σ(N) -Dependent Control of Acid Resistance and the Locus of Enterocyte Effacement in Enterohemorrhagic Escherichia Coli is Activated by Acetyl Phosphate in a Manner Requiring Flagellar Regulator FlhDC and the σ(S) Antagonist FliZ

Avishek Mitra
University of South Florida

Pamela A. Fay
University of South Florida

Khoury W. Vendura
University of South Florida

Zimrisha Alla
University of South Florida

Ronan K. Carroll
University of South Florida

Scholar Commons Citation
Mitra, Avishek; Fay, Pamela A.; Vendura, Khoury W.; Alla, Zimrisha; Carroll, Ronan K.; Shaw, Lindsey N.; and Riordan, James T., "σ(N) -Dependent Control of Acid Resistance and the Locus of Enterocyte Effacement in Enterohemorrhagic Escherichia Coli is Activated by Acetyl Phosphate in a Manner Requiring Flagellar Regulator FlhDC and the σ(S) Antagonist FliZ" (2014). Cell Biology, Microbiology, and Molecular Biology Faculty Publications. Paper 7.
http://scholarcommons.usf.edu/bcm_facpub/7

This Article is brought to you for free and open access by the Cell Biology, Microbiology, and Molecular Biology at Scholar Commons. It has been accepted for inclusion in Cell Biology, Microbiology, and Molecular Biology Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.
Authors
Avishek Mitra, Pamela A. Fay, Khoury W. Vendura, Zimrisha Alla, Ronan K. Carroll, Lindsey N. Shaw, and James T. Riordan

This article is available at Scholar Commons: http://scholarcommons.usf.edu/bcm_facpub/7
σ^N-dependent control of acid resistance and the locus of enterocyte effacement in enterohemorrhagic *Escherichia coli* is activated by acetyl phosphate in a manner requiring flagellar regulator FlhDC and the σ^S antagonist FliZ

Avishek Mitra, Pamela A. Fay, Khoury W. Vendura, Zimrisha Alla, Ronan K. Carroll, Lindsey N. Shaw & James T. Riordan

Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620

Keywords
- acid resistance, EHEC O157: H7, LEE, NtrC, rpoN, sigma factor N.

Correspondence
James T. Riordan, University of South Florida, CMMB, 4202 E. Fowler Avenue, ISA2015, Tampa, FL 33620.
Tel: 813-974-7457; Fax: 813-974-1614; E-mail: jtriordan@usf.edu

Funding Information
No funding information provided.

Received: 6 February 2014; **Revised:** 30 April 2014; **Accepted:** 15 May 2014

MicrobiologyOpen 2014; 3(4): 497–512
doi: 10.1002/mbo3.183

Abstract
In enterohemorrhagic *Escherichia coli* (EHEC), sigma factor N (σ^N) regulates glutamate-dependent acid resistance (GDAR) and the locus of enterocyte effacement (LEE); discrete genetic systems that are required for transmission and virulence of this intestinal pathogen. Regulation of these systems requires nitrogen regulatory protein C, NtrC, and is a consequence of NtrC-σ^N-dependent reduction in the activity of sigma factor S (σ^S). This study elucidates pathway components and stimuli for σ^N-directed regulation of GDAR and the LEE in EHEC. Deletion of fliZ, the product of which reduces σ^S activity, phenocopied rpoN (σ^N) and ntrC null strains for GDAR and LEE control, acid resistance, and adherence. Upregulation of fliZ by NtrC-σ^N was shown to be indirect and required an intact flagellar regulator flhDC. Activation of flhDC by NtrC-σ^N and FlhDC-dependent regulation of GDAR and the LEE was dependent on rpoN-promoter flhD2, and a newly described NtrC upstream activator sequence. Addition of ammonium chloride significantly altered expression of GDAR and LEE, acid resistance, and adherence, independently of rpoN, ntrC, and the NtrC sensor kinase, ntrB. Altering the availability of NtrC phosphodonor acetyl phosphate by growth without glucose, with acetate addition, or by deletion of acetate kinase ackA, abrogated NtrC-σ^N-dependent control of flhDC, fliZ, GDAR, and the LEE.

Introduction

Alternative sigma factor N (σ^N) when bound to RNA polymerase directs the transcription of genes for carbon and nitrogen metabolism, stress fitness, and regulation (Reitzer and Schneider 2001). In an increasing number of bacterial pathogens, σ^N also regulates genes for virulence and transmission, and is required for complete in vivo disease progression (Okada et al. 2008; Barchiesi et al. 2009; Albert-Weissenberger et al. 2010; Damron et al. 2012; Iyer and Hancock 2012; Mills et al. 2012; Sheng et al. 2012; Wang et al. 2012). For most pathogens, the mechanism underlying σ^N-dependent regulation of pathogenesis remains unknown; two exceptions to this include *Borrelia burgdorferi*, and to a lesser extent, enterohemorrhagic *Escherichia coli* (EHEC). In *B. burgdorferi*, the causative agent of Lyme borreliosis, σ^N activates the expression of genes encoding outer surface lipoproteins (OspA and OspC) essential for transmission from the tick vector to a mammalian host, and for establishment of infection (Pal et al. 2000; Hubner et al. 2001; Grimm et al. 2004). This Osp activation pathway requires another sigma factor, σ^S; the transcription of which is directly activated from a σ^N-promoter in what has been dubbed a σ^N-σ^S regulatory cascade (Smith et al. 2007; He et al. 2008). In EHEC serotype O157:H7, a food-borne pathogen attributed to outbreaks and sporadic cases of bloody diarrhea (hemorrhagic colitis) (Rangel et al. 2008).
2005), σ^N (encoded by rpoN) represses transcription of glutamate-dependent acid resistance (GDAR) genes, while activating the locus of enterocyte effacement (LEE) pathogenicity island (Riordan et al. 2010). The GDAR system allows for low oral infectious dose during gastric passage (Chart 2000; Teunis et al. 2004), while the LEE encodes a type III secretion (T3S) apparatus that translocates virulence factors into host intestinal cells mediating intimate adherence and immune subversion (McDaniel and Kaper 1997; Elliott et al. 1998; Perna et al. 1998). Thus, σ^N in EHEC regulates major determinants of fecal–oral transmission and colonization.

