiring quantitative reasoning 
can backfire.  By pushing the application before the relevant schema is mastered, 
the system wastes the student’s valuable time and energy.  Worse, it reinforces 
the idea that mathematics makes no sense and the belief that the student is not 
good at math and has no hope of mastering it. 

How many examples? 

The images in Figures 1−3 look like stacked bricks.  It is worth considering what 
kind of effort might be needed to put one of these bricks in place.  In the case of 
constructing a simple schema for “circle,” it takes exposure to a lot of examples 
of circles, as well as quite a few examples of things that are not circles, to 
solidify the criteria the mind uses to identify something as being a circle or not.  
Piaget and Skemp both argue forcefully that the mind constructs schema from 
examples, and requires quite a few of them before it can recognize an incoming 
situation as belonging to that schema or not.   

Yet we do not teach as if this were the case.  Mathematics texts in particular 
tend to work from the general to the particular.  First a definition or concept is 
presented, and then afterwards examples of the concept are offered.  The actual 
concept appears to come from abstract considerations (which is, granted, 
sometimes the case).  This makes it difficult to see that the examples, which 
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embody the quantitative reasoning we wish students to do, are not only the 
instantiations of the concept but often the actual source of it.    

A second source of difficulty lies in the number and kind of examples 
offered.  This author remembers sitting through half an abstract algebra class 
where the only examples of groups offered were the symmetric group and the 
integers mod N.  She spent way too much time wondering why anybody would 
bother to generalize the definition of group just to take care of these two (families 
of) cases.  She now believes (without, alas, benefit of research) that it takes about 
five well-chosen examples and non-examples of a concept or definition to get it 
secure in a student’s head.  One hundred identical problems do not do the job, nor 
does one brilliantly constructed example.  And yet, instructors rarely allow 
themselves the luxury of letting their class work through five deeply illustrative 
examples of anything. 

Mortar 

It is completely possible for a student to have a good grasp of exponential growth 
and a good grasp of how interest rates work, and yet not make the connection 
between these things.  This is a weakness in the cognitive structure because it 
deprives a mathematical concept (exponential growth) from drawing on one of its 
most useful examples, and prevents the example from generalizing.  One could 
say that the bricks in Figure 1 lacked mortar between them.  The ability to 
transfer knowledge from one context to another depends on the connections 
made from one cognitive structure to another.  It is worth asking how one might 
address the question of connection directly. 

The most obvious connections are through language.  It is possible to 
explain exponential growth without using the words “interest” or “principal” and 
equally possible to explain bank accounts without using the word “exponential” 
or the phrase “relative rate.”  Not only is it possible, it is common.  The 
duplication of language can be initially confusing, because there are multiple 
terms that mean the same thing and some words that seem peripheral to the 
immediate question.  But seeing words redundantly across a multiple situations 
creates a useful cognitive link that allows the student to access information stored 
(metaphorically of course) under a different heading.   

Logic can also provide a deep connection between concepts.  Although one 
can explain what happens to money invested at a certain interest rate with just 
percents and a calculator, it is much more powerful to set it in the context of an 
exponential growth problem.  Part of that power lies in the direct link between 
potentially separate concepts.  It is always a temptation to give a student the 
simplest possible explanation of a phenomenon and leave it at that.  This may be 
a quick and efficient route to teaching a student to solve a particular kind of 
problem, but it doesn’t necessarily build the best understanding in the long run. 
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Calculation can provide a strong link between concepts.  When the 
calculator used to explore principal and interest is recruited to do the same 
calculations for population growth, a concrete physical action now links the two 
ideas.  If the equations governing exponential growth are then used to solve 
problems of money and biology, the link becomes even stronger.  Textbooks 
attempt to do this, but usually the relationship is one directional, from math to 
example.  Quantitative reasoning demands that the student seek the math in the 
situation.  This is a behavior that can certainly be reinforced in the classroom. 

Finally, it is worth mentioning the potential emotional links that might be 
available to cement ideas together.  Many concrete problems that require a 
quantitative reasoning approach are also very motivating.  Questions in medical 
and social contexts have a natural ability to engage people.  Yet instructors often 
teach those very topics in the least emotional way possible.  It is natural to want 
to avoid upsetting students.  But distress creates memory.  If the math predicts 
that something really unpleasant or really fantastic is going to happen in a 
medical context (for example), the associated emotion becomes a strong link 
between the context and the math.  

Pity the poor math instructors 

A serious education in mathematics is a steep climb up the vertical direction of 
the cognitive structure in Figure 1.  The whole point of a “real” math course is to 
give the student a new, larger schema for concepts lower on the structure.  Linear 
algebra, for example, abstracts systems of equations into matrix algebra.  Then it 
abstracts the matrix algebra into coordinate-free linear operators.  A course in 
linear algebra that failed to create these cognitive structures in students would be 
useless preparation for mathematics.  Creating new, more powerful schema for 
mathematical objects is what mathematicians do.  It is a useful and beautiful 
vocation. 

It is a habit of mind that poorly prepares one to educate students in the 
horizontal directions pictured by Figure 1.  Even when a successful layer in that 
diagram is laid, and all the connections made, it feels like no mathematics has 
been gained.  And even when the instructor values such growth, few assessment 
instruments are available that can distinguish between a student whose command 
of material resembles Figure 2 versus one whose understanding is more like 
Figure 3.  How then is the instructor supposed to know what, let alone how, to 
teach?   Clearly there is room here for much analysis of specific concepts and 
methods for evaluating the mastery of these that would be a guide for those of us 
wishing to teach quantitative reasoning in our courses. 
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