Triple-isotopologue Analysis of N_2 as a Tracer of the Global Nitrogen Cycle

Shuning Li¹, Laurence Y. Yeung¹, Edward D. Young², Nathaniel E. Ostrom³, Joshua A. Haslun³

¹Department of Earth Science, Rice University, Houston, TX 77005 USA
²Department of Earth and Space Sciences, University of California, Los Angeles, CA 90095 USA
³Department of Integrative Biology, Michigan State University, East Lansing, MI 48824 USA

Email: ningningnaonao@gmail.com

The uncertainty of the global nitrogen budget highlights the importance of a better understanding of the fixed-nitrogen inventory. High-precision measurements of $^{14}\text{N}^{14}\text{N}$, $^{14}\text{N}^{15}\text{N}$ and $^{15}\text{N}^{15}\text{N}$ in N_2 can provide new constraints on this inventory. We report the first measurements of these species in tropospheric N_2 and in N_2 generated from denitrification and discuss the potential uses of N_2 “triple-isotopologues” to improve our understanding of the nitrogen cycle.

The N_2 triple-isotopologue distribution, expressed as Δ_{30}, describes enrichment in $^{15}\text{N}^{15}\text{N}$ of N_2 relative to that predicted by chance. It reflects isotopic ordering through N-N bond breaking and formation during nitrogen fixation and denitrification. The Δ_{30} parameter is analogous to $\delta^{15}\text{N}$ in that it corresponds to chemical transition among N-bearing compounds. However, unlike $\delta^{15}\text{N}$, Δ_{30} is insensitive to the total $^{15}\text{N}/^{14}\text{N}$ ratio in the reservoirs.

We present Δ_{30} values of N_2 analyzed on a high-resolution isotope ratio mass spectrometer (the Nu instruments Panorama). The analytical accuracy was verified with laboratory Knudsen diffusion experiments. The Δ_{30} values of N_2 from soils and pure cultures of denitrifiers vary between +16.9 and +18.9‰, which indicate large kinetic isotopic effects during denitrification and probably reflect the isotopic signatures of enzymes that catalyze N-N bond formation. Enrichment in $^{15}\text{N}^{15}\text{N}$ was also observed in tropospheric N_2 ($\Delta_{30} = +19.05 \pm 0.12\%$o, 1σ), which likely inherits its value from the nitrogen lost from biosphere. Overall, our results suggest that the degree of isotopic ordering of tropospheric N_2 may be applied to reflect the relative contributions of global natural N_2 sources.

Keywords: global nitrogen cycle, N_2 triple isotopologues, denitrification