Like B. burgdorferi, a σ^N-σ^K regulatory pathway has been described for EHEC, and has been further implicated in the control of GDAR and LEE genes in this pathogen (Riordan et al. 2010). However for EHEC, the underlying mechanism by which σ^K is regulated is not completely understood. σ^K controls the expression of hundreds of genes in E. coli (Hengge-Aronis 2002); it is an activator of GDAR system genes (gad genes) (Ma et al. 2003), and can both activate and repress the LEE (Iyoda and Watanabe 2005; Tomoyasu et al. 2005; Laaberki et al. 2006). Strains null for rpoN are characterized by a phenotype of increased GDAR and decreased LEE expression that is dependent on an intact rpoS (encoding σ^S), and while deletion of rpoN in either EHEC or laboratory E. coli strain K-12 MG1655 has no impact on rpoS transcription, both the stability and activity of σ^S have been shown to increase (Riordan et al. 2010; Dong et al. 2011; Mitra et al. 2012). Mitra et al. (2012) demonstrated that this effect of σ^N on σ^S stability/activity is indirect and dependent on transcription from a σ^N promoter, and not competition of these sigma factors for core RNA polymerase (RNAP). What additional regulatory component(s) is required downstream of σ^N for control of σ^K, GDAR, and the LEE is not yet known. Unlike other E. coli sigma factors, the initiation of transcription by σ^N requires activation by enhancer-binding proteins (EBP) that communicate various environmental signals to the RNAP-σ^N holoenzyme complex (Eσ^N) (Shingler 1996). Of the 11 EBPs encoded within the EHEC O157:H7 background, only deletion of ntrC (encoding NtrC) phenotypically reproduces the rpoN null background for control of σ^K, GDAR, and the LEE (Mitra et al. 2012). Nitrogen regulatory protein C, NtrC (also NRI), is the response regulator of a two-component system that activates σ^N-dependent transcription of genes for the assimilation and utilization of nitrogen, relieving slowed growth under nitrogen-limiting conditions (Zimmer et al. 2000). It is thus plausible that nitrogen availability plays a fundamental role in activation of the σ^N-σ^K regulatory pathway in EHEC. The objective of this study was to identify additional regulatory factors required for σ^N-dependent control of σ^K, acid resistance, and the LEE, and to examine the role for nitrogen availability in the stimulation of this pathway. The study identifies flhD and fliZ as new genetic determinants of this pathway and provides evidence that NtrC-σ^N.FlhDC-dependent activation of fliZ, the product of which modulates σ^K activity, is needed for regulation of GDAR and the LEE. Furthermore, the availability of acetyl phosphate, not ammonia, is shown to be an important factor for pathway activation.

Experimental Procedures

Bacterial strains and growth conditions

All strains and plasmids used in this study are listed in Table 1. Luria-Bertani (LB) starter cultures were inoculated with a single colony of each strain and grown at 37°C with shaking (200 rpm) to an optical density at 600 nm (OD$_{600}$) of 0.5. Unless otherwise indicated, these cultures were used to inoculate either Dulbecco’s Modified Eagle’s Medium (DMEM) (Sigma-Aldrich, St. Louis, MO) buffered with 50 mmol/L 3-morpholinopropane-1-sulfonic acid (MOPS) and containing 0.4% (w/v) glucose, or MOPS minimal medium. MOPS medium was prepared as described in Neidhardt et al.’s (1974) study, and contained 0.4% (w/v) glucose, 0.1% (w/v) NH$_4$Cl, and 0.1% (w/v) L-glutamine. Cultures were grown for 18–20 h before inoculating into fresh DMEM or MOPS to a final OD$_{600}$ = 0.05, respectively, using a 1:10 ratio of media-to-flask volume and grown at 37°C, 200 rpm. Appropriate antibiotics were added to cultures as required.

Procedures for genetic manipulation

Nonpolar gene deletion mutants were constructed using the λ Red recombinease-assisted approach (Datsenko and Wanner 2000; Murphy and Campellone 2003) and as described previously (Riordan et al. 2010). Primers used for the construction of deletion mutants are listed in Table S1. For overexpression of flhDC, a 932-bp polymerase chain reaction (PCR) fragment containing flhDC of strain TW14359 (nucleotide positions 2485400–2484469) was generated using primers flhDC-F/EcoRI and flhDC-R/XbaI. An EcoRI/XbaI digested fragment of the product was cloned into similarly digested arabinose-inducible expression vector pBAD22 (Guzman et al. 1995) to produce pRAM-3. pRAM-3 purified from DH5α transformants was then used to transform TW14359 and derivative strains producing EcRAM-51 through EcRAM-53. For flhDC promoter expression studies, a 2942-bp XhoI/BamHI digested PCR fragment (nucleotide positions 2487394–2484453) was generated using primers flhD-1994/XhoI and flhC+595/BamHI. This fragment contained the flhDC open
Table 1. Strains and plasmids used in this study.

<table>
<thead>
<tr>
<th>Strain/Plasmid</th>
<th>Relevant characteristics</th>
<th>Source/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH5α</td>
<td>Vector propagation, recA1 endA1</td>
<td>Miroix and Walker (1996)</td>
</tr>
</tbody>
</table>
| TW14359 |WT 70 promoter (2486152–2486128), a
predicted NtrC box (2487152–2487132), and a pre-
dicted NtrC box (2487152–2487132). This was ligated into XhoI/BamHI digested pACYC177 to produce pRAM-4. The same approach was used for pRAM-5 and pRAM-6 construction, however, the cloned fragment in pRAM-5, generated using primers flhD-825/XhoI and flhD+595/BamHI (positions 2486228–2484453), did not include the predicted NtrC box. For the fragment in pRAM-6, generated using primers flhD-728/XhoI and flhD+595/BamHI (positions 2486128–2484453), both the NtrC box and the σN promoter were excluded. Plasmids were purified from DH5α transmants and used to transform TW14359ΔflhDC producing strains EcRAM-59 to EcRAM-61. For fliZ complementation, a 552-bp PCR fragment containing the fliZ ORF was created using primers fliZ-Clone/F and fliZ-Clone/R and cloned into the high copy pSC-B vector (Agilent, Santa Clara, CA) to create pRAM-9, which was then used to transform EcRAM-63 to produce EcRAM-66. The rpoN complement strain EcRAM-56 was constructed previously (Mitra et al. 2012). All genetic constructs were validated using a combination of restriction mapping, DNA sequencing, and quantitative real-time PCR (qRT-PCR).
<table>
<thead>
<tr>
<th>Strain/Plasmid</th>
<th>Relevant characteristics</th>
<th>Source/Reference</th>
</tr>
</thead>
</table>
| EcRAM-61 | EcoR19.4 BglII restriction fragment, a
predicted NtrC box (2485633–2485604), and a pre-
dicted NtrC box (2485633–2485604). This was ligated into XhoI/BamHI digested pACYC177 to produce pRAM-4. The same approach was used for pRAM-5 and pRAM-6 construction, however, the cloned fragment in pRAM-5, generated using primers flhD-825/XhoI and flhD+595/BamHI (positions 2486228–2484453), did not include the predicted NtrC box. For the fragment in pRAM-6, generated using primers flhD-728/XhoI and flhD+595/BamHI (positions 2486128–2484453), both the NtrC box and the σN promoter were excluded. Plasmids were purified from DH5α transmants and used to transform TW14359ΔflhDC producing strains EcRAM-59 to EcRAM-61. For fliZ complementation, a 552-bp PCR fragment containing the fliZ ORF was created using primers fliZ-Clone/F and fliZ-Clone/R and cloned into the high copy pSC-B vector (Agilent, Santa Clara, CA) to create pRAM-9, which was then used to transform EcRAM-63 to produce EcRAM-66. The rpoN complement strain EcRAM-56 was constructed previously (Mitra et al. 2012). All genetic constructs were validated using a combination of restriction mapping, DNA sequencing, and quantitative real-time PCR (qRT-PCR).
<table>
<thead>
<tr>
<th>Strain/Plasmid</th>
<th>Relevant characteristics</th>
<th>Source/Reference</th>
</tr>
</thead>
</table>
| EcRAM-61 | EcoR19.4 BglII restriction fragment, a
predicted NtrC box (2485633–2485604), and a pre-
dicted NtrC box (2485633–2485604). This was ligated into XhoI/BamHI digested pACYC177 to produce pRAM-4. The same approach was used for pRAM-5 and pRAM-6 construction, however, the cloned fragment in pRAM-5, generated using primers flhD-825/XhoI and flhD+595/BamHI (positions 2486228–2484453), did not include the predicted NtrC box. For the fragment in pRAM-6, generated using primers flhD-728/XhoI and flhD+595/BamHI (positions 2486128–2484453), both the NtrC box and the σN promoter were excluded. Plasmids were purified from DH5α transmants and used to transform TW14359ΔflhDC producing strains EcRAM-59 to EcRAM-61. For fliZ complementation, a 552-bp PCR fragment containing the fliZ ORF was created using primers fliZ-Clone/F and fliZ-Clone/R and cloned into the high copy pSC-B vector (Agilent, Santa Clara, CA) to create pRAM-9, which was then used to transform EcRAM-63 to produce EcRAM-66. The rpoN complement strain EcRAM-56 was constructed previously (Mitra et al. 2012). All genetic constructs were validated using a combination of restriction mapping, DNA sequencing, and quantitative real-time PCR (qRT-PCR).

Quantitative real-time PCR

RNA purification, cDNA synthesis, qRT-PCR cycling conditions, and data analysis for relative quantitation of gene expression followed previously described protocols (Riordan et al. 2010; Mitra et al. 2012; Morgan et al. 2013). Analysis was performed using a Realplex^2 Mastercycler (Eppendorf, Hauppauge, NY). Cycle threshold (Ct) data were normalized to rrsA (16S rRNA gene) and normalized Ct values (ΔCt) were transformed to arbitrary gene expression units using 2−ΔCt/10−4 as described by Livak and Schmittgen (2001). A previous method was used for the quantitation of flhD mRNA copy number (Bustin 2000). Briefly, a 154-bp PCR product containing flhD was generated using flhD+63 and flhD+216, column purified (Qiagen, Valencia, CA) and serially diluted in molecular grade water. Ct was measured for each dilution to generate a standard curve plotting Ct as a linear function of DNA concentration (ng/μL). The strength of linearity was estimated by the correlation coefficient (r2), which exceeded 0.90 for all curves. DNA concentration was extrapolated from a standard curve using experimental Ct values and then converted to flhD copy number based on the estimated weight of a single 154-bp flhD dsDNA fragment of 47-kDa. Gene expression levels and flhD copy number were compared between samples using the appropriate t-test or by analysis of variance (ANOVA) and Tukey’s HSD (α ≥ 3, α = 0.05) using R v. 2.13.0.
Protein extraction, sodium dodecyl sulfate polyacrylamide gel electrophoresis, and western blots

Protein extraction, purification, and procedures for western blots followed a previously described protocol (Mitra et al. 2012; Morgan et al. 2013). Monoclonal antibodies for σ^S and GroEL were acquired from Neoclonal (Madison, WI) and Bio-Rad (Carlsbad, CA), respectively. Denaturation was repeated a minimum of three times in independent trials.

Purification of NtrC

A 1425-bp NcoI/XhoI-digested PCR fragment generated using primers ntrC-F/NcoI and ntrC-R/XhoI was cloned into similarly digested pET-24d producing pRAM7 and replacing the ntrC stop codon with a C-terminal 6xHis tag. pRAM7 was transformed into propagating E. coli strain BL-21, which was grown in LB containing ampicillin (100 µg/mL) to OD_{600} = 0.4 before induction of 6xHis-tagged ntrC with 1 mM Isopropyl β-D-1-thiogalactopyranoside for 16 h at 20°C (200 rpm). Cultures were harvested by centrifugation (5000g, 20 min) and 6xHis-NtrC was purified using a nickel Ni-NTA Protein Purification Kit (Qiagen) according to the manufacturer’s instruction.

Electrophoretic mobility shift assay

Electrophoretic mobility shift assay (EMSA) was performed using the LightShift Chemiluminescence EMSA Kit (Pierce, Rockford, IL) according to the manufacturer’s instruction. Biotin end-labeled DNA probes were generated by PCR using flhD-F/NcoI and flhD-R/XhoI was cloned into propagating pET-24d producing pRAM7 and replacing the flhD stop codon with a C-terminal 6xHis tag. The plasmid was transformed into propagating E. coli strain BL-21, which was grown in LB containing ampicillin (100 µg/mL) to OD_{600} = 0.4 before induction of 6xHis-tagged flhD with 1 mM Isopropyl β-D-1-thiogalactopyranoside for 16 h at 20°C (200 rpm). Cultures were harvested by centrifugation (5000g, 20 min) and 6xHis-FlhD was purified using a nickel Ni-NTA Protein Purification Kit (Qiagen) according to the manufacturer’s instruction.

Whole genome next-generation DNA sequencing and analysis

Genomic DNA was extracted from TW14359ΔrpoN and a single suppressor mutant of TW14359ΔrpoN (TW14359ΔrpoN Gln+) using Puregene® Kits (Gentra, Minneapolis, MN). One microgram of DNA from each strain was enzymatically sheared into libraries of ~200-bp fragments using the Ion Xpress™ Plus Fragment Library Kit (Life Technologies, Grand Island, NY). Each DNA library was purified using the E-Gel® SizeSelect™ 2% Agarose system (Invitrogen), and the integrity and quantity of each was determined using a Bioanalyzer high-sensitivity DNA chip (Agilent). Libraries were diluted and template-positive Ion Sphere Particles (ISPs) prepared using the Ion OneTouch 200 Template Kit (Life Technologies). ISPs were sequenced using an IonTorrent™ Personal Genome Machine and the Ion PGM 200 Sequencing Kit (Life Technologies) following the manufacturer’s instructions. Whole genome sequencing data were then separated by electrophoresis using 8% non-denaturing acrylamide gels prepared in 0.5x Tris-borate-EDTA buffer at 4°C for 80 min at 160 V, and DNA/protein complexes transferred to a nylon membrane (Fisher, Pittsburgh, PA). Membranes were UV cross-linked at 120,000 mJ/cm² for 1 min and detected by chemiluminescence using the Biotin Detection System (Pierce) and a ChemiDoc XRS+ Imaging System including Image Lab 3.0 (Bio-Rad, Hercules, CA).

Selection of suppressor mutants for glutamine auxotrophy

Spontaneous suppressor mutants for glutamine auxotrophy were selected in the TW14359ΔrpoN background by growth in MOPS minimal media without the addition of glutamine. Briefly, overnight cultures of TW14359ΔrpoN grown in MOPS media were inoculated into fresh MOPS containing 0.4% glucose and 0.1% NH₄Cl and grown at 37°C (200 rpm). The outgrowth of suppressor mutants (TW14359ΔrpoN Gln+) consistently occurred following 48-h incubation. Single colonies of suppressor mutants were obtained by subculture from MOPS media to LB with 1.5% agar, and confirmed by growth in MOPS containing 0.2% glucose and 0.1% (w/v) L-histidine as described by Reitzer et al. (1987) and by qRT-PCR analysis of glutamine synthetase glnA expression. Three independent suppressor mutants were selected and validated by this approach. The mutation leading to suppression was determined using a combination of PCR and Sanger sequencing of amplified DNA fragments (MWG Operon, Huntsville, AL) and next-generation whole genome sequencing.
CO2. Overnight DMEM cultures were diluted 1:40 (v/v) per 50 HT-29 cells. Microcolony counts were compared and the average number of microcolonies were reported for each sample, a minimum of 10 viewing frames were observed for control and test strains (relative to the reference TW14359 genome), and those in homopolymeric nucleotide tracts, were excluded resulting in the identification of specific genetic variations between TW14359ΔrpoN and TW14359ΔrpoN Gln⁺.

Adherence assay

Adherence to epithelial cells was determined following a previously described protocol (Morgan et al. 2013). Briefly, human HT-29 colonic epithelial cells were grown to confluence on polylysine-treated glass coverslips placed within the wells of 24-well culture plates at 37°C with 5% CO₂. Overnight DMEM cultures were diluted 1:40 (v/v) in fresh DMEM and 0.05 mL of this dilution was used to inoculate each well which already contained 0.45 mL of sterile DMEM. After 3 h, plate wells were washed five times with PBS (137 mmol/L NaCl, 2.7 mmol/L KCl, 10 mmol/L Na₂HPO₄, pH 7) to remove nonadherent bacteria from the coverslips, and fresh DMEM was then added before incubating for an additional 3 h. Plate wells were subsequently washed three times in PBS, and then fixed with ice cold (−20°C) 100% methanol for 10 min before staining with Giemsa diluted in PBS 1:20 (v/v) for 20 min. Giemsa-stained coverslips were examined at 1000× magnification by oil immersion, and microcolonies were scored as discrete clusters of five or more bacterial cells as previously defined (McKee and O’Brien 1995; Abe et al. 2002; Iyoda and Watanabe 2004). For each sample, a minimum of 10 viewing frames were observed and the average number of microcolonies were reported for 50 HT-29 cells. Microcolony counts were compared between strains by Tukey’s HSD following a significant F-test (n ≥ 3, α = 0.05) (R v. 2.13.0).

Tests for acid resistance

Acid resistance by the glutamate-dependent system was measured for exponential phase cultures grown in DMEM as previously described (Riordan et al. 2010; Mitra et al. 2012) with slight adaptations. Strains were grown in DMEM to OD₆₀₀ = 0.5 before inoculating (10⁶ CFU/mL final cell density) into E minimal glucose (EG) media containing 5.7 mmol/L l-glutamate adjusted with HCl to pH 7 (control) or pH 2. Cultures were sampled for counts (CFU/mL) after 1 h incubation at 37°C (200 rpm) by plating serial dilutions to LB with 1.5% agar and incubating overnight. Experiments were repeated a minimum of three times in independent trials.

Results

NtrC-σ⁵ require *fliZ* for control of σ⁵ activity, GDAR, and the LEE

Previous studies have revealed NtrC and σ⁵ negatively regulates GDAR and positively regulates the LEE by reducing the activity of alternative sigma factor S (σ⁵) (Riordan et al. 2010; Mitra et al. 2012). For this to occur, NtrC-σ⁵ must increase or decrease the expression of a gene(s) whose product, in-turn, alters σ⁵-dependent transcription. One of two proteins were predicted to fulfill this role: Crl or FliZ. Crl enhances RNAP-σ⁵ holoenzyme formation, thus increasing transcription from σ⁵ promoters (Pratt and Silhavy 1998; Typas et al. 2007), whereas FliZ interferes with σ⁵ promoter-binding and transcription initiation, thus reducing σ⁵-dependent transcription (Pesavento et al. 2008; Pesavento and Hengge 2012). During growth in DMEM (OD₆₀₀ = 0.5), both crl and fliZ expression were shown to be reduced in TW14359ΔntrC and TW14359ΔrpoN when compared to TW14359 (P < 0.05) (Fig. 1A), however, only TW14359ΔfliZ phenocopied TW14359ΔntrC and TW14359ΔrpoN for the control of GDAR and LEE genes (Fig. 1B). In TW14359Δcrl, both gadE and gadB were increased in expression compared to TW14359 (P < 0.05), but less so than for TW14359ΔrpoN, TW14359ΔntrC, and TW14359ΔfliZ, in which expression levels for all genes were nearly identical (P < 0.01) (Fig. 1B). The expression of LEE genes ler, tir, espA, and cesT did not differ between TW14359 and TW14359Δcrl, but were uniformly reduced in TW14359ΔntrC, TW14359ΔrpoN, and TW14359ΔfliZ backgrounds (P < 0.05) (Fig. 1B). Both gadE and ler expressions were restored to near wild-type levels in fliZ complement strain TW14359ΔfliZΔpRAM-8 or by the deletion of rpoS in TW14359ΔfliZ (Fig. 1B). Consistent with the effect of fliZ deletion on gadE and gadB expression, CFU/mL of TW14359ΔfliZ recovered following exposure to acidified (pH 2) EG media for 1 h increased by 10- to 100-fold compared to TW14359, TW14359ΔfliZΔpRAM-8, and TW14359ΔfliZΔrpoS, yet remained ~10-fold less than that observed for TW14359ΔntrC and TW14359ΔrpoN (Fig. 1C). Furthermore, the ability to form microcolonies on HT-29 intestinal cells was decreased in TW14359ΔfliZ compared to TW14359 (P = 002), and matched that observed for TW14359ΔntrC and TW14359ΔrpoN (Fig. 1D). Thus, NtrC-σ⁵ positively regulate fliZ during exponential growth, the product of which is predicted, downregulates GDAR and upregulates the LEE by reducing the activity of extant σ⁵.
Requirement for flhDC in the activation of fliZ by NtrC-σN

fliZ is encoded as the second gene of a three gene operon (fliAZY), the transcription of which is directed from at least two promoters, fliA_P1 and fliA_P2. Neither of these promoters are σN-dependent, however, fliA_P1 is activated by the regulator of flagellar biosynthesis and motility FlhDC, for which there is a predicted control of fliZ by NtrC-σN is present upstream of the NtrC UAS and putative NtrC UAS site and fliA_P2 (Zhao et al. 2010). In addition, a putative promoter region important for NtrC-σN-dependent regulation, flhDC mRNA copy number was measured from three promoter fragments (Fig. 2C) cloned into arabinose-inducible vector pBAD22 and transformed into TW14359ΔflhDC. As anticipated, flhDC copy number was reduced when expressed from a fragment in which the putative NtrC UAS was removed (Frag. II) compared to the wild-type flhDC promoter fragment (Frag. I) (P = 0.004) (Fig. 2C). flhDC copy number was further reduced when expressed from a fragment in which both the NtrC UAS and putative σN promoter flhDC_P2 were removed (Frag. III), but not significantly less than for Frag. II. Correspondingly, gadE expression increased (P < 0.01) and ler expression decreased (P < 0.05) in TW14359ΔflhDC expressing either Frag. II or Frag. III when compared to Frag. I (Fig. 2C). Thus, the putative NtrC UAS site and σN promoter flhDC_P2 are required for full expression of flhDC and for regulation of gadE and ler. Purified 6xHis-NtrC was observed to retard the mobility by EMSA of a 200-bp flhD promoter probe containing the putative NtrC UAS in a manner similar to the NtrC-dependent glutamine synthetase promoter, glnAP2 (Fig. 2D). No shift was observed for flhD or glnA promoter probes in the absence of 6xHis-NtrC, or for the negative control EBNA DNA probe (Fig. 2D).
Glutamine is not essential for NtrC-σ^N-dependent regulation of GDAR and the LEE

The preceding experiments reveal NtrC-σ^N to directly activate flhDC transcription, the product of which upregulates fliiZ. FliiZ, in-turn, reduces the activity of σ^S and consequently, σ^S-dependent control of GDAR and LEE expression. While much is understood as to how σ^S regulates GDAR and the LEE (Sperandio et al. 1999; Foster 2004; Iyoda and Watanabe 2005; Laaberki et al. 2006), the mechanistic basis for activation of NtrC-σ^N-dependent control of these discrete genetic systems is as yet unknown. NtrC-σ^N direct the transcription of nitro-

Figure 2. Regulation of flhDC by NtrC-σ^N and effect on gadE and ler expression. (A) Expression levels for flhDC plotted for wild-type and derivative strains. The asterisk denotes a significant difference between wild-type and mutated strains by t-test (P < 0.05, n ≥ 3). (B) Expression levels for gadE (black) and ler (gray) plotted for wild-type and derivative strains containing pRAM-3 (flhDC::pBAD22); expression of pRAM-3 is either uninduced (−) or induced (+) with arabinose. Asterisks indicate significant differences between uninduced and induced treatments by t-test (*P < 0.05, **P < 0.01, n ≥ 3). (C) Absolute flhDC mRNA copy number and expression levels for gadE and ler measured in the ΔflhDC background expressing cloned flhDC fragments, Frag. I (black), Frag. II (white), and Frag. III (stippled); topology of flhDC promoter fragments are included, top right (C). See text for details. (D) EMSA for NtrC binding to the flhDC promoter and glnA_P2 promoter; EBNA is EBNA DNA. Inset arrows indicate the location of the NtrC/probe complex (filled arrow) or free probe (empty arrow). See text for details. Error bars denote standard deviation for all panels. EMSA, electrophoretic mobility shift assay.
suppressor mutant of glutamine auxotrophy in TW14359ΔrpoN and observing its effect on GDAR and LEE gene expression, acid resistance, and adherence. Growth of TW14359ΔrpoN in MOPS media containing 0.2% glucose and 0.1% L-histidine (i.e., high energy but nitrogen limiting) is impaired due to auxotrophy for glutamine (Gln-) (Fig. 3A). However, after 48 h the outgrowth of a prototrophic (Gln+) suppressor mutant (TW14359ΔrpoNGln+) was repeatedly observed in which wild-type growth in MOPS media was restored (Fig. 3A), and in which the expression of glnA was significantly increased compared to TW14359ΔrpoN during growth in DMEM (OD_{600} = 0.5) (P = 0.013) (Fig. 3B); glnA expression was still, however, slightly but significantly lower in TW14359ΔrpoNGln+ when compared to TW14359 (P = 0.02). Mutations which suppress Gln- in E. coli have been mapped to ntrC, and to cis-elements controlling glnA transcription. glnA can be transcribed from three promoters: glnAP1 and glnAP3 are σ70 promoters that are repressed by NtrC during nitrogen-limitation, whereas glnAP2 is a σN promoter that is activated by NtrC under the same conditions. Mutations in the DNA-binding domain of NtrC (amino acid residues 400–470) at the C-terminus result in the derepression of glnAP1 and/or glnAP3, while mutations in the promoter(s) enhance transcription from glnAP1 or result in formation of a de novo σ70 consensus at glnAP2 (Reitzer et al. 1987). DNA sequencing of ntrC and the glnA promoter region did not reveal any of these described mutations in TW14359ΔrpoNGln+. Sequencing of the TW14359ΔrpoNGln+ genome, however, revealed a single adenine deletion in the ntrC ORF at nucleotide position 4,910,080 (accession NC_013008, NCBI), resulting in a frameshift mutation. This mutation occurs early in the ORF at +285 relative to the start codon and results in a premature stop codon or opal (UGA) mutation at amino acid position 106. It was thus suspected that increased expression of glnA, and growth in the absence of glutamine for TW14359ΔrpoN and TW14359ΔrpoNGln+ during growth

Figure 3. Impact of glutamine metabolism on the GDAR and LEE expression phenotype of TW14359ΔrpoN. (A) Mean (n = 3) log_{10} transformed optical density at 600 nm (log_{10} OD_{600}) plotted for wild type (square), ΔrpoN (circles), and suppressor mutant ΔrpoNGln+ (triangles) as a function of time during growth in nitrogen-limiting MOPS media (2 g/L glucose, 1 g/L L-histidine, pH 7). (B) Expression levels for glnA, gadE, and ler plotted for wild type (black), ΔrpoN (white), and ΔrpoNGln+ (stippled). Error bars denote standard deviation for A and B. (C) Representative colony-forming units (CFU/mL) on LBA for wild-type and mutant derivative strains following 1-h challenge in EG media (pH 7 vs. pH 2). (D) Counts for microcolonies on HT-29 cells plotted for wild-type and mutant derivative strains. Boxplots are as described for Figure 1D. For B and D, plots that differ in lowercase letter for each gene (B) or strain (D) differ significantly by Tukey’s HSD following a significant F-test (n ≥ 3, P < 0.05). GDAR, glutamate-dependent acid resistance; LEE, locus of enterocyte effacement.
in DMEM (OD$_{600} = 0.5$), indicating that glutamine availability has no impact on GDAR and LEE gene regulation. Interestingly, however, CFU/mL recovered from acidified EG media were decreased by ~1000-fold for TW14359ΔrhoN in comparison to TW14359ΔrhoN (Fig. 3C). Deletion of glnA in TW14359ΔrhoN+ again restored survival in acid comparable to that of TW14359ΔrhoN (Fig. 3C), suggesting that glutamine synthetase production plays an indirect role in EHEC acid resistance. Overexpression of glnA in TW14359ΔrhoN+ (strain TW14359ΔrhoNpRAM-9) similarly mitigated the acid resistance phenotype of TW14359ΔrhoN (Fig. 3C), clearly demonstrating a role for glnA in the complete acid resistance phenotype of TW14359ΔrhoN. Adding to this, CFU/mL recovered from acidified EG increased by ≥100-fold in TW14359ΔglnA compared to TW14359. Consistent with qRT-PCR data on ler (Fig. 3A), the number of microcolonies formed on HT-29 cells in TW14359ΔglnA+ was significantly reduced when compared to TW14359 (P < 0.05), but did not differ from TW14359ΔrhoN+ or TW14359ΔrhoNAglnA+; collectively suggesting that changes in glutamine availability has no effect on σN-dependent LEE expression and adherence to intestinal cells (Fig. 3D).

Acetyl phosphate stimulates the NtrC-σN-pathway controlling GDAR and LEE expression

When *E. coli* is cultivated in media without ammonia, intracellular levels of glutamine are low, culminating in the phosphorylation and activation of NtrC by sensor kinase NtrB and NtrC-σN-dependent transcription. It was thus suspected that the absence of ammonia in DMEM may prompt NtrC-σN-dependent transcription of flhDC, activating the pathway for GDAR and LEE regulation, and that supplementation of DMEM with ammonia would offset this effect. If so, ammonia would be expected to stimulate gad gene expression and repress the LEE in TW14359, but to have no effect in the TW14359ΔrhoN and TW14359ΔntrC backgrounds.

While the addition of ammonium chloride (2 g/L NH$_4$Cl) was observed to slightly but not significantly increase GDAR gene (*gadE* and *gadB*) expression in TW14359, expression in TW14359ΔntrC and TW14359ΔrhoN uniformly decreased (P < 0.05) (Fig. 4A). Correspondingly, ammonium addition reduced CFU/mL recovered for TW14359ΔntrC and TW14359ΔrhoN by ~100- to 1000-fold but had no observable effect on CFU/mL recovered for TW14359 (Fig. 4B). For the LEE, ammonium addition increased ler, tir, espA, and cesT expression in all backgrounds (Fig. 4C) and correspondingly increased the number of microcolonies formed on HT-29 cells for all strains (P < 0.05). The same observations were made when substituting equimolar ammonium sulfate for ammonium chloride (data not shown). These results reveal that ammonium does in fact influence GDAR and LEE gene expression, but by a mechanism that is independent of ntrC and *rhoN*. In support of these data, the expression of pathway components (*gadE, ler, flhDC*, and *flzI*) for control of GDAR and the LEE were not altered in a strain deleted for the NtrC cognate sensor kinase, *ntrB* (Fig. S1). Interestingly, growth in DMEM containing ammonium was observed to significantly reduce *rhoS* expression in TW14359, TW14359ΔntrC, and TW14359ΔrhoN (P < 0.01), while having no impact on *flhDC* or *flzI* expression in these backgrounds (Fig. 4E). This reduction in *rhoS* transcript levels correlated with a reduction in σN levels in all backgrounds with ammonium, however, σN levels were not as strongly reduced in TW14359ΔrhoN when compared to TW14359 or TW14359ΔntrC (Fig. 4F).

Feng et al. (1992) demonstrated phosphotransfer to, and activation of, NtrC in *E. coli* by the small molecule phosphodonor acetyl phosphate (acetyl–P). Acetyl–P readily accumulates during growth on glucose or in the presence of excess acetate, but not during growth on glycerol (McCleary and Stock 1994; Wolfe 2005). It was thus of interest to determine the effect of glucose and acetyl–P availability on NtrC-σN-dependent control of pathway components for the regulation of GDAR and the LEE. During growth in MOPS media containing glucose (2 g/L) and NH$_4$Cl (1 g/L) (OD$_{600} = 0.5$), the expression of *flhDC, flzI*, and *ler* was decreased and *gadB* increased in TW14359ΔntrC and TW14359ΔrhoN when compared to TW14359 (P < 0.05) (Fig. 5A), similar to that observed during growth in DMEM media (Figs. 1A, B and 2A). Substituting 0.2% (v/v) glycerol for glucose as the sole carbon source reduced *flhDC, flzI*, and *ler* expression in TW14359 and *rhoN* complement strain TW14359ΔrhoNpRAM-1 (P < 0.05), but not in TW14359ΔntrC and TW14359ΔrhoN (Fig. 5A). Likewise, glycerol substitution increased *gadB* expression in TW14359 and TW143579ΔrhoNpRAM-1 (P < 0.05), but not in TW14359ΔntrC and TW14359ΔrhoN. The addition of sodium acetate (2 g/L) to glycerol treatments restored *flhDC, flzI*, and *ler* expression to levels observed for glucose in TW14359, however, *gadB* expression was slightly but not significantly increased when compared to glycerol treatments (Fig. 5A). In TW14359ΔntrC and TW14359ΔrhoN, acetate was still observed to generally increase *flzI, flhDC*, and *ler* expression, yet had no impact on *gadB* expression in these backgrounds, which may reflect a more generalized, ntrC- and *rhoN*-independent effect of acetate on the expression of these genes. To further examine the effect of acetate and acetyl–P availability on this regulatory pathway, *gadB* and *ler* expressions were measured in a

© 2014 The Authors. *Microbiology Open* published by John Wiley & Sons Ltd.
strain null for acetate kinase (ackA), the product of which catalyzes the interconversion of acetate to acetyl-P (Rose et al. 1954). In TW14359ΔntrC, TW14359ΔrpoN, and TW14359ΔackA, gadB expression was significantly and uniformly increased when compared to TW14359 (P < 0.01) (Fig. 5B). Complementation with ackA (strain

Figure 4. Role for ammonium in the NtrC-σ^54-dependent pathway controlling GDAR and the LEE. (A) Expression levels for gadE (filled) and gadB (empty) without (−) and with (+) the addition of NH₄Cl plotted for wild-type and derivative strains; asterisks denote significant difference between treatments by t-test (*P < 0.05, **P < 0.01, n≥3). (B) Representative colony-forming units (CFU/mL) on LBA for wild-type and derivative strains grown without (−NH₄) or with (+NH₄) NH₄Cl added to DMEM and following 1-h challenge in EG media (pH 7 vs. pH 2). (C) Expression levels for ler (black), tir (white), espA (stippled), and cesT (gray) for wild-type and derivative strains grown without (−NH₄) or with (+NH₄) NH₄Cl added to DMEM. (D) Counts for microcolonies on HT-29 cells plotted for wild-type and mutant derivative strains grown without (−NH₄) or with (+NH₄) NH₄Cl. Boxplots are as described for Figure 1D. (E) Expression levels of flhDC, fliZ, and rpoS plotted for wild type (black), ΔntrC (white), and ΔrpoN (stippled). (F) Representative western blot for σ^S and GroEL (control) in wild type, ΔrpoN, and ΔntrC grown without (−) or with (+) NH₄Cl added to DMEM. For A, C, and E, asterisks denote significant differences between treatments by t-test (*P < 0.05, **P < 0.01, n≥3). For D, plots that differ in lowercase letter differ significantly by Tukey’s HSD following a significant F-test (n≥3, P < 0.05). Error bars denote standard deviation. GDAR, glutamate-dependent acid resistance; LEE, locus of enterocyte effacement.
TW14359ΔackApRAM-8) restored gadB expression to wild-type levels. For ler, expression was similarly reduced in TW14359ΔackA, TW14359ΔntrC, and TW14359ΔrpoN when compared to TW14359 and TW14359ΔackApRAM-8 (P < 0.05). Together, these data provide evidence that regulation of GDAR and the LEE by NtrC-δN is insensitive to changes in nitrogen availability (i.e., glutamine/ammonium), but instead is influenced by the availability of acetyl-P.

Discussion

In the present study, NtrC and δN have been shown to positively regulate the expression of crl and fliZ, the products of which control the activity of δ5. It is predicted that of the two, only FliZ is a required component of the δN pathway controlling δ5, GDAR, and the LEE. What impact crl upregulation in TW14359ΔrpoN has on δ5, if any, is as yet unclear. Crl and FliZ play antagonistic roles in the regulation of δ5. Crl directly binds δ5 facilitating interaction with RNA polymerase and holoenzyme (Eδ) formation (Bougdour et al. 2004), whereas FliZ acts downstream of Eδ formation, binding to the -10 box of δ5 promoters (Pesavento and Hengge 2012) precluding promoter recognition by Eδ. Thus, FliZ may be dominant to Crl in δN-directed control of δ5 activity. Alternatively, Crl reduces δ5 stability in an RssB-dependent manner during all stages of growth (Typas et al. 2007). It is therefore plausible that the increased stability of δ5 in rpoN null backgrounds (Dong et al. 2011; Mitra et al. 2012) results from reduced crl expression. This is consistent with the observation that in TW14359ΔrpoN the GDAR and LEE expression phenotype cannot be reproduced by increasing δ5 stability alone (Mitra et al. 2012).

The transcription of fliZ is largely determined by FlhDC, a global regulator of motility genes (Francez-Charlot et al. 2004).
2003). FlhD forms a heterodimer with FlhC, directly activating transcription of the flhA2Y operon from the \(\sigma^N\)-dependent promoter flhA\(_p\). This study determined that flhDC was required for \(\sigma^N\)-directed regulation of GDAR and LEE genes in a manner that was dependent on an intact fllZ. Based on our results, it is predicted that NtrC and \(\sigma^N\) directly activate transcription of flhDC during exponential growth in DMEM (4 g/L glucose, with no NH\(_4\)\(_2\)) requiring the putative \(\sigma^N\)-promoter flhD\(_P2\), and a newly identified NtrC box at positions 2481732–2487152 (Fig. 6). This NtrC box is nearly identical to the predicted NtrC consensus (Ferro-Luzzi Ames and Nikaido 1985), differing by a single nucleotide in the dyad repeat region. Upregulation of FlhDC leads to increased transcription of fllZ (Francez-Charlot et al. 2003), the product of which decreases the activity of \(\sigma^S\) (Pesavento and Hengge 2012) (Fig. 6). This suggests that during exponential growth NtrC-\(\sigma^N\) keep the activity of extant \(\sigma^S\) in check by increasing FlhDC-dependent transcription of fllZ. One consequence of this reduced \(\sigma^S\) activity in EHEC is an increase in LEE expression (Riorddan et al. 2010) and correspondingly, increased in vitro microcolony formation. This could occur by at least two discrete mechanisms: by upregulation of pchA or through the downregulation of gadE (Fig. 6). PchA is a LEE activator that is negatively regulated by \(\sigma^S\) (Iyoda and Watanabe 2005), whereas GadE represses the LEE and is activated by \(\sigma^S\) through upregulation of gadX (Ma et al. 2003). While the involvement of PchA in this pathway cannot be ruled out, only gadE and gadX expressions are significantly altered in the rpoN null background (Riorddan et al. 2010). Even though FlhDC has been shown to effect adherence in E. coli, until now, the association has been negative. Leatham et al. (2005) reported that the deletion of flhDC in E. coli K-12 increased colonization of a mouse, while constitutive expression of flhDC in another study, reduced adherence of EHEC to HeLa cells (Iyoda et al. 2006). As the former study is in the K-12 MG1655 background, the effect of flhDC on colonization is clearly LEE independent. For EHEC, however, flhDC and the LEE are known to be inversely regulated; expression of LEE-encoded GrlA downregulates flhDC and motility in a manner dependent on RcsB, a response regulator of the Rcs phosphorelay system (Iyoda et al. 2006; Morgan et al. 2013). Perhaps FlhDC is used by E. coli in protecting from acid stress (reviewed in Foster 2004). It is this cellular glutamate that is the source of glutamine (Gln) (Fig. 6). Strains null for rpoN or ntrC are therefore unable to activate glnA in response to reduced nitrogen availability, leading to glutamate accumulation and auxotrophy for glutamine. These strains are thus characterized by elevated levels of both

![Figure 6. Model predicting NtrC-\(\sigma^N\)-dependent regulation of GDAR and the LEE. During exponential growth in DMEM (a nitrogen-limiting media), NtrC activates transcription from \(\sigma^N\)-dependent promoters for flhD and glnA. FlhDC (regulator of flagellar biosynthesis) directly activates fllZ, the product of which reduces the activity of \(\sigma^S\)-RNAP (E. coli) holoenzyme. \(\sigma^S\) indirectly downregulates LEE expression by repressing the LEE activator pchA by an unknown mechanism, while upregulating the GDAR activator gadE through increased transcription of gadX. GadE has also been shown to directly repress transcription of fer. The upregulation of glnA (encoding glutamine synthetase, GS) increases the conversion of extant glutamate (Glu) to glutamine (Gln), thus depleting the substrate for GDAR system decarboxylases (GadA/GadB) and the potential for proton scavenging and acid detoxification. Acetyl-P (AcP) is a noncognate phosphodonor that can activate NtrC-\(\sigma^N\) dependent transcription from \(\sigma^N\)-promoters for flhD and glnA. The model is an amalgam of experimental observations inferred from this and previous studies (Reitzer et al. 1989; Feng et al. 1992; Tomoyasu et al. 2005; Kailasan Vanaja et al. 2009; Zhao et al. 2010; Lee et al. 2011; Pesavento and Hengge 2012; Branchu et al. 2014). See the text for further details. GDAR, glutamate-dependent acid resistance; LEE, locus of enterocyte effacement.](image-url)
the components (i.e., gadE, gadA/B, gadC) and substrate (glutamate) for GDAR. This mechanistic duality is reflected in the observation that neither fliz nor glnA deletion can fully recapitulate the GDAR phenotype of an rpoN null background. Since as many as 60% of σN-regulated genes have been shown to be antagonistically controlled by σN in E. coli (Dong et al. 2011), the interplay of these sigma factors likely has a more global impact on virulence, fitness, and metabolism than simply control of GDAR and the LEE.

The precise activating signal for NtrC-σN-dependent regulation of GDAR and the LEE is as yet unknown. Phosphorylation and activation of NtrC is sensitive to changes in the intracellular levels of glutamine. When E. coli is grown in the absence of ammonium, glutamine levels are low, signaling the phosphorylation of NtrC by its cognate sensor kinase NtrB, and NtrC-dependent activation of σN promoters for nitrogen assimilation (Reitzer 2003). Although the addition of ammonium to DMEM did have a significant impact on GDAR and LEE expression, it did so independently of ntrC and rpoN. This effect of ammonium on the expression of E. coli colonizing factors has been formerly observed in EPEC, as well as for enterotoxigenic E. coli (ETEC). In EPEC, ammonium reduces expression of the bundle-forming pilus genes bfpA and bfpT, and reduces T3S-secretion of the EspA, EspB, and EspC translocon proteins (Puente et al. 1996; Kenny et al. 1997; Martinez-Laguna et al. 1999). For ETEC, ammonium increased expression of the 987P fimbria genes fasH and fasA (Edwards and Schifferli 1997). Changes in EPEC and ETEC colonizing factor expression in response to ammonium correlate with differences in tissue tropism and reflect the availability of ammonium in the intestine; its concentration gradually increases toward the distal small intestine (Toskes 1993; Edwards and Schifferli 1997; Martinez-Laguna et al. 1999). This natural gradient of intestinal ammonium may have a significant influence on the decision for colonization in all E. coli. However for EPEC, repression of bfp was shown to require a trans-acting factor that was absent, or present, but not functional in E. coli K-12 (Martinez-Laguna et al. 1999). How the ammonium signal is communicated to GDAR in EHEC and to the LEE in EHEC and EPEC requires further study.

Based on the findings of this study, it is proposed that NtrC is autophosphorylated by a noncognate phosphodonor in the σN pathway controlling GDAR and the LEE. Acetyl-~P is a plausible candidate (Fig. 6), as it is a known NtrC phosphodonor (Feng et al. 1992; Atkinson and Ninfa 1998), and experimental alteration of acetyl-~P levels by substituting either glycerol or glycerol and acetate for glucose, or by the deletion of acetate kinase (ackA), altered the expression of pathway components for regulation of GDAR and the LEE in a manner dependent on rpoN and ntrC. Requirement for acetyl-~P is consistent with the growth-phase dependency of σN for GDAR and LEE regulation. The cellular pool of acetyl-~P during growth with glucose peaks during exponential phase, and drops off precipitously during transition into stationary phase (Takamura and Nomura 1988; Pruss and Wolfe 1994). Correspondingly, control of gad and LEE genes by NtrC and σN is restricted to the mid-exponential phase of growth (Riordan et al. 2010; Mitra et al. 2012). Remarkably, acetyl-~P also serves as a phosphodonor for Rrp2, a σN EBP found in B. burgdorferi and required for activation of the σN-~P pathway regulating virulence expression in this pathogen (Xu et al. 2010). Thus, the use of acetyl-~P for autophosphorylation of σN EBPs may be a phenomenon that is conserved across different species of bacteria. Why acetyl-~P would be used in place of the cognate sensor kinase NtrB in E. coli is not yet known. It has been formerly proposed that the phosphorylation of NtrC by acetyl-~P may be used to initiate transcription of Ntr genes during transition to a nitrogen poor environment, as cellular NtrB levels are very low when nitrogen is abundant (Feng et al. 1992). Yet, in this study ntrB was clearly dispensable for GDAR and LEE regulation when grown in nitrogen-limiting media containing glucose, suggesting that acetyl-~P alone is sufficient to activate this pathway. It remains to be determined if ntrB is required for GDAR and LEE regulation by NtrC-σN in nitrogen-limiting media lacking glucose. The broader significance of this finding is that acetyl-~P levels in E. coli are sensitive to many factors, including nutrients, temperature, anaerobiosis, and pH (Wolfe 2005), suggesting that it may be used by NtrC to communicate various environmental cues to σN.

Conflict of Interest
None declared.

References

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Figure S1. Effect of ntrB deletion on the expression of genes for GDAR and LEE control. Gene expression levels plotted for wild type (black), ΔrpoN (white), ΔntrC (hatched), and ΔntrB (gray). Asterisks denote significant difference between wild-type and respective mutants by t-test (*P < 0.05, **P < 0.01, n ≥ 3). Error bars denote standard deviation.

Figure S2. Growth curve for TW14359 and mutant derivative strains in DMEM. Optical density (OD₆₀₀) is plotted for each strain as a function of time. Samples were taken every hour for 12 h. OD₆₀₀ measurements differed by less than 5% for each time point and strain.